hash
stringlengths
64
64
content
stringlengths
0
1.51M
d1d246eae87d877764fea2ba1de86c27e579c846281c079324245cf6b06b3a9b
from typing import Tuple as tTuple, Union as tUnion from sympy.core.add import Add from sympy.core.cache import cacheit from sympy.core.expr import Expr from sympy.core.function import Function, ArgumentIndexError, PoleError, expand_mul from sympy.core.logic import fuzzy_not, fuzzy_or, FuzzyBool, fuzzy_and from sympy.core.mod import Mod from sympy.core.numbers import Rational, pi, Integer, Float, equal_valued from sympy.core.relational import Ne, Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol, Dummy from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import factorial, RisingFactorial from sympy.functions.combinatorial.numbers import bernoulli, euler from sympy.functions.elementary.complexes import arg as arg_f, im, re from sympy.functions.elementary.exponential import log, exp from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt, Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary._trigonometric_special import ( cos_table, ipartfrac, fermat_coords) from sympy.logic.boolalg import And from sympy.ntheory import factorint from sympy.polys.specialpolys import symmetric_poly from sympy.utilities.iterables import numbered_symbols ############################################################################### ########################## UTILITIES ########################################## ############################################################################### def _imaginary_unit_as_coefficient(arg): """ Helper to extract symbolic coefficient for imaginary unit """ if isinstance(arg, Float): return None else: return arg.as_coefficient(S.ImaginaryUnit) ############################################################################### ########################## TRIGONOMETRIC FUNCTIONS ############################ ############################################################################### class TrigonometricFunction(Function): """Base class for trigonometric functions. """ unbranched = True _singularities = (S.ComplexInfinity,) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero): return False else: return s.is_rational def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: return False pi_coeff = _pi_coeff(self.args[0]) if pi_coeff is not None and pi_coeff.is_rational: return True else: return s.is_algebraic def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _as_real_imag(self, deep=True, **hints): if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.args[0].expand(deep, **hints), S.Zero) else: return (self.args[0], S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (re, im) def _period(self, general_period, symbol=None): f = expand_mul(self.args[0]) if symbol is None: symbol = tuple(f.free_symbols)[0] if not f.has(symbol): return S.Zero if f == symbol: return general_period if symbol in f.free_symbols: if f.is_Mul: g, h = f.as_independent(symbol) if h == symbol: return general_period/abs(g) if f.is_Add: a, h = f.as_independent(symbol) g, h = h.as_independent(symbol, as_Add=False) if h == symbol: return general_period/abs(g) raise NotImplementedError("Use the periodicity function instead.") @cacheit def _table2(): # If nested sqrt's are worse than un-evaluation # you can require q to be in (1, 2, 3, 4, 6, 12) # q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return # expressions with 2 or fewer sqrt nestings. return { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } def _peeloff_pi(arg): r""" Split ARG into two parts, a "rest" and a multiple of $\pi$. This assumes ARG to be an Add. The multiple of $\pi$ returned in the second position is always a Rational. Examples ======== >>> from sympy.functions.elementary.trigonometric import _peeloff_pi >>> from sympy import pi >>> from sympy.abc import x, y >>> _peeloff_pi(x + pi/2) (x, 1/2) >>> _peeloff_pi(x + 2*pi/3 + pi*y) (x + pi*y + pi/6, 1/2) """ pi_coeff = S.Zero rest_terms = [] for a in Add.make_args(arg): K = a.coeff(pi) if K and K.is_rational: pi_coeff += K else: rest_terms.append(a) if pi_coeff is S.Zero: return arg, S.Zero m1 = (pi_coeff % S.Half) m2 = pi_coeff - m1 if m2.is_integer or ((2*m2).is_integer and m2.is_even is False): return Add(*(rest_terms + [m1*pi])), m2 return arg, S.Zero def _pi_coeff(arg: Expr, cycles: int = 1) -> tUnion[Expr, None]: r""" When arg is a Number times $\pi$ (e.g. $3\pi/2$) then return the Number normalized to be in the range $[0, 2]$, else `None`. When an even multiple of $\pi$ is encountered, if it is multiplying something with known parity then the multiple is returned as 0 otherwise as 2. Examples ======== >>> from sympy.functions.elementary.trigonometric import _pi_coeff >>> from sympy import pi, Dummy >>> from sympy.abc import x >>> _pi_coeff(3*x*pi) 3*x >>> _pi_coeff(11*pi/7) 11/7 >>> _pi_coeff(-11*pi/7) 3/7 >>> _pi_coeff(4*pi) 0 >>> _pi_coeff(5*pi) 1 >>> _pi_coeff(5.0*pi) 1 >>> _pi_coeff(5.5*pi) 3/2 >>> _pi_coeff(2 + pi) >>> _pi_coeff(2*Dummy(integer=True)*pi) 2 >>> _pi_coeff(2*Dummy(even=True)*pi) 0 """ if arg is pi: return S.One elif not arg: return S.Zero elif arg.is_Mul: cx = arg.coeff(pi) if cx: c, x = cx.as_coeff_Mul() # pi is not included as coeff if c.is_Float: # recast exact binary fractions to Rationals f = abs(c) % 1 if f != 0: p = -int(round(log(f, 2).evalf())) m = 2**p cm = c*m i = int(cm) if equal_valued(i, cm): c = Rational(i, m) cx = c*x else: c = Rational(int(c)) cx = c*x if x.is_integer: c2 = c % 2 if c2 == 1: return x elif not c2: if x.is_even is not None: # known parity return S.Zero return Integer(2) else: return c2*x return cx elif arg.is_zero: return S.Zero return None class sin(TrigonometricFunction): r""" The sine function. Returns the sine of x (measured in radians). Explanation =========== This function will evaluate automatically in the case $x/\pi$ is some rational number [4]_. For example, if $x$ is a multiple of $\pi$, $\pi/2$, $\pi/3$, $\pi/4$, and $\pi/6$. Examples ======== >>> from sympy import sin, pi >>> from sympy.abc import x >>> sin(x**2).diff(x) 2*x*cos(x**2) >>> sin(1).diff(x) 0 >>> sin(pi) 0 >>> sin(pi/2) 1 >>> sin(pi/6) 1/2 >>> sin(pi/12) -sqrt(2)/4 + sqrt(6)/4 See Also ======== csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Sin .. [4] http://mathworld.wolfram.com/TrigonometryAngles.html """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return cos(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.calculus.accumulationbounds import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg in (S.Infinity, S.NegativeInfinity): return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): from sympy.sets.sets import FiniteSet min, max = arg.min, arg.max d = floor(min/(2*pi)) if min is not S.NegativeInfinity: min = min - d*2*pi if max is not S.Infinity: max = max - d*2*pi if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \ is not S.EmptySet and \ AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2), pi*Rational(7, 2))) is not S.EmptySet: return AccumBounds(-1, 1) elif AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \ is not S.EmptySet: return AccumBounds(Min(sin(min), sin(max)), 1) elif AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2), pi*Rational(8, 2))) \ is not S.EmptySet: return AccumBounds(-1, Max(sin(min), sin(max))) else: return AccumBounds(Min(sin(min), sin(max)), Max(sin(min), sin(max))) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import sinh return S.ImaginaryUnit*sinh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if (2*pi_coeff).is_integer: # is_even-case handled above as then pi_coeff.is_integer, # so check if known to be not even if pi_coeff.is_even is False: return S.NegativeOne**(pi_coeff - S.Half) if not pi_coeff.is_Rational: narg = pi_coeff*pi if narg != arg: return cls(narg) return None # https://github.com/sympy/sympy/issues/6048 # transform a sine to a cosine, to avoid redundant code if pi_coeff.is_Rational: x = pi_coeff % 2 if x > 1: return -cls((x % 1)*pi) if 2*x > 1: return cls((1 - x)*pi) narg = ((pi_coeff + Rational(3, 2)) % 2)*pi result = cos(narg) if not isinstance(result, cos): return result if pi_coeff*pi != arg: return cls(pi_coeff*pi) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: m = m*pi return sin(m)*cos(x) + cos(m)*sin(x) if arg.is_zero: return S.Zero if isinstance(arg, asin): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return x/sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return y/sqrt(x**2 + y**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2) if isinstance(arg, acot): x = arg.args[0] return 1/(sqrt(1 + 1/x**2)*x) if isinstance(arg, acsc): x = arg.args[0] return 1/x if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1/x**2) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p*x**2/(n*(n - 1)) else: return S.NegativeOne**(n//2)*x**n/factorial(n) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.args[0] if logx is not None: arg = arg.subs(log(x), logx) if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity): raise PoleError("Cannot expand %s around 0" % (self)) return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir) def _eval_rewrite_as_exp(self, arg, **kwargs): from sympy.functions.elementary.hyperbolic import HyperbolicFunction I = S.ImaginaryUnit if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): arg = arg.func(arg.args[0]).rewrite(exp) return (exp(arg*I) - exp(-arg*I))/(2*I) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*x**-I/2 - I*x**I /2 def _eval_rewrite_as_cos(self, arg, **kwargs): return cos(arg - pi/2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg) return 2*tan_half/(1 + tan_half**2) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg) return Piecewise((0, And(Eq(im(arg), 0), Eq(Mod(arg, pi), 0))), (2*cot_half/(1 + cot_half**2), True)) def _eval_rewrite_as_pow(self, arg, **kwargs): return self.rewrite(cos).rewrite(pow) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self.rewrite(cos).rewrite(sqrt) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1/csc(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): return 1/sec(arg - pi/2, evaluate=False) def _eval_rewrite_as_sinc(self, arg, **kwargs): return arg*sinc(arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy.functions.elementary.hyperbolic import cosh, sinh re, im = self._as_real_imag(deep=deep, **hints) return (sin(re)*cosh(im), cos(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy.functions.special.polynomials import chebyshevt, chebyshevu arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return sx*cy + sy*cx elif arg.is_Mul: n, x = arg.as_coeff_Mul(rational=True) if n.is_Integer: # n will be positive because of .eval # canonicalization # See http://mathworld.wolfram.com/Multiple-AngleFormulas.html if n.is_odd: return S.NegativeOne**((n - 1)/2)*chebyshevt(n, sin(x)) else: return expand_mul(S.NegativeOne**(n/2 - 1)*cos(x)* chebyshevu(n - 1, sin(x)), deep=False) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_Rational: return self.rewrite(sqrt) return sin(arg) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = x0/pi if n.is_integer: lt = (arg - n*pi).as_leading_term(x) return (S.NegativeOne**n)*lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in [S.Infinity, S.NegativeInfinity]: return AccumBounds(-1, 1) return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_extended_real: return True def _eval_is_zero(self): rest, pi_mult = _peeloff_pi(self.args[0]) if rest.is_zero: return pi_mult.is_integer def _eval_is_complex(self): if self.args[0].is_extended_real \ or self.args[0].is_complex: return True class cos(TrigonometricFunction): """ The cosine function. Returns the cosine of x (measured in radians). Explanation =========== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cos, pi >>> from sympy.abc import x >>> cos(x**2).diff(x) -2*x*sin(x**2) >>> cos(1).diff(x) 0 >>> cos(pi) -1 >>> cos(pi/2) 0 >>> cos(2*pi/3) -1/2 >>> cos(pi/12) sqrt(2)/4 + sqrt(6)/4 See Also ======== sin, csc, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Cos """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return -sin(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.functions.special.polynomials import chebyshevt from sympy.calculus.accumulationbounds import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.One elif arg in (S.Infinity, S.NegativeInfinity): # In this case it is better to return AccumBounds(-1, 1) # rather than returning S.NaN, since AccumBounds(-1, 1) # preserves the information that sin(oo) is between # -1 and 1, where S.NaN does not do that. return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return sin(arg + pi/2) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.is_extended_real and arg.is_finite is False: return AccumBounds(-1, 1) if arg.could_extract_minus_sign(): return cls(-arg) i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import cosh return cosh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return (S.NegativeOne)**pi_coeff if (2*pi_coeff).is_integer: # is_even-case handled above as then pi_coeff.is_integer, # so check if known to be not even if pi_coeff.is_even is False: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*pi if narg != arg: return cls(narg) return None # cosine formula ##################### # https://github.com/sympy/sympy/issues/6048 # explicit calculations are performed for # cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120 # Some other exact values like cos(k pi/240) can be # calculated using a partial-fraction decomposition # by calling cos( X ).rewrite(sqrt) if pi_coeff.is_Rational: q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*pi return -cls(narg) # If nested sqrt's are worse than un-evaluation # you can require q to be in (1, 2, 3, 4, 6, 12) # q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return # expressions with 2 or fewer sqrt nestings. table2 = _table2() if q in table2: a, b = table2[q] a, b = p*pi/a, p*pi/b nvala, nvalb = cls(a), cls(b) if None in (nvala, nvalb): return None return nvala*nvalb + cls(pi/2 - a)*cls(pi/2 - b) if q > 12: return None cst_table_some = { 3: S.Half, 5: (sqrt(5) + 1) / 4, } if q in cst_table_some: cts = cst_table_some[pi_coeff.q] return chebyshevt(pi_coeff.p, cts).expand() if 0 == q % 2: narg = (pi_coeff*2)*pi nval = cls(narg) if None == nval: return None x = (2*pi_coeff + 1)/2 sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x))) return sign_cos*sqrt( (1 + nval)/2 ) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: m = m*pi return cos(m)*cos(x) - sin(m)*sin(x) if arg.is_zero: return S.One if isinstance(arg, acos): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1/sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return x/sqrt(x**2 + y**2) if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x ** 2) if isinstance(arg, acot): x = arg.args[0] return 1/sqrt(1 + 1/x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1/x**2) if isinstance(arg, asec): x = arg.args[0] return 1/x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p*x**2/(n*(n - 1)) else: return S.NegativeOne**(n//2)*x**n/factorial(n) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.args[0] if logx is not None: arg = arg.subs(log(x), logx) if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity): raise PoleError("Cannot expand %s around 0" % (self)) return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit from sympy.functions.elementary.hyperbolic import HyperbolicFunction if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): arg = arg.func(arg.args[0]).rewrite(exp) return (exp(arg*I) + exp(-arg*I))/2 def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return x**I/2 + x**-I/2 def _eval_rewrite_as_sin(self, arg, **kwargs): return sin(arg + pi/2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg)**2 return (1 - tan_half)/(1 + tan_half) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/sin(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg)**2 return Piecewise((1, And(Eq(im(arg), 0), Eq(Mod(arg, 2*pi), 0))), ((cot_half - 1)/(cot_half + 1), True)) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._eval_rewrite_as_sqrt(arg) def _eval_rewrite_as_sqrt(self, arg: Expr, **kwargs): from sympy.functions.special.polynomials import chebyshevt pi_coeff = _pi_coeff(arg) if pi_coeff is None: return None if isinstance(pi_coeff, Integer): return None if not isinstance(pi_coeff, Rational): return None cst_table_some = cos_table() if pi_coeff.q in cst_table_some: rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q]()) if pi_coeff.q < 257: rv = rv.expand() return rv if not pi_coeff.q % 2: # recursively remove factors of 2 pico2 = pi_coeff * 2 nval = cos(pico2 * pi).rewrite(sqrt) x = (pico2 + 1) / 2 sign_cos = -1 if int(x) % 2 else 1 return sign_cos * sqrt((1 + nval) / 2) FC = fermat_coords(pi_coeff.q) if FC: denoms = FC else: denoms = [b**e for b, e in factorint(pi_coeff.q).items()] apart = ipartfrac(*denoms) decomp = (pi_coeff.p * Rational(n, d) for n, d in zip(apart, denoms)) X = [(x[1], x[0]*pi) for x in zip(decomp, numbered_symbols('z'))] pcls = cos(sum(x[0] for x in X))._eval_expand_trig().subs(X) if not FC or len(FC) == 1: return pcls return pcls.rewrite(sqrt) def _eval_rewrite_as_sec(self, arg, **kwargs): return 1/sec(arg) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1/sec(arg).rewrite(csc) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy.functions.elementary.hyperbolic import cosh, sinh re, im = self._as_real_imag(deep=deep, **hints) return (cos(re)*cosh(im), -sin(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy.functions.special.polynomials import chebyshevt arg = self.args[0] x = None if arg.is_Add: # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return cx*cy - sx*sy elif arg.is_Mul: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer: return chebyshevt(coeff, cos(terms)) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_Rational: return self.rewrite(sqrt) return cos(arg) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = (x0 + pi/2)/pi if n.is_integer: lt = (arg - n*pi + pi/2).as_leading_term(x) return (S.NegativeOne**n)*lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in [S.Infinity, S.NegativeInfinity]: return AccumBounds(-1, 1) return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_extended_real: return True def _eval_is_complex(self): if self.args[0].is_extended_real \ or self.args[0].is_complex: return True def _eval_is_zero(self): rest, pi_mult = _peeloff_pi(self.args[0]) if rest.is_zero and pi_mult: return (pi_mult - S.Half).is_integer class tan(TrigonometricFunction): """ The tangent function. Returns the tangent of x (measured in radians). Explanation =========== See :class:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import tan, pi >>> from sympy.abc import x >>> tan(x**2).diff(x) 2*x*(tan(x**2)**2 + 1) >>> tan(1).diff(x) 0 >>> tan(pi/8).expand() -1 + sqrt(2) See Also ======== sin, csc, cos, sec, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Tan """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.One + self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return atan @classmethod def eval(cls, arg): from sympy.calculus.accumulationbounds import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): min, max = arg.min, arg.max d = floor(min/pi) if min is not S.NegativeInfinity: min = min - d*pi if max is not S.Infinity: max = max - d*pi from sympy.sets.sets import FiniteSet if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(3, 2))): return AccumBounds(S.NegativeInfinity, S.Infinity) else: return AccumBounds(tan(min), tan(max)) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import tanh return S.ImaginaryUnit*tanh(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: q = pi_coeff.q p = pi_coeff.p % q # ensure simplified results are returned for n*pi/5, n*pi/10 table10 = { 1: sqrt(1 - 2*sqrt(5)/5), 2: sqrt(5 - 2*sqrt(5)), 3: sqrt(1 + 2*sqrt(5)/5), 4: sqrt(5 + 2*sqrt(5)) } if q in (5, 10): n = 10*p/q if n > 5: n = 10 - n return -table10[n] else: return table10[n] if not pi_coeff.q % 2: narg = pi_coeff*pi*2 cresult, sresult = cos(narg), cos(narg - pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return 1/sresult - cresult/sresult table2 = _table2() if q in table2: a, b = table2[q] nvala, nvalb = cls(p*pi/a), cls(p*pi/b) if None in (nvala, nvalb): return None return (nvala - nvalb)/(1 + nvala*nvalb) narg = ((pi_coeff + S.Half) % 1 - S.Half)*pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if cresult == 0: return S.ComplexInfinity return (sresult/cresult) if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: tanm = tan(m*pi) if tanm is S.ComplexInfinity: return -cot(x) else: # tanm == 0 return tan(x) if arg.is_zero: return S.Zero if isinstance(arg, atan): return arg.args[0] if isinstance(arg, atan2): y, x = arg.args return y/x if isinstance(arg, asin): x = arg.args[0] return x/sqrt(1 - x**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2)/x if isinstance(arg, acot): x = arg.args[0] return 1/x if isinstance(arg, acsc): x = arg.args[0] return 1/(sqrt(1 - 1/x**2)*x) if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1/x**2)*x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) a, b = ((n - 1)//2), 2**(n + 1) B = bernoulli(n + 1) F = factorial(n + 1) return S.NegativeOne**a*b*(b - 1)*B/F*x**n def _eval_nseries(self, x, n, logx, cdir=0): i = self.args[0].limit(x, 0)*2/pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return Function._eval_nseries(self, x, n=n, logx=logx) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*(x**-I - x**I)/(x**-I + x**I) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: from sympy.functions.elementary.hyperbolic import cosh, sinh denom = cos(2*re) + cosh(2*im) return (sin(2*re)/denom, sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_expand_trig(self, **hints): arg = self.args[0] x = None if arg.is_Add: n = len(arg.args) TX = [] for x in arg.args: tx = tan(x, evaluate=False)._eval_expand_trig() TX.append(tx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n + 1): p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, TX))) elif arg.is_Mul: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((1 + I*z)**coeff).expand() return (im(P)/re(P)).subs([(z, tan(terms))]) return tan(arg) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit from sympy.functions.elementary.hyperbolic import HyperbolicFunction if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): arg = arg.func(arg.args[0]).rewrite(exp) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(neg_exp - pos_exp)/(neg_exp + pos_exp) def _eval_rewrite_as_sin(self, x, **kwargs): return 2*sin(x)**2/sin(2*x) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x - pi/2, evaluate=False)/cos(x) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): return 1/cot(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): sin_in_sec_form = sin(arg).rewrite(sec) cos_in_sec_form = cos(arg).rewrite(sec) return sin_in_sec_form/cos_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): sin_in_csc_form = sin(arg).rewrite(csc) cos_in_csc_form = cos(arg).rewrite(csc) return sin_in_csc_form/cos_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos).rewrite(pow) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos).rewrite(sqrt) if y.has(cos): return None return y def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds from sympy.functions.elementary.complexes import re arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = 2*x0/pi if n.is_integer: lt = (arg - n*pi/2).as_leading_term(x) return lt if n.is_even else -1/lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): # FIXME: currently tan(pi/2) return zoo return self.args[0].is_extended_real def _eval_is_real(self): arg = self.args[0] if arg.is_real and (arg/pi - S.Half).is_integer is False: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_real and (arg/pi - S.Half).is_integer is False: return True if arg.is_imaginary: return True def _eval_is_zero(self): rest, pi_mult = _peeloff_pi(self.args[0]) if rest.is_zero: return pi_mult.is_integer def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg/pi - S.Half).is_integer is False: return True class cot(TrigonometricFunction): """ The cotangent function. Returns the cotangent of x (measured in radians). Explanation =========== See :class:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cot, pi >>> from sympy.abc import x >>> cot(x**2).diff(x) 2*x*(-cot(x**2)**2 - 1) >>> cot(1).diff(x) 0 >>> cot(pi/12) sqrt(3) + 2 See Also ======== sin, csc, cos, sec, tan asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Cot """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.NegativeOne - self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return acot @classmethod def eval(cls, arg): from sympy.calculus.accumulationbounds import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN if arg.is_zero: return S.ComplexInfinity elif arg in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return -tan(arg + pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import coth return -S.ImaginaryUnit*coth(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.ComplexInfinity if not pi_coeff.is_Rational: narg = pi_coeff*pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: if pi_coeff.q in (5, 10): return tan(pi/2 - arg) if pi_coeff.q > 2 and not pi_coeff.q % 2: narg = pi_coeff*pi*2 cresult, sresult = cos(narg), cos(narg - pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): return 1/sresult + cresult/sresult q = pi_coeff.q p = pi_coeff.p % q table2 = _table2() if q in table2: a, b = table2[q] nvala, nvalb = cls(p*pi/a), cls(p*pi/b) if None in (nvala, nvalb): return None return (1 + nvala*nvalb)/(nvalb - nvala) narg = (((pi_coeff + S.Half) % 