Datasets:
File size: 16,047 Bytes
9c564ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""British Library Books Genre Dataset"""
import ast
import csv
from datetime import datetime
from typing import Dict, List
import datasets
_CITATION = """\
@misc{british library_genre,
title={ 19th Century Books - metadata with additional crowdsourced annotations},
url={https://doi.org/10.23636/BKHQ-0312},
author={{British Library} and Morris, Victoria and van Strien, Daniel and Tolfo, Giorgia and Afric, Lora and Robertson, Stewart and Tiney, Patricia and Dogterom, Annelies and Wollner, Ildi},
year={2021}}
"""
_DESCRIPTION = """\
This dataset contains metadata for resources belonging to the British Library’s digitised printed books (18th-19th century) collection (bl.uk/collection-guides/digitised-printed-books).
This metadata has been extracted from British Library catalogue records.
The metadata held within our main catalogue is updated regularly.
This metadata dataset should be considered a snapshot of this metadata.
"""
_HOMEPAGE = "doi.org/10.23636/BKHQ-0312"
_LICENSE = "CC0 1.0 Universal Public Domain"
_URL = "https://bl.iro.bl.uk/downloads/36c7cd20-c8a7-4495-acbe-469b9132c6b1?locale=en"
common_features = {
"BL record ID": datasets.Value("string"),
"Name": datasets.Value("string"),
"Dates associated with name": datasets.Value("string"),
"Type of name": datasets.Value("string"),
"Role": datasets.Value("string"),
"All names": datasets.features.Sequence(datasets.Value("string")),
"Title": datasets.Value("string"),
"Variant titles": datasets.Value("string"),
"Series title": datasets.Value("string"),
"Number within series": datasets.Value("string"),
"Country of publication": datasets.Sequence(datasets.Value("string")),
"Place of publication": datasets.Sequence(datasets.Value("string")),
"Publisher": datasets.Value("string"),
"Date of publication": datasets.Value("string"),
"Edition": datasets.Value("string"),
"Physical description": datasets.Value("string"),
"Dewey classification": datasets.Value("string"),
"BL shelfmark": datasets.Value("string"),
"Topics": datasets.Value("string"),
"Genre": datasets.Value("string"),
"Languages": datasets.features.Sequence(datasets.Value("string")),
"Notes": datasets.Value("string"),
"BL record ID for physical resource": datasets.Value("string"),
"classification_id": datasets.Value("string"),
"user_id": datasets.Value("string"),
"subject_ids": datasets.Value("string"),
"annotator_date_pub": datasets.Value("string"),
"annotator_normalised_date_pub": datasets.Value("string"),
"annotator_edition_statement": datasets.Value("string"),
"annotator_FAST_genre_terms": datasets.Value("string"),
"annotator_FAST_subject_terms": datasets.Value("string"),
"annotator_comments": datasets.Value("string"),
"annotator_main_language": datasets.Value("string"),
"annotator_other_languages_summaries": datasets.Value("string"),
"annotator_summaries_language": datasets.Value("string"),
"annotator_translation": datasets.Value("string"),
"annotator_original_language": datasets.Value("string"),
"annotator_publisher": datasets.Value("string"),
"annotator_place_pub": datasets.Value("string"),
"annotator_country": datasets.Value("string"),
"annotator_title": datasets.Value("string"),
"Link to digitised book": datasets.Value("string"),
"annotated": datasets.Value("bool"),
}
raw_features = datasets.Features(
{
**common_features,
**{
"Type of resource": datasets.features.ClassLabel(
names=["Monograph", "Serial", "Monographic component part"]
),
"created_at": datasets.Value("string"),
"annotator_genre": datasets.Value("string"),
},
}
)
annotated_raw_features = datasets.Features(
{
**common_features,
**{
"Type of resource": datasets.features.ClassLabel(
names=[
"Monograph",
"Serial",
]
),
"created_at": datasets.Value("timestamp[s]"),
"annotator_genre": datasets.features.ClassLabel(
names=[
"Fiction",
"Can't tell",
"Non-fiction",
"The book contains both Fiction and Non-Fiction",
]
),
},
}
)
class BlBooksGenre(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="title_genre_classifiction",
version=VERSION,
description="This part of my dataset covers a first domain",
),
datasets.BuilderConfig(
name="annotated_raw",
version=VERSION,
description="""\
This version of the dataset includes all fields from the original dataset which are annotated.
This includes duplication from different annotators""",
),
datasets.BuilderConfig(
name="raw",
version=VERSION,
description="""\
This version of the dataset includes all the fields from the original dataset including rows without annotation.
