|
import json |
|
from pathlib import Path |
|
|
|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
import PIL.Image |
|
import PIL.ImageOps |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {body-measurements-dataset}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of a compilation of people's photos along with their |
|
corresponding body measurements. It is designed to provide information and |
|
insights into the physical appearances and body characteristics of individuals. |
|
The dataset includes a diverse range of subjects representing different age |
|
groups, genders, and ethnicities. |
|
|
|
The photos are captured in a standardized manner, depicting individuals in a |
|
front and side positions. |
|
The images aim to capture the subjects' physical appearance using appropriate |
|
lighting and angles that showcase their body proportions accurately. |
|
|
|
The dataset serves various purposes, including: |
|
- research projects |
|
- body measurement analysis |
|
- fashion or apparel industry applications |
|
- fitness and wellness studies |
|
- anthropometric studies for ergonomic design in various fields |
|
""" |
|
_NAME = 'body-measurements-dataset' |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "cc-by-nc-nd-4.0" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class BodyMeasurementsDataset(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'front_img': datasets.Image(), |
|
'selfie_img': datasets.Image(), |
|
'side_img': datasets.Image(), |
|
"arm_circumference_cm": datasets.Value('string'), |
|
"arm_length_cm": datasets.Value('string'), |
|
"back_build_cm": datasets.Value('string'), |
|
"calf_circumference_cm": datasets.Value('string'), |
|
"chest_circumference_cm": datasets.Value('string'), |
|
"crotch_height_cm": datasets.Value('string'), |
|
"front_build_cm": datasets.Value('string'), |
|
"hips_circumference_cm": datasets.Value('string'), |
|
"leg_length_cm": datasets.Value('string'), |
|
"neck_circumference_cm": datasets.Value('string'), |
|
"neck_pelvis_length_front_cm": datasets.Value('string'), |
|
"neck_waist_length_back_cm": datasets.Value('string'), |
|
"neck_waist_length_front_cm": datasets.Value('string'), |
|
"pelvis_circumference_cm": datasets.Value('string'), |
|
"shoulder_length_cm": datasets.Value('string'), |
|
"shoulder_width_cm": datasets.Value('string'), |
|
"thigh_circumference_cm": datasets.Value('string'), |
|
"under_chest_circumference_cm": datasets.Value('string'), |
|
"upper_arm_length_cm": datasets.Value('string'), |
|
"waist_circumference_cm": datasets.Value('string'), |
|
"height": datasets.Value('string'), |
|
"weight": datasets.Value('string'), |
|
"age": datasets.Value('string'), |
|
"gender": datasets.Value('string'), |
|
"race": datasets.Value('string'), |
|
"profession": datasets.Value('string'), |
|
"arm_circumference": datasets.Image(), |
|
"arm_length": datasets.Image(), |
|
"back_build": datasets.Image(), |
|
"calf_circumference": datasets.Image(), |
|
"chest_circumference": datasets.Image(), |
|
"crotch_height": datasets.Image(), |
|
"front_build": datasets.Image(), |
|
"hips_circumference": datasets.Image(), |
|
"leg_length": datasets.Image(), |
|
"neck_circumference": datasets.Image(), |
|
"neck_pelvis_length_front": datasets.Image(), |
|
"neck_waist_length_back": datasets.Image(), |
|
"neck_waist_length_front": datasets.Image(), |
|
"pelvis_circumference": datasets.Image(), |
|
"shoulder_length": datasets.Image(), |
|
"shoulder_width": datasets.Image(), |
|
"thigh_circumference": datasets.Image(), |
|
"under_chest_circumference": datasets.Image(), |
|
"upper_arm_length": datasets.Image(), |
|
"waist_circumference": datasets.Image() |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE) |
|
|
|
def _split_generators(self, dl_manager): |
|
files = dl_manager.download_and_extract(f"{_DATA}files.zip") |
|
proofs = dl_manager.download_and_extract(f"{_DATA}proofs.zip") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
files = dl_manager.iter_files(files) |
|
proofs = dl_manager.iter_files(proofs) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files": files, |
|
'proofs': proofs, |
|
'annotations': annotations |
|
}), |
|
] |
|
|
|
def _generate_examples(self, files, proofs, annotations): |
|
files = list(files) |
|
files = [files[i:i + 4] for i in range(0, len(files), 4)] |
|
proofs = list(proofs) |
|
proofs = [proofs[i:i + 20] for i in range(0, len(proofs), 20)] |
|
|
|
for idx, (files_dir, proofs_dir) in enumerate(zip(files, proofs)): |
|
data = {} |
|
for file in files_dir: |
|
if 'front_img' in file: |
|
data['front_img'] = file |
|
elif 'selfie_img' in file: |
|
data['selfie_img'] = file |
|
elif 'side_img' in file: |
|
data['side_img'] = file |
|
elif 'measurements' in file: |
|
with open(file) as f: |
|
data.update(json.load(f)) |
|
|
|
for proof in proofs_dir: |
|
if "arm_circumference" in proof: |
|
data['arm_circumference'] = proof |
|
elif 'upper_arm_length' in proof: |
|
data['upper_arm_length'] = proof |
|
elif 'arm_length' in proof: |
|
data['arm_length'] = proof |
|
elif 'back_build' in proof: |
|
data['back_build'] = proof |
|
elif 'calf_circumference' in proof: |
|
data['calf_circumference'] = proof |
|
elif 'under_chest_circumference' in proof: |
|
data['under_chest_circumference'] = proof |
|
elif 'chest_circumference' in proof: |
|
data['chest_circumference'] = proof |
|
elif 'crotch_height' in proof: |
|
data['crotch_height'] = proof |
|
elif 'front_build' in proof: |
|
data['front_build'] = proof |
|
elif 'hips_circumference' in proof: |
|
data['hips_circumference'] = proof |
|
elif 'leg_length' in proof: |
|
data['leg_length'] = proof |
|
elif 'neck_circumference' in proof: |
|
data['neck_circumference'] = proof |
|
elif 'neck_pelvis_length_front' in proof: |
|
data['neck_pelvis_length_front'] = proof |
|
elif 'neck_waist_length_back' in proof: |
|
data['neck_waist_length_back'] = proof |
|
elif 'neck_waist_length_front' in proof: |
|
data['neck_waist_length_front'] = proof |
|
elif 'pelvis_circumference' in proof: |
|
data['pelvis_circumference'] = proof |
|
elif 'shoulder_length' in proof: |
|
data['shoulder_length'] = proof |
|
elif 'shoulder_width' in proof: |
|
data['shoulder_width'] = proof |
|
elif 'thigh_circumference' in proof: |
|
data['thigh_circumference'] = proof |
|
elif 'waist_circumference' in proof: |
|
data['waist_circumference'] = proof |
|
|
|
yield idx, data |
|
|