1) - S.Half)*pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return cresult/sresult if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: cotm = cot(m*pi) if cotm is S.ComplexInfinity: return cot(x) else: # cotm == 0 return -tan(x) if arg.is_zero: return S.ComplexInfinity if isinstance(arg, acot): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1/x if isinstance(arg, atan2): y, x = arg.args return x/y if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x**2)/x if isinstance(arg, acos): x = arg.args[0] return x/sqrt(1 - x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1/x**2)*x if isinstance(arg, asec): x = arg.args[0] return 1/(sqrt(1 - 1/x**2)*x) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return S.NegativeOne**((n + 1)//2)*2**(n + 1)*B/F*x**n def _eval_nseries(self, x, n, logx, cdir=0): i = self.args[0].limit(x, 0)/pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: from sympy.functions.elementary.hyperbolic import cosh, sinh denom = cos(2*re) - cosh(2*im) return (-sin(2*re)/denom, sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_rewrite_as_exp(self, arg, **kwargs): from sympy.functions.elementary.hyperbolic import HyperbolicFunction I = S.ImaginaryUnit if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): arg = arg.func(arg.args[0]).rewrite(exp) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return -I*(x**-I + x**I)/(x**-I - x**I) def _eval_rewrite_as_sin(self, x, **kwargs): return sin(2*x)/(2*(sin(x)**2)) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x)/cos(x - pi/2, evaluate=False) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/sin(arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return 1/tan(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): cos_in_sec_form = cos(arg).rewrite(sec) sin_in_sec_form = sin(arg).rewrite(sec) return cos_in_sec_form/sin_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): cos_in_csc_form = cos(arg).rewrite(csc) sin_in_csc_form = sin(arg).rewrite(csc) return cos_in_csc_form/sin_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos).rewrite(pow) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos).rewrite(sqrt) if y.has(cos): return None return y def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds from sympy.functions.elementary.complexes import re arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = 2*x0/pi if n.is_integer: lt = (arg - n*pi/2).as_leading_term(x) return 1/lt if n.is_even else -lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): return self.args[0].is_extended_real def _eval_expand_trig(self, **hints): arg = self.args[0] x = None if arg.is_Add: n = len(arg.args) CX = [] for x in arg.args: cx = cot(x, evaluate=False)._eval_expand_trig() CX.append(cx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n, -1, -1): p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, CX))) elif arg.is_Mul: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((z + I)**coeff).expand() return (re(P)/im(P)).subs([(z, cot(terms))]) return cot(arg) # XXX sec and csc return 1/cos and 1/sin def _eval_is_finite(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True if arg.is_imaginary: return True def _eval_is_real(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True def _eval_is_zero(self): rest, pimult = _peeloff_pi(self.args[0]) if pimult and rest.is_zero: return (pimult - S.Half).is_integer def _eval_subs(self, old, new): arg = self.args[0] argnew = arg.subs(old, new) if arg != argnew and (argnew/pi).is_integer: return S.ComplexInfinity return cot(argnew) class ReciprocalTrigonometricFunction(TrigonometricFunction): """Base class for reciprocal functions of trigonometric functions. """ _reciprocal_of = None # mandatory, to be defined in subclass _singularities = (S.ComplexInfinity,) # _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x) # TODO refactor into TrigonometricFunction common parts of # trigonometric functions eval() like even/odd, func(x+2*k*pi), etc. # optional, to be defined in subclasses: _is_even: FuzzyBool = None _is_odd: FuzzyBool = None @classmethod def eval(cls, arg): if arg.could_extract_minus_sign(): if cls._is_even: return cls(-arg) if cls._is_odd: return -cls(-arg) pi_coeff = _pi_coeff(arg) if (pi_coeff is not None and not (2*pi_coeff).is_integer and pi_coeff.is_Rational): q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*pi if cls._is_odd: return cls(narg) elif cls._is_even: return -cls(narg) if hasattr(arg, 'inverse') and arg.inverse() == cls: return arg.args[0] t = cls._reciprocal_of.eval(arg) if t is None: return t elif any(isinstance(i, cos) for i in (t, -t)): return (1/t).rewrite(sec) elif any(isinstance(i, sin) for i in (t, -t)): return (1/t).rewrite(csc) else: return 1/t def _call_reciprocal(self, method_name, *args, **kwargs): # Calls method_name on _reciprocal_of o = self._reciprocal_of(self.args[0]) return getattr(o, method_name)(*args, **kwargs) def _calculate_reciprocal(self, method_name, *args, **kwargs): # If calling method_name on _reciprocal_of returns a value != None # then return the reciprocal of that value t = self._call_reciprocal(method_name, *args, **kwargs) return 1/t if t is not None else t def _rewrite_reciprocal(self, method_name, arg): # Special handling for rewrite functions. If reciprocal rewrite returns # unmodified expression, then return None t = self._call_reciprocal(method_name, arg) if t is not None and t != self._reciprocal_of(arg): return 1/t def _period(self, symbol): f = expand_mul(self.args[0]) return self._reciprocal_of(f).period(symbol) def fdiff(self, argindex=1): return -self._calculate_reciprocal("fdiff", argindex)/self**2 def _eval_rewrite_as_exp(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) def _eval_rewrite_as_Pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg) def _eval_rewrite_as_cos(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) def _eval_expand_trig(self, **hints): return self._calculate_reciprocal("_eval_expand_trig", **hints) def _eval_is_extended_real(self): return self._reciprocal_of(self.args[0])._eval_is_extended_real() def _eval_as_leading_term(self, x, logx=None, cdir=0): return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) def _eval_is_finite(self): return (1/self._reciprocal_of(self.args[0])).is_finite def _eval_nseries(self, x, n, logx, cdir=0): return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx) class sec(ReciprocalTrigonometricFunction): """ The secant function. Returns the secant of x (measured in radians). Explanation =========== See :class:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import sec >>> from sympy.abc import x >>> sec(x**2).diff(x) 2*x*tan(x**2)*sec(x**2) >>> sec(1).diff(x) 0 See Also ======== sin, csc, cos, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Sec """ _reciprocal_of = cos _is_even = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half_sq = cot(arg/2)**2 return (cot_half_sq + 1)/(cot_half_sq - 1) def _eval_rewrite_as_cos(self, arg, **kwargs): return (1/cos(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/(cos(arg)*sin(arg)) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1/cos(arg).rewrite(sin)) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1/cos(arg).rewrite(tan)) def _eval_rewrite_as_csc(self, arg, **kwargs): return csc(pi/2 - arg, evaluate=False) def fdiff(self, argindex=1): if argindex == 1: return tan(self.args[0])*sec(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_is_complex(self): arg = self.args[0] if arg.is_complex and (arg/pi - S.Half).is_integer is False: return True @staticmethod @cacheit def taylor_term(n, x, *previous_terms): # Reference Formula: # http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/ if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) k = n//2 return S.NegativeOne**k*euler(2*k)/factorial(2*k)*x**(2*k) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds from sympy.functions.elementary.complexes import re arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = (x0 + pi/2)/pi if n.is_integer: lt = (arg - n*pi + pi/2).as_leading_term(x) return (S.NegativeOne**n)/lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) return self.func(x0) if x0.is_finite else self class csc(ReciprocalTrigonometricFunction): """ The cosecant function. Returns the cosecant of x (measured in radians). Explanation =========== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import csc >>> from sympy.abc import x >>> csc(x**2).diff(x) -2*x*cot(x**2)*csc(x**2) >>> csc(1).diff(x) 0 See Also ======== sin, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Csc """ _reciprocal_of = sin _is_odd = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1/sin(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/(sin(arg)*cos(arg)) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(arg/2) return (1 + cot_half**2)/(2*cot_half) def _eval_rewrite_as_cos(self, arg, **kwargs): return 1/sin(arg).rewrite(cos) def _eval_rewrite_as_sec(self, arg, **kwargs): return sec(pi/2 - arg, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1/sin(arg).rewrite(tan)) def fdiff(self, argindex=1): if argindex == 1: return -cot(self.args[0])*csc(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = n//2 + 1 return (S.NegativeOne**(k - 1)*2*(2**(2*k - 1) - 1)* bernoulli(2*k)*x**(2*k - 1)/factorial(2*k)) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds from sympy.functions.elementary.complexes import re arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = x0/pi if n.is_integer: lt = (arg - n*pi).as_leading_term(x) return (S.NegativeOne**n)/lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) return self.func(x0) if x0.is_finite else self class sinc(Function): r""" Represents an unnormalized sinc function: .. math:: \operatorname{sinc}(x) = \begin{cases} \frac{\sin x}{x} & \qquad x \neq 0 \\ 1 & \qquad x = 0 \end{cases} Examples ======== >>> from sympy import sinc, oo, jn >>> from sympy.abc import x >>> sinc(x) sinc(x) * Automated Evaluation >>> sinc(0) 1 >>> sinc(oo) 0 * Differentiation >>> sinc(x).diff() cos(x)/x - sin(x)/x**2 * Series Expansion >>> sinc(x).series() 1 - x**2/6 + x**4/120 + O(x**6) * As zero'th order spherical Bessel Function >>> sinc(x).rewrite(jn) jn(0, x) See also ======== sin References ========== .. [1] https://en.wikipedia.org/wiki/Sinc_function """ _singularities = (S.ComplexInfinity,) def fdiff(self, argindex=1): x = self.args[0] if argindex == 1: # We would like to return the Piecewise here, but Piecewise.diff # currently can't handle removable singularities, meaning things # like sinc(x).diff(x, 2) give the wrong answer at x = 0. See # https://github.com/sympy/sympy/issues/11402. # # return Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, S.Zero)), (S.Zero, S.true)) return cos(x)/x - sin(x)/x**2 else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_zero: return S.One if arg.is_Number: if arg in [S.Infinity, S.NegativeInfinity]: return S.Zero elif arg is S.NaN: return S.NaN if arg is S.ComplexInfinity: return S.NaN if arg.could_extract_minus_sign(): return cls(-arg) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: if fuzzy_not(arg.is_zero): return S.Zero elif (2*pi_coeff).is_integer: return S.NegativeOne**(pi_coeff - S.Half)/arg def _eval_nseries(self, x, n, logx, cdir=0): x = self.args[0] return (sin(x)/x)._eval_nseries(x, n, logx) def _eval_rewrite_as_jn(self, arg, **kwargs): from sympy.functions.special.bessel import jn return jn(0, arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return Piecewise((sin(arg)/arg, Ne(arg, S.Zero)), (S.One, S.true)) def _eval_is_zero(self): if self.args[0].is_infinite: return True rest, pi_mult = _peeloff_pi(self.args[0]) if rest.is_zero: return fuzzy_and([pi_mult.is_integer, pi_mult.is_nonzero]) if rest.is_Number and pi_mult.is_integer: return False def _eval_is_real(self): if self.args[0].is_extended_real or self.args[0].is_imaginary: return True _eval_is_finite = _eval_is_real ############################################################################### ########################### TRIGONOMETRIC INVERSES ############################ ############################################################################### class InverseTrigonometricFunction(Function): """Base class for inverse trigonometric functions.""" _singularities = (S.One, S.NegativeOne, S.Zero, S.ComplexInfinity) # type: tTuple[Expr, ...] @staticmethod @cacheit def _asin_table(): # Only keys with could_extract_minus_sign() == False # are actually needed. return { sqrt(3)/2: pi/3, sqrt(2)/2: pi/4, 1/sqrt(2): pi/4, sqrt((5 - sqrt(5))/8): pi/5, sqrt(2)*sqrt(5 - sqrt(5))/4: pi/5, sqrt((5 + sqrt(5))/8): pi*Rational(2, 5), sqrt(2)*sqrt(5 + sqrt(5))/4: pi*Rational(2, 5), S.Half: pi/6, sqrt(2 - sqrt(2))/2: pi/8, sqrt(S.Half - sqrt(2)/4): pi/8, sqrt(2 + sqrt(2))/2: pi*Rational(3, 8), sqrt(S.Half + sqrt(2)/4): pi*Rational(3, 8), (sqrt(5) - 1)/4: pi/10, (1 - sqrt(5))/4: -pi/10, (sqrt(5) + 1)/4: pi*Rational(3, 10), sqrt(6)/4 - sqrt(2)/4: pi/12, -sqrt(6)/4 + sqrt(2)/4: -pi/12, (sqrt(3) - 1)/sqrt(8): pi/12, (1 - sqrt(3))/sqrt(8): -pi/12, sqrt(6)/4 + sqrt(2)/4: pi*Rational(5, 12), (1 + sqrt(3))/sqrt(8): pi*Rational(5, 12) } @staticmethod @cacheit def _atan_table(): # Only keys with could_extract_minus_sign() == False # are actually needed. return { sqrt(3)/3: pi/6, 1/sqrt(3): pi/6, sqrt(3): pi/3, sqrt(2) - 1: pi/8, 1 - sqrt(2): -pi/8, 1 + sqrt(2): pi*Rational(3, 8), sqrt(5 - 2*sqrt(5)): pi/5, sqrt(5 + 2*sqrt(5)): pi*Rational(2, 5), sqrt(1 - 2*sqrt(5)/5): pi/10, sqrt(1 + 2*sqrt(5)/5): pi*Rational(3, 10), 2 - sqrt(3): pi/12, -2 + sqrt(3): -pi/12, 2 + sqrt(3): pi*Rational(5, 12) } @staticmethod @cacheit def _acsc_table(): # Keys for which could_extract_minus_sign() # will obviously return True are omitted. return { 2*sqrt(3)/3: pi/3, sqrt(2): pi/4, sqrt(2 + 2*sqrt(5)/5): pi/5, 1/sqrt(Rational(5, 8) - sqrt(5)/8): pi/5, sqrt(2 - 2*sqrt(5)/5): pi*Rational(2, 5), 1/sqrt(Rational(5, 8) + sqrt(5)/8): pi*Rational(2, 5), 2: pi/6, sqrt(4 + 2*sqrt(2)): pi/8, 2/sqrt(2 - sqrt(2)): pi/8, sqrt(4 - 2*sqrt(2)): pi*Rational(3, 8), 2/sqrt(2 + sqrt(2)): pi*Rational(3, 8), 1 + sqrt(5): pi/10, sqrt(5) - 1: pi*Rational(3, 10), -(sqrt(5) - 1): pi*Rational(-3, 10), sqrt(6) + sqrt(2): pi/12, sqrt(6) - sqrt(2): pi*Rational(5, 12), -(sqrt(6) - sqrt(2)): pi*Rational(-5, 12) } class asin(InverseTrigonometricFunction): r""" The inverse sine function. Returns the arcsine of x in radians. Explanation =========== ``asin(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the ``eval`` class method). A purely imaginary argument will lead to an asinh expression. Examples ======== >>> from sympy import asin, oo >>> asin(1) pi/2 >>> asin(-1) -pi/2 >>> asin(-oo) oo*I >>> asin(oo) -oo*I See Also ======== sin, csc, cos, sec, tan, cot acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self._eval_is_extended_real() and self.args[0].is_positive def _eval_is_negative(self): return self._eval_is_extended_real() and self.args[0].is_negative @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.NegativeInfinity*S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.Infinity*S.ImaginaryUnit elif arg.is_zero: return S.Zero elif arg is S.One: return pi/2 elif arg is S.NegativeOne: return -pi/2 if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: asin_table = cls._asin_table() if arg in asin_table: return asin_table[arg] i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import asinh return S.ImaginaryUnit*asinh(i_coeff) if arg.is_zero: return S.Zero if isinstance(arg, sin): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, cos): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acos(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p*(n - 2)**2/(n*(n - 1))*x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return R/F*x**n/n def _eval_as_leading_term(self, x, logx=None, cdir=0): # asin arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0.is_zero: return arg.as_leading_term(x) # Handling branch points if x0 in (-S.One, S.One, S.ComplexInfinity): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() # Handling points lying on branch cuts (-oo, -1) U (1, oo) if (1 - x0**2).is_negative: ndir = arg.dir(x, cdir if cdir else 1) if im(ndir).is_negative: if x0.is_negative: return -pi - self.func(x0) elif im(ndir).is_positive: if x0.is_positive: return pi - self.func(x0) else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # asin from sympy.series.order import O arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 is S.One: t = Dummy('t', positive=True) ser = asin(S.One - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else pi/2 + O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = asin(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else -pi/2 + O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res # Handling points lying on branch cuts (-oo, -1) U (1, oo) if (1 - arg0**2).is_negative: ndir = self.args[0].dir(x, cdir if cdir else 1) if im(ndir).is_negative: if arg0.is_negative: return -pi - res elif im(ndir).is_positive: if arg0.is_positive: return pi - res else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_rewrite_as_acos(self, x, **kwargs): return pi/2 - acos(x) def _eval_rewrite_as_atan(self, x, **kwargs): return 2*atan(x/(1 + sqrt(1 - x**2))) def _eval_rewrite_as_log(self, x, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_rewrite_as_acot(self, arg, **kwargs): return 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return pi/2 - asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return acsc(1/arg) def _eval_is_extended_real(self): x = self.args[0] return x.is_extended_real and (1 - abs(x)).is_nonnegative def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sin class acos(InverseTrigonometricFunction): r""" The inverse cosine function. Explanation =========== Returns the arc cosine of x (measured in radians). ``acos(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the eval class method). ``acos(zoo)`` evaluates to ``zoo`` (see note in :class:`sympy.functions.elementary.trigonometric.asec`) A purely imaginary argument will be rewritten to asinh. Examples ======== >>> from sympy import acos, oo >>> acos(1) 0 >>> acos(0) pi/2 >>> acos(oo) oo*I See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos """ def fdiff(self, argindex=1): if argindex == 1: return -1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity*S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.NegativeInfinity*S.ImaginaryUnit elif arg.is_zero: return pi/2 elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return pi if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.is_number: asin_table = cls._asin_table() if arg in asin_table: return pi/2 - asin_table[arg] elif -arg in asin_table: return pi/2 + asin_table[-arg] i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: return pi/2 - asin(arg) if isinstance(arg, cos): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, sin): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asin(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return pi/2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p*(n - 2)**2/(n*(n - 1))*x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return -R/F*x**n/n def _eval_as_leading_term(self, x, logx=None, cdir=0): # acos arg = self.args[0] x0 = arg.subs(x, 0).cancel() # Handling branch points if x0 == 1: return sqrt(2)*sqrt((S.One - arg).as_leading_term(x)) if x0 in (-S.One, S.ComplexInfinity): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) # Handling points lying on branch cuts (-oo, -1) U (1, oo) if (1 - x0**2).is_negative: ndir = arg.dir(x, cdir if cdir else 1) if im(ndir).is_negative: if x0.is_negative: return 2*pi - self.func(x0) elif im(ndir).is_positive: if x0.is_positive: return -self.func(x0) else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_is_extended_real(self): x = self.args[0] return x.is_extended_real and (1 - abs(x)).is_nonnegative def _eval_is_nonnegative(self): return self._eval_is_extended_real() def _eval_nseries(self, x, n, logx, cdir=0): # acos from sympy.series.order import O arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 is S.One: t = Dummy('t', positive=True) ser = acos(S.One - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = acos(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else pi + O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res # Handling points lying on branch cuts (-oo, -1) U (1, oo) if (1 - arg0**2).is_negative: ndir = self.args[0].dir(x, cdir if cdir else 1) if im(ndir).is_negative: if arg0.is_negative: return 2*pi - res elif im(ndir).is_positive: if arg0.is_positive: return -res else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_rewrite_as_log(self, x, **kwargs): return pi/2 + S.ImaginaryUnit*\ log(S.ImaginaryUnit*x + sqrt(1 - x**2)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_rewrite_as_asin(self, x, **kwargs): return pi/2 - asin(x) def _eval_rewrite_as_atan(self, x, **kwargs): return atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cos def _eval_rewrite_as_acot(self, arg, **kwargs): return pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return pi/2 - acsc(1/arg) def _eval_conjugate(self): z = self.args[0] r = self.func(self.args[0].conjugate()) if z.is_extended_real is False: return r elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive: return r class atan(InverseTrigonometricFunction): r""" The inverse tangent function. Returns the arc tangent of x (measured in radians). Explanation =========== ``atan(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the eval class method). Examples ======== >>> from sympy import atan, oo >>> atan(0) 0 >>> atan(1) pi/4 >>> atan(oo) pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan """ args: tTuple[Expr] _singularities = (S.ImaginaryUnit, -S.ImaginaryUnit) def fdiff(self, argindex=1): if argindex == 1: return 1/(1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_extended_positive def _eval_is_nonnegative(self): return self.args[0].is_extended_nonnegative def _eval_is_zero(self): return self.args[0].is_zero def _eval_is_real(self): return self.args[0].is_extended_real @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return pi/2 elif arg is S.NegativeInfinity: return -pi/2 elif arg.is_zero: return S.Zero elif arg is S.One: return pi/4 elif arg is S.NegativeOne: return -pi/4 if arg is S.ComplexInfinity: from sympy.calculus.accumulationbounds import AccumBounds return AccumBounds(-pi/2, pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: atan_table = cls._atan_table() if arg in atan_table: return atan_table[arg] i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import atanh return S.ImaginaryUnit*atanh(i_coeff) if arg.is_zero: return S.Zero if isinstance(arg, tan): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang if isinstance(arg, cot): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - acot(arg) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return S.NegativeOne**((n - 1)//2)*x**n/n def _eval_as_leading_term(self, x, logx=None, cdir=0): # atan arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0.is_zero: return arg.as_leading_term(x) # Handling branch points if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.ComplexInfinity): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() # Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo) if (1 + x0**2).is_negative: ndir = arg.dir(x, cdir if cdir else 1) if re(ndir).is_negative: if im(x0).is_positive: return self.func(x0) - pi elif re(ndir).is_positive: if im(x0).is_negative: return self.func(x0) + pi else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # atan arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit): return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) res = Function._eval_nseries(self, x, n=n, logx=logx) ndir = self.args[0].dir(x, cdir if cdir else 1) if arg0 is S.ComplexInfinity: if re(ndir) > 0: return res - pi return res # Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo) if (1 + arg0**2).is_negative: if re(ndir).is_negative: if im(arg0).is_positive: return res - pi elif re(ndir).is_positive: if im(arg0).is_negative: return res + pi else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2*(log(S.One - S.ImaginaryUnit*x) - log(S.One + S.ImaginaryUnit*x)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_aseries(self, n, args0, x, logx): if args0[0] is S.Infinity: return (pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) elif args0[0] is S.NegativeInfinity: return (-pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) else: return super()._eval_aseries(n, args0, x, logx) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return tan def _eval_rewrite_as_asin(self, arg, **kwargs): return sqrt(arg**2)/arg*(pi/2 - asin(1/sqrt(1 + arg**2))) def _eval_rewrite_as_acos(self, arg, **kwargs): return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2)) def _eval_rewrite_as_acot(self, arg, **kwargs): return acot(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return sqrt(arg**2)/arg*(pi/2 - acsc(sqrt(1 + arg**2))) class acot(InverseTrigonometricFunction): r""" The inverse cotangent function. Returns the arc cotangent of x (measured in radians). Explanation =========== ``acot(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, \tilde{\infty}, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the eval class method). A purely imaginary argument will lead to an ``acoth`` expression. ``acot(x)`` has a branch cut along $(-i, i)$, hence it is discontinuous at 0. Its range for real $x$ is $(-\frac{\pi}{2}, \frac{\pi}{2}]$. Examples ======== >>> from sympy import acot, sqrt >>> acot(0) pi/2 >>> acot(1) pi/4 >>> acot(sqrt(3) - 2) -5*pi/12 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, atan2 