Datasets:

Languages:
English
ArXiv:
License:
wuyuchen commited on
Commit
fad4353
·
1 Parent(s): d6505cc

Upload ImageRewardDB.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. ImageRewardDB.py +222 -0
ImageRewardDB.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import pandas as pd
19
+ import json
20
+ import os
21
+
22
+ import datasets
23
+ from huggingface_hub import hf_hub_url
24
+
25
+
26
+ # TODO: Add BibTeX citation
27
+ # Find for instance the citation on arxiv or on the dataset repo/website
28
+ _CITATION = """\
29
+ @InProceedings{huggingface:dataset,
30
+ title = {A great new dataset},
31
+ author={huggingface, Inc.
32
+ },
33
+ year={2020}
34
+ }
35
+ """
36
+
37
+ # TODO: Add description of the dataset here
38
+ # You can copy an official description
39
+ _DESCRIPTION = """\
40
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
41
+ """
42
+
43
+ # TODO: Add a link to an official homepage for the dataset here
44
+ _HOMEPAGE = "https://huggingface.co/datasets/wuyuchen/ImageRewardDB"
45
+ _VERSION = datasets.Version("1.0.0")
46
+
47
+ # TODO: Add the licence for the dataset here if you can find it
48
+ _LICENSE = ""
49
+
50
+ # TODO: Add link to the official dataset URLs here
51
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
52
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
53
+ _REPO_ID = "wuyuchen/ImageRewardDB"
54
+ _URLS = {}
55
+ _PART_IDS = {
56
+ "train": 32,
57
+ "validation": 2,
58
+ "test": 2
59
+ }
60
+
61
+ for name in list(_PART_IDS.keys()):
62
+ _URLS[name] = {}
63
+ for i in range(1, _PART_IDS[name]+1):
64
+ _URLS[name][i] = hf_hub_url(
65
+ _REPO_ID,
66
+ filename=f"images/{name}/{name}_{id}.zip",
67
+ repo_type="dataset"
68
+ )
69
+ _URLS[name]["metadata"] = hf_hub_url(
70
+ _REPO_ID,
71
+ filename=f"metadata-{name}.parquet",
72
+ repo_type="dataset"
73
+ )
74
+
75
+ class ImageRewardDBConfig(datasets.BuilderConfig):
76
+ '''BuilderConfig for ImageRewardDB'''
77
+
78
+ def __init__(self, part_ids, **kwargs):
79
+ '''BuilderConfig for ImageRewardDB
80
+ Args:
81
+ part_ids([int]): A list of part_ids.
82
+ **kwargs: keyword arguments forwarded to super
83
+ '''
84
+ super(ImageRewardDBConfig, self).__init__(version=_VERSION, **kwargs)
85
+ self.part_ids = part_ids
86
+
87
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
88
+ class ImageRewardDB(datasets.GeneratorBasedBuilder):
89
+ """TODO: Short description of my dataset."""
90
+
91
+ # This is an example of a dataset with multiple configurations.
92
+ # If you don't want/need to define several sub-sets in your dataset,
93
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
94
+
95
+ # If you need to make complex sub-parts in the datasets with configurable options
96
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
97
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
98
+
99
+ # You will be able to load one or the other configurations in the following list with
100
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
101
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
102
+ BUILDER_CONFIGS = []
103
+
104
+ for num_k in [1,2,4,8]:
105
+ part_ids = {
106
+ "train": 4*num_k,
107
+ "validation": 2,
108
+ "test": 2
109
+ }
110
+ BUILDER_CONFIGS.append(
111
+ ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, version=_VERSION, description=f"This is a {num_k}k-scale ImageRewardDB")
112
+ )
113
+
114
+ DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
115
+
116
+ def _info(self):
117
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
118
+ features = datasets.Features(
119
+ {
120
+ "image": datasets.Image(),
121
+ "prompt_id": datasets.Value("string"),
122
+ "prompt": datasets.Value("string"),
123
+ "classification": datasets.Value("string"),
124
+ "image_amount_in_total": datasets.Value("int8"),
125
+ "rank": datasets.Value("int8"),
126
+ "overall_rating": datasets.Value("int8"),
127
+ "image_text_alignment_rating": datasets.Value("int8"),
128
+ "fidelity_rating": datasets.Value("int8")
129
+ }
130
+ )
131
+ return datasets.DatasetInfo(
132
+ # This is the description that will appear on the datasets page.
