File size: 3,660 Bytes
98d6dab
 
5423466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d6dab
5423466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df2cb98
5423466
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: mit
language:
- en
tags:
- not-for-all-audiences
- chemistry
- biology
- finance
- legal
- music
- art
- code
- climate
- medical
pretty_name: Well Reddits
size_categories:
- 100M<n<1B
task_categories:
- question-answering
---


# 🙋🏻‍♂️Welcome to 🧑🏻‍🚀Tonic's🚀🚰Well🔴Reddit🔥!

This is every "best reddit_question_best_answers" appended and produced according to the following template :

```json
{"prompt": "This is the first prompt", "completion": "This is the first completion"}
{"prompt": "This is the second prompt", "completion": "This is the second completion"}
```

🤔The point is to make it easy to train models with a single correctly formatted dataset of

- 54,367,153 rows

Probably there's a big problem with the token count on these long answers 😉

good luck !🧑🏻‍🚀🚀

# Original Dataset :

[nreimers/reddit_question_best_answers](https://huggingface.co/datasets/nreimers/reddit_question_best_answers)

# Processing

```python
import json
import os
import gzip
import logging
import re
import random

# Setup basic logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

def clean_string(s):
    """Remove special characters, keeping only alphanumeric characters and spaces."""
    if isinstance(s, list):
        # Extract text from each dictionary in the list and join into a single string
        s = " ".join([d.get("body", "") if isinstance(d, dict) else str(d) for d in s])
    return re.sub(r'[^A-Za-z0-9 ]+', '', s)

def process_file(input_file, output_file):
    try:
        dataset = []
        with gzip.open(input_file, 'rt') as infile:
            for line in infile:
                # Parse the JSON line
                try:
                    data = json.loads(line)
                except json.JSONDecodeError:
                    logging.error(f"Invalid JSON format in {input_file}: {line}")
                    continue

                # Extract and clean the 'body' and 'answers' fields
                prompt = clean_string(data.get("body", ""))
                completion = clean_string(data.get("answers", ""))

                # For each body found, make a new row and duplicate the prompt for it
                if isinstance(data.get("body", ""), list):
                    for body in data.get("body", []):
                        cleaned_body = clean_string(body)
                        dataset.append({"prompt": cleaned_body, "completion": completion})
                else:
                    dataset.append({"prompt": prompt, "completion": completion})

        # Shuffle the dataset
        random.shuffle(dataset)

        # Write the shuffled dataset to the output file
        with open(output_file, 'a') as outfile:
            for item in dataset:
                json.dump(item, outfile)
                outfile.write('\n')

        logging.info(f"Processed file: {input_file}")

    except Exception as e:
        logging.error(f"Error processing file {input_file}: {e}")

def process_files(file_list, output_dir):
    # Ensure the output directory exists
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Create a single output file path
    output_file = os.path.join(output_dir, 'synthesized_dataset.jsonl')

    for input_file in file_list:
        process_file(input_file, output_file)

        # Update with your list of .gz file paths
file_list = [r'C:\Users\MeMyself\FILES, r"C:\Users\MeMyself\FILES" ]  # Update with your list of .gz file paths
output_dir = r'C:\Users\MeMyself\reddit_question_best_answers\processed'
process_files(file_list, output_dir)
```