References ========== .. [1] http://dlmf.nist.gov/4.23 .. [2] http://functions.wolfram.com/ElementaryFunctions/ArcCot """ _singularities = (S.ImaginaryUnit, -S.ImaginaryUnit) def fdiff(self, argindex=1): if argindex == 1: return -1/(1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_nonnegative def _eval_is_negative(self): return self.args[0].is_negative def _eval_is_extended_real(self): return self.args[0].is_extended_real @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return pi/ 2 elif arg is S.One: return pi/4 elif arg is S.NegativeOne: return -pi/4 if arg is S.ComplexInfinity: return S.Zero if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: atan_table = cls._atan_table() if arg in atan_table: ang = pi/2 - atan_table[arg] if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi return ang i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import acoth return -S.ImaginaryUnit*acoth(i_coeff) if arg.is_zero: return pi*S.Half if isinstance(arg, cot): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi; return ang if isinstance(arg, tan): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - atan(arg) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return pi/2 # FIX THIS elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return S.NegativeOne**((n + 1)//2)*x**n/n def _eval_as_leading_term(self, x, logx=None, cdir=0): # acot arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 is S.ComplexInfinity: return (1/arg).as_leading_term(x) # Handling branch points if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.Zero): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() # Handling points lying on branch cuts [-I, I] if x0.is_imaginary and (1 + x0**2).is_positive: ndir = arg.dir(x, cdir if cdir else 1) if re(ndir).is_positive: if im(x0).is_positive: return self.func(x0) + pi elif re(ndir).is_negative: if im(x0).is_negative: return self.func(x0) - pi else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # acot arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit): return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res ndir = self.args[0].dir(x, cdir if cdir else 1) if arg0.is_zero: if re(ndir) < 0: return res - pi return res # Handling points lying on branch cuts [-I, I] if arg0.is_imaginary and (1 + arg0**2).is_positive: if re(ndir).is_positive: if im(arg0).is_positive: return res + pi elif re(ndir).is_negative: if im(arg0).is_negative: return res - pi else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_aseries(self, n, args0, x, logx): if args0[0] is S.Infinity: return (pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx) elif args0[0] is S.NegativeInfinity: return (pi*Rational(3, 2) - acot(1/self.args[0]))._eval_nseries(x, n, logx) else: return super(atan, self)._eval_aseries(n, args0, x, logx) def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2*(log(1 - S.ImaginaryUnit/x) - log(1 + S.ImaginaryUnit/x)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cot def _eval_rewrite_as_asin(self, arg, **kwargs): return (arg*sqrt(1/arg**2)* (pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1)))) def _eval_rewrite_as_acos(self, arg, **kwargs): return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1)) def _eval_rewrite_as_atan(self, arg, **kwargs): return atan(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return arg*sqrt(1/arg**2)*(pi/2 - acsc(sqrt((1 + arg**2)/arg**2))) class asec(InverseTrigonometricFunction): r""" The inverse secant function. Returns the arc secant of x (measured in radians). Explanation =========== ``asec(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the eval class method). ``asec(x)`` has branch cut in the interval $[-1, 1]$. For complex arguments, it can be defined [4]_ as .. math:: \operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z} At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For negative branch cut, the limit .. math:: \lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z} simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which ultimately evaluates to ``zoo``. As ``acos(x) = asec(1/x)``, a similar argument can be given for ``acos(x)``. Examples ======== >>> from sympy import asec, oo >>> asec(1) 0 >>> asec(-1) pi >>> asec(0) zoo >>> asec(-oo) pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec .. [4] http://reference.wolfram.com/language/ref/ArcSec.html """ @classmethod def eval(cls, arg): if arg.is_zero: return S.ComplexInfinity if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return pi if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return pi/2 if arg.is_number: acsc_table = cls._acsc_table() if arg in acsc_table: return pi/2 - acsc_table[arg] elif -arg in acsc_table: return pi/2 + acsc_table[-arg] if arg.is_infinite: return pi/2 if isinstance(arg, sec): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acsc(arg) def fdiff(self, argindex=1): if argindex == 1: return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sec @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.ImaginaryUnit*log(2 / x) elif n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2 and n > 2: p = previous_terms[-2] return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2) else: k = n // 2 R = RisingFactorial(S.Half, k) * n F = factorial(k) * n // 2 * n // 2 return -S.ImaginaryUnit * R / F * x**n / 4 def _eval_as_leading_term(self, x, logx=None, cdir=0): # asec arg = self.args[0] x0 = arg.subs(x, 0).cancel() # Handling branch points if x0 == 1: return sqrt(2)*sqrt((arg - S.One).as_leading_term(x)) if x0 in (-S.One, S.Zero): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) # Handling points lying on branch cuts (-1, 1) if x0.is_real and (1 - x0**2).is_positive: ndir = arg.dir(x, cdir if cdir else 1) if im(ndir).is_negative: if x0.is_positive: return -self.func(x0) elif im(ndir).is_positive: if x0.is_negative: return 2*pi - self.func(x0) else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # asec from sympy.series.order import O arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 is S.One: t = Dummy('t', positive=True) ser = asec(S.One + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = asec(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res # Handling points lying on branch cuts (-1, 1) if arg0.is_real and (1 - arg0**2).is_positive: ndir = self.args[0].dir(x, cdir if cdir else 1) if im(ndir).is_negative: if arg0.is_positive: return -res elif im(ndir).is_positive: if arg0.is_negative: return 2*pi - res else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_is_extended_real(self): x = self.args[0] if x.is_extended_real is False: return False return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative)) def _eval_rewrite_as_log(self, arg, **kwargs): return pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_rewrite_as_asin(self, arg, **kwargs): return pi/2 - asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return acos(1/arg) def _eval_rewrite_as_atan(self, x, **kwargs): sx2x = sqrt(x**2)/x return pi/2*(1 - sx2x) + sx2x*atan(sqrt(x**2 - 1)) def _eval_rewrite_as_acot(self, x, **kwargs): sx2x = sqrt(x**2)/x return pi/2*(1 - sx2x) + sx2x*acot(1/sqrt(x**2 - 1)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return pi/2 - acsc(arg) class acsc(InverseTrigonometricFunction): r""" The inverse cosecant function. Returns the arc cosecant of x (measured in radians). Explanation =========== ``acsc(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$` and for some instances when the result is a rational multiple of $\pi$ (see the ``eval`` class method). Examples ======== >>> from sympy import acsc, oo >>> acsc(1) pi/2 >>> acsc(-1) -pi/2 >>> acsc(oo) 0 >>> acsc(-oo) == acsc(oo) True >>> acsc(0) zoo See Also ======== sin, csc, cos, sec, tan, cot asin, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc """ @classmethod def eval(cls, arg): if arg.is_zero: return S.ComplexInfinity if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return pi/2 elif arg is S.NegativeOne: return -pi/2 if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return S.Zero if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_infinite: return S.Zero if arg.is_number: acsc_table = cls._acsc_table() if arg in acsc_table: return acsc_table[arg] if isinstance(arg, csc): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asec(arg) def fdiff(self, argindex=1): if argindex == 1: return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return csc @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return pi/2 - S.ImaginaryUnit*log(2) + S.ImaginaryUnit*log(x) elif n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2 and n > 2: p = previous_terms[-2] return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2) else: k = n // 2 R = RisingFactorial(S.Half, k) * n F = factorial(k) * n // 2 * n // 2 return S.ImaginaryUnit * R / F * x**n / 4 def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsc arg = self.args[0] x0 = arg.subs(x, 0).cancel() # Handling branch points if x0 in (-S.One, S.One, S.Zero): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() if x0 is S.ComplexInfinity: return (1/arg).as_leading_term(x) # Handling points lying on branch cuts (-1, 1) if x0.is_real and (1 - x0**2).is_positive: ndir = arg.dir(x, cdir if cdir else 1) if im(ndir).is_negative: if x0.is_positive: return pi - self.func(x0) elif im(ndir).is_positive: if x0.is_negative: return -pi - self.func(x0) else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # acsc from sympy.series.order import O arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 is S.One: t = Dummy('t', positive=True) ser = acsc(S.One + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = acsc(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res # Handling points lying on branch cuts (-1, 1) if arg0.is_real and (1 - arg0**2).is_positive: ndir = self.args[0].dir(x, cdir if cdir else 1) if im(ndir).is_negative: if arg0.is_positive: return pi - res elif im(ndir).is_positive: if arg0.is_negative: return -pi - res else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_rewrite_as_log(self, arg, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_rewrite_as_asin(self, arg, **kwargs): return asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return pi/2 - acos(1/arg) def _eval_rewrite_as_atan(self, x, **kwargs): return sqrt(x**2)/x*(pi/2 - atan(sqrt(x**2 - 1))) def _eval_rewrite_as_acot(self, arg, **kwargs): return sqrt(arg**2)/arg*(pi/2 - acot(1/sqrt(arg**2 - 1))) def _eval_rewrite_as_asec(self, arg, **kwargs): return pi/2 - asec(arg) class atan2(InverseTrigonometricFunction): r""" The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking two arguments `y` and `x`. Signs of both `y` and `x` are considered to determine the appropriate quadrant of `\operatorname{atan}(y/x)`. The range is `(-\pi, \pi]`. The complete definition reads as follows: .. math:: \operatorname{atan2}(y, x) = \begin{cases} \arctan\left(\frac y x\right) & \qquad x > 0 \\ \arctan\left(\frac y x\right) + \pi& \qquad y \ge 0, x < 0 \\ \arctan\left(\frac y x\right) - \pi& \qquad y < 0, x < 0 \\ +\frac{\pi}{2} & \qquad y > 0, x = 0 \\ -\frac{\pi}{2} & \qquad y < 0, x = 0 \\ \text{undefined} & \qquad y = 0, x = 0 \end{cases} Attention: Note the role reversal of both arguments. The `y`-coordinate is the first argument and the `x`-coordinate the second. If either `x` or `y` is complex: .. math:: \operatorname{atan2}(y, x) = -i\log\left(\frac{x + iy}{\sqrt{x^2 + y^2}}\right) Examples ======== Going counter-clock wise around the origin we find the following angles: >>> from sympy import atan2 >>> atan2(0, 1) 0 >>> atan2(1, 1) pi/4 >>> atan2(1, 0) pi/2 >>> atan2(1, -1) 3*pi/4 >>> atan2(0, -1) pi >>> atan2(-1, -1) -3*pi/4 >>> atan2(-1, 0) -pi/2 >>> atan2(-1, 1) -pi/4 which are all correct. Compare this to the results of the ordinary `\operatorname{atan}` function for the point `(x, y) = (-1, 1)` >>> from sympy import atan, S >>> atan(S(1)/-1) -pi/4 >>> atan2(1, -1) 3*pi/4 where only the `\operatorname{atan2}` function reurns what we expect. We can differentiate the function with respect to both arguments: >>> from sympy import diff >>> from sympy.abc import x, y >>> diff(atan2(y, x), x) -y/(x**2 + y**2) >>> diff(atan2(y, x), y) x/(x**2 + y**2) We can express the `\operatorname{atan2}` function in terms of complex logarithms: >>> from sympy import log >>> atan2(y, x).rewrite(log) -I*log((x + I*y)/sqrt(x**2 + y**2)) and in terms of `\operatorname(atan)`: >>> from sympy import atan >>> atan2(y, x).rewrite(atan) Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (nan, True)) but note that this form is undefined on the negative real axis. See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://en.wikipedia.org/wiki/Atan2 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2 """ @classmethod def eval(cls, y, x): from sympy.functions.special.delta_functions import Heaviside if x is S.NegativeInfinity: if y.is_zero: # Special case y = 0 because we define Heaviside(0) = 1/2 return pi return 2*pi*(Heaviside(re(y))) - pi elif x is S.Infinity: return S.Zero elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number: x = im(x) y = im(y) if x.is_extended_real and y.is_extended_real: if x.is_positive: return atan(y/x) elif x.is_negative: if y.is_negative: return atan(y/x) - pi elif y.is_nonnegative: return atan(y/x) + pi elif x.is_zero: if y.is_positive: return pi/2 elif y.is_negative: return -pi/2 elif y.is_zero: return S.NaN if y.is_zero: if x.is_extended_nonzero: return pi*(S.One - Heaviside(x)) if x.is_number: return Piecewise((pi, re(x) < 0), (0, Ne(x, 0)), (S.NaN, True)) if x.is_number and y.is_number: return -S.ImaginaryUnit*log( (x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) def _eval_rewrite_as_log(self, y, x, **kwargs): return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) def _eval_rewrite_as_atan(self, y, x, **kwargs): return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (S.NaN, True)) def _eval_rewrite_as_arg(self, y, x, **kwargs): if x.is_extended_real and y.is_extended_real: return arg_f(x + y*S.ImaginaryUnit) n = x + S.ImaginaryUnit*y d = x**2 + y**2 return arg_f(n/sqrt(d)) - S.ImaginaryUnit*log(abs(n)/sqrt(abs(d))) def _eval_is_extended_real(self): return self.args[0].is_extended_real and self.args[1].is_extended_real def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def fdiff(self, argindex): y, x = self.args if argindex == 1: # Diff wrt y return x/(x**2 + y**2) elif argindex == 2: # Diff wrt x return -y/(x**2 + y**2) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): y, x = self.args if x.is_extended_real and y.is_extended_real: return super()._eval_evalf(prec)
b99a1f7dd21435735fcdc6de618fbcf1f4dd90faafd96aeeef8db3bbde34a9d4
from sympy.core import Function, S, sympify, NumberKind from sympy.utilities.iterables import sift from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.operations import LatticeOp, ShortCircuit from sympy.core.function import (Application, Lambda, ArgumentIndexError) from sympy.core.expr import Expr from sympy.core.exprtools import factor_terms from sympy.core.mod import Mod from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.power import Pow from sympy.core.relational import Eq, Relational from sympy.core.singleton import Singleton from sympy.core.sorting import ordered from sympy.core.symbol import Dummy from sympy.core.rules import Transform from sympy.core.logic import fuzzy_and, fuzzy_or, _torf from sympy.core.traversal import walk from sympy.core.numbers import Integer from sympy.logic.boolalg import And, Or def _minmax_as_Piecewise(op, *args): # helper for Min/Max rewrite as Piecewise from sympy.functions.elementary.piecewise import Piecewise ec = [] for i, a in enumerate(args): c = [Relational(a, args[j], op) for j in range(i + 1, len(args))] ec.append((a, And(*c))) return Piecewise(*ec) class IdentityFunction(Lambda, metaclass=Singleton): """ The identity function Examples ======== >>> from sympy import Id, Symbol >>> x = Symbol('x') >>> Id(x) x """ _symbol = Dummy('x') @property def signature(self): return Tuple(self._symbol) @property def expr(self): return self._symbol Id = S.IdentityFunction ############################################################################### ############################# ROOT and SQUARE ROOT FUNCTION ################### ############################################################################### def sqrt(arg, evaluate=None): """Returns the principal square root. Parameters ========== evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import sqrt, Symbol, S >>> x = Symbol('x') >>> sqrt(x) sqrt(x) >>> sqrt(x)**2 x Note that sqrt(x**2) does not simplify to x. >>> sqrt(x**2) sqrt(x**2) This is because the two are not equal to each other in general. For example, consider x == -1: >>> from sympy import Eq >>> Eq(sqrt(x**2), x).subs(x, -1) False This is because sqrt computes the principal square root, so the square may put the argument in a different branch. This identity does hold if x is positive: >>> y = Symbol('y', positive=True) >>> sqrt(y**2) y You can force this simplification by using the powdenest() function with the force option set to True: >>> from sympy import powdenest >>> sqrt(x**2) sqrt(x**2) >>> powdenest(sqrt(x**2), force=True) x To get both branches of the square root you can use the rootof function: >>> from sympy import rootof >>> [rootof(x**2-3,i) for i in (0,1)] [-sqrt(3), sqrt(3)] Although ``sqrt`` is printed, there is no ``sqrt`` function so looking for ``sqrt`` in an expression will fail: >>> from sympy.utilities.misc import func_name >>> func_name(sqrt(x)) 'Pow' >>> sqrt(x).has(sqrt) False To find ``sqrt`` look for ``Pow`` with an exponent of ``1/2``: >>> (x + 1/sqrt(x)).find(lambda i: i.is_Pow and abs(i.exp) is S.Half) {1/sqrt(x)} See Also ======== sympy.polys.rootoftools.rootof, root, real_root References ========== .. [1] https://en.wikipedia.org/wiki/Square_root .. [2] https://en.wikipedia.org/wiki/Principal_value """ # arg = sympify(arg) is handled by Pow return Pow(arg, S.Half, evaluate=evaluate) def cbrt(arg, evaluate=None): """Returns the principal cube root. Parameters ========== evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import cbrt, Symbol >>> x = Symbol('x') >>> cbrt(x) x**(1/3) >>> cbrt(x)**3 x Note that cbrt(x**3) does not simplify to x. >>> cbrt(x**3) (x**3)**(1/3) This is because the two are not equal to each other in general. For example, consider `x == -1`: >>> from sympy import Eq >>> Eq(cbrt(x**3), x).subs(x, -1) False This is because cbrt computes the principal cube root, this identity does hold if `x` is positive: >>> y = Symbol('y', positive=True) >>> cbrt(y**3) y See Also ======== sympy.polys.rootoftools.rootof, root, real_root References ========== .. [1] https://en.wikipedia.org/wiki/Cube_root .. [2] https://en.wikipedia.org/wiki/Principal_value """ return Pow(arg, Rational(1, 3), evaluate=evaluate) def root(arg, n, k=0, evaluate=None): r"""Returns the *k*-th *n*-th root of ``arg``. Parameters ========== k : int, optional Should be an integer in $\{0, 1, ..., n-1\}$. Defaults to the principal root if $0$. evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import root, Rational >>> from sympy.abc import x, n >>> root(x, 2) sqrt(x) >>> root(x, 3) x**(1/3) >>> root(x, n) x**(1/n) >>> root(x, -Rational(2, 3)) x**(-3/2) To get the k-th n-th root, specify k: >>> root(-2, 3, 2) -(-1)**(2/3)*2**(1/3) To get all n n-th roots you can use the rootof function. The following examples show the roots of unity for n equal 2, 3 and 4: >>> from sympy import rootof >>> [rootof(x**2 - 1, i) for i in range(2)] [-1, 1] >>> [rootof(x**3 - 1,i) for i in range(3)] [1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2] >>> [rootof(x**4 - 1,i) for i in range(4)] [-1, 1, -I, I] SymPy, like other symbolic algebra systems, returns the complex root of negative numbers. This is the principal root and differs from the text-book result that one might be expecting. For example, the cube root of -8 does not come back as -2: >>> root(-8, 3) 2*(-1)**(1/3) The real_root function can be used to either make the principal result real (or simply to return the real root directly): >>> from sympy import real_root >>> real_root(_) -2 >>> real_root(-32, 5) -2 Alternatively, the n//2-th n-th root of a negative number can be computed with root: >>> root(-32, 5, 5//2) -2 See Also ======== sympy.polys.rootoftools.rootof sympy.core.power.integer_nthroot sqrt, real_root References ========== .. [1] https://en.wikipedia.org/wiki/Square_root .. [2] https://en.wikipedia.org/wiki/Real_root .. [3] https://en.wikipedia.org/wiki/Root_of_unity .. [4] https://en.wikipedia.org/wiki/Principal_value .. [5] http://mathworld.wolfram.com/CubeRoot.html """ n = sympify(n) if k: return Mul(Pow(arg, S.One/n, evaluate=evaluate), S.NegativeOne**(2*k/n), evaluate=evaluate) return Pow(arg, 1/n, evaluate=evaluate) def real_root(arg, n=None, evaluate=None): r"""Return the real *n*'th-root of *arg* if possible. Parameters ========== n : int or None, optional If *n* is ``None``, then all instances of $(-n)^{1/\text{odd}}$ will be changed to $-n^{1/\text{odd}}$. This will only create a real root of a principal root. The presence of other factors may cause the result to not be real. evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import root, real_root >>> real_root(-8, 3) -2 >>> root(-8, 3) 2*(-1)**(1/3) >>> real_root(_) -2 If one creates a non-principal root and applies real_root, the result will not be real (so use with caution): >>> root(-8, 3, 2) -2*(-1)**(2/3) >>> real_root(_) -2*(-1)**(2/3) See Also ======== sympy.polys.rootoftools.rootof sympy.core.power.integer_nthroot root, sqrt """ from sympy.functions.elementary.complexes import Abs, im, sign from sympy.functions.elementary.piecewise import Piecewise if n is not None: return Piecewise( (root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))), (Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate), And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))), (root(arg, n, evaluate=evaluate), True)) rv = sympify(arg) n1pow = Transform(lambda x: -(-x.base)**x.exp, lambda x: x.is_Pow and x.base.is_negative and x.exp.is_Rational and x.exp.p == 1 and x.exp.q % 2) return rv.xreplace(n1pow) ############################################################################### ############################# MINIMUM and MAXIMUM ############################# ############################################################################### class MinMaxBase(Expr, LatticeOp): def __new__(cls, *args, **assumptions): from sympy.core.parameters import global_parameters evaluate = assumptions.pop('evaluate', global_parameters.evaluate) args = (sympify(arg) for arg in args) # first standard filter, for cls.zero and cls.identity # also reshape Max(a, Max(b, c)) to Max(a, b, c) if evaluate: try: args = frozenset(cls._new_args_filter(args)) except ShortCircuit: return cls.zero # remove redundant args that are easily identified args = cls._collapse_arguments(args, **assumptions) # find local zeros args = cls._find_localzeros(args, **assumptions) args = frozenset(args) if not args: return cls.identity if len(args) == 1: return list(args).pop() # base creation obj = Expr.