ten-million-reddit-answers / ten-million-reddit-answers.py
SocialGrep's picture
Update ten-million-reddit-answers.py
077b6ad
raw
history blame
7.97 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The SocialGrep dataset loader base."""
import csv
import os
import datasets
DATASET_NAME = "ten-million-reddit-answers"
DATASET_TITLE = "ten-million-reddit-answers"
DATASET_DESCRIPTION = """\
A spiritual successor to our One Million Questions, this NLP dataset contains an outstanding ten million of /r/AskReddit answers, going back from the end of November of 2020.
"""
_HOMEPAGE = f"https://socialgrep.com/datasets/{DATASET_NAME}"
_LICENSE = "CC-BY v4.0"
URL_TEMPLATE = "https://exports.socialgrep.com/download/public/{dataset_file}.zip"
DATASET_FILE_TEMPLATE = "{dataset}-{type}.csv"
_DATASET_FILES = {
'posts': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="posts"),
'comments': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="comments"),
}
_CITATION = f"""\
@misc{{socialgrep:{DATASET_NAME},
title = {{{DATASET_TITLE}}},
author={{Lexyr Inc.
}},
year={{2022}}
}}
"""
class tenmillionredditanswers(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="posts", version=VERSION, description="The dataset posts."),
datasets.BuilderConfig(name="comments", version=VERSION, description="The dataset comments."),
]
def _info(self):
if self.config.name == "posts": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"type": datasets.Value("string"),
"id": datasets.Value("string"),
"subreddit.id": datasets.Value("string"),
"subreddit.name": datasets.Value("string"),
"subreddit.nsfw": datasets.Value("bool"),
"created_utc": datasets.Value("timestamp[s,tz=utc]"),
"permalink": datasets.Value("string"),
"domain": datasets.Value("string"),
"url": datasets.Value("string"),
"selftext": datasets.Value("large_string"),
"title": datasets.Value("string"),
"score": datasets.Value("int32"),
}
)
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"type": datasets.ClassLabel(num_classes=2, names=['post', 'comment']),
"id": datasets.Value("string"),
"subreddit.id": datasets.Value("string"),
"subreddit.name": datasets.Value("string"),
"subreddit.nsfw": datasets.Value("bool"),
"created_utc": datasets.Value("timestamp[s,tz=utc]"),
"permalink": datasets.Value("string"),
"body": datasets.Value("large_string"),
"sentiment": datasets.Value("float32"),
"score": datasets.Value("int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=DATASET_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
my_urls = [URL_TEMPLATE.format(dataset_file=_DATASET_FILES[self.config.name])]
data_dir = dl_manager.download_and_extract(my_urls)[0]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, _DATASET_FILES[self.config.name]),
"split": "train",
},
)
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
bool_cols = ["subreddit.nsfw"]
int_cols = ["score", "created_utc"]
float_cols = ["sentiment"]
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
for col in bool_cols:
if col in row:
if row[col]:
row[col] = (row[col] == "true")
else:
row[col] = None
for col in int_cols:
if col in row:
if row[col]:
row[col] = int(row[col])
else:
row[col] = None
for col in float_cols:
if col in row:
if row[col]:
row[col] = float(row[col])
else:
row[col] = None
if row["type"] == "post":
key = f"t3_{row['id']}"
if row["type"] == "comment":
key = f"t1_{row['id']}"
yield key, row
if __name__ == "__main__":
print("Please use the HuggingFace dataset library, or")
print("download from https://socialgrep.com/datasets.")