Datasets:
fix failed
Browse files- nb_samtale.py +37 -39
nb_samtale.py
CHANGED
@@ -17,11 +17,15 @@
|
|
17 |
|
18 |
|
19 |
from collections import defaultdict
|
|
|
20 |
from email.policy import default
|
21 |
from importlib import metadata
|
|
|
22 |
import json
|
23 |
import os
|
24 |
from re import split
|
|
|
|
|
25 |
|
26 |
from huggingface_hub import hf_hub_url
|
27 |
import datasets
|
@@ -61,6 +65,16 @@ _DATA_URL= "https://huggingface.co/datasets/Sprakbanken/nb_samtale/resolve/main/
|
|
61 |
# "test": ["test_bm_1.tar.gz", "test_nn_1.tar.gz"],
|
62 |
#}
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
class NBSamtaleConfig(datasets.BuilderConfig):
|
65 |
"""BuilderConfig for NBSamtale"""
|
66 |
|
@@ -134,72 +148,56 @@ class NBSamtale(datasets.GeneratorBasedBuilder):
|
|
134 |
)
|
135 |
|
136 |
|
137 |
-
def _split_generators(self, dl_manager) -> datasets.SplitGenerator:
|
138 |
"""Download data and extract to datasets.Splits"""
|
139 |
dl_manager.download_config.ignore_url_params = True
|
140 |
audio_path = {}
|
141 |
-
local_extracted_archive = {}
|
142 |
-
metadata_path = {}
|
143 |
split_type = {
|
144 |
"train": datasets.Split.TRAIN,
|
145 |
"test": datasets.Split.TEST,
|
146 |
"dev": datasets.Split.VALIDATION,
|
147 |
}
|
148 |
for split in split_type:
|
149 |
-
audio_path[split] = dl_manager.download([f"
|
150 |
-
|
151 |
-
metadata_path[split] = dl_manager.download_and_extract(f"{_DATA_URL}/{split}_metadata.jsonl")
|
152 |
|
153 |
return [
|
154 |
datasets.SplitGenerator(
|
155 |
-
name=
|
156 |
gen_kwargs={
|
157 |
-
"local_extracted_archive":
|
158 |
-
"audio_files": dl_manager.iter_archive(audio_path[split]),
|
159 |
-
"metadata":
|
160 |
}
|
161 |
-
) for split
|
162 |
]
|
163 |
|
164 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
165 |
def _generate_examples(self, local_extracted_archive, audio_files, metadata):
|
166 |
"""Loads the data files and extract the features."""
|
167 |
-
data_fields = list(self._info().features.keys())
|
168 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
169 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
170 |
meta = {}
|
171 |
with open(metadata, encoding="utf-8") as mf:
|
172 |
-
|
|
|
173 |
data = json.loads(row)
|
174 |
audio_path = data["file_name"]
|
175 |
-
# if data is incomplete, fill with empty values
|
176 |
data["transcription"] = normalize_transcription(data["transcription"], config=self.config.name)
|
177 |
-
for field in data_fields:
|
178 |
-
if field not in data:
|
179 |
-
data[field] = ""
|
180 |
-
|
181 |
meta[audio_path] = data
|
182 |
|
183 |
id_ = 0
|
184 |
-
for archive in audio_files:
|
185 |
-
for path, audiofile in archive:
|
186 |
-
if path in meta:
|
187 |
-
result = dict(meta[path])
|
188 |
-
# set the audio feature and the path to the extracted file
|
189 |
-
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
|
190 |
-
result["audio"] = {"path": path, "bytes": audiofile.read()}
|
191 |
-
result["path"] = path
|
192 |
-
yield id_, result
|
193 |
-
id_ += 1
|
194 |
-
else:
|
195 |
-
print(f"Missing metadata for {path}")
|
196 |
-
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
from collections import defaultdict
|
20 |
+
from email.mime import audio
|
21 |
from email.policy import default
|
22 |
from importlib import metadata
|
23 |
+
import io
|
24 |
import json
|
25 |
import os
|
26 |
from re import split
|
27 |
+
import tarfile
|
28 |
+
from typing import List
|
29 |
|
30 |
from huggingface_hub import hf_hub_url
|
31 |
import datasets
|
|
|
65 |
# "test": ["test_bm_1.tar.gz", "test_nn_1.tar.gz"],
|
66 |
#}
|
67 |
|
68 |
+
|
69 |
+
def normalize_transcription(transcription: str, config="annotations"):
|
70 |
+
"""Normalize transcriptions according to orthographic standards, or verbatim."""
|
71 |
+
# TODO: Implement normalization
|
72 |
+
if config == "orthographic":
|
73 |
+
return transcription
|
74 |
+
elif config == "verbatim":
|
75 |
+
return transcription
|
76 |
+
return transcription
|
77 |
+
|
78 |
class NBSamtaleConfig(datasets.BuilderConfig):
|
79 |
"""BuilderConfig for NBSamtale"""
|
80 |
|
|
|
148 |
)
|
149 |
|
150 |
|
151 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
152 |
"""Download data and extract to datasets.Splits"""
|
153 |
dl_manager.download_config.ignore_url_params = True
|
154 |
audio_path = {}
|
|
|
|
|
155 |
split_type = {
|
156 |
"train": datasets.Split.TRAIN,
|
157 |
"test": datasets.Split.TEST,
|
158 |
"dev": datasets.Split.VALIDATION,
|
159 |
}
|
160 |
for split in split_type:
|
161 |
+
#audio_path[split] = dl_manager.download([f"data/{split}_{lang}_1.tar.gz" for lang in ["bm", "nn"]])
|
162 |
+
audio_path[split] = dl_manager.download(f"data/{split}_bm_1.tar.gz")
|
|
|
163 |
|
164 |
return [
|
165 |
datasets.SplitGenerator(
|
166 |
+
name=split_type[split],
|
167 |
gen_kwargs={
|
168 |
+
"local_extracted_archive": dl_manager.extract(audio_path[split]) if not dl_manager.is_streaming else None,
|
169 |
+
"audio_files": dl_manager.iter_archive(audio_path[split]),#[dl_manager.iter_archive(archive) for archive in audio_path[split]],
|
170 |
+
"metadata": dl_manager.download_and_extract(f"data/{split}_metadata.jsonl"),
|
171 |
}
|
172 |
+
) for split in split_type
|
173 |
]
|
174 |
|
175 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
176 |
def _generate_examples(self, local_extracted_archive, audio_files, metadata):
|
177 |
"""Loads the data files and extract the features."""
|
178 |
+
#data_fields = list(self._info().features.keys())
|
179 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
180 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
181 |
meta = {}
|
182 |
with open(metadata, encoding="utf-8") as mf:
|
183 |
+
datalines = mf.read().splitlines()
|
184 |
+
for row in datalines:
|
185 |
data = json.loads(row)
|
186 |
audio_path = data["file_name"]
|
|
|
187 |
data["transcription"] = normalize_transcription(data["transcription"], config=self.config.name)
|
|
|
|
|
|
|
|
|
188 |
meta[audio_path] = data
|
189 |
|
190 |
id_ = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
+
#for archive in audio_files:
|
193 |
+
for path, audio_file in audio_files:
|
194 |
+
if not path in meta:
|
195 |
+
print(f"{path} not in metadata")
|
196 |
+
else:
|
197 |
+
result = dict(meta[path])
|
198 |
+
# set the audio feature and the path to the extracted file
|
199 |
+
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
|
200 |
+
result["audio"] = {"path": path, "bytes": audio_file.read()}
|
201 |
+
result["path"] = path
|
202 |
+
yield id_, result
|
203 |
+
id_ += 1
|