__new__(cls, *ordered(args), **assumptions) obj._argset = args return obj @classmethod def _collapse_arguments(cls, args, **assumptions): """Remove redundant args. Examples ======== >>> from sympy import Min, Max >>> from sympy.abc import a, b, c, d, e Any arg in parent that appears in any parent-like function in any of the flat args of parent can be removed from that sub-arg: >>> Min(a, Max(b, Min(a, c, d))) Min(a, Max(b, Min(c, d))) If the arg of parent appears in an opposite-than parent function in any of the flat args of parent that function can be replaced with the arg: >>> Min(a, Max(b, Min(c, d, Max(a, e)))) Min(a, Max(b, Min(a, c, d))) """ if not args: return args args = list(ordered(args)) if cls == Min: other = Max else: other = Min # find global comparable max of Max and min of Min if a new # value is being introduced in these args at position 0 of # the ordered args if args[0].is_number: sifted = mins, maxs = [], [] for i in args: for v in walk(i, Min, Max): if v.args[0].is_comparable: sifted[isinstance(v, Max)].append(v) small = Min.identity for i in mins: v = i.args[0] if v.is_number and (v < small) == True: small = v big = Max.identity for i in maxs: v = i.args[0] if v.is_number and (v > big) == True: big = v # at the point when this function is called from __new__, # there may be more than one numeric arg present since # local zeros have not been handled yet, so look through # more than the first arg if cls == Min: for arg in args: if not arg.is_number: break if (arg < small) == True: small = arg elif cls == Max: for arg in args: if not arg.is_number: break if (arg > big) == True: big = arg T = None if cls == Min: if small != Min.identity: other = Max T = small elif big != Max.identity: other = Min T = big if T is not None: # remove numerical redundancy for i in range(len(args)): a = args[i] if isinstance(a, other): a0 = a.args[0] if ((a0 > T) if other == Max else (a0 < T)) == True: args[i] = cls.identity # remove redundant symbolic args def do(ai, a): if not isinstance(ai, (Min, Max)): return ai cond = a in ai.args if not cond: return ai.func(*[do(i, a) for i in ai.args], evaluate=False) if isinstance(ai, cls): return ai.func(*[do(i, a) for i in ai.args if i != a], evaluate=False) return a for i, a in enumerate(args): args[i + 1:] = [do(ai, a) for ai in args[i + 1:]] # factor out common elements as for # Min(Max(x, y), Max(x, z)) -> Max(x, Min(y, z)) # and vice versa when swapping Min/Max -- do this only for the # easy case where all functions contain something in common; # trying to find some optimal subset of args to modify takes # too long def factor_minmax(args): is_other = lambda arg: isinstance(arg, other) other_args, remaining_args = sift(args, is_other, binary=True) if not other_args: return args # Min(Max(x, y, z), Max(x, y, u, v)) -> {x,y}, ({z}, {u,v}) arg_sets = [set(arg.args) for arg in other_args] common = set.intersection(*arg_sets) if not common: return args new_other_args = list(common) arg_sets_diff = [arg_set - common for arg_set in arg_sets] # If any set is empty after removing common then all can be # discarded e.g. Min(Max(a, b, c), Max(a, b)) -> Max(a, b) if all(arg_sets_diff): other_args_diff = [other(*s, evaluate=False) for s in arg_sets_diff] new_other_args.append(cls(*other_args_diff, evaluate=False)) other_args_factored = other(*new_other_args, evaluate=False) return remaining_args + [other_args_factored] if len(args) > 1: args = factor_minmax(args) return args @classmethod def _new_args_filter(cls, arg_sequence): """ Generator filtering args. first standard filter, for cls.zero and cls.identity. Also reshape ``Max(a, Max(b, c))`` to ``Max(a, b, c)``, and check arguments for comparability """ for arg in arg_sequence: # pre-filter, checking comparability of arguments if not isinstance(arg, Expr) or arg.is_extended_real is False or ( arg.is_number and not arg.is_comparable): raise ValueError("The argument '%s' is not comparable." % arg) if arg == cls.zero: raise ShortCircuit(arg) elif arg == cls.identity: continue elif arg.func == cls: yield from arg.args else: yield arg @classmethod def _find_localzeros(cls, values, **options): """ Sequentially allocate values to localzeros. When a value is identified as being more extreme than another member it replaces that member; if this is never true, then the value is simply appended to the localzeros. """ localzeros = set() for v in values: is_newzero = True localzeros_ = list(localzeros) for z in localzeros_: if id(v) == id(z): is_newzero = False else: con = cls._is_connected(v, z) if con: is_newzero = False if con is True or con == cls: localzeros.remove(z) localzeros.update([v]) if is_newzero: localzeros.update([v]) return localzeros @classmethod def _is_connected(cls, x, y): """ Check if x and y are connected somehow. """ for i in range(2): if x == y: return True t, f = Max, Min for op in "><": for j in range(2): try: if op == ">": v = x >= y else: v = x <= y except TypeError: return False # non-real arg if not v.is_Relational: return t if v else f t, f = f, t x, y = y, x x, y = y, x # run next pass with reversed order relative to start # simplification can be expensive, so be conservative # in what is attempted x = factor_terms(x - y) y = S.Zero return False def _eval_derivative(self, s): # f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s) i = 0 l = [] for a in self.args: i += 1 da = a.diff(s) if da.is_zero: continue try: df = self.fdiff(i) except ArgumentIndexError: df = Function.fdiff(self, i) l.append(df * da) return Add(*l) def _eval_rewrite_as_Abs(self, *args, **kwargs): from sympy.functions.elementary.complexes import Abs s = (args[0] + self.func(*args[1:]))/2 d = abs(args[0] - self.func(*args[1:]))/2 return (s + d if isinstance(self, Max) else s - d).rewrite(Abs) def evalf(self, n=15, **options): return self.func(*[a.evalf(n, **options) for a in self.args]) def n(self, *args, **kwargs): return self.evalf(*args, **kwargs) _eval_is_algebraic = lambda s: _torf(i.is_algebraic for i in s.args) _eval_is_antihermitian = lambda s: _torf(i.is_antihermitian for i in s.args) _eval_is_commutative = lambda s: _torf(i.is_commutative for i in s.args) _eval_is_complex = lambda s: _torf(i.is_complex for i in s.args) _eval_is_composite = lambda s: _torf(i.is_composite for i in s.args) _eval_is_even = lambda s: _torf(i.is_even for i in s.args) _eval_is_finite = lambda s: _torf(i.is_finite for i in s.args) _eval_is_hermitian = lambda s: _torf(i.is_hermitian for i in s.args) _eval_is_imaginary = lambda s: _torf(i.is_imaginary for i in s.args) _eval_is_infinite = lambda s: _torf(i.is_infinite for i in s.args) _eval_is_integer = lambda s: _torf(i.is_integer for i in s.args) _eval_is_irrational = lambda s: _torf(i.is_irrational for i in s.args) _eval_is_negative = lambda s: _torf(i.is_negative for i in s.args) _eval_is_noninteger = lambda s: _torf(i.is_noninteger for i in s.args) _eval_is_nonnegative = lambda s: _torf(i.is_nonnegative for i in s.args) _eval_is_nonpositive = lambda s: _torf(i.is_nonpositive for i in s.args) _eval_is_nonzero = lambda s: _torf(i.is_nonzero for i in s.args) _eval_is_odd = lambda s: _torf(i.is_odd for i in s.args) _eval_is_polar = lambda s: _torf(i.is_polar for i in s.args) _eval_is_positive = lambda s: _torf(i.is_positive for i in s.args) _eval_is_prime = lambda s: _torf(i.is_prime for i in s.args) _eval_is_rational = lambda s: _torf(i.is_rational for i in s.args) _eval_is_real = lambda s: _torf(i.is_real for i in s.args) _eval_is_extended_real = lambda s: _torf(i.is_extended_real for i in s.args) _eval_is_transcendental = lambda s: _torf(i.is_transcendental for i in s.args) _eval_is_zero = lambda s: _torf(i.is_zero for i in s.args) class Max(MinMaxBase, Application): r""" Return, if possible, the maximum value of the list. When number of arguments is equal one, then return this argument. When number of arguments is equal two, then return, if possible, the value from (a, b) that is $\ge$ the other. In common case, when the length of list greater than 2, the task is more complicated. Return only the arguments, which are greater than others, if it is possible to determine directional relation. If is not possible to determine such a relation, return a partially evaluated result. Assumptions are used to make the decision too. Also, only comparable arguments are permitted. It is named ``Max`` and not ``max`` to avoid conflicts with the built-in function ``max``. Examples ======== >>> from sympy import Max, Symbol, oo >>> from sympy.abc import x, y, z >>> p = Symbol('p', positive=True) >>> n = Symbol('n', negative=True) >>> Max(x, -2) Max(-2, x) >>> Max(x, -2).subs(x, 3) 3 >>> Max(p, -2) p >>> Max(x, y) Max(x, y) >>> Max(x, y) == Max(y, x) True >>> Max(x, Max(y, z)) Max(x, y, z) >>> Max(n, 8, p, 7, -oo) Max(8, p) >>> Max (1, x, oo) oo * Algorithm The task can be considered as searching of supremums in the directed complete partial orders [1]_. The source values are sequentially allocated by the isolated subsets in which supremums are searched and result as Max arguments. If the resulted supremum is single, then it is returned. The isolated subsets are the sets of values which are only the comparable with each other in the current set. E.g. natural numbers are comparable with each other, but not comparable with the `x` symbol. Another example: the symbol `x` with negative assumption is comparable with a natural number. Also there are "least" elements, which are comparable with all others, and have a zero property (maximum or minimum for all elements). For example, in case of $\infty$, the allocation operation is terminated and only this value is returned. Assumption: - if $A > B > C$ then $A > C$ - if $A = B$ then $B$ can be removed References ========== .. [1] https://en.wikipedia.org/wiki/Directed_complete_partial_order .. [2] https://en.wikipedia.org/wiki/Lattice_%28order%29 See Also ======== Min : find minimum values """ zero = S.Infinity identity = S.NegativeInfinity def fdiff( self, argindex ): from sympy.functions.special.delta_functions import Heaviside n = len(self.args) if 0 < argindex and argindex <= n: argindex -= 1 if n == 2: return Heaviside(self.args[argindex] - self.args[1 - argindex]) newargs = tuple([self.args[i] for i in range(n) if i != argindex]) return Heaviside(self.args[argindex] - Max(*newargs)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): from sympy.functions.special.delta_functions import Heaviside return Add(*[j*Mul(*[Heaviside(j - i) for i in args if i!=j]) \ for j in args]) def _eval_rewrite_as_Piecewise(self, *args, **kwargs): return _minmax_as_Piecewise('>=', *args) def _eval_is_positive(self): return fuzzy_or(a.is_positive for a in self.args) def _eval_is_nonnegative(self): return fuzzy_or(a.is_nonnegative for a in self.args) def _eval_is_negative(self): return fuzzy_and(a.is_negative for a in self.args) class Min(MinMaxBase, Application): """ Return, if possible, the minimum value of the list. It is named ``Min`` and not ``min`` to avoid conflicts with the built-in function ``min``. Examples ======== >>> from sympy import Min, Symbol, oo >>> from sympy.abc import x, y >>> p = Symbol('p', positive=True) >>> n = Symbol('n', negative=True) >>> Min(x, -2) Min(-2, x) >>> Min(x, -2).subs(x, 3) -2 >>> Min(p, -3) -3 >>> Min(x, y) Min(x, y) >>> Min(n, 8, p, -7, p, oo) Min(-7, n) See Also ======== Max : find maximum values """ zero = S.NegativeInfinity identity = S.Infinity def fdiff( self, argindex ): from sympy.functions.special.delta_functions import Heaviside n = len(self.args) if 0 < argindex and argindex <= n: argindex -= 1 if n == 2: return Heaviside( self.args[1-argindex] - self.args[argindex] ) newargs = tuple([ self.args[i] for i in range(n) if i != argindex]) return Heaviside( Min(*newargs) - self.args[argindex] ) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): from sympy.functions.special.delta_functions import Heaviside return Add(*[j*Mul(*[Heaviside(i-j) for i in args if i!=j]) \ for j in args]) def _eval_rewrite_as_Piecewise(self, *args, **kwargs): return _minmax_as_Piecewise('<=', *args) def _eval_is_positive(self): return fuzzy_and(a.is_positive for a in self.args) def _eval_is_nonnegative(self): return fuzzy_and(a.is_nonnegative for a in self.args) def _eval_is_negative(self): return fuzzy_or(a.is_negative for a in self.args) class Rem(Function): """Returns the remainder when ``p`` is divided by ``q`` where ``p`` is finite and ``q`` is not equal to zero. The result, ``p - int(p/q)*q``, has the same sign as the divisor. Parameters ========== p : Expr Dividend. q : Expr Divisor. Notes ===== ``Rem`` corresponds to the ``%`` operator in C. Examples ======== >>> from sympy.abc import x, y >>> from sympy import Rem >>> Rem(x**3, y) Rem(x**3, y) >>> Rem(x**3, y).subs({x: -5, y: 3}) -2 See Also ======== Mod """ kind = NumberKind @classmethod def eval(cls, p, q): """Return the function remainder if both p, q are numbers and q is not zero. """ if q.is_zero: raise ZeroDivisionError("Division by zero") if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False: return S.NaN if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1): return S.Zero if q.is_Number: if p.is_Number: return p - Integer(p/q)*q
a3ccb64d429c9fdbdaade6e1adc65241083e0ceaa324747668fd360a88600c4a
from sympy.core import S, Function, diff, Tuple, Dummy, Mul from sympy.core.basic import Basic, as_Basic from sympy.core.numbers import Rational, NumberSymbol, _illegal from sympy.core.parameters import global_parameters from sympy.core.relational import (Lt, Gt, Eq, Ne, Relational, _canonical, _canonical_coeff) from sympy.core.sorting import ordered from sympy.functions.elementary.miscellaneous import Max, Min from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or, Not, true, false, Or, ITE, simplify_logic, to_cnf, distribute_or_over_and) from sympy.utilities.iterables import uniq, sift, common_prefix from sympy.utilities.misc import filldedent, func_name from itertools import product Undefined = S.NaN # Piecewise() class ExprCondPair(Tuple): """Represents an expression, condition pair.""" def __new__(cls, expr, cond): expr = as_Basic(expr) if cond == True: return Tuple.__new__(cls, expr, true) elif cond == False: return Tuple.__new__(cls, expr, false) elif isinstance(cond, Basic) and cond.has(Piecewise): cond = piecewise_fold(cond) if isinstance(cond, Piecewise): cond = cond.rewrite(ITE) if not isinstance(cond, Boolean): raise TypeError(filldedent(''' Second argument must be a Boolean, not `%s`''' % func_name(cond))) return Tuple.__new__(cls, expr, cond) @property def expr(self): """ Returns the expression of this pair. """ return self.args[0] @property def cond(self): """ Returns the condition of this pair. """ return self.args[1] @property def is_commutative(self): return self.expr.is_commutative def __iter__(self): yield self.expr yield self.cond def _eval_simplify(self, **kwargs): return self.func(*[a.simplify(**kwargs) for a in self.args]) class Piecewise(Function): """ Represents a piecewise function. Usage: Piecewise( (expr,cond), (expr,cond), ... ) - Each argument is a 2-tuple defining an expression and condition - The conds are evaluated in turn returning the first that is True. If any of the evaluated conds are not explicitly False, e.g. ``x < 1``, the function is returned in symbolic form. - If the function is evaluated at a place where all conditions are False, nan will be returned. - Pairs where the cond is explicitly False, will be removed and no pair appearing after a True condition will ever be retained. If a single pair with a True condition remains, it will be returned, even when evaluation is False. Examples ======== >>> from sympy import Piecewise, log, piecewise_fold >>> from sympy.abc import x, y >>> f = x**2 >>> g = log(x) >>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True)) >>> p.subs(x,1) 1 >>> p.subs(x,5) log(5) Booleans can contain Piecewise elements: >>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond Piecewise((2, x < 0), (3, True)) < y The folded version of this results in a Piecewise whose expressions are Booleans: >>> folded_cond = piecewise_fold(cond); folded_cond Piecewise((2 < y, x < 0), (3 < y, True)) When a Boolean containing Piecewise (like cond) or a Piecewise with Boolean expressions (like folded_cond) is used as a condition, it is converted to an equivalent :class:`~.ITE` object: >>> Piecewise((1, folded_cond)) Piecewise((1, ITE(x < 0, y > 2, y > 3))) When a condition is an ``ITE``, it will be converted to a simplified Boolean expression: >>> piecewise_fold(_) Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0)))) See Also ======== piecewise_fold piecewise_exclusive ITE """ nargs = None is_Piecewise = True def __new__(cls, *args, **options): if len(args) == 0: raise TypeError("At least one (expr, cond) pair expected.") # (Try to) sympify args first newargs = [] for ec in args: # ec could be a ExprCondPair or a tuple pair = ExprCondPair(*getattr(ec, 'args', ec)) cond = pair.cond if cond is false: continue newargs.append(pair) if cond is true: break eval = options.pop('evaluate', global_parameters.evaluate) if eval: r = cls.eval(*newargs) if r is not None: return r elif len(newargs) == 1 and newargs[0].cond == True: return newargs[0].expr return Basic.__new__(cls, *newargs, **options) @classmethod def eval(cls, *_args): """Either return a modified version of the args or, if no modifications were made, return None. Modifications that are made here: 1. relationals are made canonical 2. any False conditions are dropped 3. any repeat of a previous condition is ignored 4. any args past one with a true condition are dropped If there are no args left, nan will be returned. If there is a single arg with a True condition, its corresponding expression will be returned. EXAMPLES ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> cond = -x < -1 >>> args = [(1, cond), (4, cond), (3, False), (2, True), (5, x < 1)] >>> Piecewise(*args, evaluate=False) Piecewise((1, -x < -1), (4, -x < -1), (2, True)) >>> Piecewise(*args) Piecewise((1, x > 1), (2, True)) """ if not _args: return Undefined if len(_args) == 1 and _args[0][-1] == True: return _args[0][0] newargs = _piecewise_collapse_arguments(_args) # some conditions may have been redundant missing = len(newargs) != len(_args) # some conditions may have changed same = all(a == b for a, b in zip(newargs, _args)) # if either change happened we return the expr with the # updated args if not newargs: raise ValueError(filldedent(''' There are no conditions (or none that are not trivially false) to define an expression.''')) if missing or not same: return cls(*newargs) def doit(self, **hints): """ Evaluate this piecewise function. """ newargs = [] for e, c in self.args: if hints.get('deep', True): if isinstance(e, Basic): newe = e.doit(**hints) if newe != self: e = newe if isinstance(c, Basic): c = c.doit(**hints) newargs.append((e, c)) return self.func(*newargs) def _eval_simplify(self, **kwargs): return piecewise_simplify(self, **kwargs) def _eval_as_leading_term(self, x, logx=None, cdir=0): for e, c in self.args: if c == True or c.subs(x, 0) == True: return e.as_leading_term(x) def _eval_adjoint(self): return self.func(*[(e.adjoint(), c) for e, c in self.args]) def _eval_conjugate(self): return self.func(*[(e.conjugate(), c) for e, c in self.args]) def _eval_derivative(self, x): return self.func(*[(diff(e, x), c) for e, c in self.args]) def _eval_evalf(self, prec): return self.func(*[(e._evalf(prec), c) for e, c in self.args]) def _eval_is_meromorphic(self, x, a): # Conditions often implicitly assume that the argument is real. # Hence, there needs to be some check for as_set. if not a.is_real: return None # Then, scan ExprCondPairs in the given order to find a piece that would contain a, # possibly as a boundary point. for e, c in self.args: cond = c.subs(x, a) if cond.is_Relational: return None if a in c.as_set().boundary: return None # Apply expression if a is an interior point of the domain of e. if cond: return e._eval_is_meromorphic(x, a) def piecewise_integrate(self, x, **kwargs): """Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the :func:`~.integrate` function or method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) Note that this does not give a continuous function, e.g. at x = 1 the 3rd condition applies and the antiderivative there is 2*x so the value of the antiderivative is 2: >>> anti = _ >>> anti.subs(x, 1) 2 The continuous derivative accounts for the integral *up to* the point of interest, however: >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> _.subs(x, 1) 1 See Also ======== Piecewise._eval_integral """ from sympy.integrals import integrate return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args]) def _handle_irel(self, x, handler): """Return either None (if the conditions of self depend only on x) else a Piecewise expression whose expressions (handled by the handler that was passed) are paired with the governing x-independent relationals, e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) -> Piecewise( (handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)), (handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True)) """ # identify governing relationals rel = self.atoms(Relational) irel = list(ordered([r for r in rel if x not in r.free_symbols and r not in (S.true, S.false)])) if irel: args = {} exprinorder = [] for truth in product((1, 0), repeat=len(irel)): reps = dict(zip(irel, truth)) # only store the true conditions since the false are implied # when they appear lower in the Piecewise args if 1 not in truth: cond = None # flag this one so it doesn't get combined else: andargs = Tuple(*[i for i in reps if reps[i]]) free = list(andargs.free_symbols) if len(free) == 1: from sympy.solvers.inequalities import ( reduce_inequalities, _solve_inequality) try: t = reduce_inequalities(andargs, free[0]) # ValueError when there are potentially # nonvanishing imaginary parts except (ValueError, NotImplementedError): # at least isolate free symbol on left t = And(*[_solve_inequality( a, free[0], linear=True) for a in andargs]) else: t = And(*andargs) if t is S.false: continue # an impossible combination cond = t expr = handler(self.xreplace(reps)) if isinstance(expr, self.func) and len(expr.args) == 1: expr, econd = expr.args[0] cond = And(econd, True if cond is None else cond) # the ec pairs are being collected since all possibilities # are being enumerated, but don't put the last one in since # its expr might match a previous expression and it # must appear last in the args if cond is not None: args.setdefault(expr, []).append(cond) # but since we only store the true conditions we must maintain # the order so that the expression with the most true values # comes first exprinorder.append(expr) # convert collected conditions as args of Or for k in args: args[k] = Or(*args[k]) # take them in the order obtained args = [(e, args[e]) for e in uniq(exprinorder)] # add in the last arg args.append((expr, True)) return Piecewise(*args) def _eval_integral(self, x, _first=True, **kwargs): """Return the indefinite integral of the Piecewise such that subsequent substitution of x with a value will give the value of the integral (not including the constant of integration) up to that point. To only integrate the individual parts of Piecewise, use the ``piecewise_integrate`` method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) See Also ======== Piecewise.piecewise_integrate """ from sympy.integrals.integrals import integrate if _first: def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_integral(x, _first=False, **kwargs) else: return ipw.integrate(x, **kwargs) irv = self._handle_irel(x, handler) if irv is not None: return irv # handle a Piecewise from -oo to oo with and no x-independent relationals # ----------------------------------------------------------------------- ok, abei = self._intervals(x) if not ok: from sympy.integrals.integrals import Integral return Integral(self, x) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] oo = S.Infinity done = [(-oo, oo, -1)] for k, p in enumerate(pieces): if p == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # append an arg if there is a hole so a reference to # argument -1 will give Undefined if any(i == -1 for (a, b, i) in done): abei.append((-oo, oo, Undefined, -1)) # return the sum of the intervals args = [] sum = None for a, b, i in done: anti = integrate(abei[i][-2], x, **kwargs) if sum is None: sum = anti else: sum = sum.subs(x, a) e = anti._eval_interval(x, a, x) if sum.has(*_illegal) or e.has(*_illegal): sum = anti else: sum += e # see if we know whether b is contained in original # condition if b is S.Infinity: cond = True elif self.args[abei[i][-1]].cond.subs(x, b) == False: cond = (x < b) else: cond = (x <= b) args.append((sum, cond)) return Piecewise(*args) def _eval_interval(self, sym, a, b, _first=True): """Evaluates the function along the sym in a given interval [a, b]""" # FIXME: Currently complex intervals are not supported. A possible # replacement algorithm, discussed in issue 5227, can be found in the # following papers; # http://portal.acm.org/citation.cfm?id=281649 # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf if a is None or b is None: # In this case, it is just simple substitution return super()._eval_interval(sym, a, b) else: x, lo, hi = map(as_Basic, (sym, a, b)) if _first: # get only x-dependent relationals def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_interval(x, lo, hi, _first=None) else: return ipw._eval_interval(x, lo, hi) irv = self._handle_irel(x, handler) if irv is not None: return irv if (lo < hi) is S.false or ( lo is S.Infinity or hi is S.NegativeInfinity): rv = self._eval_interval(x, hi, lo, _first=False) if isinstance(rv, Piecewise): rv = Piecewise(*[(-e, c) for e, c in rv.args]) else: rv = -rv return rv if (lo < hi) is S.true or ( hi is S.Infinity or lo is S.NegativeInfinity): pass else: _a = Dummy('lo') _b = Dummy('hi') a = lo if lo.is_comparable else _a b = hi if hi.is_comparable else _b pos = self._eval_interval(x, a, b, _first=False) if a == _a and b == _b: # it's purely symbolic so just swap lo and hi and # change the sign to get the value for when lo > hi neg, pos = (-pos.xreplace({_a: hi, _b: lo}), pos.xreplace({_a: lo, _b: hi})) else: # at least one of the bounds was comparable, so allow # _eval_interval to use that information when computing # the interval with lo and hi reversed neg, pos = (-self._eval_interval(x, hi, lo, _first=False), pos.xreplace({_a: lo, _b: hi})) # allow simplification based on ordering of lo and hi p = Dummy('', positive=True) if lo.is_Symbol: pos = pos.xreplace({lo: hi - p}).xreplace({p: hi - lo}) neg = neg.xreplace({lo: hi + p}).xreplace({p: lo - hi}) elif hi.is_Symbol: pos = pos.xreplace({hi: lo + p}).xreplace({p: hi - lo}) neg = neg.xreplace({hi: lo - p}).xreplace({p: lo - hi}) # evaluate limits that may have unevaluate Min/Max touch = lambda _: _.replace( lambda x: isinstance(x, (Min, Max)), lambda x: x.func(*x.args)) neg = touch(neg) pos = touch(pos) # assemble return expression; make the first condition be Lt # b/c then the first expression will look the same whether # the lo or hi limit is symbolic if a == _a: # the lower limit was symbolic rv = Piecewise( (pos, lo < hi), (neg, True)) else: rv = Piecewise( (neg, hi < lo), (pos, True)) if rv == Undefined: raise ValueError("Can't integrate across undefined region.") if any(isinstance(i, Piecewise) for i in (pos, neg)): rv = piecewise_fold(rv) return rv # handle a Piecewise with lo <= hi and no x-independent relationals # ----------------------------------------------------------------- ok, abei = self._intervals(x) if not ok: from sympy.integrals.integrals import Integral # not being able to do the interval of f(x) can # be stated as not being able to do the integral # of f'(x) over the same range return Integral(self.diff(x), (x, lo, hi)) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] done = [(lo, hi, -1)] oo = S.Infinity for k, p in enumerate(pieces): if p[:2] == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # return the sum of the intervals sum = S.Zero upto = None for a, b, i in done: if i == -1: if upto is None: return Undefined # TODO simplify hi <= upto return Piecewise((sum, hi <= upto), (Undefined, True)) sum += abei[i][-2]._eval_interval(x, a, b) upto = b return sum def _intervals(self, sym, err_on_Eq=False): r"""Return a bool and a message (when bool is False), else a list of unique tuples, (a, b, e, i), where a and b are the lower and upper bounds in which the expression e of argument i in self is defined and $a < b$ (when involving numbers) or $a \le b$ when involving symbols. If there are any relationals not involving sym, or any relational cannot be solved for sym, the bool will be False a message be given as the second return value. The calling routine should have removed such relationals before calling this routine. The evaluated conditions will be returned as ranges. Discontinuous ranges will be returned separately with identical expressions. The first condition that evaluates to True will be returned as the last tuple with a, b = -oo, oo. """ from sympy.solvers.inequalities import _solve_inequality assert isinstance(self, Piecewise) def nonsymfail(cond): return False, filldedent(''' A condition not involving %s appeared: %s''' % (sym, cond)) def _solve_relational(r): if sym not in r.free_symbols: return nonsymfail(r) try: rv = _solve_inequality(r, sym) except NotImplementedError: return False, 'Unable to solve relational %s for %s.' % (r, sym) if isinstance(rv, Relational): free = rv.args[1].free_symbols if rv.args[0] != sym or sym in free: return False, 'Unable to solve relational %s for %s.' % (r, sym) if rv.rel_op == '==': # this equality has been affirmed to have the form # Eq(sym, rhs) where rhs is sym-free; it represents # a zero-width interval which will be ignored # whether it is an isolated condition or contained # within an And or an Or rv = S.false elif rv.rel_op == '!