RainInAustralia / Model.py
TSaala's picture
Create Model.py
833730d verified
import keras
from keras.layers import Dense
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping
import pandas as pd
import numpy as np
# Model parameters:
activation = 'relu'
final_activation = 'sigmoid'
loss = 'binary_crossentropy'
batchsize = 200
epochs = 150
lr = 0.0001
class_weight = {0: 0.33, 1: 1.0}
# Model architecture:
model = keras.Sequential()
model.add(Dense(units=21, input_shape=(21,), activation=activation))
model.add(Dense(units=21, activation=activation))
model.add(Dense(units=12, activation=activation))
model.add(Dense(units=12, activation=activation))
model.add(Dense(units=4, activation=activation))
model.add(Dense(units=4, activation=activation))
model.add(Dense(units=1, activation=final_activation))
model.compile(optimizer=Adam(learning_rate=lr), loss=loss,
metrics=['accuracy', 'AUC'])
model.summary()
# Model checkpoints:
saveModel = ModelCheckpoint('best_model.hdf5',
save_best_only=True,
monitor='val_loss',
mode='min')
# Model training:
model.fit(
x_train,
y_train,
batch_size=batchsize,
callbacks=[EarlyStopping(verbose=True, patience=15, monitor='val_loss'), saveModel],
epochs=epochs,
validation_data=(
x_val,
y_val),
shuffle=True,
class_weight=class_weight)