Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
DOI:
Daniel Campos
commited on
Commit
·
81768e5
1
Parent(s):
be2b266
README
Browse files
README.md
CHANGED
@@ -42,9 +42,69 @@ Or you can also stream it without downloading it before:
|
|
42 |
from datasets import load_dataset
|
43 |
docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train", streaming=True)
|
44 |
for doc in docs:
|
45 |
-
doc_id =
|
46 |
-
|
47 |
-
header = doc['header']
|
48 |
text = doc['text']
|
49 |
-
emb = doc['
|
50 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
from datasets import load_dataset
|
43 |
docs = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l", split="train", streaming=True)
|
44 |
for doc in docs:
|
45 |
+
doc_id = j['docid']
|
46 |
+
url = doc['url']
|
|
|
47 |
text = doc['text']
|
48 |
+
emb = doc['embedding']
|
49 |
```
|
50 |
+
|
51 |
+
|
52 |
+
Note, The full dataset corpus is ~ 620GB so it will take a while to download and may not fit on some devices/
|
53 |
+
|
54 |
+
## Search
|
55 |
+
A full search example (on the first 1,000 paragraphs):
|
56 |
+
```python
|
57 |
+
from datasets import load_dataset
|
58 |
+
import torch
|
59 |
+
from transformers import AutoModel, AutoTokenizer
|
60 |
+
import numpy as np
|
61 |
+
|
62 |
+
|
63 |
+
top_k = 100
|
64 |
+
docs_stream = load_dataset("Snowflake/msmarco-v2.1-snowflake-arctic-embed-l",split="train", streaming=True)
|
65 |
+
|
66 |
+
docs = []
|
67 |
+
doc_embeddings = []
|
68 |
+
|
69 |
+
for doc in docs_stream:
|
70 |
+
docs.append(doc)
|
71 |
+
doc_embeddings.append(doc['embedding'])
|
72 |
+
if len(docs) >= top_k:
|
73 |
+
break
|
74 |
+
|
75 |
+
doc_embeddings = np.asarray(doc_embeddings)
|
76 |
+
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained('Snowflake/snowflake-arctic-embed-l')
|
78 |
+
model = AutoModel.from_pretrained('Snowflake/snowflake-arctic-embed-l', add_pooling_layer=False)
|
79 |
+
model.eval()
|
80 |
+
|
81 |
+
query_prefix = 'Represent this sentence for searching relevant passages: '
|
82 |
+
queries = ['how do you clean smoke off walls']
|
83 |
+
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
|
84 |
+
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
85 |
+
|
86 |
+
# Compute token embeddings
|
87 |
+
with torch.no_grad():
|
88 |
+
query_embeddings = model(**query_tokens)[0][:, 0]
|
89 |
+
|
90 |
+
|
91 |
+
# normalize embeddings
|
92 |
+
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
|
93 |
+
doc_embeddings = torch.nn.functional.normalize(doc_embeddings, p=2, dim=1)
|
94 |
+
|
95 |
+
# Compute dot score between query embedding and document embeddings
|
96 |
+
dot_scores = np.matmul(query_embeddings, doc_embeddings.transpose())[0]
|
97 |
+
top_k_hits = np.argpartition(dot_scores, -top_k)[-top_k:].tolist()
|
98 |
+
|
99 |
+
# Sort top_k_hits by dot score
|
100 |
+
top_k_hits.sort(key=lambda x: dot_scores[x], reverse=True)
|
101 |
+
|
102 |
+
# Print results
|
103 |
+
print("Query:", queries[0])
|
104 |
+
for doc_id in top_k_hits:
|
105 |
+
print(docs[doc_id]['doc_id'])
|
106 |
+
print(docs[doc_id]['text'])
|
107 |
+
print(docs[doc_id]['url'], "\n")
|
108 |
+
```
|
109 |
+
|
110 |
+
|