=': try: rv = Or(sym < rv.rhs, sym > rv.rhs) except TypeError: # e.g. x != I ==> all real x satisfy rv = S.true elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity): rv = S.true return True, rv args = list(self.args) # make self canonical wrt Relationals keys = self.atoms(Relational) reps = {} for r in keys: ok, s = _solve_relational(r) if ok != True: return False, ok reps[r] = s # process args individually so if any evaluate, their position # in the original Piecewise will be known args = [i.xreplace(reps) for i in self.args] # precondition args expr_cond = [] default = idefault = None for i, (expr, cond) in enumerate(args): if cond is S.false: continue if cond is S.true: default = expr idefault = i break if isinstance(cond, Eq): # unanticipated condition, but it is here in case a # replacement caused an Eq to appear if err_on_Eq: return False, 'encountered Eq condition: %s' % cond continue # zero width interval cond = to_cnf(cond) if isinstance(cond, And): cond = distribute_or_over_and(cond) if isinstance(cond, Or): expr_cond.extend( [(i, expr, o) for o in cond.args if not isinstance(o, Eq)]) elif cond is not S.false: expr_cond.append((i, expr, cond)) elif cond is S.true: default = expr idefault = i break # determine intervals represented by conditions int_expr = [] for iarg, expr, cond in expr_cond: if isinstance(cond, And): lower = S.NegativeInfinity upper = S.Infinity exclude = [] for cond2 in cond.args: if not isinstance(cond2, Relational): return False, 'expecting only Relationals' if isinstance(cond2, Eq): lower = upper # ignore if err_on_Eq: return False, 'encountered secondary Eq condition' break elif isinstance(cond2, Ne): l, r = cond2.args if l == sym: exclude.append(r) elif r == sym: exclude.append(l) else: return nonsymfail(cond2) continue elif cond2.lts == sym: upper = Min(cond2.gts, upper) elif cond2.gts == sym: lower = Max(cond2.lts, lower) else: return nonsymfail(cond2) # should never get here if exclude: exclude = list(ordered(exclude)) newcond = [] for i, e in enumerate(exclude): if e < lower == True or e > upper == True: continue if not newcond: newcond.append((None, lower)) # add a primer newcond.append((newcond[-1][1], e)) newcond.append((newcond[-1][1], upper)) newcond.pop(0) # remove the primer expr_cond.extend([(iarg, expr, And(i[0] < sym, sym < i[1])) for i in newcond]) continue elif isinstance(cond, Relational) and cond.rel_op != '!=': lower, upper = cond.lts, cond.gts # part 1: initialize with givens if cond.lts == sym: # part 1a: expand the side ... lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0 elif cond.gts == sym: # part 1a: ... that can be expanded upper = S.Infinity # e.g. x >= 0 ---> oo >= 0 else: return nonsymfail(cond) else: return False, 'unrecognized condition: %s' % cond lower, upper = lower, Max(lower, upper) if err_on_Eq and lower == upper: return False, 'encountered Eq condition' if (lower >= upper) is not S.true: int_expr.append((lower, upper, expr, iarg)) if default is not None: int_expr.append( (S.NegativeInfinity, S.Infinity, default, idefault)) return True, list(uniq(int_expr)) def _eval_nseries(self, x, n, logx, cdir=0): args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args] return self.func(*args) def _eval_power(self, s): return self.func(*[(e**s, c) for e, c in self.args]) def _eval_subs(self, old, new): # this is strictly not necessary, but we can keep track # of whether True or False conditions arise and be # somewhat more efficient by avoiding other substitutions # and avoiding invalid conditions that appear after a # True condition args = list(self.args) args_exist = False for i, (e, c) in enumerate(args): c = c._subs(old, new) if c != False: args_exist = True e = e._subs(old, new) args[i] = (e, c) if c == True: break if not args_exist: args = ((Undefined, True),) return self.func(*args) def _eval_transpose(self): return self.func(*[(e.transpose(), c) for e, c in self.args]) def _eval_template_is_attr(self, is_attr): b = None for expr, _ in self.args: a = getattr(expr, is_attr) if a is None: return if b is None: b = a elif b is not a: return return b _eval_is_finite = lambda self: self._eval_template_is_attr( 'is_finite') _eval_is_complex = lambda self: self._eval_template_is_attr('is_complex') _eval_is_even = lambda self: self._eval_template_is_attr('is_even') _eval_is_imaginary = lambda self: self._eval_template_is_attr( 'is_imaginary') _eval_is_integer = lambda self: self._eval_template_is_attr('is_integer') _eval_is_irrational = lambda self: self._eval_template_is_attr( 'is_irrational') _eval_is_negative = lambda self: self._eval_template_is_attr('is_negative') _eval_is_nonnegative = lambda self: self._eval_template_is_attr( 'is_nonnegative') _eval_is_nonpositive = lambda self: self._eval_template_is_attr( 'is_nonpositive') _eval_is_nonzero = lambda self: self._eval_template_is_attr( 'is_nonzero') _eval_is_odd = lambda self: self._eval_template_is_attr('is_odd') _eval_is_polar = lambda self: self._eval_template_is_attr('is_polar') _eval_is_positive = lambda self: self._eval_template_is_attr('is_positive') _eval_is_extended_real = lambda self: self._eval_template_is_attr( 'is_extended_real') _eval_is_extended_positive = lambda self: self._eval_template_is_attr( 'is_extended_positive') _eval_is_extended_negative = lambda self: self._eval_template_is_attr( 'is_extended_negative') _eval_is_extended_nonzero = lambda self: self._eval_template_is_attr( 'is_extended_nonzero') _eval_is_extended_nonpositive = lambda self: self._eval_template_is_attr( 'is_extended_nonpositive') _eval_is_extended_nonnegative = lambda self: self._eval_template_is_attr( 'is_extended_nonnegative') _eval_is_real = lambda self: self._eval_template_is_attr('is_real') _eval_is_zero = lambda self: self._eval_template_is_attr( 'is_zero') @classmethod def __eval_cond(cls, cond): """Return the truth value of the condition.""" if cond == True: return True if isinstance(cond, Eq): try: diff = cond.lhs - cond.rhs if diff.is_commutative: return diff.is_zero except TypeError: pass def as_expr_set_pairs(self, domain=None): """Return tuples for each argument of self that give the expression and the interval in which it is valid which is contained within the given domain. If a condition cannot be converted to a set, an error will be raised. The variable of the conditions is assumed to be real; sets of real values are returned. Examples ======== >>> from sympy import Piecewise, Interval >>> from sympy.abc import x >>> p = Piecewise( ... (1, x < 2), ... (2,(x > 0) & (x < 4)), ... (3, True)) >>> p.as_expr_set_pairs() [(1, Interval.open(-oo, 2)), (2, Interval.Ropen(2, 4)), (3, Interval(4, oo))] >>> p.as_expr_set_pairs(Interval(0, 3)) [(1, Interval.Ropen(0, 2)), (2, Interval(2, 3))] """ if domain is None: domain = S.Reals exp_sets = [] U = domain complex = not domain.is_subset(S.Reals) cond_free = set() for expr, cond in self.args: cond_free |= cond.free_symbols if len(cond_free) > 1: raise NotImplementedError(filldedent(''' multivariate conditions are not handled.''')) if complex: for i in cond.atoms(Relational): if not isinstance(i, (Eq, Ne)): raise ValueError(filldedent(''' Inequalities in the complex domain are not supported. Try the real domain by setting domain=S.Reals''')) cond_int = U.intersect(cond.as_set()) U = U - cond_int if cond_int != S.EmptySet: exp_sets.append((expr, cond_int)) return exp_sets def _eval_rewrite_as_ITE(self, *args, **kwargs): byfree = {} args = list(args) default = any(c == True for b, c in args) for i, (b, c) in enumerate(args): if not isinstance(b, Boolean) and b != True: raise TypeError(filldedent(''' Expecting Boolean or bool but got `%s` ''' % func_name(b))) if c == True: break # loop over independent conditions for this b for c in c.args if isinstance(c, Or) else [c]: free = c.free_symbols x = free.pop() try: byfree[x] = byfree.setdefault( x, S.EmptySet).union(c.as_set()) except NotImplementedError: if not default: raise NotImplementedError(filldedent(''' A method to determine whether a multivariate conditional is consistent with a complete coverage of all variables has not been implemented so the rewrite is being stopped after encountering `%s`. This error would not occur if a default expression like `(foo, True)` were given. ''' % c)) if byfree[x] in (S.UniversalSet, S.Reals): # collapse the ith condition to True and break args[i] = list(args[i]) c = args[i][1] = True break if c == True: break if c != True: raise ValueError(filldedent(''' Conditions must cover all reals or a final default condition `(foo, True)` must be given. ''')) last, _ = args[i] # ignore all past ith arg for a, c in reversed(args[:i]): last = ITE(c, a, last) return _canonical(last) def _eval_rewrite_as_KroneckerDelta(self, *args): from sympy.functions.special.tensor_functions import KroneckerDelta rules = { And: [False, False], Or: [True, True], Not: [True, False], Eq: [None, None], Ne: [None, None] } class UnrecognizedCondition(Exception): pass def rewrite(cond): if isinstance(cond, Eq): return KroneckerDelta(*cond.args) if isinstance(cond, Ne): return 1 - KroneckerDelta(*cond.args) cls, args = type(cond), cond.args if cls not in rules: raise UnrecognizedCondition(cls) b1, b2 = rules[cls] k = Mul(*[1 - rewrite(c) for c in args]) if b1 else Mul(*[rewrite(c) for c in args]) if b2: return 1 - k return k conditions = [] true_value = None for value, cond in args: if type(cond) in rules: conditions.append((value, cond)) elif cond is S.true: if true_value is None: true_value = value else: return if true_value is not None: result = true_value for value, cond in conditions[::-1]: try: k = rewrite(cond) result = k * value + (1 - k) * result except UnrecognizedCondition: return return result def piecewise_fold(expr, evaluate=True): """ Takes an expression containing a piecewise function and returns the expression in piecewise form. In addition, any ITE conditions are rewritten in negation normal form and simplified. The final Piecewise is evaluated (default) but if the raw form is desired, send ``evaluate=False``; if trivial evaluation is desired, send ``evaluate=None`` and duplicate conditions and processing of True and False will be handled. Examples ======== >>> from sympy import Piecewise, piecewise_fold, S >>> from sympy.abc import x >>> p = Piecewise((x, x < 1), (1, S(1) <= x)) >>> piecewise_fold(x*p) Piecewise((x**2, x < 1), (x, True)) See Also ======== Piecewise piecewise_exclusive """ if not isinstance(expr, Basic) or not expr.has(Piecewise): return expr new_args = [] if isinstance(expr, (ExprCondPair, Piecewise)): for e, c in expr.args: if not isinstance(e, Piecewise): e = piecewise_fold(e) # we don't keep Piecewise in condition because # it has to be checked to see that it's complete # and we convert it to ITE at that time assert not c.has(Piecewise) # pragma: no cover if isinstance(c, ITE): c = c.to_nnf() c = simplify_logic(c, form='cnf') if isinstance(e, Piecewise): new_args.extend([(piecewise_fold(ei), And(ci, c)) for ei, ci in e.args]) else: new_args.append((e, c)) else: # Given # P1 = Piecewise((e11, c1), (e12, c2), A) # P2 = Piecewise((e21, c1), (e22, c2), B) # ... # the folding of f(P1, P2) is trivially # Piecewise( # (f(e11, e21), c1), # (f(e12, e22), c2), # (f(Piecewise(A), Piecewise(B)), True)) # Certain objects end up rewriting themselves as thus, so # we do that grouping before the more generic folding. # The following applies this idea when f = Add or f = Mul # (and the expression is commutative). if expr.is_Add or expr.is_Mul and expr.is_commutative: p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True) pc = sift(p, lambda x: tuple([c for e,c in x.args])) for c in list(ordered(pc)): if len(pc[c]) > 1: pargs = [list(i.args) for i in pc[c]] # the first one is the same; there may be more com = common_prefix(*[ [i.cond for i in j] for j in pargs]) n = len(com) collected = [] for i in range(n): collected.append(( expr.func(*[ai[i].expr for ai in pargs]), com[i])) remains = [] for a in pargs: if n == len(a): # no more args continue if a[n].cond == True: # no longer Piecewise remains.append(a[n].expr) else: # restore the remaining Piecewise remains.append( Piecewise(*a[n:], evaluate=False)) if remains: collected.append((expr.func(*remains), True)) args.append(Piecewise(*collected, evaluate=False)) continue args.extend(pc[c]) else: args = expr.args # fold folded = list(map(piecewise_fold, args)) for ec in product(*[ (i.args if isinstance(i, Piecewise) else [(i, true)]) for i in folded]): e, c = zip(*ec) new_args.append((expr.func(*e), And(*c))) if evaluate is None: # don't return duplicate conditions, otherwise don't evaluate new_args = list(reversed([(e, c) for c, e in { c: e for e, c in reversed(new_args)}.items()])) rv = Piecewise(*new_args, evaluate=evaluate) if evaluate is None and len(rv.args) == 1 and rv.args[0].cond == True: return rv.args[0].expr if any(s.expr.has(Piecewise) for p in rv.atoms(Piecewise) for s in p.args): return piecewise_fold(rv) return rv def _clip(A, B, k): """Return interval B as intervals that are covered by A (keyed to k) and all other intervals of B not covered by A keyed to -1. The reference point of each interval is the rhs; if the lhs is greater than the rhs then an interval of zero width interval will result, e.g. (4, 1) is treated like (1, 1). Examples ======== >>> from sympy.functions.elementary.piecewise import _clip >>> from sympy import Tuple >>> A = Tuple(1, 3) >>> B = Tuple(2, 4) >>> _clip(A, B, 0) [(2, 3, 0), (3, 4, -1)] Interpretation: interval portion (2, 3) of interval (2, 4) is covered by interval (1, 3) and is keyed to 0 as requested; interval (3, 4) was not covered by (1, 3) and is keyed to -1. """ a, b = B c, d = A c, d = Min(Max(c, a), b), Min(Max(d, a), b) a, b = Min(a, b), b p = [] if a != c: p.append((a, c, -1)) else: pass if c != d: p.append((c, d, k)) else: pass if b != d: if d == c and p and p[-1][-1] == -1: p[-1] = p[-1][0], b, -1 else: p.append((d, b, -1)) else: pass return p def piecewise_simplify_arguments(expr, **kwargs): from sympy.simplify.simplify import simplify # simplify conditions f1 = expr.args[0].cond.free_symbols args = None if len(f1) == 1 and not expr.atoms(Eq): x = f1.pop() # this won't return intervals involving Eq # and it won't handle symbols treated as # booleans ok, abe_ = expr._intervals(x, err_on_Eq=True) def include(c, x, a): "return True if c.subs(x, a) is True, else False" try: return c.subs(x, a) == True except TypeError: return False if ok: args = [] covered = S.EmptySet from sympy.sets.sets import Interval for a, b, e, i in abe_: c = expr.args[i].cond incl_a = include(c, x, a) incl_b = include(c, x, b) iv = Interval(a, b, not incl_a, not incl_b) cset = iv - covered if not cset: continue if incl_a and incl_b: if a.is_infinite and b.is_infinite: c = S.true elif b.is_infinite: c = (x >= a) elif a in covered or a.is_infinite: c = (x <= b) else: c = And(a <= x, x <= b) elif incl_a: if a in covered or a.is_infinite: c = (x < b) else: c = And(a <= x, x < b) elif incl_b: if b.is_infinite: c = (x > a) else: c = (x <= b) else: if a in covered: c = (x < b) else: c = And(a < x, x < b) covered |= iv if a is S.NegativeInfinity and incl_a: covered |= {S.NegativeInfinity} if b is S.Infinity and incl_b: covered |= {S.Infinity} args.append((e, c)) if not S.Reals.is_subset(covered): args.append((Undefined, True)) if args is None: args = list(expr.args) for i in range(len(args)): e, c = args[i] if isinstance(c, Basic): c = simplify(c, **kwargs) args[i] = (e, c) # simplify expressions doit = kwargs.pop('doit', None) for i in range(len(args)): e, c = args[i] if isinstance(e, Basic): # Skip doit to avoid growth at every call for some integrals # and sums, see sympy/sympy#17165 newe = simplify(e, doit=False, **kwargs) if newe != e: e = newe args[i] = (e, c) # restore kwargs flag if doit is not None: kwargs['doit'] = doit return Piecewise(*args) def _piecewise_collapse_arguments(_args): newargs = [] # the unevaluated conditions current_cond = set() # the conditions up to a given e, c pair for expr, cond in _args: cond = cond.replace( lambda _: _.is_Relational, _canonical_coeff) # Check here if expr is a Piecewise and collapse if one of # the conds in expr matches cond. This allows the collapsing # of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)). # This is important when using piecewise_fold to simplify # multiple Piecewise instances having the same conds. # Eventually, this code should be able to collapse Piecewise's # having different intervals, but this will probably require # using the new assumptions. if isinstance(expr, Piecewise): unmatching = [] for i, (e, c) in enumerate(expr.args): if c in current_cond: # this would already have triggered continue if c == cond: if c != True: # nothing past this condition will ever # trigger and only those args before this # that didn't match a previous condition # could possibly trigger if unmatching: expr = Piecewise(*( unmatching + [(e, c)])) else: expr = e break else: unmatching.append((e, c)) # check for condition repeats got = False # -- if an And contains a condition that was # already encountered, then the And will be # False: if the previous condition was False # then the And will be False and if the previous # condition is True then then we wouldn't get to # this point. In either case, we can skip this condition. for i in ([cond] + (list(cond.args) if isinstance(cond, And) else [])): if i in current_cond: got = True break if got: continue # -- if not(c) is already in current_cond then c is # a redundant condition in an And. This does not # apply to Or, however: (e1, c), (e2, Or(~c, d)) # is not (e1, c), (e2, d) because if c and d are # both False this would give no results when the # true answer should be (e2, True) if isinstance(cond, And): nonredundant = [] for c in cond.args: if isinstance(c, Relational): if c.negated.canonical in current_cond: continue # if a strict inequality appears after # a non-strict one, then the condition is # redundant if isinstance(c, (Lt, Gt)) and ( c.weak in current_cond): cond = False break nonredundant.append(c) else: cond = cond.func(*nonredundant) elif isinstance(cond, Relational): if cond.negated.canonical in current_cond: cond = S.true current_cond.add(cond) # collect successive e,c pairs when exprs or cond match if newargs: if newargs[-1].expr == expr: orcond = Or(cond, newargs[-1].cond) if isinstance(orcond, (And, Or)): orcond = distribute_and_over_or(orcond) newargs[-1] = ExprCondPair(expr, orcond) continue elif newargs[-1].cond == cond: continue newargs.append(ExprCondPair(expr, cond)) return newargs _blessed = lambda e: getattr(e.lhs, '_diff_wrt', False) and ( getattr(e.rhs, '_diff_wrt', None) or isinstance(e.rhs, (Rational, NumberSymbol))) def piecewise_simplify(expr, **kwargs): expr = piecewise_simplify_arguments(expr, **kwargs) if not isinstance(expr, Piecewise): return expr args = list(expr.args) args = _piecewise_simplify_eq_and(args) args = _piecewise_simplify_equal_to_next_segment(args) return Piecewise(*args) def _piecewise_simplify_equal_to_next_segment(args): """ See if expressions valid for an Equal expression happens to evaluate to the same function as in the next piecewise segment, see: https://github.com/sympy/sympy/issues/8458 """ prevexpr = None for i, (expr, cond) in reversed(list(enumerate(args))): if prevexpr is not None: if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Eq), binary=True) elif isinstance(cond, Eq): eqs, other = [cond], [] else: eqs = other = [] _prevexpr = prevexpr _expr = expr if eqs and not other: eqs = list(ordered(eqs)) for e in eqs: # allow 2 args to collapse into 1 for any e # otherwise limit simplification to only simple-arg # Eq instances if len(args) == 2 or _blessed(e): _prevexpr = _prevexpr.subs(*e.args) _expr = _expr.subs(*e.args) # Did it evaluate to the same? if _prevexpr == _expr: # Set the expression for the Not equal section to the same # as the next. These will be merged when creating the new # Piecewise args[i] = args[i].func(args[i + 1][0], cond) else: # Update the expression that we compare against prevexpr = expr else: prevexpr = expr return args def _piecewise_simplify_eq_and(args): """ Try to simplify conditions and the expression for equalities that are part of the condition, e.g. Piecewise((n, And(Eq(n,0), Eq(n + m, 0))), (1, True)) -> Piecewise((0, And(Eq(n, 0), Eq(m, 0))), (1, True)) """ for i, (expr, cond) in enumerate(args): if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Eq), binary=True) elif isinstance(cond, Eq): eqs, other = [cond], [] else: eqs = other = [] if eqs: eqs = list(ordered(eqs)) for j, e in enumerate(eqs): # these blessed lhs objects behave like Symbols # and the rhs are simple replacements for the "symbols" if _blessed(e): expr = expr.subs(*e.args) eqs[j + 1:] = [ei.subs(*e.args) for ei in eqs[j + 1:]] other = [ei.subs(*e.args) for ei in other] cond = And(*(eqs + other)) args[i] = args[i].func(expr, cond) return args def piecewise_exclusive(expr, *, skip_nan=False, deep=True): """ Rewrite :class:`Piecewise` with mutually exclusive conditions. Explanation =========== SymPy represents the conditions of a :class:`Piecewise` in an "if-elif"-fashion, allowing more than one condition to be simultaneously True. The interpretation is that the first condition that is True is the case that holds. While this is a useful representation computationally it is not how a piecewise formula is typically shown in a mathematical text. The :func:`piecewise_exclusive` function can be used to rewrite any :class:`Piecewise` with more typical mutually exclusive conditions. Note that further manipulation of the resulting :class:`Piecewise`, e.g. simplifying it, will most likely make it non-exclusive. Hence, this is primarily a function to be used in conjunction with printing the Piecewise or if one would like to reorder the expression-condition pairs. If it is not possible to determine that all possibilities are covered by the different cases of the :class:`Piecewise` then a final :class:`~sympy.core.numbers.NaN` case will be included explicitly. This can be prevented by passing ``skip_nan=True``. Examples ======== >>> from sympy import piecewise_exclusive, Symbol, Piecewise, S >>> x = Symbol('x', real=True) >>> p = Piecewise((0, x < 0), (S.Half, x <= 0), (1, True)) >>> piecewise_exclusive(p) Piecewise((0, x < 0), (1/2, Eq(x, 0)), (1, x > 0)) >>> piecewise_exclusive(Piecewise((2, x > 1))) Piecewise((2, x > 1), (nan, x <= 1)) >>> piecewise_exclusive(Piecewise((2, x > 1)), skip_nan=True) Piecewise((2, x > 1)) Parameters ========== expr: a SymPy expression. Any :class:`Piecewise` in the expression will be rewritten. skip_nan: ``bool`` (default ``False``) If ``skip_nan`` is set to ``True`` then a final :class:`~sympy.core.numbers.NaN` case will not be included. deep: ``bool`` (default ``True``) If ``deep`` is ``True`` then :func:`piecewise_exclusive` will rewrite any :class:`Piecewise` subexpressions in ``expr`` rather than just rewriting ``expr`` itself. Returns ======= An expression equivalent to ``expr`` but where all :class:`Piecewise` have been rewritten with mutually exclusive conditions. See Also ======== Piecewise piecewise_fold """ def make_exclusive(*pwargs): cumcond = false newargs = [] # Handle the first n-1 cases for expr_i, cond_i in pwargs[:-1]: cancond = And(cond_i, Not(cumcond)).simplify() cumcond = Or(cond_i, cumcond).simplify() newargs.append((expr_i, cancond)) # For the nth case defer simplification of cumcond expr_n, cond_n = pwargs[-1] cancond_n = And(cond_n, Not(cumcond)).simplify() newargs.append((expr_n, cancond_n)) if not skip_nan: cumcond = Or(cond_n, cumcond).simplify() if cumcond is not true: newargs.append((Undefined, Not(cumcond).simplify())) return Piecewise(*newargs, evaluate=False) if deep: return expr.replace(Piecewise, make_exclusive) elif isinstance(expr, Piecewise): return make_exclusive(*expr.args) else: return expr
