File size: 6,640 Bytes
636083d
 
 
 
 
 
3e3575b
 
 
 
 
 
 
636083d
 
 
b2d1d70
 
 
 
09d9066
b2d1d70
 
 
 
3e3575b
09d9066
3e3575b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09d9066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df54e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e3575b
 
 
 
 
 
09d9066
 
 
 
df54e54
 
 
 
 
 
 
 
3e3575b
c5bfd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d1d70
c5bfd64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d1d70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
language:
- en
- it
- de
- es
license: other
size_categories:
- 1K<n<10K
task_categories:
- token-classification
license_name: europarl-custom
license_link: https://www.statmt.org/europarl/
tags:
- NER
- Europarl
- named-entity-recognition
- annotation-projection
- XLNER
- cross-lingual-ner
config_names:
- en
- de
- es
- it
dataset_info:
- config_name: en
  features:
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
          '7': B-MISC
          '8': I-MISC
  splits:
  - name: test
    num_bytes: 374649
    num_examples: 799
  download_size: 64713
  dataset_size: 374649
- config_name: de
  features:
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
          '7': B-MISC
          '8': I-MISC
  splits:
  - name: test
    num_bytes: 363699
    num_examples: 799
  download_size: 75342
  dataset_size: 363699
- config_name: es
  features:
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
          '7': B-MISC
          '8': I-MISC
  splits:
  - name: test
    num_bytes: 397365
    num_examples: 799
  download_size: 72873
  dataset_size: 397365
- config_name: it
  features:
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-PER
          '2': I-PER
          '3': B-ORG
          '4': I-ORG
          '5': B-LOC
          '6': I-LOC
          '7': B-MISC
          '8': I-MISC
  splits:
  - name: test
    num_bytes: 381584
    num_examples: 799
  download_size: 72932
  dataset_size: 381584
configs:
- config_name: en
  data_files:
  - split: test
    path: en/test-*
  default: true
- config_name: de
  data_files:
  - split: test
    path: de/test-*
- config_name: es
  data_files:
  - split: test
    path: es/test-*
- config_name: it
  data_files:
  - split: test
    path: it/test-*
---

# Dataset Card for Europarl-ner

**This dataset is an adapted to HF datasets copy of "Evaluation Corpus for Named Entity Recognition using Europarl" available on [GitHub](https://github.com/ixa-ehu/ner-evaluation-corpus-europarl/tree/master)**

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Original description](#original-description)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)



## Dataset Description

### Dataset Summary
This dataset consists of parallel sentences labeled with CONLL2003 tags, which allows use it for the evaluation of cross-lingual annotation projection methods for cross lingual named entity recognition.

### Original description

This dataset contains a gold-standard test set created from the Europarl corpus. The test set consists of 799 sentences manually annotated using four entity types and following the CoNLL 2002 and 2003 guidelines for 4 languages: English, German, Italian and Spanish.

If you use this corpus for your research, please cite the following publication:


> Rodrigo Agerri, Yiling Chung, Itziar Aldabe, Nora Aranberri, Gorka Labaka and German Rigau (2018). Building Named Entity Recognition Taggers via Parallel Corpora. In Proceedings of the 11th Language Resources and Evaluation Conference (LREC 2018), 7-12 May, 2018, Miyazaki, Japan.


You should also consider citing the original Europarl publication:

> Europarl: A Parallel Corpus for Statistical Machine Translation, Philipp Koehn, MT Summit 2005.


This evaluation corpus was manually annotated by Nora Aranberri.

### Languages
The dataset contains 4 languages, one in each of the configuration subsets:
- en - English
- de - German
- es - Spanish
- it - Italian

## Dataset Structure

### Data Instances

This is an example in the "test" split of the "en" (English language) configuration subset:
```python
{
  'tokens': ["Thank", "you", ",", "Mr", "Segni", ",", "I", "shall", "do", "so", "gladly", "."],
  'ner_tags': [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
}
```

### Data Fields

- `tokens`: a `list` of `string` features.
- `ner_tags`: a `list` of classification labels, with possible values including `O` (0), `B-PER` (1), `I-PER` (2), `B-ORG` (3), `I-ORG` (4), `B-LOC` (5), `I-LOC` (6), `B-MISC` (7), `I-MISC` (8),

### Data Splits

Every subset contains only a test split with 799 rows.

## Additional Information

### Licensing Information

The citation from the original repo:

> We follow the original Europarl terms of use which states : "We are not aware of any copyright restrictions of the material." For more details, please visit http://www.statmt.org/europarl/

### Citation Information

Authors ask to cite the following publications:

```
@inproceedings{agerri-etal-2018-building,
    title = "Building Named Entity Recognition Taggers via Parallel Corpora",
    author = "Agerri, Rodrigo  and
      Chung, Yiling  and
      Aldabe, Itziar  and
      Aranberri, Nora  and
      Labaka, Gorka  and
      Rigau, German",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Cieri, Christopher  and
      Declerck, Thierry  and
      Goggi, Sara  and
      Hasida, Koiti  and
      Isahara, Hitoshi  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Mazo, H{\'e}l{\`e}ne  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios  and
      Tokunaga, Takenobu",
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L18-1557"
```

```
@inproceedings{koehn2005europarl,
  title={Europarl: A parallel corpus for statistical machine translation},
  author={Koehn, Philipp},
  booktitle={Proceedings of machine translation summit x: papers},
  pages={79--86},
  year={2005}
}
```