File size: 4,902 Bytes
77a3a56
b54aa35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a3a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54aa35
 
 
 
 
 
77a3a56
 
 
b54aa35
77a3a56
 
b54aa35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
pretty_name: SAF - Legal Domain - German
annotations_creators:
- expert-generated
language:
- de
language_creators:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
tags:
- short answer feedback
- legal domain
task_categories:
- text2text-generation

dataset_info:
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: reference_answer
    dtype: string
  - name: provided_answer
    dtype: string
  - name: answer_feedback
    dtype: string
  - name: verification_feedback
    dtype: string
  - name: error_class
    dtype: string
  - name: score
    dtype: float64
  splits:
  - name: train
    num_bytes: 2223070
    num_examples: 1596
  - name: validation
    num_bytes: 546759
    num_examples: 400
  - name: test_unseen_answers
    num_bytes: 309580
    num_examples: 221
  - name: test_unseen_questions
    num_bytes: 360672
    num_examples: 275
  download_size: 455082
  dataset_size: 3440081
---

# Dataset Card for "saf_legal_domain_german"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Additional Information](#additional-information)
  - [Contributions](#contributions)

## Dataset Description

### Dataset Summary

This Short Answer Feedback (SAF) dataset contains 19 German short answers in the domain of the German social law (with reference answers). The idea of constructing a bilingual (English and German) short answer dataset as a way to remedy the lack of content-focused feedback datasets was introduced in [Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset](https://aclanthology.org/2022.acl-long.587) (Filighera et al., ACL 2022). Please refer to the [saf_legal_domain_german](https://huggingface.co/datasets/JohnnyBoy00/saf_micro_job_german) and [saf_communication_networks_english](https://huggingface.co/datasets/JohnnyBoy00/saf_communication_networks_english) datasets for similarly constructed datasets that can be used for SAF.

### Supported Tasks and Leaderboards

- `short_answer_feedback`: The dataset can be used to train a Text2Text Generation model from HuggingFace transformers in order to generate automatic short answer feedback. 

### Languages

The questions, reference answers, provided answers and the answer feedback in the dataset are written in German.

## Dataset Structure

### Data Instances

An example of an entry of the training split looks as follows.

```
{
    "id": "1",
    "question": "Ist das eine Frage?",
    "reference_answer": "Ja, das ist eine Frage.",
    "provided_answer": "Ich bin mir sicher, dass das eine Frage ist.",
    "answer_feedback": "Korrekt.",
    "verification_feedback": "Correct",
    "error_class": "Keine",
    "score": 1
}
```

### Data Fields

The data fields are the same among all splits.

- `id`: a `string` feature (UUID4 in HEX format).
- `question`: a `string` feature representing a question.
- `reference_answer`: a `string` feature representing a reference answer to the question.
- `provided_answer`: a `string` feature representing an answer that was provided for a particular question.
- `answer_feedback`: a `string` feature representing the feedback given to the provided answers.
- `verification_feedback`: a `string` feature representing an automatic labeling of the score. It can be `Correct` (`score` = 1), `Incorrect` (`score` = 0) or `Partially correct` (all intermediate scores).
- `error_class`: a `string` feature representing the type of error identified in the case of a not completely correct answer.
- `score`: a `float64` feature (between 0 and 1) representing the score given to the provided answer.

### Data Splits

The dataset is comprised of four data splits.

- `train`: used for training, contains a set of questions and the provided answers to them.
- `validation`: used for validation, contains a set of questions and the provided answers to them (derived from the original training set from which the data came from).
- `test_unseen_answers`: used for testing, contains unseen answers to the questions present in the `train` split.
- `test_unseen_questions`: used for testing, contains unseen questions that do not appear in the `train` split.

|   Split           |train|validation|test_unseen_answers|test_unseen_questions|
|-------------------|----:|---------:|------------------:|--------------------:|
|Number of instances| 1596|       400|                221|                  275|

## Additional Information

### Contributions
Thanks to [@JohnnyBoy2103](https://github.com/JohnnyBoy2103) for adding this dataset.