File size: 7,827 Bytes
5461b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a991f51
5461b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The SocialGrep dataset loader base."""


import csv
import os

import datasets


DATASET_NAME = "ten-million-reddit-answers"
DATASET_TITLE = "ten-million-reddit-answers"

DATASET_DESCRIPTION = """\
A spiritual successor to our One Million Questions, this NLP dataset contains an outstanding ten million of /r/AskReddit answers, going back from the end of November of 2020.
"""

_HOMEPAGE = f"https://socialgrep.com/datasets/{DATASET_NAME}"

_LICENSE = "CC-BY v4.0"

URL_TEMPLATE = "https://exports.socialgrep.com/download/public/{dataset_file}.zip"
DATASET_FILE_TEMPLATE = "{dataset}-{type}.csv"

_DATASET_FILES = {
    'posts': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="posts"),
    'comments': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="comments"),
}

_CITATION = f"""\
        @misc{{socialgrep:{DATASET_NAME},
title = {{{DATASET_TITLE}}},
author={{Lexyr Inc.
}},
year={{2022}}
}}
"""


class tenmillionredditanswers(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="posts", version=VERSION, description="The dataset posts."),
        datasets.BuilderConfig(name="comments", version=VERSION, description="The dataset comments."),
    ]

    def _info(self):
        if self.config.name == "posts":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "type": datasets.Value("string"),
                    "id": datasets.Value("string"),
                    "subreddit.id": datasets.Value("string"),
                    "subreddit.name": datasets.Value("string"),
                    "subreddit.nsfw": datasets.Value("bool"),
                    "created_utc": datasets.Value("timestamp[s,tz=utc]"),
                    "permalink": datasets.Value("string"),
                    "domain": datasets.Value("string"),
                    "url": datasets.Value("string"),
                    "selftext": datasets.Value("large_string"),
                    "title": datasets.Value("string"),
                    "score": datasets.Value("int32"),
                }
            )
        else:  # This is an example to show how to have different features for "first_domain" and "second_domain"
            features = datasets.Features(
                {
                    "type": datasets.ClassLabel(num_classes=2, names=['post', 'comment']),
                    "id": datasets.Value("string"),
                    "subreddit.id": datasets.Value("string"),
                    "subreddit.name": datasets.Value("string"),
                    "subreddit.nsfw": datasets.Value("bool"),
                    "created_utc": datasets.Value("timestamp[s,tz=utc]"),
                    "permalink": datasets.Value("string"),
                    "body": datasets.Value("large_string"),
                    "sentiment": datasets.Value("float32"),
                    "score": datasets.Value("int32"),
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=DATASET_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        my_urls = [URL_TEMPLATE.format(dataset_file=_DATASET_FILES[self.config.name])]
        data_dir = dl_manager.download_and_extract(my_urls)[0]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, _DATASET_FILES[self.config.name]),
                    "split": "train",
                },
            )
        ]

    def _generate_examples(
        self, filepath, split  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    ):
        """ Yields examples as (key, example) tuples. """
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        bool_cols = ["subreddit.nsfw"]
        int_cols = ["score", "created_utc"]
        float_cols = ["sentiment"]

        with open(filepath, encoding="utf-8") as f:
            reader = csv.DictReader(f)
            for row in reader:
                for col in bool_cols:
                    if col in row:
                        if row[col]:
                            row[col] = (row[col] == "true")
                        else:
                            row[col] = None
                for col in int_cols:
                    if col in row:
                        if row[col]:
                            row[col] = int(row[col])
                        else:
                            row[col] = None
                for col in float_cols:
                    if col in row:
                        if row[col]:
                            row[col] = float(row[col])
                        else:
                            row[col] = None

                if row["type"] == "post":
                    key = f"t3_{row['id']}"
                if row["type"] == "comment":
                    key = f"t1_{row['id']}"
                yield key, row