It includes duplications from different annotators""",
),
]
DEFAULT_CONFIG_NAME = "title_genre_classifiction"
def _info(self):
if self.config.name == "title_genre_classifiction":
features = datasets.Features(
{
"BL record ID": datasets.Value("string"),
"title": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=["Fiction", "Non-fiction"]),
}
)
if self.config.name == "annotated_raw":
features = annotated_raw_features
if self.config.name == "raw":
features = raw_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_file = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_file,
"split": "train",
},
),
]
def _parse_language(self, row: Dict) -> List[str]:
languages = row["Languages"]
if not languages:
return []
return languages.split(";")
def _parse_country(self, row: Dict) -> List[str]:
return row["Country of publication"].split(";") if row["Country of publication"] else []
def _parse_place_of_publication(self, row: Dict) -> List[str]:
return row["Place of publication"].split(";") if row["Place of publication"] else []
def _parse_all_names(self, row: Dict) -> List[str]:
return row["All names"].split(";") if row["All names"] else []
def _generate_examples(self, filepath, split):
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f)
if self.config.name == "title_genre_classifiction":
unique = set()
id_ = 0
for row in reader:
annotated = ast.literal_eval(row["annotated"])
if not annotated:
continue
label = row["annotator_genre"]
if label not in {"Fiction", "Non-fiction"}:
continue
title = row["Title"]
if title in unique:
continue
unique.add(title)
id_ += 1
yield id_, {
"BL record ID": row["BL record ID"],
"title": title,
"label": label,
}
if self.config.name == "annotated_raw":
id_ = 0
for row in reader:
annotated = ast.literal_eval(row["annotated"])
if not annotated:
continue
created_at = datetime.strptime(row["created_at"], "%Y-%m-%d %H:%M:%S %Z")
id_ += 1
yield id_, {
"BL record ID": row["BL record ID"],
"Type of resource": row["Type of resource"],
"Name": row["Name"],
"Dates associated with name": row["Dates associated with name"],
"Type of name": row["Type of name"],
"Role": row["Role"],
"All names": self._parse_all_names(row),
"Title": row["Title"],
"Variant titles": row["Variant titles"],
"Series title": row["Series title"],
"Number within series": row["Number within series"],
"Country of publication": self._parse_country(row),
"Place of publication": self._parse_place_of_publication(row),
"Publisher": row["Publisher"],
"Date of publication": row["Date of publication"],
"Edition": row["Edition"],
"Physical description": row["Physical description"],
"Dewey classification": row["Dewey classification"],
"BL shelfmark": row["BL shelfmark"],
"Topics": row["Topics"],
"Genre": row["Genre"],
"Languages": self._parse_language(row),
"Notes": row["Notes"],
"BL record ID for physical resource": row["BL record ID for physical resource"],
"classification_id": row["classification_id"],
"user_id": row["user_id"],
"created_at": created_at,
"subject_ids": row["subject_ids"],
"annotator_date_pub": row["annotator_date_pub"],
"annotator_normalised_date_pub": row["annotator_normalised_date_pub"],
"annotator_edition_statement": row["annotator_edition_statement"],
"annotator_genre": row["annotator_genre"],
"annotator_FAST_genre_terms": row["annotator_FAST_genre_terms"],
"annotator_FAST_subject_terms": row["annotator_FAST_subject_terms"],
"annotator_comments": row["annotator_comments"],
"annotator_main_language": row["annotator_main_language"],
"annotator_other_languages_summaries": row["annotator_other_languages_summaries"],
"annotator_summaries_language": row["annotator_summaries_language"],
"annotator_translation": row["annotator_translation"],
"annotator_original_language": row["annotator_original_language"],
"annotator_publisher": row["annotator_publisher"],
"annotator_place_pub": row["annotator_place_pub"],
"annotator_country": row["annotator_country"],
"annotator_title": row["annotator_title"],
"Link to digitised book": row["Link to digitised book"],
"annotated": annotated,
}
if self.config.name == "raw":
for id_, row in enumerate(reader):
yield id_, {
"BL record ID": row["BL record ID"],
"Type of resource": row["Type of resource"],
"Name": row["Name"],
"Dates associated with name": row["Dates associated with name"],
"Type of name": row["Type of name"],
"Role": row["Role"],
"All names": self._parse_all_names(row),
"Title": row["Title"],
"Variant titles": row["Variant titles"],
"Series title": row["Series title"],
"Number within series": row["Number within series"],
"Country of publication": self._parse_country(row),
"Place of publication": self._parse_place_of_publication(row),
"Publisher": row["Publisher"],
"Date of publication": row["Date of publication"],
"Edition": row["Edition"],
"Physical description": row["Physical description"],
"Dewey classification": row["Dewey classification"],
"BL shelfmark": row["BL shelfmark"],
"Topics": row["Topics"],
"Genre": row["Genre"],
"Languages": self._parse_language(row),
"Notes": row["Notes"],
"BL record ID for physical resource": row["BL record ID for physical resource"],
"classification_id": row["classification_id"],
"user_id": row["user_id"],
"created_at": row["created_at"],
"subject_ids": row["subject_ids"],
"annotator_date_pub": row["annotator_date_pub"],
"annotator_normalised_date_pub": row["annotator_normalised_date_pub"],
"annotator_edition_statement": row["annotator_edition_statement"],
"annotator_genre": row["annotator_genre"],
"annotator_FAST_genre_terms": row["annotator_FAST_genre_terms"],
"annotator_FAST_subject_terms": row["annotator_FAST_subject_terms"],
"annotator_comments": row["annotator_comments"],
"annotator_main_language": row["annotator_main_language"],
"annotator_other_languages_summaries": row["annotator_other_languages_summaries"],
"annotator_summaries_language": row["annotator_summaries_language"],
"annotator_translation": row["annotator_translation"],
"annotator_original_language": row["annotator_original_language"],
"annotator_publisher": row["annotator_publisher"],
"annotator_place_pub": row["annotator_place_pub"],
"annotator_country": row["annotator_country"],
"annotator_title": row["annotator_title"],
"Link to digitised book": row["Link to digitised book"],
"annotated": ast.literal_eval(row["annotated"]),
}
|