133
+ description=_DESCRIPTION,
134
+ # This defines the different columns of the dataset and their types
135
+ features=features, # Here we define them above because they are different between the two configurations
136
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
137
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
138
+ # supervised_keys=("sentence", "label"),
139
+ # Homepage of the dataset for documentation
140
+ homepage=_HOMEPAGE,
141
+ # License for the dataset if available
142
+ license=_LICENSE,
143
+ # Citation for the dataset
144
+ citation=_CITATION,
145
+ )
146
+
147
+ def _split_generators(self, dl_manager):
148
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
149
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
150
+
151
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
152
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
153
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
154
+ data_dirs = {name: [] for name in list(_PART_IDS.keys())}
155
+ json_paths = {name: [] for name in list(_PART_IDS.keys())}
156
+ metadata_paths = {name: [] for name in list(_PART_IDS.keys())}
157
+ for key in list(self.config.part_ids.keys()):
158
+ for i in range(1, self.config.part_ids[key]+1):
159
+ data_dir = dl_manager.download_and_extract(_URLS[key][i])
160
+ data_dirs[key].append(data_dir)
161
+ json_paths[key].append(os.path.join(data_dir, f"{key}_{i}.json"))
162
+ metadata_paths[key] = dl_manager.download(_URLS[key]["metadata"])
163
+ return [
164
+ datasets.SplitGenerator(
165
+ name=datasets.Split.TRAIN,
166
+ # These kwargs will be passed to _generate_examples
167
+ gen_kwargs={
168
+ "split": "train",
169
+ "data_dirs": data_dirs["train"],
170
+ "json_paths": json_paths["train"],
171
+ "metadata_path": metadata_paths["train"]
172
+ },
173
+ ),
174
+ datasets.SplitGenerator(
175
+ name=datasets.Split.VALIDATION,
176
+ # These kwargs will be passed to _generate_examples
177
+ gen_kwargs={
178
+ "split": "validation",
179
+ "data_dirs": data_dirs["validation"],
180
+ "json_paths": json_paths["validation"],
181
+ "metadata_path": metadata_paths["validation"]
182
+ },
183
+ ),
184
+ datasets.SplitGenerator(
185
+ name=datasets.Split.TEST,
186
+ # These kwargs will be passed to _generate_examples
187
+ gen_kwargs={
188
+ "split": "test",
189
+ "data_dirs": data_dirs["test"],
190
+ "json_paths": json_paths["test"],
191
+ "metadata_path": metadata_paths["test"]
192
+ },
193
+ ),
194
+ ]
195
+
196
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
197
+ def _generate_examples(self, split, data_dirs, json_paths, metadata_path):
198
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
199
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
200
+
201
+ num_data_dirs = len(data_dirs)
202
+ assert num_data_dirs == len(json_paths)
203
+
204
+ #Iterate throug all extracted zip folders for images
205
+ for index, json_path in enumerate(json_paths):
206
+ json_data = json.load(open(json_path, "r", encoding="utf-8"))
207
+ for example in json_data:
208
+ image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])
209
+ yield example["image_path"], {
210
+ "image": {
211
+ "path": image_path,
212
+ "bytes": open(image_path, "rb").read()
213
+ },
214
+ "prompt_id": example["prompt_id"],
215
+ "prompt": example["prompt"],
216
+ "classification": example["classification"],
217
+ "image_amount_in_total": example["image_amount_in_total"],
218
+ "rank": example["rank"],
219
+ "overall_rating": example["overall_rating"],
220
+ "image_text_alignment_rating": example["image_text_alignment_rating"],
221
+ "fidelity_rating": example["fidelity_rating"]
222
+ }