Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
0e473cb
·
1 Parent(s): 9ee1d59

Convert dataset to Parquet (#3)

Browse files

- Convert dataset to Parquet (85df600bc7c37156b56b755b224003dd2c7c35ac)
- Delete loading script (d5f9617ed0d73d679b253bc8d24cabb5817d0eb4)
- Delete legacy dataset_infos.json (7e5a4229dd90a54c63557b3e7cff9edd21d0101f)

README.md CHANGED
@@ -1,15 +1,14 @@
1
  ---
2
  annotations_creators:
3
  - crowdsourced
4
- language:
5
- - en
6
  language_creators:
7
  - found
 
 
8
  license:
9
  - unknown
10
  multilinguality:
11
  - monolingual
12
- pretty_name: WebQuestions
13
  size_categories:
14
  - 1K<n<10K
15
  source_datasets:
@@ -19,6 +18,7 @@ task_categories:
19
  task_ids:
20
  - open-domain-qa
21
  paperswithcode_id: webquestions
 
22
  dataset_info:
23
  features:
24
  - name: url
@@ -29,13 +29,20 @@ dataset_info:
29
  sequence: string
30
  splits:
31
  - name: train
32
- num_bytes: 533736
33
  num_examples: 3778
34
  - name: test
35
- num_bytes: 289824
36
  num_examples: 2032
37
- download_size: 1272965
38
- dataset_size: 823560
 
 
 
 
 
 
 
39
  ---
40
 
41
  # Dataset Card for "web_questions"
 
1
  ---
2
  annotations_creators:
3
  - crowdsourced
 
 
4
  language_creators:
5
  - found
6
+ language:
7
+ - en
8
  license:
9
  - unknown
10
  multilinguality:
11
  - monolingual
 
12
  size_categories:
13
  - 1K<n<10K
14
  source_datasets:
 
18
  task_ids:
19
  - open-domain-qa
20
  paperswithcode_id: webquestions
21
+ pretty_name: WebQuestions
22
  dataset_info:
23
  features:
24
  - name: url
 
29
  sequence: string
30
  splits:
31
  - name: train
32
+ num_bytes: 530711
33
  num_examples: 3778
34
  - name: test
35
+ num_bytes: 288184
36
  num_examples: 2032
37
+ download_size: 402395
38
+ dataset_size: 818895
39
+ configs:
40
+ - config_name: default
41
+ data_files:
42
+ - split: train
43
+ path: data/train-*
44
+ - split: test
45
+ path: data/test-*
46
  ---
47
 
48
  # Dataset Card for "web_questions"
data/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c81463f22162f645bdbdc0d501cfee9ad7d31bee819b3226f734523741c9faa
3
+ size 142239
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b59a32059d001919540ec617afb30d5c06829cbd3159e3da5f915bbd1d973bc
3
+ size 260156
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "This dataset consists of 6,642 question/answer pairs.\nThe questions are supposed to be answerable by Freebase, a large knowledge graph.\nThe questions are mostly centered around a single named entity.\nThe questions are popular ones asked on the web (at least in 2013).\n", "citation": "\n@inproceedings{berant-etal-2013-semantic,\n title = \"Semantic Parsing on {F}reebase from Question-Answer Pairs\",\n author = \"Berant, Jonathan and\n Chou, Andrew and\n Frostig, Roy and\n Liang, Percy\",\n booktitle = \"Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing\",\n month = oct,\n year = \"2013\",\n address = \"Seattle, Washington, USA\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D13-1160\",\n pages = \"1533--1544\",\n}\n", "homepage": "https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a", "license": "", "features": {"url": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "web_questions", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 533736, "num_examples": 3778, "dataset_name": "web_questions"}, "test": {"name": "test", "num_bytes": 289824, "num_examples": 2032, "dataset_name": "web_questions"}}, "download_checksums": {"https://worksheets.codalab.org/rest/bundles/0x4a763f8cde224c2da592b75f29e2f5c2/contents/blob/": {"num_bytes": 825320, "checksum": "fb1797e4554a1b1be642388367de1379f8c0d5afc609ac171492c67f7b70cb1e"}, "https://worksheets.codalab.org/rest/bundles/0xe7bac352fce7448c9ef238fb0a297ec2/contents/blob/": {"num_bytes": 447645, "checksum": "e3d4550e90660aaabe18458ba34b59f2624857273f375af7353273ce8b84ce6e"}}, "download_size": 1272965, "dataset_size": 823560, "size_in_bytes": 2096525}}
 
 
web_questions.py DELETED
@@ -1,98 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """WebQuestions Benchmark for Question Answering."""
18
-
19
-
20
- import json
21
- import re
22
-
23
- import datasets
24
-
25
-
26
- _CITATION = """
27
- @inproceedings{berant-etal-2013-semantic,
28
- title = "Semantic Parsing on {F}reebase from Question-Answer Pairs",
29
- author = "Berant, Jonathan and
30
- Chou, Andrew and
31
- Frostig, Roy and
32
- Liang, Percy",
33
- booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
34
- month = oct,
35
- year = "2013",
36
- address = "Seattle, Washington, USA",
37
- publisher = "Association for Computational Linguistics",
38
- url = "https://www.aclweb.org/anthology/D13-1160",
39
- pages = "1533--1544",
40
- }
41
- """
42
- _SPLIT_DOWNLOAD_URL = {
43
- "train": "https://worksheets.codalab.org/rest/bundles/0x4a763f8cde224c2da592b75f29e2f5c2/contents/blob/",
44
- "test": "https://worksheets.codalab.org/rest/bundles/0xe7bac352fce7448c9ef238fb0a297ec2/contents/blob/",
45
- }
46
-
47
- _DESCRIPTION = """\
48
- This dataset consists of 6,642 question/answer pairs.
49
- The questions are supposed to be answerable by Freebase, a large knowledge graph.
50
- The questions are mostly centered around a single named entity.
51
- The questions are popular ones asked on the web (at least in 2013).
52
- """
53
-
54
-
55
- class WebQuestions(datasets.GeneratorBasedBuilder):
56
- """WebQuestions Benchmark for Question Answering."""
57
-
58
- VERSION = datasets.Version("1.0.0")
59
-
60
- def _info(self):
61
- return datasets.DatasetInfo(
62
- description=_DESCRIPTION,
63
- features=datasets.Features(
64
- {
65
- "url": datasets.Value("string"),
66
- "question": datasets.Value("string"),
67
- "answers": datasets.features.Sequence(datasets.Value("string")),
68
- }
69
- ),
70
- supervised_keys=None,
71
- homepage="https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a",
72
- citation=_CITATION,
73
- )
74
-
75
- def _split_generators(self, dl_manager):
76
- """Returns SplitGenerators."""
77
- file_paths = dl_manager.download(_SPLIT_DOWNLOAD_URL)
78
-
79
- return [
80
- datasets.SplitGenerator(name=split, gen_kwargs={"file_path": file_path})
81
- for split, file_path in file_paths.items()
82
- ]
83
-
84
- def _generate_examples(self, file_path):
85
- """Parses split file and yields examples."""
86
-
87
- def _target_to_answers(target):
88
- target = re.sub(r"^\(list |\)$", "", target)
89
- return ["".join(ans) for ans in re.findall(r'\(description (?:"([^"]+?)"|([^)]+?))\)\w*', target)]
90
-
91
- with open(file_path, encoding="utf-8") as f:
92
- examples = json.load(f)
93
- for i, ex in enumerate(examples):
94
- yield i, {
95
- "url": ex["url"],
96
- "question": ex["utterance"],
97
- "answers": _target_to_answers(ex["targetValue"]),
98
- }