d30f170450507e5c8e42e083ab265b4325557ccb6b14de7a3b7804b49cecd7ec
r"""A module for special angle forumlas for trigonometric functions TODO ==== This module should be developed in the future to contain direct squrae root representation of .. math F(\frac{n}{m} \pi) for every - $m \in \{ 3, 5, 17, 257, 65537 \}$ - $n \in \mathbb{N}$, $0 \le n < m$ - $F \in \{\sin, \cos, \tan, \csc, \sec, \cot\}$ Without multi-step rewrites (e.g. $\tan \to \cos/\sin \to \cos/\sqrt \to \ sqrt$) or using chebyshev identities (e.g. $\cos \to \cos + \cos^2 + \cdots \to \sqrt{} + \sqrt{}^2 + \cdots $), which are trivial to implement in sympy, and had used to give overly complicated expressions. The reference can be found below, if anyone may need help implementing them. References ========== .. [*] Gottlieb, Christian. (1999). The Simple and straightforward construction of the regular 257-gon. The Mathematical Intelligencer. 21. 31-37. 10.1007/BF03024829. .. [*] https://resources.wolframcloud.com/FunctionRepository/resources/Cos2PiOverFermatPrime """ from __future__ import annotations from typing import Callable from functools import reduce from sympy.core.expr import Expr from sympy.core.singleton import S from sympy.core.numbers import igcdex, Integer from sympy.functions.elementary.miscellaneous import sqrt from sympy.core.cache import cacheit def migcdex(*x: int) -> tuple[tuple[int, ...], int]: r"""Compute extended gcd for multiple integers. Explanation =========== Given the integers $x_1, \cdots, x_n$ and an extended gcd for multiple arguments are defined as a solution $(y_1, \cdots, y_n), g$ for the diophantine equation $x_1 y_1 + \cdots + x_n y_n = g$ such that $g = \gcd(x_1, \cdots, x_n)$. Examples ======== >>> from sympy.functions.elementary._trigonometric_special import migcdex >>> migcdex() ((), 0) >>> migcdex(4) ((1,), 4) >>> migcdex(4, 6) ((-1, 1), 2) >>> migcdex(6, 10, 15) ((1, 1, -1), 1) """ if not x: return (), 0 if len(x) == 1: return (1,), x[0] if len(x) == 2: u, v, h = igcdex(x[0], x[1]) return (u, v), h y, g = migcdex(*x[1:]) u, v, h = igcdex(x[0], g) return (u, *(v * i for i in y)), h def ipartfrac(*denoms: int) -> tuple[int, ...]: r"""Compute the the partial fraction decomposition. Explanation =========== Given a rational number $\frac{1}{q_1 \cdots q_n}$ where all $q_1, \cdots, q_n$ are pairwise coprime, A partial fraction decomposition is defined as .. math:: \frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n} And it can be derived from solving the following diophantine equation for the $p_1, \cdots, p_n$ .. math:: 1 = p_1 \prod_{i \ne 1}q_i + \cdots + p_n \prod_{i \ne n}q_i Where $q_1, \cdots, q_n$ being pairwise coprime implies $\gcd(\prod_{i \ne 1}q_i, \cdots, \prod_{i \ne n}q_i) = 1$, which guarantees the existance of the solution. It is sufficient to compute partial fraction decomposition only for numerator $1$ because partial fraction decomposition for any $\frac{n}{q_1 \cdots q_n}$ can be easily computed by multiplying the result by $n$ afterwards. Parameters ========== denoms : int The pairwise coprime integer denominators $q_i$ which defines the rational number $\frac{1}{q_1 \cdots q_n}$ Returns ======= tuple[int, ...] The list of numerators which semantically corresponds to $p_i$ of the partial fraction decomposition $\frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}$ Examples ======== >>> from sympy import Rational, Mul >>> from sympy.functions.elementary._trigonometric_special import ipartfrac >>> denoms = 2, 3, 5 >>> numers = ipartfrac(2, 3, 5) >>> numers (1, 7, -14) >>> Rational(1, Mul(*denoms)) 1/30 >>> out = 0 >>> for n, d in zip(numers, denoms): ... out += Rational(n, d) >>> out 1/30 """ if not denoms: return () def mul(x: int, y: int) -> int: return x * y denom = reduce(mul, denoms) a = [denom // x for x in denoms] h, _ = migcdex(*a) return h def fermat_coords(n: int) -> list[int] | None: """If n can be factored in terms of Fermat primes with multiplicity of each being 1, return those primes, else None """ primes = [] for p in [3, 5, 17, 257, 65537]: quotient, remainder = divmod(n, p) if remainder == 0: n = quotient primes.append(p) if n == 1: return primes return None @cacheit def cos_3() -> Expr: r"""Computes $\cos \frac{\pi}{3}$ in square roots""" return S.Half @cacheit def cos_5() -> Expr: r"""Computes $\cos \frac{\pi}{5}$ in square roots""" return (sqrt(5) + 1) / 4 @cacheit def cos_17() -> Expr: r"""Computes $\cos \frac{\pi}{17}$ in square roots""" return sqrt( (15 + sqrt(17)) / 32 + sqrt(2) * (sqrt(17 - sqrt(17)) + sqrt(sqrt(2) * (-8 * sqrt(17 + sqrt(17)) - (1 - sqrt(17)) * sqrt(17 - sqrt(17))) + 6 * sqrt(17) + 34)) / 32) @cacheit def cos_257() -> Expr: r"""Computes $\cos \frac{\pi}{257}$ in square roots References ========== .. [*] http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals .. [*] https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html """ def f1(a: Expr, b: Expr) -> tuple[Expr, Expr]: return (a + sqrt(a**2 + b)) / 2, (a - sqrt(a**2 + b)) / 2 def f2(a: Expr, b: Expr) -> Expr: return (a - sqrt(a**2 + b))/2 t1, t2 = f1(S.NegativeOne, Integer(256)) z1, z3 = f1(t1, Integer(64)) z2, z4 = f1(t2, Integer(64)) y1, y5 = f1(z1, 4*(5 + t1 + 2*z1)) y6, y2 = f1(z2, 4*(5 + t2 + 2*z2)) y3, y7 = f1(z3, 4*(5 + t1 + 2*z3)) y8, y4 = f1(z4, 4*(5 + t2 + 2*z4)) x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6)) x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7)) x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8)) x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1)) x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2)) x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3)) x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4)) x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5)) v1 = f2(x1, -4*(x1 + x2 + x3 + x6)) v2 = f2(x2, -4*(x2 + x3 + x4 + x7)) v3 = f2(x8, -4*(x8 + x9 + x10 + x13)) v4 = f2(x9, -4*(x9 + x10 + x11 + x14)) v5 = f2(x10, -4*(x10 + x11 + x12 + x15)) v6 = f2(x16, -4*(x16 + x1 + x2 + x5)) u1 = -f2(-v1, -4*(v2 + v3)) u2 = -f2(-v4, -4*(v5 + v6)) w1 = -2*f2(-u1, -4*u2) return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half) def cos_table() -> dict[int, Callable[[], Expr]]: r"""Lazily evaluated table for $\cos \frac{\pi}{n}$ in square roots for $n \in \{3, 5, 17, 257, 65537\}$. Notes ===== 65537 is the only other known Fermat prime and it is nearly impossible to build in the current SymPy due to performance issues. References ========== https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html """ return { 3: cos_3, 5: cos_5, 17: cos_17, 257: cos_257 }
a146bfcccf7a2d9ba4ccd44640aaf0660ed615f6c461e8e65cb1cbff9c49eca4
from math import prod from sympy.core import Add, S, Dummy, expand_func from sympy.core.expr import Expr from sympy.core.function import Function, ArgumentIndexError, PoleError from sympy.core.logic import fuzzy_and, fuzzy_not from sympy.core.numbers import Rational, pi, oo, I from sympy.core.power import Pow from sympy.functions.special.zeta_functions import zeta from sympy.functions.special.error_functions import erf, erfc, Ei from sympy.functions.elementary.complexes import re, unpolarify from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.integers import ceiling, floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos, cot from sympy.functions.combinatorial.numbers import bernoulli, harmonic from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial from sympy.utilities.misc import as_int from mpmath import mp, workprec from mpmath.libmp.libmpf import prec_to_dps def intlike(n): try: as_int(n, strict=False) return True except ValueError: return False ############################################################################### ############################ COMPLETE GAMMA FUNCTION ########################## ############################################################################### class gamma(Function): r""" The gamma function .. math:: \Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t. Explanation =========== The ``gamma`` function implements the function which passes through the values of the factorial function (i.e., $\Gamma(n) = (n - 1)!$ when n is an integer). More generally, $\Gamma(z)$ is defined in the whole complex plane except at the negative integers where there are simple poles. Examples ======== >>> from sympy import S, I, pi, gamma >>> from sympy.abc import x Several special values are known: >>> gamma(1) 1 >>> gamma(4) 6 >>> gamma(S(3)/2) sqrt(pi)/2 The ``gamma`` function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(gamma(x)) gamma(conjugate(x)) Differentiation with respect to $x$ is supported: >>> from sympy import diff >>> diff(gamma(x), x) gamma(x)*polygamma(0, x) Series expansion is also supported: >>> from sympy import series >>> series(gamma(x), x, 0, 3) 1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 - zeta(3)/3 - EulerGamma**3/6) + O(x**3) We can numerically evaluate the ``gamma`` function to arbitrary precision on the whole complex plane: >>> gamma(pi).evalf(40) 2.288037795340032417959588909060233922890 >>> gamma(1+I).evalf(20) 0.49801566811835604271 - 0.15494982830181068512*I See Also ======== lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_function .. [2] http://dlmf.nist.gov/5 .. [3] http://mathworld.wolfram.com/GammaFunction.html .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma/ """ unbranched = True _singularities = (S.ComplexInfinity,) def fdiff(self, argindex=1): if argindex == 1: return self.func(self.args[0])*polygamma(0, self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is oo: return oo elif intlike(arg): if arg.is_positive: return factorial(arg - 1) else: return S.ComplexInfinity elif arg.is_Rational: if arg.q == 2: n = abs(arg.p) // arg.q if arg.is_positive: k, coeff = n, S.One else: n = k = n + 1 if n & 1 == 0: coeff = S.One else: coeff = S.NegativeOne coeff *= prod(range(3, 2*k, 2)) if arg.is_positive: return coeff*sqrt(pi) / 2**n else: return 2**n*sqrt(pi) / coeff def _eval_expand_func(self, **hints): arg = self.args[0] if arg.is_Rational: if abs(arg.p) > arg.q: x = Dummy('x') n = arg.p // arg.q p = arg.p - n*arg.q return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q)) if arg.is_Add: coeff, tail = arg.as_coeff_add() if coeff and coeff.q != 1: intpart = floor(coeff) tail = (coeff - intpart,) + tail coeff = intpart tail = arg._new_rawargs(*tail, reeval=False) return self.func(tail)*RisingFactorial(tail, coeff) return self.func(*self.args) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): x = self.args[0] if x.is_nonpositive and x.is_integer: return False if intlike(x) and x <= 0: return False if x.is_positive or x.is_noninteger: return True def _eval_is_positive(self): x = self.args[0] if x.is_positive: return True elif x.is_noninteger: return floor(x).is_even def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs): return exp(loggamma(z)) def _eval_rewrite_as_factorial(self, z, **kwargs): return factorial(z - 1) def _eval_nseries(self, x, n, logx, cdir=0): x0 = self.args[0].limit(x, 0) if not (x0.is_Integer and x0 <= 0): return super()._eval_nseries(x, n, logx) t = self.args[0] - x0 return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx) def _eval_as_leading_term(self, x, logx=None, cdir=0): arg = self.args[0] x0 = arg.subs(x, 0) if x0.is_integer and x0.is_nonpositive: n = -x0 res = S.NegativeOne**n/self.func(n + 1) return res/(arg + n).as_leading_term(x) elif not x0.is_infinite: return self.func(x0) raise PoleError() ############################################################################### ################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS ################# ############################################################################### class lowergamma(Function): r""" The lower incomplete gamma function. Explanation =========== It can be defined as the meromorphic continuation of .. math:: \gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x). This can be shown to be the same as .. math:: \gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right), where ${}_1F_1$ is the (confluent) hypergeometric function. Examples ======== >>> from sympy import lowergamma, S >>> from sympy.abc import s, x >>> lowergamma(s, x) lowergamma(s, x) >>> lowergamma(3, x) -2*(x**2/2 + x + 1)*exp(-x) + 2 >>> lowergamma(-S(1)/2, x) -2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x) See Also ======== gamma: Gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_gamma_function .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [3] http://dlmf.nist.gov/8 .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/ .. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/ """ def fdiff(self, argindex=2): from sympy.functions.special.hyper import meijerg if argindex == 2: a, z = self.args return exp(-unpolarify(z))*z**(a - 1) elif argindex == 1: a, z = self.args return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \ - meijerg([], [1, 1], [0, 0, a], [], z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, x): # For lack of a better place, we use this one to extract branching # information. The following can be # found in the literature (c/f references given above), albeit scattered: # 1) For fixed x != 0, lowergamma(s, x) is an entire function of s # 2) For fixed positive integers s, lowergamma(s, x) is an entire # function of x. # 3) For fixed non-positive integers s, # lowergamma(s, exp(I*2*pi*n)*x) = # 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x) # (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)). # 4) For fixed non-integral s, # lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x), # where lowergamma_unbranched(s, x) is an entire function (in fact # of both s and x), i.e. # lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x) if x is S.Zero: return S.Zero nx, n = x.extract_branch_factor() if a.is_integer and a.is_positive: nx = unpolarify(x) if nx != x: return lowergamma(a, nx) elif a.is_integer and a.is_nonpositive: if n != 0: return 2*pi*I*n*S.NegativeOne**(-a)/factorial(-a) + lowergamma(a, nx) elif n != 0: return exp(2*pi*I*n*a)*lowergamma(a, nx) # Special values. if a.is_Number: if a is S.One: return S.One - exp(-x) elif a is S.Half: return sqrt(pi)*erf(sqrt(x)) elif a.is_Integer or (2*a).is_Integer: b = a - 1 if b.is_positive: if a.is_integer: return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)]) else: return gamma(a)*(lowergamma(S.Half, x)/sqrt(pi) - exp(-x)*Add(*[x**(k - S.Half)/gamma(S.Half + k) for k in range(1, a + S.Half)])) if not a.is_Integer: return S.NegativeOne**(S.Half - a)*pi*erf(sqrt(x))/gamma(1 - a) + exp(-x)*Add(*[x**(k + a - 1)*gamma(a)/gamma(a + k) for k in range(1, Rational(3, 2) - a)]) if x.is_zero: return S.Zero def _eval_evalf(self, prec): if all(x.is_number for x in self.args): a = self.args[0]._to_mpmath(prec) z = self.args[1]._to_mpmath(prec) with workprec(prec): res = mp.gammainc(a, 0, z) return Expr._from_mpmath(res, prec) else: return self def _eval_conjugate(self): x = self.args[1] if x not in (S.Zero, S.NegativeInfinity): return self.func(self.args[0].conjugate(), x.conjugate()) def _eval_is_meromorphic(self, x, a): # By https://en.wikipedia.org/wiki/Incomplete_gamma_function#Holomorphic_extension, # lowergamma(s, z) = z**s*gamma(s)*gammastar(s, z), # where gammastar(s, z) is holomorphic for all s and z. # Hence the singularities of lowergamma are z = 0 (branch # point) and nonpositive integer values of s (poles of gamma(s)). s, z = self.args args_merom = fuzzy_and([z._eval_is_meromorphic(x, a), s._eval_is_meromorphic(x, a)]) if not args_merom: return args_merom z0 = z.subs(x, a) if s.is_integer: return fuzzy_and([s.is_positive, z0.is_finite]) s0 = s.subs(x, a) return fuzzy_and([s0.is_finite, z0.is_finite, fuzzy_not(z0.is_zero)]) def _eval_aseries(self, n, args0, x, logx): from sympy.series.order import O s, z = self.args if args0[0] is oo and not z.has(x): coeff = z**s*exp(-z) sum_expr = sum(z**k/rf(s, k + 1) for k in range(n - 1)) o = O(z**s*s**(-n)) return coeff*sum_expr + o return super()._eval_aseries(n, args0, x, logx) def _eval_rewrite_as_uppergamma(self, s, x, **kwargs): return gamma(s) - uppergamma(s, x) def _eval_rewrite_as_expint(self, s, x, **kwargs): from sympy.functions.special.error_functions import expint if s.is_integer and s.is_nonpositive: return self return self.rewrite(uppergamma).rewrite(expint) def _eval_is_zero(self): x = self.args[1] if x.is_zero: return True class uppergamma(Function): r""" The upper incomplete gamma function. Explanation =========== It can be defined as the meromorphic continuation of .. math:: \Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x). where $\gamma(s, x)$ is the lower incomplete gamma function, :class:`lowergamma`. This can be shown to be the same as .. math:: \Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right), where ${}_1F_1$ is the (confluent) hypergeometric function. The upper incomplete gamma function is also essentially equivalent to the generalized exponential integral: .. math:: \operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x). Examples ======== >>> from sympy import uppergamma, S >>> from sympy.abc import s, x >>> uppergamma(s, x) uppergamma(s, x) >>> uppergamma(3, x) 2*(x**2/2 + x + 1)*exp(-x) >>> uppergamma(-S(1)/2, x) -2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x) >>> uppergamma(-2, x) expint(3, x)/x**2 See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_gamma_function .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [3] http://dlmf.nist.gov/8 .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/ .. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/ .. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions """ def fdiff(self, argindex=2): from sympy.functions.special.hyper import meijerg if argindex == 2: a, z = self.args return -exp(-unpolarify(z))*z**(a - 1) elif argindex == 1: a, z = self.args return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): if all(x.is_number for x in self.args): a = self.args[0]._to_mpmath(prec) z = self.args[1]._to_mpmath(prec) with workprec(prec): res = mp.gammainc(a, z, mp.inf) return Expr._from_mpmath(res, prec) return self @classmethod def eval(cls, a, z): from sympy.functions.special.error_functions import expint if z.is_Number: if z is S.NaN: return S.NaN elif z is oo: return S.Zero elif z.is_zero: if re(a).is_positive: return gamma(a) # We extract branching information here. C/f lowergamma. nx, n = z.extract_branch_factor() if a.is_integer and a.is_positive: nx = unpolarify(z) if z != nx: return uppergamma(a, nx) elif a.is_integer and a.is_nonpositive: if n != 0: return -2*pi*I*n*S.NegativeOne**(-a)/factorial(-a) + uppergamma(a, nx) elif n != 0: return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx) # Special values. if a.is_Number: if a is S.Zero and z.is_positive: return -Ei(-z) elif a is S.One: return exp(-z) elif a is S.Half: return sqrt(pi)*erfc(sqrt(z)) elif a.is_Integer or (2*a).is_Integer: b = a - 1 if b.is_positive: if a.is_integer: return exp(-z) * factorial(b) * Add(*[z**k / factorial(k) for k in range(a)]) else: return (gamma(a) * erfc(sqrt(z)) + S.NegativeOne**(a - S(3)/2) * exp(-z) * sqrt(z) * Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a) for k in range(a - S.Half)])) elif b.is_Integer: return expint(-b, z)*unpolarify(z)**(b + 1) if not a.is_Integer: return (S.NegativeOne**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a) - z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1) for k in range(S.Half - a)])) if a.is_zero and z.is_positive: return -Ei(-z) if z.is_zero and re(a).is_positive: return gamma(a) def _eval_conjugate(self): z = self.args[1] if z not in (S.Zero, S.NegativeInfinity): return self.func(self.args[0].conjugate(), z.conjugate()) def _eval_is_meromorphic(self, x, a): return lowergamma._eval_is_meromorphic(self, x, a) def _eval_rewrite_as_lowergamma(self, s, x, **kwargs): return gamma(s) - lowergamma(s, x) def _eval_rewrite_as_tractable(self, s, x, **kwargs): return exp(loggamma(s)) - lowergamma(s, x) def _eval_rewrite_as_expint(self, s, x, **kwargs): from sympy.functions.special.error_functions import expint return expint(1 - s, x)*x**s ############################################################################### ###################### POLYGAMMA and LOGGAMMA FUNCTIONS ####################### ############################################################################### class polygamma(Function): r""" The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``. Explanation =========== It is a meromorphic function on $\mathbb{C}$ and defined as the $(n+1)$-th derivative of the logarithm of the gamma function: .. math:: \psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z). For `n` not a nonnegative integer the generalization by Espinosa and Moll [5]_ is used: .. math:: \psi(s,z) = \frac{\zeta'(s+1, z) + (\gamma + \psi(-s)) \zeta(s+1, z)} {\Gamma(-s)} Examples ======== Several special values are known: >>> from sympy import S, polygamma >>> polygamma(0, 1) -EulerGamma >>> polygamma(0, 1/S(2)) -2*log(2) - EulerGamma >>> polygamma(0, 1/S(3)) -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3)) >>> polygamma(0, 1/S(4)) -pi/2 - log(4) - log(2) - EulerGamma >>> polygamma(0, 2) 1 - EulerGamma >>> polygamma(0, 23) 19093197/5173168 - EulerGamma >>> from sympy import oo, I >>> polygamma(0, oo) oo >>> polygamma(0, -oo) oo >>> polygamma(0, I*oo) oo >>> polygamma(0, -I*oo) oo Differentiation with respect to $x$ is supported: >>> from sympy import Symbol, diff >>> x = Symbol("x") >>> diff(polygamma(0, x), x) polygamma(1, x) >>> diff(polygamma(0, x), x, 2) polygamma(2, x) >>> diff(polygamma(0, x), x, 3) polygamma(3, x) >>> diff(polygamma(1, x), x) polygamma(2, x) >>> diff(polygamma(1, x), x, 2) polygamma(3, x) >>> diff(polygamma(2, x), x) polygamma(3, x) >>> diff(polygamma(2, x), x, 2) polygamma(4, x) >>> n = Symbol("n") >>> diff(polygamma(n, x), x) polygamma(n + 1, x) >>> diff(polygamma(n, x), x, 2) polygamma(n + 2, x) We can rewrite ``polygamma`` functions in terms of harmonic numbers: >>> from sympy import harmonic >>> polygamma(0, x).rewrite(harmonic) harmonic(x - 1) - EulerGamma >>> polygamma(2, x).rewrite(harmonic) 2*harmonic(x - 1, 3) - 2*zeta(3) >>> ni = Symbol("n", integer=True) >>> polygamma(ni, x).rewrite(harmonic) (-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Polygamma_function .. [2] http://mathworld.wolfram.com/PolygammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma/ .. [4] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ .. [5] O. Espinosa and V. Moll, "A generalized polygamma function", *Integral Transforms and Special Functions* (2004), 101-115. """ @classmethod def eval(cls, n, z): if n is S.NaN or z is S.NaN: return S.NaN elif z is oo: return oo if n.is_zero else S.Zero elif z.is_Integer and z.is_nonpositive: return S.ComplexInfinity elif n is S.NegativeOne: return loggamma(z) - log(2*pi) / 2 elif n.is_zero: if z is -oo or z.extract_multiplicatively(I) in (oo, -oo): return oo elif z.is_Integer: return harmonic(z-1) - S.EulerGamma elif z.is_Rational: # TODO n == 1 also can do some rational z p, q = z.as_numer_denom() # only expand for small denominators to avoid creating long expressions if q <= 6: return expand_func(polygamma(S.Zero, z, evaluate=False)) elif n.is_integer and n.is_nonnegative: nz = unpolarify(z) if z != nz: return polygamma(n, nz) if z.is_Integer: return S.NegativeOne**(n+1) * factorial(n) * zeta(n+1, z) elif z is S.Half: return S.NegativeOne**(n+1) * factorial(n) * (2**(n+1)-1) * zeta(n+1) def _eval_is_real(self): if self.args[0].is_positive and self.args[1].is_positive: return True def _eval_is_complex(self): z = self.args[1] is_negative_integer = fuzzy_and([z.is_negative, z.is_integer]) return fuzzy_and([z.is_complex, fuzzy_not(is_negative_integer)]) def _eval_is_positive(self): n, z = self.args if n.is_positive: if n.is_odd and z.is_real: return True if n.is_even and z.is_positive: return False def _eval_is_negative(self): n, z = self.args if n.is_positive: if n.is_even and z.is_positive: return True if n.is_odd and z.is_real: return False def _eval_expand_func(self, **hints): n, z = self.args if n.is_Integer and n.is_nonnegative: if z.is_Add: coeff = z.args[0] if coeff.is_Integer: e = -(n + 1) if coeff > 0: tail = Add(*[Pow( z - i, e) for i in range(1, int(coeff) + 1)]) else: tail = -Add(*[Pow( z + i, e) for i in range(int(-coeff))]) return polygamma(n, z - coeff) + S.NegativeOne**n*factorial(n)*tail elif z.is_Mul: coeff, z = z.as_two_terms() if coeff.is_Integer and coeff.is_positive: tail = [polygamma(n, z + Rational( i, coeff)) for i in range(int(coeff))] if n == 0: return Add(*tail)/coeff + log(coeff) else: return Add(*tail)/coeff**(n + 1) z *= coeff if n == 0 and z.is_Rational: p, q = z.as_numer_denom() # Reference: # Values of the polygamma functions at rational arguments, J. Choi, 2007 part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add( *[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)]) if z > 0: n = floor(z) z0 = z - n return part_1 + Add(*[1 / (z0 + k) for k in range(n)]) elif z < 0: n = floor(1 - z) z0 = z + n return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)]) if n == -1: return loggamma(z) - log(2*pi) / 2 if n.is_integer is False or n.is_nonnegative is False: s = Dummy("s") dzt = zeta(s, z).diff(s).subs(s, n+1) return (dzt + (S.EulerGamma + digamma(-n)) * zeta(n+1, z)) / gamma(-n) return polygamma(n, z) def _eval_rewrite_as_zeta(self, n, z, **kwargs): if n.is_integer and n.is_positive: return S.NegativeOne**(n + 1)*factorial(n)*zeta(n + 1, z) def _eval_rewrite_as_harmonic(self, n, z, **kwargs): if n.is_integer: if n.is_zero: return harmonic(z - 