Datasets:
File size: 4,538 Bytes
98d6dab 5423466 98d6dab 5423466 cdde8a4 5423466 0ac1ff1 5423466 df2cb98 5423466 223f2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: mit
language:
- en
tags:
- not-for-all-audiences
- chemistry
- biology
- finance
- legal
- music
- art
- code
- climate
- medical
pretty_name: Well Reddits
size_categories:
- 100M<n<1B
task_categories:
- question-answering
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62a3bb1cd0d8c2c2169f0b88/N_RqZSJ32MDIrRGbLcPqm.png)
# 🙋🏻♂️Welcome to 🧑🏻🚀Tonic's🚀🚰Well🔴Reddit🔥!
This is every "best reddit_question_best_answers" appended and produced according to the following template :
```json
{"prompt": "This is the first prompt", "completion": "This is the first completion"}
{"prompt": "This is the second prompt", "completion": "This is the second completion"}
```
🤔The point is to make it easy to train models with a single correctly formatted dataset of
- 54,367,153 rows
Probably there's a big problem with the token count on these long answers 😉
good luck !🧑🏻🚀🚀
# Original Dataset :
[nreimers/reddit_question_best_answers](https://huggingface.co/datasets/nreimers/reddit_question_best_answers)
# How To Use :
Combine random shards in random quantities to produce a very high quality conversational training dataset for fine tuning by running the following code:
```python
import random
# Define the shards
shards = [f"shard_{i}" for i in range(1, 34)]
# Function to combine random shards
def combine_shards():
# Select a random shard
selected_shard = random.choice(shards)
# Select a random quantity (1-5)
quantity = random.randint(1, 5)
return selected_shard, quantity
# Example usage
for _ in range(10): # Combine 10 times as an example
shard, qty = combine_shards()
print(f"Combined {qty} of {shard}")
```
# Pre-Processing
```python
import json
import os
import gzip
import logging
import re
import random
# Setup basic logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
def clean_string(s):
"""Remove special characters, keeping only alphanumeric characters and spaces."""
if isinstance(s, list):
# Extract text from each dictionary in the list and join into a single string
s = " ".join([d.get("body", "") if isinstance(d, dict) else str(d) for d in s])
return re.sub(r'[^A-Za-z0-9 ]+', '', s)
def process_file(input_file, output_file):
try:
dataset = []
with gzip.open(input_file, 'rt') as infile:
for line in infile:
# Parse the JSON line
try:
data = json.loads(line)
except json.JSONDecodeError:
logging.error(f"Invalid JSON format in {input_file}: {line}")
continue
# Extract and clean the 'body' and 'answers' fields
prompt = clean_string(data.get("body", ""))
completion = clean_string(data.get("answers", ""))
# For each body found, make a new row and duplicate the prompt for it
if isinstance(data.get("body", ""), list):
for body in data.get("body", []):
cleaned_body = clean_string(body)
dataset.append({"prompt": cleaned_body, "completion": completion})
else:
dataset.append({"prompt": prompt, "completion": completion})
# Shuffle the dataset
random.shuffle(dataset)
# Write the shuffled dataset to the output file
with open(output_file, 'a') as outfile:
for item in dataset:
json.dump(item, outfile)
outfile.write('\n')
logging.info(f"Processed file: {input_file}")
except Exception as e:
logging.error(f"Error processing file {input_file}: {e}")
def process_files(file_list, output_dir):
# Ensure the output directory exists
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Create a single output file path
output_file = os.path.join(output_dir, 'synthesized_dataset.jsonl')
for input_file in file_list:
process_file(input_file, output_file)
# Update with your list of .gz file paths
file_list = [r'C:\Users\MeMyself\FILES, r"C:\Users\MeMyself\FILES" ] # Update with your list of .gz file paths
output_dir = r'C:\Users\MeMyself\reddit_question_best_answers\processed'
process_files(file_list, output_dir)
```
**sharding script** : [here](https://huggingface.co/datasets/Tonic/WellReddit/blob/main/shard.py) |