Datasets:

Languages:
English
ArXiv:
License:
xujz0703 commited on
Commit
8e03a85
·
1 Parent(s): ca08511

Update ImageRewardDB.py

Browse files
Files changed (1) hide show
  1. ImageRewardDB.py +62 -18
ImageRewardDB.py CHANGED
@@ -107,11 +107,14 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
107
  "validation": 2,
108
  "test": 2
109
  }
 
 
 
110
  BUILDER_CONFIGS.append(
111
  ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
112
  )
113
  BUILDER_CONFIGS.append(
114
- ImageRewardDBConfig(name=f"{num_k}k_group", part_ids=part_ids, description=f"This is a {num_k}k-scale group of ImageRewardDB")
115
  )
116
 
117
  DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
@@ -130,6 +133,16 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
130
  "fidelity_rating": datasets.Sequence(datasets.Value("int8"))
131
  }
132
  )
 
 
 
 
 
 
 
 
 
 
133
  else:
134
  features = datasets.Features(
135
  {
@@ -216,10 +229,10 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
216
  assert num_data_dirs == len(json_paths)
217
 
218
  #Iterate throug all extracted zip folders for images
219
- # metadata_table = pd.read_parquet(metadata_path)
220
  for index, json_path in enumerate(json_paths):
221
  json_data = json.load(open(json_path, "r", encoding="utf-8"))
222
- if "group" in self.config.name:
223
  group_num = 0
224
  image_path = []
225
  rank = []
@@ -235,8 +248,7 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
235
  prompt = sample["prompt"]
236
  classification = sample["classification"]
237
  image_amount_in_total = sample["image_amount_in_total"]
238
- # image_path.append(sample["image_path"])
239
- image_path.append(os.path.join(data_dirs[index], str(sample["image_path"]).split("/")[-1]))
240
  rank.append(sample["rank"])
241
  overall_rating.append(sample["overall_rating"])
242
  image_text_alignment_rating.append(sample["image_text_alignment_rating"])
@@ -244,19 +256,51 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
244
  group_num += 1
245
  if group_num == image_amount_in_total:
246
  group_num = 0
247
- yield prompt_id, ({
248
- "prompt_id": prompt_id,
249
- "prompt": prompt,
250
- "classification": classification,
251
- "image": [{
252
- "path": image_path[idx],
253
- "bytes": open(image_path[idx], "rb").read()
254
- } for idx in range(image_amount_in_total)],
255
- "rank": rank,
256
- "overall_rating": overall_rating,
257
- "image_text_alignment_rating": image_text_alignment_rating,
258
- "fidelity_rating": fidelity_rating,
259
- })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260
  else:
261
  for example in json_data:
262
  image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])
 
107
  "validation": 2,
108
  "test": 2
109
  }
110
+ BUILDER_CONFIGS.append(
111
+ ImageRewardDBConfig(name=f"{num_k}k_group", part_ids=part_ids, description=f"This is a {num_k}k-scale groups of ImageRewardDB")
112
+ )
113
  BUILDER_CONFIGS.append(
114
  ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
115
  )
116
  BUILDER_CONFIGS.append(
117
+ ImageRewardDBConfig(name=f"{num_k}k_pair", part_ids=part_ids, description=f"This is a {num_k}k-scale pairs of ImageRewardDB")
118
  )
119
 
120
  DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
 
133
  "fidelity_rating": datasets.Sequence(datasets.Value("int8"))
134
  }
135
  )
136
+ elif "pair" in self.config.name:
137
+ features = datasets.Features(
138
+ {
139
+ "prompt_id": datasets.Value("string"),
140
+ "prompt": datasets.Value("string"),
141
+ "classification": datasets.Value("string"),
142
+ "img_better": datasets.Image(),
143
+ "img_worse": datasets.Image()
144
+ }
145
+ )
146
  else:
147
  features = datasets.Features(
148
  {
 
229
  assert num_data_dirs == len(json_paths)
230
 
231
  #Iterate throug all extracted zip folders for images
232
+ metadata_table = pd.read_parquet(metadata_path)
233
  for index, json_path in enumerate(json_paths):
234
  json_data = json.load(open(json_path, "r", encoding="utf-8"))
235
+ if "group" in self.config.name or "pair" in self.config.name:
236
  group_num = 0
237
  image_path = []
238
  rank = []
 
248
  prompt = sample["prompt"]
249
  classification = sample["classification"]
250
  image_amount_in_total = sample["image_amount_in_total"]
251
+ image_path.append(sample["image_path"])
 
252
  rank.append(sample["rank"])
253
  overall_rating.append(sample["overall_rating"])
254
  image_text_alignment_rating.append(sample["image_text_alignment_rating"])
 
256
  group_num += 1
257
  if group_num == image_amount_in_total:
258
  group_num = 0
259
+ if "group" in self.config.name:
260
+ yield prompt_id, ({
261
+ "prompt_id": prompt_id,
262
+ "prompt": prompt,
263
+ "classification": classification,
264
+ "image": [{
265
+ "path": image_path[idx],
266
+ "bytes": open(image_path[idx], "rb").read()
267
+ } for idx in range(image_amount_in_total)],
268
+ "rank": rank,
269
+ "overall_rating": overall_rating,
270
+ "image_text_alignment_rating": image_text_alignment_rating,
271
+ "fidelity_rating": fidelity_rating,
272
+ })
273
+ else:
274
+ for idx in range(image_amount_in_total):
275
+ for idy in range(idx+1, image_amount_in_total):
276
+ if rank[idx] < rank[idy]:
277
+ yield prompt_id, ({
278
+ "prompt_id": prompt_id,
279
+ "prompt": prompt,
280
+ "classification": classification,
281
+ "img_better": {
282
+ "path": image_path[idx],
283
+ "bytes": open(image_path[idx], "rb").read()
284
+ },
285
+ "img_worse": {
286
+ "path": image_path[idy],
287
+ "bytes": open(image_path[idy], "rb").read()
288
+ }
289
+ })
290
+ elif rank[idx] > rank[idy]:
291
+ yield prompt_id, ({
292
+ "prompt_id": prompt_id,
293
+ "prompt": prompt,
294
+ "classification": classification,
295
+ "img_better": {
296
+ "path": image_path[idy],
297
+ "bytes": open(image_path[idy], "rb").read()
298
+ },
299
+ "img_worse": {
300
+ "path": image_path[idx],
301
+ "bytes": open(image_path[idx], "rb").read()
302
+ }
303
+ })
304
  else:
305
  for example in json_data:
306
  image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])