File size: 2,964 Bytes
6d1a3ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import glob
import json
import pickle
import sys
from typing import Dict

import numpy as np
from beir.retrieval.evaluation import EvaluateRetrieval


def load_qrels(filename: str) -> Dict:
    with open(filename, "r") as f:
        qrels = json.load(f)
    return qrels


def merge_retrieved_shards(
    suffix: str, output_file: str, top_n: int, qrels: dict, metric: str
) -> None:
    shard_files = glob.glob(f"*{suffix}")
    print(f"There are {len(shard_files)} shards found")
    merged_results = {}
    print("Loading All shards")
    for shard_file in shard_files:
        print(f"Loading shard {shard_file} ")
        with open(shard_file, "rb") as f:
            shard_results = pickle.load(f)
            for query_id, doc_scores in shard_results.items():
                if query_id not in merged_results:
                    merged_results[query_id] = []
                merged_results[query_id].extend(doc_scores.items())
    print("Shards all loaded, merging results and sorting by score")
    run = {}
    per_query = []
    for query_id, doc_scores in merged_results.items():
        if query_id in qrels:
            doc_score_dict = {}
            for passage_id, score in doc_scores:
                doc_id = passage_id.split("#")[
                    0
                ]  # everything after # is the passage idenfitier withing a doc
                if doc_id not in doc_score_dict:
                    doc_score_dict[doc_id] = (
                        -1
                    )  # scores are in range -1 to 1 on similairty so starting at -1 is floor
                if score > doc_score_dict[doc_id]:
                    doc_score_dict[doc_id] = score
            top_docs = sorted(doc_score_dict.items(), key=lambda x: x[1], reverse=True)[
                :top_n
            ]
            run[query_id] = {
                doc_id: round(score * 100, 2) for doc_id, score in top_docs
            }
            scores = EvaluateRetrieval.evaluate(
                qrels, {query_id: run[query_id]}, k_values=[1, 3, 5, 10, 100, 1000]
            )
            scores = {k: v for d in scores for k, v in d.items()}
            per_query.append(scores[metric])
    print("Done merging and sorting results, Evaluating and saving run")
    print(f"There are {len(run)} queries being evaled agaisnt qrels")
    print(f"There were {len(shard_files)} shards found")
    print(
        f"Per Query Score average: {np.array(per_query).mean()} for {metric}. Individual scores{per_query}"
    )
    print("Overall Score Numbers:")
    print(EvaluateRetrieval.evaluate(qrels, run, k_values=[1, 3, 5, 10, 100, 1000]))
    with open(output_file, "wb") as w:
        pickle.dump(run, w)


if __name__ == "__main__":
    suffix = sys.argv[1]
    output_file = sys.argv[2]
    top_n = int(sys.argv[3])
    qrel_filename = sys.argv[4]
    metric = sys.argv[5]
    merge_retrieved_shards(
        suffix, output_file, top_n, load_qrels(qrel_filename), metric
    )