1) - S.EulerGamma else: return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1)) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.series.order import Order n, z = [a.as_leading_term(x) for a in self.args] o = Order(z, x) if n == 0 and o.contains(1/x): logx = log(x) if logx is None else logx return o.getn() * logx else: return self.func(n, z) def fdiff(self, argindex=2): if argindex == 2: n, z = self.args[:2] return polygamma(n + 1, z) else: raise ArgumentIndexError(self, argindex) def _eval_aseries(self, n, args0, x, logx): from sympy.series.order import Order if args0[1] != oo or not \ (self.args[0].is_Integer and self.args[0].is_nonnegative): return super()._eval_aseries(n, args0, x, logx) z = self.args[1] N = self.args[0] if N == 0: # digamma function series # Abramowitz & Stegun, p. 259, 6.3.18 r = log(z) - 1/(2*z) o = None if n < 2: o = Order(1/z, x) else: m = ceiling((n + 1)//2) l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)] r -= Add(*l) o = Order(1/z**n, x) return r._eval_nseries(x, n, logx) + o else: # proper polygamma function # Abramowitz & Stegun, p. 260, 6.4.10 # We return terms to order higher than O(x**n) on purpose # -- otherwise we would not be able to return any terms for # quite a long time! fac = gamma(N) e0 = fac + N*fac/(2*z) m = ceiling((n + 1)//2) for k in range(1, m): fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1)) e0 += bernoulli(2*k)*fac/z**(2*k) o = Order(1/z**(2*m), x) if n == 0: o = Order(1/z, x) elif n == 1: o = Order(1/z**2, x) r = e0._eval_nseries(z, n, logx) + o return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx) def _eval_evalf(self, prec): if not all(i.is_number for i in self.args): return s = self.args[0]._to_mpmath(prec+12) z = self.args[1]._to_mpmath(prec+12) if mp.isint(z) and z <= 0: return S.ComplexInfinity with workprec(prec+12): if mp.isint(s) and s >= 0: res = mp.polygamma(s, z) else: zt = mp.zeta(s+1, z) dzt = mp.zeta(s+1, z, 1) res = (dzt + (mp.euler + mp.digamma(-s)) * zt) * mp.rgamma(-s) return Expr._from_mpmath(res, prec) class loggamma(Function): r""" The ``loggamma`` function implements the logarithm of the gamma function (i.e., $\log\Gamma(x)$). Examples ======== Several special values are known. For numerical integral arguments we have: >>> from sympy import loggamma >>> loggamma(-2) oo >>> loggamma(0) oo >>> loggamma(1) 0 >>> loggamma(2) 0 >>> loggamma(3) log(2) And for symbolic values: >>> from sympy import Symbol >>> n = Symbol("n", integer=True, positive=True) >>> loggamma(n) log(gamma(n)) >>> loggamma(-n) oo For half-integral values: >>> from sympy import S >>> loggamma(S(5)/2) log(3*sqrt(pi)/4) >>> loggamma(n/2) log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2)) And general rational arguments: >>> from sympy import expand_func >>> L = loggamma(S(16)/3) >>> expand_func(L).doit() -5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13) >>> L = loggamma(S(19)/4) >>> expand_func(L).doit() -4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15) >>> L = loggamma(S(23)/7) >>> expand_func(L).doit() -3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16) The ``loggamma`` function has the following limits towards infinity: >>> from sympy import oo >>> loggamma(oo) oo >>> loggamma(-oo) zoo The ``loggamma`` function obeys the mirror symmetry if $x \in \mathbb{C} \setminus \{-\infty, 0\}$: >>> from sympy.abc import x >>> from sympy import conjugate >>> conjugate(loggamma(x)) loggamma(conjugate(x)) Differentiation with respect to $x$ is supported: >>> from sympy import diff >>> diff(loggamma(x), x) polygamma(0, x) Series expansion is also supported: >>> from sympy import series >>> series(loggamma(x), x, 0, 4).cancel() -log(x) - EulerGamma*x + pi**2*x**2/12 - x**3*zeta(3)/3 + O(x**4) We can numerically evaluate the ``loggamma`` function to arbitrary precision on the whole complex plane: >>> from sympy import I >>> loggamma(5).evalf(30) 3.17805383034794561964694160130 >>> loggamma(I).evalf(20) -0.65092319930185633889 - 1.8724366472624298171*I See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_function .. [2] http://dlmf.nist.gov/5 .. [3] http://mathworld.wolfram.com/LogGammaFunction.html .. [4] http://functions.wolfram.com/GammaBetaErf/LogGamma/ """ @classmethod def eval(cls, z): if z.is_integer: if z.is_nonpositive: return oo elif z.is_positive: return log(gamma(z)) elif z.is_rational: p, q = z.as_numer_denom() # Half-integral values: if p.is_positive and q == 2: return log(sqrt(pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half)) if z is oo: return oo elif abs(z) is oo: return S.ComplexInfinity if z is S.NaN: return S.NaN def _eval_expand_func(self, **hints): from sympy.concrete.summations import Sum z = self.args[0] if z.is_Rational: p, q = z.as_numer_denom() # General rational arguments (u + p/q) # Split z as n + p/q with p < q n = p // q p = p - n*q if p.is_positive and q.is_positive and p < q: k = Dummy("k") if n.is_positive: return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n)) elif n.is_negative: return loggamma(p / q) - n*log(q) + pi*I*n - Sum(log(k*q - p), (k, 1, -n)) elif n.is_zero: return loggamma(p / q) return self def _eval_nseries(self, x, n, logx=None, cdir=0): x0 = self.args[0].limit(x, 0) if x0.is_zero: f = self._eval_rewrite_as_intractable(*self.args) return f._eval_nseries(x, n, logx) return super()._eval_nseries(x, n, logx) def _eval_aseries(self, n, args0, x, logx): from sympy.series.order import Order if args0[0] != oo: return super()._eval_aseries(n, args0, x, logx) z = self.args[0] r = log(z)*(z - S.Half) - z + log(2*pi)/2 l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, n)] o = None if n == 0: o = Order(1, x) else: o = Order(1/z**n, x) # It is very inefficient to first add the order and then do the nseries return (r + Add(*l))._eval_nseries(x, n, logx) + o def _eval_rewrite_as_intractable(self, z, **kwargs): return log(gamma(z)) def _eval_is_real(self): z = self.args[0] if z.is_positive: return True elif z.is_nonpositive: return False def _eval_conjugate(self): z = self.args[0] if z not in (S.Zero, S.NegativeInfinity): return self.func(z.conjugate()) def fdiff(self, argindex=1): if argindex == 1: return polygamma(0, self.args[0]) else: raise ArgumentIndexError(self, argindex) class digamma(Function): r""" The ``digamma`` function is the first derivative of the ``loggamma`` function .. math:: \psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z) }. In this case, ``digamma(z) = polygamma(0, z)``. Examples ======== >>> from sympy import digamma >>> digamma(0) zoo >>> from sympy import Symbol >>> z = Symbol('z') >>> digamma(z) polygamma(0, z) To retain ``digamma`` as it is: >>> digamma(0, evaluate=False) digamma(0) >>> digamma(z, evaluate=False) digamma(z) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Digamma_function .. [2] http://mathworld.wolfram.com/DigammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ def _eval_evalf(self, prec): z = self.args[0] nprec = prec_to_dps(prec) return polygamma(0, z).evalf(n=nprec) def fdiff(self, argindex=1): z = self.args[0] return polygamma(0, z).fdiff() def _eval_is_real(self): z = self.args[0] return polygamma(0, z).is_real def _eval_is_positive(self): z = self.args[0] return polygamma(0, z).is_positive def _eval_is_negative(self): z = self.args[0] return polygamma(0, z).is_negative def _eval_aseries(self, n, args0, x, logx): as_polygamma = self.rewrite(polygamma) args0 = [S.Zero,] + args0 return as_polygamma._eval_aseries(n, args0, x, logx) @classmethod def eval(cls, z): return polygamma(0, z) def _eval_expand_func(self, **hints): z = self.args[0] return polygamma(0, z).expand(func=True) def _eval_rewrite_as_harmonic(self, z, **kwargs): return harmonic(z - 1) - S.EulerGamma def _eval_rewrite_as_polygamma(self, z, **kwargs): return polygamma(0, z) def _eval_as_leading_term(self, x, logx=None, cdir=0): z = self.args[0] return polygamma(0, z).as_leading_term(x) class trigamma(Function): r""" The ``trigamma`` function is the second derivative of the ``loggamma`` function .. math:: \psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z). In this case, ``trigamma(z) = polygamma(1, z)``. Examples ======== >>> from sympy import trigamma >>> trigamma(0) zoo >>> from sympy import Symbol >>> z = Symbol('z') >>> trigamma(z) polygamma(1, z) To retain ``trigamma`` as it is: >>> trigamma(0, evaluate=False) trigamma(0) >>> trigamma(z, evaluate=False) trigamma(z) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Trigamma_function .. [2] http://mathworld.wolfram.com/TrigammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ def _eval_evalf(self, prec): z = self.args[0] nprec = prec_to_dps(prec) return polygamma(1, z).evalf(n=nprec) def fdiff(self, argindex=1): z = self.args[0] return polygamma(1, z).fdiff() def _eval_is_real(self): z = self.args[0] return polygamma(1, z).is_real def _eval_is_positive(self): z = self.args[0] return polygamma(1, z).is_positive def _eval_is_negative(self): z = self.args[0] return polygamma(1, z).is_negative def _eval_aseries(self, n, args0, x, logx): as_polygamma = self.rewrite(polygamma) args0 = [S.One,] + args0 return as_polygamma._eval_aseries(n, args0, x, logx) @classmethod def eval(cls, z): return polygamma(1, z) def _eval_expand_func(self, **hints): z = self.args[0] return polygamma(1, z).expand(func=True) def _eval_rewrite_as_zeta(self, z, **kwargs): return zeta(2, z) def _eval_rewrite_as_polygamma(self, z, **kwargs): return polygamma(1, z) def _eval_rewrite_as_harmonic(self, z, **kwargs): return -harmonic(z - 1, 2) + pi**2 / 6 def _eval_as_leading_term(self, x, logx=None, cdir=0): z = self.args[0] return polygamma(1, z).as_leading_term(x) ############################################################################### ##################### COMPLETE MULTIVARIATE GAMMA FUNCTION #################### ############################################################################### class multigamma(Function): r""" The multivariate gamma function is a generalization of the gamma function .. math:: \Gamma_p(z) = \pi^{p(p-1)/4}\prod_{k=1}^p \Gamma[z + (1 - k)/2]. In a special case, ``multigamma(x, 1) = gamma(x)``. Examples ======== >>> from sympy import S, multigamma >>> from sympy import Symbol >>> x = Symbol('x') >>> p = Symbol('p', positive=True, integer=True) >>> multigamma(x, p) pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p)) Several special values are known: >>> multigamma(1, 1) 1 >>> multigamma(4, 1) 6 >>> multigamma(S(3)/2, 1) sqrt(pi)/2 Writing ``multigamma`` in terms of the ``gamma`` function: >>> multigamma(x, 1) gamma(x) >>> multigamma(x, 2) sqrt(pi)*gamma(x)*gamma(x - 1/2) >>> multigamma(x, 3) pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2) Parameters ========== p : order or dimension of the multivariate gamma function See Also ======== gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma, beta References ========== .. [1] https://en.wikipedia.org/wiki/Multivariate_gamma_function """ unbranched = True def fdiff(self, argindex=2): from sympy.concrete.summations import Sum if argindex == 2: x, p = self.args k = Dummy("k") return self.func(x, p)*Sum(polygamma(0, x + (1 - k)/2), (k, 1, p)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, p): from sympy.concrete.products import Product if p.is_positive is False or p.is_integer is False: raise ValueError('Order parameter p must be positive integer.') k = Dummy("k") return (pi**(p*(p - 1)/4)*Product(gamma(x + (1 - k)/2), (k, 1, p))).doit() def _eval_conjugate(self): x, p = self.args return self.func(x.conjugate(), p) def _eval_is_real(self): x, p = self.args y = 2*x if y.is_integer and (y <= (p - 1)) is True: return False if intlike(y) and (y <= (p - 1)): return False if y > (p - 1) or y.is_noninteger: return True
08e768f35d2af2f8d5c8788e62c803e537001381b76d0533417944ae80d6b23d
import string from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.function import (diff, expand_func) from sympy.core import (EulerGamma, TribonacciConstant) from sympy.core.numbers import (Float, I, Rational, oo, pi) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.combinatorial.numbers import carmichael from sympy.functions.elementary.complexes import (im, re) from sympy.functions.elementary.integers import floor from sympy.polys.polytools import cancel from sympy.series.limits import limit, Limit from sympy.series.order import O from sympy.functions import ( bernoulli, harmonic, bell, fibonacci, tribonacci, lucas, euler, catalan, genocchi, andre, partition, motzkin, binomial, gamma, sqrt, cbrt, hyper, log, digamma, trigamma, polygamma, factorial, sin, cos, cot, polylog, zeta, dirichlet_eta) from sympy.functions.combinatorial.numbers import _nT from sympy.core.expr import unchanged from sympy.core.numbers import GoldenRatio, Integer from sympy.testing.pytest import raises, nocache_fail, warns_deprecated_sympy from sympy.abc import x def test_carmichael(): assert carmichael.find_carmichael_numbers_in_range(0, 561) == [] assert carmichael.find_carmichael_numbers_in_range(561, 562) == [561] assert carmichael.find_carmichael_numbers_in_range(561, 1105) == carmichael.find_carmichael_numbers_in_range(561, 562) assert carmichael.find_first_n_carmichaels(5) == [561, 1105, 1729, 2465, 2821] raises(ValueError, lambda: carmichael.is_carmichael(-2)) raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(-2, 2)) raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(22, 2)) with warns_deprecated_sympy(): assert carmichael.is_prime(2821) == False def test_bernoulli(): assert bernoulli(0) == 1 assert bernoulli(1) == Rational(1, 2) assert bernoulli(2) == Rational(1, 6) assert bernoulli(3) == 0 assert bernoulli(4) == Rational(-1, 30) assert bernoulli(5) == 0 assert bernoulli(6) == Rational(1, 42) assert bernoulli(7) == 0 assert bernoulli(8) == Rational(-1, 30) assert bernoulli(10) == Rational(5, 66) assert bernoulli(1000001) == 0 assert bernoulli(0, x) == 1 assert bernoulli(1, x) == x - S.Half assert bernoulli(2, x) == x**2 - x + Rational(1, 6) assert bernoulli(3, x) == x**3 - (3*x**2)/2 + x/2 # Should be fast; computed with mpmath b = bernoulli(1000) assert b.p % 10**10 == 7950421099 assert b.q == 342999030 b = bernoulli(10**6, evaluate=False).evalf() assert str(b) == '-2.23799235765713e+4767529' # Issue #8527 l = Symbol('l', integer=True) m = Symbol('m', integer=True, nonnegative=True) n = Symbol('n', integer=True, positive=True) assert isinstance(bernoulli(2 * l + 1), bernoulli) assert isinstance(bernoulli(2 * m + 1), bernoulli) assert bernoulli(2 * n + 1) == 0 assert bernoulli(x, 1) == bernoulli(x) assert str(bernoulli(0.0, 2.3).evalf(n=10)) == '1.000000000' assert str(bernoulli(1.0).evalf(n=10)) == '0.5000000000' assert str(bernoulli(1.2).evalf(n=10)) == '0.4195995367' assert str(bernoulli(1.2, 0.8).evalf(n=10)) == '0.2144830348' assert str(bernoulli(1.2, -0.8).evalf(n=10)) == '-1.158865646 - 0.6745558744*I' assert str(bernoulli(3.0, 1j).evalf(n=10)) == '1.5 - 0.5*I' assert str(bernoulli(I).evalf(n=10)) == '0.9268485643 - 0.5821580598*I' assert str(bernoulli(I, I).evalf(n=10)) == '0.1267792071 + 0.01947413152*I' assert bernoulli(x).evalf() == bernoulli(x) def test_bernoulli_rewrite(): from sympy.functions.elementary.piecewise import Piecewise n = Symbol('n', integer=True, nonnegative=True) assert bernoulli(-1).rewrite(zeta) == pi**2/6 assert bernoulli(-2).rewrite(zeta) == 2*zeta(3) assert not bernoulli(n, -3).rewrite(zeta).has(harmonic) assert bernoulli(-4, x).rewrite(zeta) == 4*zeta(5, x) assert isinstance(bernoulli(n, x).rewrite(zeta), Piecewise) assert bernoulli(n+1, x).rewrite(zeta) == -(n+1) * zeta(-n, x) def test_fibonacci(): assert [fibonacci(n) for n in range(-3, 5)] == [2, -1, 1, 0, 1, 1, 2, 3] assert fibonacci(100) == 354224848179261915075 assert [lucas(n) for n in range(-3, 5)] == [-4, 3, -1, 2, 1, 3, 4, 7] assert lucas(100) == 792070839848372253127 assert fibonacci(1, x) == 1 assert fibonacci(2, x) == x assert fibonacci(3, x) == x**2 + 1 assert fibonacci(4, x) == x**3 + 2*x # issue #8800 n = Dummy('n') assert fibonacci(n).limit(n, S.Infinity) is S.Infinity assert lucas(n).limit(n, S.Infinity) is S.Infinity assert fibonacci(n).rewrite(sqrt) == \ 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5 assert fibonacci(n).rewrite(sqrt).subs(n, 10).expand() == fibonacci(10) assert fibonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \ Float(fibonacci(10)) assert lucas(n).rewrite(sqrt) == \ (fibonacci(n-1).rewrite(sqrt) + fibonacci(n+1).rewrite(sqrt)).simplify() assert lucas(n).rewrite(sqrt).subs(n, 10).expand() == lucas(10) raises(ValueError, lambda: fibonacci(-3, x)) def test_tribonacci(): assert [tribonacci(n) for n in range(8)] == [0, 1, 1, 2, 4, 7, 13, 24] assert tribonacci(100) == 98079530178586034536500564 assert tribonacci(0, x) == 0 assert tribonacci(1, x) == 1 assert tribonacci(2, x) == x**2 assert tribonacci(3, x) == x**4 + x assert tribonacci(4, x) == x**6 + 2*x**3 + 1 assert tribonacci(5, x) == x**8 + 3*x**5 + 3*x**2 n = Dummy('n') assert tribonacci(n).limit(n, S.Infinity) is S.Infinity w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2 a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3 b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3 c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3 assert tribonacci(n).rewrite(sqrt) == \ (a**(n + 1)/((a - b)*(a - c)) + b**(n + 1)/((b - a)*(b - c)) + c**(n + 1)/((c - a)*(c - b))) assert tribonacci(n).rewrite(sqrt).subs(n, 4).simplify() == tribonacci(4) assert tribonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \ Float(tribonacci(10)) assert tribonacci(n).rewrite(TribonacciConstant) == floor( 3*TribonacciConstant**n*(102*sqrt(33) + 586)**Rational(1, 3)/ (-2*(102*sqrt(33) + 586)**Rational(1, 3) + 4 + (102*sqrt(33) + 586)**Rational(2, 3)) + S.Half) raises(ValueError, lambda: tribonacci(-1, x)) @nocache_fail def test_bell(): assert [bell(n) for n in range(8)] == [1, 1, 2, 5, 15, 52, 203, 877] assert bell(0, x) == 1 assert bell(1, x) == x assert bell(2, x) == x**2 + x assert bell(5, x) == x**5 + 10*x**4 + 25*x**3 + 15*x**2 + x assert bell(oo) is S.Infinity raises(ValueError, lambda: bell(oo, x)) raises(ValueError, lambda: bell(-1)) raises(ValueError, lambda: bell(S.Half)) X = symbols('x:6') # X = (x0, x1, .. x5) # at the same time: X[1] = x1, X[2] = x2 for standard readablity. # but we must supply zero-based indexed object X[1:] = (x1, .. x5) assert bell(6, 2, X[1:]) == 6*X[5]*X[1] + 15*X[4]*X[2] + 10*X[3]**2 assert bell( 6, 3, X[1:]) == 15*X[4]*X[1]**2 + 60*X[3]*X[2]*X[1] + 15*X[2]**3 X = (1, 10, 100, 1000, 10000) assert bell(6, 2, X) == (6 + 15 + 10)*10000 X = (1, 2, 3, 3, 5) assert bell(6, 2, X) == 6*5 + 15*3*2 + 10*3**2 X = (1, 2, 3, 5) assert bell(6, 3, X) == 15*5 + 60*3*2 + 15*2**3 # Dobinski's formula n = Symbol('n', integer=True, nonnegative=True) # For large numbers, this is too slow # For nonintegers, there are significant precision errors for i in [0, 2, 3, 7, 13, 42, 55]: # Running without the cache this is either very slow or goes into an # infinite loop. assert bell(i).evalf() == bell(n).rewrite(Sum).evalf(subs={n: i}) m = Symbol("m") assert bell(m).rewrite(Sum) == bell(m) assert bell(n, m).rewrite(Sum) == bell(n, m) # issue 9184 n = Dummy('n') assert bell(n).limit(n, S.Infinity) is S.Infinity def test_harmonic(): n = Symbol("n") m = Symbol("m") assert harmonic(n, 0) == n assert harmonic(n).evalf() == harmonic(n) assert harmonic(n, 1) == harmonic(n) assert harmonic(1, n) == 1 assert harmonic(0, 1) == 0 assert harmonic(1, 1) == 1 assert harmonic(2, 1) == Rational(3, 2) assert harmonic(3, 1) == Rational(11, 6) assert harmonic(4, 1) == Rational(25, 12) assert harmonic(0, 2) == 0 assert harmonic(1, 2) == 1 assert harmonic(2, 2) == Rational(5, 4) assert harmonic(3, 2) == Rational(49, 36) assert harmonic(4, 2) == Rational(205, 144) assert harmonic(0, 3) == 0 assert harmonic(1, 3) == 1 assert harmonic(2, 3) == Rational(9, 8) assert harmonic(3, 3) == Rational(251, 216) assert harmonic(4, 3) == Rational(2035, 1728) assert harmonic(oo, -1) is S.NaN assert harmonic(oo, 0) is oo assert harmonic(oo, S.Half) is oo assert harmonic(oo, 1) is oo assert harmonic(oo, 2) == (pi**2)/6 assert harmonic(oo, 3) == zeta(3) assert harmonic(oo, Dummy(negative=True)) is S.NaN ip = Dummy(integer=True, positive=True) if (1/ip <= 1) is True: #---------------------------------+ assert None, 'delete this if-block and the next line' #| ip = Dummy(even=True, positive=True) #--------------------+ assert harmonic(oo, 1/ip) is oo assert harmonic(oo, 1 + ip) is zeta(1 + ip) assert harmonic(0, m) == 0 assert harmonic(-1, -1) == 0 assert harmonic(-1, 0) == -1 assert harmonic(-1, 1) is S.ComplexInfinity assert harmonic(-1, 2) is S.NaN assert harmonic(-3, -2) == -5 assert harmonic(-3, -3) == 9 def test_harmonic_rational(): ne = S(6) no = S(5) pe = S(8) po = S(9) qe = S(10) qo = S(13) Heee = harmonic(ne + pe/qe) Aeee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(13944145, 4720968)) Heeo = harmonic(ne + pe/qo) Aeeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13)) + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13)) - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(2422020029, 702257080)) Heoe = harmonic(ne + po/qe) Aeoe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4) + Rational(11818877030, 4286604231) + pi*sqrt(2*sqrt(5) + 5)/2) Heoo = harmonic(ne + po/qo) Aeoo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13)) + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13) - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2 - 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(3, 13)) + Rational(11669332571, 3628714320)) Hoee = harmonic(no + pe/qe) Aoee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(779405, 277704)) Hoeo = harmonic(no + pe/qo) Aoeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13)) + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13)) - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(53857323, 16331560)) Hooe = harmonic(no + po/qe) Aooe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4) + Rational(486853480, 186374097) + pi*sqrt(2*sqrt(5) + 5)/2) Hooo = harmonic(no + po/qo) Aooo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13)) + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13) - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2 - 2*log(sin(pi*Rational(2, 13)))*cos(3*pi/13) + Rational(383693479, 125128080)) H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo] A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo] for h, a in zip(H, A): e = expand_func(h).doit() assert cancel(e/a) == 1 assert abs(h.n() - a.n()) < 1e-12 def test_harmonic_evalf(): assert str(harmonic(1.5).evalf(n=10)) == '1.280372306' assert str(harmonic(1.5, 2).evalf(n=10)) == '1.154576311' # issue 7443 assert str(harmonic(4.0, -3).evalf(n=10)) == '100.0000000' assert str(harmonic(7.0, 1.0).evalf(n=10)) == '2.592857143' assert str(harmonic(1, pi).evalf(n=10)) == '1.000000000' assert str(harmonic(2, pi).evalf(n=10)) == '1.113314732' assert str(harmonic(1000.0, pi).evalf(n=10)) == '1.176241563' assert str(harmonic(I).evalf(n=10)) == '0.6718659855 + 1.076674047*I' assert str(harmonic(I, I).evalf(n=10)) == '-0.3970915266 + 1.9629689*I' assert harmonic(-1.0, 1).evalf() is S.NaN assert harmonic(-2.0, 2.0).evalf() is S.NaN def test_harmonic_rewrite(): from sympy.functions.elementary.piecewise import Piecewise n = Symbol("n") m = Symbol("m", integer=True, positive=True) x1 = Symbol("x1", positive=True) x2 = Symbol("x2", negative=True) assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n,3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2 assert isinstance(harmonic(n,m).rewrite(polygamma), Piecewise) assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma) assert harmonic(n, x1).rewrite("tractable") == harmonic(n, x1) assert harmonic(n, x1 + 1).rewrite("tractable") == zeta(x1 + 1) - zeta(x1 + 1, n + 1) assert harmonic(n, x2).rewrite("tractable") == zeta(x2) - zeta(x2, n + 1) _k = Dummy("k") assert harmonic(n).rewrite(Sum).dummy_eq(Sum(1/_k, (_k, 1, n))) assert harmonic(n, m).rewrite(Sum).dummy_eq(Sum(_k**(-m), (_k, 1, n))) def test_harmonic_calculus(): y = Symbol("y", positive=True) z = Symbol("z", negative=True) assert harmonic(x, 1).limit(x, 0) == 0 assert harmonic(x, y).limit(x, 0) == 0 assert harmonic(x, 1).series(x, y, 2) == \ harmonic(y) + (x - y)*zeta(2, y + 1) + O((x - y)**2, (x, y)) assert limit(harmonic(x, y), x, oo) == harmonic(oo, y) assert limit(harmonic(x, y + 1), x, oo) == zeta(y + 1) assert limit(harmonic(x, y - 1), x, oo) == harmonic(oo, y - 1) assert limit(harmonic(x, z), x, oo) == Limit(harmonic(x, z), x, oo, dir='-') assert limit(harmonic(x, z + 1), x, oo) == oo assert limit(harmonic(x, z + 2), x, oo) == harmonic(oo, z + 2) assert limit(harmonic(x, z - 1), x, oo) == Limit(harmonic(x, z - 1), x, oo, dir='-') def test_euler(): assert euler(0) == 1 assert euler(1) == 0 assert euler(2) == -1 assert euler(3) == 0 assert euler(4) == 5 assert euler(6) == -61 assert euler(8) == 1385 assert euler(20, evaluate=False) != 370371188237525 n = Symbol('n', integer=True) assert euler(n) != -1 assert euler(n).subs(n, 2) == -1 assert euler(-1) == S.Pi / 2 assert euler(-1, 1) == 2*log(2) assert euler(-2).evalf() == (2*S.Catalan).evalf() assert euler(-3).evalf() == (S.Pi**3 / 16).evalf() assert str(euler(2.3).evalf(n=10)) == '-1.052850274' assert str(euler(1.2, 3.4).evalf(n=10)) == '3.575613489' assert str(euler(I).evalf(n=10)) == '1.248446443 - 0.7675445124*I' assert str(euler(I, I).evalf(n=10)) == '0.04812930469 + 0.01052411008*I' assert euler(20).evalf() == 370371188237525.0 assert euler(20, evaluate=False).evalf() == 370371188237525.0 assert euler(n).rewrite(Sum) == euler(n) n = Symbol('n', integer=True, nonnegative=True) assert