facial-emotion-recognition-dataset / facial-emotion-recognition-dataset.py
vkashko's picture
feat: script
46a9e6b
raw
history blame
8.22 kB
import json
from pathlib import Path
import datasets
import numpy as np
import pandas as pd
import PIL.Image
import PIL.ImageOps
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {body-measurements-dataset},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset consists of a compilation of people's photos along with their
corresponding body measurements. It is designed to provide information and
insights into the physical appearances and body characteristics of individuals.
The dataset includes a diverse range of subjects representing different age
groups, genders, and ethnicities.
The photos are captured in a standardized manner, depicting individuals in a
front and side positions.
The images aim to capture the subjects' physical appearance using appropriate
lighting and angles that showcase their body proportions accurately.
The dataset serves various purposes, including:
- research projects
- body measurement analysis
- fashion or apparel industry applications
- fitness and wellness studies
- anthropometric studies for ergonomic design in various fields
"""
_NAME = 'body-measurements-dataset'
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = "cc-by-nc-nd-4.0"
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
class BodyMeasurementsDataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
'front_img': datasets.Image(),
'selfie_img': datasets.Image(),
'side_img': datasets.Image(),
"arm_circumference_cm": datasets.Value('string'),
"arm_length_cm": datasets.Value('string'),
"back_build_cm": datasets.Value('string'),
"calf_circumference_cm": datasets.Value('string'),
"chest_circumference_cm": datasets.Value('string'),
"crotch_height_cm": datasets.Value('string'),
"front_build_cm": datasets.Value('string'),
"hips_circumference_cm": datasets.Value('string'),
"leg_length_cm": datasets.Value('string'),
"neck_circumference_cm": datasets.Value('string'),
"neck_pelvis_length_front_cm": datasets.Value('string'),
"neck_waist_length_back_cm": datasets.Value('string'),
"neck_waist_length_front_cm": datasets.Value('string'),
"pelvis_circumference_cm": datasets.Value('string'),
"shoulder_length_cm": datasets.Value('string'),
"shoulder_width_cm": datasets.Value('string'),
"thigh_circumference_cm": datasets.Value('string'),
"under_chest_circumference_cm": datasets.Value('string'),
"upper_arm_length_cm": datasets.Value('string'),
"waist_circumference_cm": datasets.Value('string'),
"height": datasets.Value('string'),
"weight": datasets.Value('string'),
"age": datasets.Value('string'),
"gender": datasets.Value('string'),
"race": datasets.Value('string'),
"profession": datasets.Value('string'),
"arm_circumference": datasets.Image(),
"arm_length": datasets.Image(),
"back_build": datasets.Image(),
"calf_circumference": datasets.Image(),
"chest_circumference": datasets.Image(),
"crotch_height": datasets.Image(),
"front_build": datasets.Image(),
"hips_circumference": datasets.Image(),
"leg_length": datasets.Image(),
"neck_circumference": datasets.Image(),
"neck_pelvis_length_front": datasets.Image(),
"neck_waist_length_back": datasets.Image(),
"neck_waist_length_front": datasets.Image(),
"pelvis_circumference": datasets.Image(),
"shoulder_length": datasets.Image(),
"shoulder_width": datasets.Image(),
"thigh_circumference": datasets.Image(),
"under_chest_circumference": datasets.Image(),
"upper_arm_length": datasets.Image(),
"waist_circumference": datasets.Image()
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE)
def _split_generators(self, dl_manager):
files = dl_manager.download_and_extract(f"{_DATA}files.zip")
proofs = dl_manager.download_and_extract(f"{_DATA}proofs.zip")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
files = dl_manager.iter_files(files)
proofs = dl_manager.iter_files(proofs)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"files": files,
'proofs': proofs,
'annotations': annotations
}),
]
def _generate_examples(self, files, proofs, annotations):
files = list(files)
files = [files[i:i + 4] for i in range(0, len(files), 4)]
proofs = list(proofs)
proofs = [proofs[i:i + 20] for i in range(0, len(proofs), 20)]
for idx, (files_dir, proofs_dir) in enumerate(zip(files, proofs)):
data = {}
for file in files_dir:
if 'front_img' in file:
data['front_img'] = file
elif 'selfie_img' in file:
data['selfie_img'] = file
elif 'side_img' in file:
data['side_img'] = file
elif 'measurements' in file:
with open(file) as f:
data.update(json.load(f))
for proof in proofs_dir:
if "arm_circumference" in proof:
data['arm_circumference'] = proof
elif 'upper_arm_length' in proof:
data['upper_arm_length'] = proof
elif 'arm_length' in proof:
data['arm_length'] = proof
elif 'back_build' in proof:
data['back_build'] = proof
elif 'calf_circumference' in proof:
data['calf_circumference'] = proof
elif 'under_chest_circumference' in proof:
data['under_chest_circumference'] = proof
elif 'chest_circumference' in proof:
data['chest_circumference'] = proof
elif 'crotch_height' in proof:
data['crotch_height'] = proof
elif 'front_build' in proof:
data['front_build'] = proof
elif 'hips_circumference' in proof:
data['hips_circumference'] = proof
elif 'leg_length' in proof:
data['leg_length'] = proof
elif 'neck_circumference' in proof:
data['neck_circumference'] = proof
elif 'neck_pelvis_length_front' in proof:
data['neck_pelvis_length_front'] = proof
elif 'neck_waist_length_back' in proof:
data['neck_waist_length_back'] = proof
elif 'neck_waist_length_front' in proof:
data['neck_waist_length_front'] = proof
elif 'pelvis_circumference' in proof:
data['pelvis_circumference'] = proof
elif 'shoulder_length' in proof:
data['shoulder_length'] = proof
elif 'shoulder_width' in proof:
data['shoulder_width'] = proof
elif 'thigh_circumference' in proof:
data['thigh_circumference'] = proof
elif 'waist_circumference' in proof:
data['waist_circumference'] = proof
yield idx, data