euler(2*n + 1).rewrite(Sum) == 0 _j = Dummy('j') _k = Dummy('k') assert euler(2*n).rewrite(Sum).dummy_eq( I*Sum((-1)**_j*2**(-_k)*I**(-_k)*(-2*_j + _k)**(2*n + 1)* binomial(_k, _j)/_k, (_j, 0, _k), (_k, 1, 2*n + 1))) def test_euler_odd(): n = Symbol('n', odd=True, positive=True) assert euler(n) == 0 n = Symbol('n', odd=True) assert euler(n) != 0 def test_euler_polynomials(): assert euler(0, x) == 1 assert euler(1, x) == x - S.Half assert euler(2, x) == x**2 - x assert euler(3, x) == x**3 - (3*x**2)/2 + Rational(1, 4) m = Symbol('m') assert isinstance(euler(m, x), euler) from sympy.core.numbers import Float A = Float('-0.46237208575048694923364757452876131e8') # from Maple B = euler(19, S.Pi).evalf(32) assert abs((A - B)/A) < 1e-31 def test_euler_polynomial_rewrite(): m = Symbol('m') A = euler(m, x).rewrite('Sum'); assert A.subs({m:3, x:5}).doit() == euler(3, 5) def test_catalan(): n = Symbol('n', integer=True) m = Symbol('m', integer=True, positive=True) k = Symbol('k', integer=True, nonnegative=True) p = Symbol('p', nonnegative=True) catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786] for i, c in enumerate(catalans): assert catalan(i) == c assert catalan(n).rewrite(factorial).subs(n, i) == c assert catalan(n).rewrite(Product).subs(n, i).doit() == c assert unchanged(catalan, x) assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1) assert catalan(S.Half).rewrite(gamma) == 8/(3*pi) assert catalan(S.Half).rewrite(factorial).rewrite(gamma) ==\ 8 / (3 * pi) assert catalan(3*x).rewrite(gamma) == 4**( 3*x)*gamma(3*x + S.Half)/(sqrt(pi)*gamma(3*x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1) assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1) * factorial(n)) assert isinstance(catalan(n).rewrite(Product), catalan) assert isinstance(catalan(m).rewrite(Product), Product) assert diff(catalan(x), x) == (polygamma( 0, x + S.Half) - polygamma(0, x + 2) + log(4))*catalan(x) assert catalan(x).evalf() == catalan(x) c = catalan(S.Half).evalf() assert str(c) == '0.848826363156775' c = catalan(I).evalf(3) assert str((re(c), im(c))) == '(0.398, -0.0209)' # Assumptions assert catalan(p).is_positive is True assert catalan(k).is_integer is True assert catalan(m+3).is_composite is True def test_genocchi(): genocchis = [0, -1, -1, 0, 1, 0, -3, 0, 17] for n, g in enumerate(genocchis): assert genocchi(n) == g m = Symbol('m', integer=True) n = Symbol('n', integer=True, positive=True) assert unchanged(genocchi, m) assert genocchi(2*n + 1) == 0 gn = 2 * (1 - 2**n) * bernoulli(n) assert genocchi(n).rewrite(bernoulli).factor() == gn.factor() gnx = 2 * (bernoulli(n, x) - 2**n * bernoulli(n, (x+1) / 2)) assert genocchi(n, x).rewrite(bernoulli).factor() == gnx.factor() assert genocchi(2 * n).is_odd assert genocchi(2 * n).is_even is False assert genocchi(2 * n + 1).is_even assert genocchi(n).is_integer assert genocchi(4 * n).is_positive # these are the only 2 prime Genocchi numbers assert genocchi(6, evaluate=False).is_prime == S(-3).is_prime assert genocchi(8, evaluate=False).is_prime assert genocchi(4 * n + 2).is_negative assert genocchi(4 * n + 1).is_negative is False assert genocchi(4 * n - 2).is_negative g0 = genocchi(0, evaluate=False) assert g0.is_positive is False assert g0.is_negative is False assert g0.is_even is True assert g0.is_odd is False assert genocchi(0, x) == 0 assert genocchi(1, x) == -1 assert genocchi(2, x) == 1 - 2*x assert genocchi(3, x) == 3*x - 3*x**2 assert genocchi(4, x) == -1 + 6*x**2 - 4*x**3 y = Symbol("y") assert genocchi(5, (x+y)**100) == -5*(x+y)**400 + 10*(x+y)**300 - 5*(x+y)**100 assert str(genocchi(5.0, 4.0).evalf(n=10)) == '-660.0000000' assert str(genocchi(Rational(5, 4)).evalf(n=10)) == '-1.104286457' assert str(genocchi(-2).evalf(n=10)) == '3.606170709' assert str(genocchi(1.3, 3.7).evalf(n=10)) == '-1.847375373' assert str(genocchi(I, 1.0).evalf(n=10)) == '-0.3161917278 - 1.45311955*I' n = Symbol('n') assert genocchi(n, x).rewrite(dirichlet_eta) == -2*n * dirichlet_eta(1-n, x) def test_andre(): nums = [1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521] for n, a in enumerate(nums): assert andre(n) == a assert andre(S.Infinity) == S.Infinity assert andre(-1) == -log(2) assert andre(-2) == -2*S.Catalan assert andre(-3) == 3*zeta(3)/16 assert andre(-5) == -15*zeta(5)/256 # In fact andre(-2*n) is related to the Dirichlet *beta* function # at 2*n, but SymPy doesn't implement that (or general L-functions) assert unchanged(andre, -4) n = Symbol('n', integer=True, nonnegative=True) assert unchanged(andre, n) assert andre(n).is_integer is True assert andre(n).is_positive is True assert str(andre(10, evaluate=False).evalf(n=10)) == '50521.00000' assert str(andre(-1, evaluate=False).evalf(n=10)) == '-0.6931471806' assert str(andre(-2, evaluate=False).evalf(n=10)) == '-1.831931188' assert str(andre(-4, evaluate=False).evalf(n=10)) == '1.977889103' assert str(andre(I, evaluate=False).evalf(n=10)) == '2.378417833 + 0.6343322845*I' assert andre(x).rewrite(polylog) == \ (-I)**(x+1) * polylog(-x, I) + I**(x+1) * polylog(-x, -I) assert andre(x).rewrite(zeta) == \ 2 * gamma(x+1) / (2*pi)**(x+1) * \ (zeta(x+1, Rational(1,4)) - cos(pi*x) * zeta(x+1, Rational(3,4))) @nocache_fail def test_partition(): partition_nums = [1, 1, 2, 3, 5, 7, 11, 15, 22] for n, p in enumerate(partition_nums): assert partition(n) == p x = Symbol('x') y = Symbol('y', real=True) m = Symbol('m', integer=True) n = Symbol('n', integer=True, negative=True) p = Symbol('p', integer=True, nonnegative=True) assert partition(m).is_integer assert not partition(m).is_negative assert partition(m).is_nonnegative assert partition(n).is_zero assert partition(p).is_positive assert partition(x).subs(x, 7) == 15 assert partition(y).subs(y, 8) == 22 raises(ValueError, lambda: partition(Rational(5, 4))) def test__nT(): assert [_nT(i, j) for i in range(5) for j in range(i + 2)] == [ 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0] check = [_nT(10, i) for i in range(11)] assert check == [0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1] assert all(type(i) is int for i in check) assert _nT(10, 5) == 7 assert _nT(100, 98) == 2 assert _nT(100, 100) == 1 assert _nT(10, 3) == 8 def test_nC_nP_nT(): from sympy.utilities.iterables import ( multiset_permutations, multiset_combinations, multiset_partitions, partitions, subsets, permutations) from sympy.functions.combinatorial.numbers import ( nP, nC, nT, stirling, _stirling1, _stirling2, _multiset_histogram, _AOP_product) from sympy.combinatorics.permutations import Permutation from sympy.core.random import choice c = string.ascii_lowercase for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nP(s, i) tot += check assert len(list(multiset_permutations(s, i))) == check if u: assert nP(len(s), i) == check assert nP(s) == tot except AssertionError: print(s, i, 'failed perm test') raise ValueError() for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nC(s, i) tot += check assert len(list(multiset_combinations(s, i))) == check if u: assert nC(len(s), i) == check assert nC(s) == tot if u: assert nC(len(s)) == tot except AssertionError: print(s, i, 'failed combo test') raise ValueError() for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(i, j) assert check.is_Integer tot += check assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check assert nT(i) == tot for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(range(i), j) tot += check assert len(list(multiset_partitions(list(range(i)), j))) == check assert nT(range(i)) == tot for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(1, 8): check = nT(s, i) tot += check assert len(list(multiset_partitions(s, i))) == check if u: assert nT(range(len(s)), i) == check if u: assert nT(range(len(s))) == tot assert nT(s) == tot except AssertionError: print(s, i, 'failed partition test') raise ValueError() # tests for Stirling numbers of the first kind that are not tested in the # above assert [stirling(9, i, kind=1) for i in range(11)] == [ 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0] perms = list(permutations(range(4))) assert [sum(1 for p in perms if Permutation(p).cycles == i) for i in range(5)] == [0, 6, 11, 6, 1] == [ stirling(4, i, kind=1) for i in range(5)] # http://oeis.org/A008275 assert [stirling(n, k, signed=1) for n in range(10) for k in range(1, n + 1)] == [ 1, -1, 1, 2, -3, 1, -6, 11, -6, 1, 24, -50, 35, -10, 1, -120, 274, -225, 85, -15, 1, 720, -1764, 1624, -735, 175, -21, 1, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind assert [stirling(n, k, kind=1) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind assert [stirling(n, k, kind=2) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1] assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0 raises(ValueError, lambda: stirling(-2, 2)) # Assertion that the return type is SymPy Integer. assert isinstance(_stirling1(6, 3), Integer) assert isinstance(_stirling2(6, 3), Integer) def delta(p): if len(p) == 1: return oo return min(abs(i[0] - i[1]) for i in subsets(p, 2)) parts = multiset_partitions(range(5), 3) d = 2 assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) == stirling(5, 3, d=d) == 7) # other coverage tests assert nC('abb', 2) == nC('aab', 2) == 2 assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27 assert nP(3, 4) == 0 assert nP('aabc', 5) == 0 assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \ len(list(multiset_combinations('aabbccdd', 2))) == 10 assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24 assert nC(list('abcdd'), 4) == 4 assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5 assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7 assert nC('aabb'*3, 3) == 4 # aaa, bbb, abb, baa assert dict(_AOP_product((4,1,1,1))) == { 0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1} # the following was the first t that showed a problem in a previous form of # the function, so it's not as random as it may appear t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4) assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000 raises(ValueError, lambda: _multiset_histogram({1:'a'})) def test_PR_14617(): from sympy.functions.combinatorial.numbers import nT for n in (0, []): for k in (-1, 0, 1): if k == 0: assert nT(n, k) == 1 else: assert nT(n, k) == 0 def test_issue_8496(): n = Symbol("n") k = Symbol("k") raises(TypeError, lambda: catalan(n, k)) def test_issue_8601(): n = Symbol('n', integer=True, negative=True) assert catalan(n - 1) is S.Zero assert catalan(Rational(-1, 2)) is S.ComplexInfinity assert catalan(-S.One) == Rational(-1, 2) c1 = catalan(-5.6).evalf() assert str(c1) == '6.93334070531408e-5' c2 = catalan(-35.4).evalf() assert str(c2) == '-4.14189164517449e-24' def test_motzkin(): assert motzkin.is_motzkin(4) == True assert motzkin.is_motzkin(9) == True assert motzkin.is_motzkin(10) == False assert motzkin.find_motzkin_numbers_in_range(10,200) == [21, 51, 127] assert motzkin.find_motzkin_numbers_in_range(10,400) == [21, 51, 127, 323] assert motzkin.find_motzkin_numbers_in_range(10,1600) == [21, 51, 127, 323, 835] assert motzkin.find_first_n_motzkins(5) == [1, 1, 2, 4, 9] assert motzkin.find_first_n_motzkins(7) == [1, 1, 2, 4, 9, 21, 51] assert motzkin.find_first_n_motzkins(10) == [1, 1, 2, 4, 9, 21, 51, 127, 323, 835] raises(ValueError, lambda: motzkin.eval(77.58)) raises(ValueError, lambda: motzkin.eval(-8)) raises(ValueError, lambda: motzkin.find_motzkin_numbers_in_range(-2,7)) raises(ValueError, lambda: motzkin.find_motzkin_numbers_in_range(13,7)) raises(ValueError, lambda: motzkin.find_first_n_motzkins(112.8)) def test_nD_derangements(): from sympy.utilities.iterables import (partitions, multiset, multiset_derangements, multiset_permutations) from sympy.functions.combinatorial.numbers import nD got = [] for i in partitions(8, k=4): s = [] it = 0 for k, v in i.items(): for i in range(v): s.extend([it]*k) it += 1 ms = multiset(s) c1 = sum(1 for i in multiset_permutations(s) if all(i != j for i, j in zip(i, s))) assert c1 == nD(ms) == nD(ms, 0) == nD(ms, 1) v = [tuple(i) for i in multiset_derangements(s)] c2 = len(v) assert c2 == len(set(v)) assert c1 == c2 got.append(c1) assert got == [1, 4, 6, 12, 24, 24, 61, 126, 315, 780, 297, 772, 2033, 5430, 14833] assert nD('1112233456', brute=True) == nD('1112233456') == 16356 assert nD('') == nD([]) == nD({}) == 0 assert nD({1: 0}) == 0 raises(ValueError, lambda: nD({1: -1})) assert nD('112') == 0 assert nD(i='112') == 0 assert [nD(n=i) for i in range(6)] == [0, 0, 1, 2, 9, 44] assert nD((i for i in range(4))) == nD('0123') == 9 assert nD(m=(i for i in range(4))) == 3 assert nD(m={0: 1, 1: 1, 2: 1, 3: 1}) == 3 assert nD(m=[0, 1, 2, 3]) == 3 raises(TypeError, lambda: nD(m=0)) raises(TypeError, lambda: nD(-1)) assert nD({-1: 1, -2: 1}) == 1 assert nD(m={0: 3}) == 0 raises(ValueError, lambda: nD(i='123', n=3)) raises(ValueError, lambda: nD(i='123', m=(1,2))) raises(ValueError, lambda: nD(n=0, m=(1,2))) raises(ValueError, lambda: nD({1: -1})) raises(ValueError, lambda: nD(m={-1: 1, 2: 1})) raises(ValueError, lambda: nD(m={1: -1, 2: 1})) raises(ValueError, lambda: nD(m=[-1, 2])) raises(TypeError, lambda: nD({1: x})) raises(TypeError, lambda: nD(m={1: x})) raises(TypeError, lambda: nD(m={x: 1}))
c6c7f9377d082dbfe6769c7a09be44d28d506395788a6a435f6c2a00d2675c11
from sympy.calculus.accumulationbounds import AccumBounds from sympy.core.add import Add from sympy.core.function import (Lambda, diff) from sympy.core.mod import Mod from sympy.core.mul import Mul from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.complexes import (arg, conjugate, im, re) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh, coth, sinh, tanh) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (acos, acot, acsc, asec, asin, atan, atan2, cos, cot, csc, sec, sin, sinc, tan) from sympy.functions.special.bessel import (besselj, jn) from sympy.functions.special.delta_functions import Heaviside from sympy.matrices.dense import Matrix from sympy.polys.polytools import (cancel, gcd) from sympy.series.limits import limit from sympy.series.order import O from sympy.series.series import series from sympy.sets.fancysets import ImageSet from sympy.sets.sets import (FiniteSet, Interval) from sympy.simplify.simplify import simplify from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.core.relational import Ne, Eq from sympy.functions.elementary.piecewise import Piecewise from sympy.sets.setexpr import SetExpr from sympy.testing.pytest import XFAIL, slow, raises x, y, z = symbols('x y z') r = Symbol('r', real=True) k, m = symbols('k m', integer=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) np = Symbol('p', nonpositive=True) nn = Symbol('n', nonnegative=True) nz = Symbol('nz', nonzero=True) ep = Symbol('ep', extended_positive=True) en = Symbol('en', extended_negative=True) enp = Symbol('ep', extended_nonpositive=True) enn = Symbol('en', extended_nonnegative=True) enz = Symbol('enz', extended_nonzero=True) a = Symbol('a', algebraic=True) na = Symbol('na', nonzero=True, algebraic=True) def test_sin(): x, y = symbols('x y') z = symbols('z', imaginary=True) assert sin.nargs == FiniteSet(1) assert sin(nan) is nan assert sin(zoo) is nan assert sin(oo) == AccumBounds(-1, 1) assert sin(oo) - sin(oo) == AccumBounds(-2, 2) assert sin(oo*I) == oo*I assert sin(-oo*I) == -oo*I assert 0*sin(oo) is S.Zero assert 0/sin(oo) is S.Zero assert 0 + sin(oo) == AccumBounds(-1, 1) assert 5 + sin(oo) == AccumBounds(4, 6) assert sin(0) == 0 assert sin(z*I) == I*sinh(z) assert sin(asin(x)) == x assert sin(atan(x)) == x / sqrt(1 + x**2) assert sin(acos(x)) == sqrt(1 - x**2) assert sin(acot(x)) == 1 / (sqrt(1 + 1 / x**2) * x) assert sin(acsc(x)) == 1 / x assert sin(asec(x)) == sqrt(1 - 1 / x**2) assert sin(atan2(y, x)) == y / sqrt(x**2 + y**2) assert sin(pi*I) == sinh(pi)*I assert sin(-pi*I) == -sinh(pi)*I assert sin(-2*I) == -sinh(2)*I assert sin(pi) == 0 assert sin(-pi) == 0 assert sin(2*pi) == 0 assert sin(-2*pi) == 0 assert sin(-3*10**73*pi) == 0 assert sin(7*10**103*pi) == 0 assert sin(pi/2) == 1 assert sin(-pi/2) == -1 assert sin(pi*Rational(5, 2)) == 1 assert sin(pi*Rational(7, 2)) == -1 ne = symbols('ne', integer=True, even=False) e = symbols('e', even=True) assert sin(pi*ne/2) == (-1)**(ne/2 - S.Half) assert sin(pi*k/2).func == sin assert sin(pi*e/2) == 0 assert sin(pi*k) == 0 assert sin(pi*k).subs(k, 3) == sin(pi*k/2).subs(k, 6) # issue 8298 assert sin(pi/3) == S.Half*sqrt(3) assert sin(pi*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3) assert sin(pi/4) == S.Half*sqrt(2) assert sin(-pi/4) == Rational(-1, 2)*sqrt(2) assert sin(pi*Rational(17, 4)) == S.Half*sqrt(2) assert sin(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2) assert sin(pi/6) == S.Half assert sin(-pi/6) == Rational(-1, 2) assert sin(pi*Rational(7, 6)) == Rational(-1, 2) assert sin(pi*Rational(-5, 6)) == Rational(-1, 2) assert sin(pi*Rational(1, 5)) == sqrt((5 - sqrt(5)) / 8) assert sin(pi*Rational(2, 5)) == sqrt((5 + sqrt(5)) / 8) assert sin(pi*Rational(3, 5)) == sin(pi*Rational(2, 5)) assert sin(pi*Rational(4, 5)) == sin(pi*Rational(1, 5)) assert sin(pi*Rational(6, 5)) == -sin(pi*Rational(1, 5)) assert sin(pi*Rational(8, 5)) == -sin(pi*Rational(2, 5)) assert sin(pi*Rational(-1273, 5)) == -sin(pi*Rational(2, 5)) assert sin(pi/8) == sqrt((2 - sqrt(2))/4) assert sin(pi/10) == Rational(-1, 4) + sqrt(5)/4 assert sin(pi/12) == -sqrt(2)/4 + sqrt(6)/4 assert sin(pi*Rational(5, 12)) == sqrt(2)/4 + sqrt(6)/4 assert sin(pi*Rational(-7, 12)) == -sqrt(2)/4 - sqrt(6)/4 assert sin(pi*Rational(-11, 12)) == sqrt(2)/4 - sqrt(6)/4 assert sin(pi*Rational(104, 105)) == sin(pi/105) assert sin(pi*Rational(106, 105)) == -sin(pi/105) assert sin(pi*Rational(-104, 105)) == -sin(pi/105) assert sin(pi*Rational(-106, 105)) == sin(pi/105) assert sin(x*I) == sinh(x)*I assert sin(k*pi) == 0 assert sin(17*k*pi) == 0 assert sin(2*k*pi + 4) == sin(4) assert sin(2*k*pi + m*pi + 1) == (-1)**(m + 2*k)*sin(1) assert sin(k*pi*I) == sinh(k*pi)*I assert sin(r).is_real is True assert sin(0, evaluate=False).is_algebraic assert sin(a).is_algebraic is None assert sin(na).is_algebraic is False q = Symbol('q', rational=True) assert sin(pi*q).is_algebraic qn = Symbol('qn', rational=True, nonzero=True) assert sin(qn).is_rational is False assert sin(q).is_rational is None # issue 8653 assert isinstance(sin( re(x) - im(y)), sin) is True assert isinstance(sin(-re(x) + im(y)), sin) is False assert sin(SetExpr(Interval(0, 1))) == SetExpr(ImageSet(Lambda(x, sin(x)), Interval(0, 1))) for d in list(range(1, 22)) + [60, 85]: for n in range(d*2 + 1): x = n*pi/d e = abs( float(sin(x)) - sin(float(x)) ) assert e < 1e-12 assert sin(0, evaluate=False).is_zero is True assert sin(k*pi, evaluate=False).is_zero is True assert sin(Add(1, -1, evaluate=False), evaluate=False).is_zero is True def test_sin_cos(): for d in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 24, 30, 40, 60, 120]: # list is not exhaustive... for n in range(-2*d, d*2): x = n*pi/d assert sin(x + pi/2) == cos(x), "fails for %d*pi/%d" % (n, d) assert sin(x - pi/2) == -cos(x), "fails for %d*pi/%d" % (n, d) assert sin(x) == cos(x - pi/2), "fails for %d*pi/%d" % (n, d) assert -sin(x) == cos(x + pi/2), "fails for %d*pi/%d" % (n, d) def test_sin_series(): assert sin(x).series(x, 0, 9) == \ x - x**3/6 + x**5/120 - x**7/5040 + O(x**9) def test_sin_rewrite(): assert sin(x).rewrite(exp) == -I*(exp(I*x) - exp(-I*x))/2 assert sin(x).rewrite(tan) == 2*tan(x/2)/(1 + tan(x/2)**2) assert sin(x).rewrite(cot) == \ Piecewise((0, Eq(im(x), 0) & Eq(Mod(x, pi), 0)), (2*cot(x/2)/(cot(x/2)**2 + 1), True)) assert sin(sinh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sinh(3)).n() assert sin(cosh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cosh(3)).n() assert sin(tanh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tanh(3)).n() assert sin(coth(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, coth(3)).n() assert sin(sin(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sin(3)).n() assert sin(cos(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cos(3)).n() assert sin(tan(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tan(3)).n() assert sin(cot(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cot(3)).n() assert sin(log(x)).rewrite(Pow) == I*x**-I / 2 - I*x**I /2 assert sin(x).rewrite(csc) == 1/csc(x) assert sin(x).rewrite(cos) == cos(x - pi / 2, evaluate=False) assert sin(x).rewrite(sec) == 1 / sec(x - pi / 2, evaluate=False) assert sin(cos(x)).rewrite(Pow) == sin(cos(x)) def _test_extrig(f, i, e): from sympy.core.function import expand_trig assert unchanged(f, i) assert expand_trig(f(i)) == f(i) # testing directly instead of with .expand(trig=True) # because the other expansions undo the unevaluated Mul assert expand_trig(f(Mul(i, 1, evaluate=False))) == e assert abs(f(i) - e).n() < 1e-10 def test_sin_expansion(): # Note: these formulas are not unique. The ones here come from the # Chebyshev formulas. assert sin(x + y).expand(trig=True) == sin(x)*cos(y) + cos(x)*sin(y) assert sin(x - y).expand(trig=True) == sin(x)*cos(y) - cos(x)*sin(y) assert sin(y - x).expand(trig=True) == cos(x)*sin(y) - sin(x)*cos(y) assert sin(2*x).expand(trig=True) == 2*sin(x)*cos(x) assert sin(3*x).expand(trig=True) == -4*sin(x)**3 + 3*sin(x) assert sin(4*x).expand(trig=True) == -8*sin(x)**3*cos(x) + 4*sin(x)*cos(x) _test_extrig(sin, 2, 2*sin(1)*cos(1)) _test_extrig(sin, 3, -4*sin(1)**3 + 3*sin(1)) def test_sin_AccumBounds(): assert sin(AccumBounds(-oo, oo)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, oo)) == AccumBounds(-1, 1) assert sin(AccumBounds(-oo, 0)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, S.Pi*Rational(3, 4))) == AccumBounds(0, 1) assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(7, 4))) == AccumBounds(-1, sin(S.Pi*Rational(3, 4))) assert sin(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(sin(S.Pi/4), sin(S.Pi/3)) assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 6))) == AccumBounds(sin(S.Pi*Rational(5, 6)), sin(S.Pi*Rational(3, 4))) def test_sin_fdiff(): assert sin(x).fdiff() == cos(x) raises(ArgumentIndexError, lambda: sin(x).fdiff(2)) def test_trig_symmetry(): assert sin(-x) == -sin(x) assert cos(-x) == cos(x) assert tan(-x) == -tan(x) assert cot(-x) == -cot(x) assert sin(x + pi) == -sin(x) assert sin(x + 2*pi) == sin(x) assert sin(x + 3*pi) == -sin(x) assert sin(x + 4*pi) == sin(x) assert sin(x - 5*pi) == -sin(x) assert cos(x + pi) == -cos(x) assert cos(x + 2*pi) == cos(x) assert cos(x + 3*pi) == -cos(x) assert cos(x + 4*pi) == cos(x) assert cos(x - 5*pi) == -cos(x) assert tan(x + pi) == tan(x) assert tan(x - 3*pi) == tan(x) assert cot(x + pi) == cot(x) assert cot(x - 3*pi) == cot(x) assert sin(pi/2 - x) == cos(x) assert sin(pi*Rational(3, 2) - x) == -cos(x) assert sin(pi*Rational(5, 2) - x) == cos(x) assert cos(pi/2 - x) == sin(x) assert cos(pi*Rational(3, 2) - x) == -sin(x) assert cos(pi*Rational(5, 2) - x) == sin(x) assert tan(pi/2 - x) == cot(x) assert tan(pi*Rational(3, 2) - x) == cot(x) assert tan(pi*Rational(5, 2) - x) == cot(x) assert cot(pi/2 - x) == tan(x) assert cot(pi*Rational(3, 2) - x) == tan(x) assert cot(pi*Rational(5, 2) - x) == tan(x) assert sin(pi/2 + x) == cos(x) assert cos(pi/2 + x) == -sin(x) assert tan(pi/2 + x) == -cot(x) assert cot(pi/2 + x) == -tan(x) def test_cos(): x, y = symbols('x y') assert cos.nargs == FiniteSet(1) assert cos(nan) is nan assert cos(oo) == AccumBounds(-1, 1) assert cos(oo) - cos(oo) == AccumBounds(-2, 2) assert cos(oo*I) is oo assert cos(-oo*I) is oo assert cos(zoo) is nan assert cos(0) == 1 assert cos(acos(x)) == x assert cos(atan(x)) == 1 / sqrt(1 + x**2) assert cos(asin(x)) == sqrt(1 - x**2) assert cos(acot(x)) == 1 / sqrt(1 + 1 / x**2) assert cos(acsc(x)) == sqrt(1 - 1 / x**2) assert cos(asec(x)) == 1 / x assert cos(atan2(y, x)) == x / sqrt(x**2 + y**2) assert cos(pi*I) == cosh(pi) assert cos(-pi*I) == cosh(pi) assert cos(-2*I) == cosh(2) assert cos(pi/2) == 0 assert cos(-pi/2) == 0 assert cos(pi/2) == 0 assert cos(-pi/2) == 0 assert cos((-3*10**73 + 1)*pi/2) == 0 assert cos((7*10**103 + 1)*pi/2) == 0 n = symbols('n', integer=True, even=False) e = symbols('e', even=True) assert cos(pi*n/2) == 0 assert cos(pi*e/2) == (-1)**(e/2) assert cos(pi) == -1 assert cos(-pi) == -1 assert cos(2*pi) == 1 assert cos(5*pi) == -1 assert cos(8*pi) == 1 assert cos(pi/3) == S.Half assert cos(pi*Rational(-2, 3)) == Rational(-1, 2) assert cos(pi/4) == S.Half*sqrt(2) assert cos(-pi/4) == S.Half*sqrt(2) assert cos(pi*Rational(11, 4)) == Rational(-1, 2)*sqrt(2) assert cos(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2) assert cos(pi/6) == S.Half*sqrt(3) assert cos(-pi/6) == S.Half*sqrt(3) assert cos(pi*Rational(7, 6)) == Rational(-1, 2)*sqrt(3) assert cos(pi*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3) assert cos(pi*Rational(1, 5)) == (sqrt(5) + 1)/4 assert cos(pi*Rational(2, 5)) == (sqrt(5) - 1)/4 assert cos(pi*Rational(3, 5)) == -cos(pi*Rational(2, 5)) assert cos(pi*Rational(4, 5)) == -cos(pi*Rational(1, 5)) assert cos(pi*Rational(6, 5)) == -cos(pi*Rational(1, 5)) assert cos(pi*Rational(8, 5)) == cos(pi*Rational(2, 5)) assert cos(pi*Rational(-1273, 5)) == -cos(pi*Rational(2, 5)) assert cos(pi/8) == sqrt((2 + sqrt(2))/4) assert cos(pi/12) == sqrt(2)/4 + sqrt(6)/4 assert cos(pi*Rational(5, 12)) == -sqrt(2)/4 + sqrt(6)/4 assert cos(pi*Rational(7, 12)) == sqrt(2)/4 - sqrt(6)/4 assert cos(pi*Rational(11, 12)) == -sqrt(2)/4 - sqrt(6)/4 assert cos(pi*Rational(104, 105)) == -cos(pi/105) assert cos(pi*Rational(106, 105)) == -cos(pi/105) assert cos(pi*Rational(-104, 105)) == -cos(pi/105) assert cos(pi*Rational(-106, 105)) == -cos(pi/105) assert cos(x*I) == cosh(x) assert cos(k*pi*I) == cosh(k*pi) assert cos(r).is_real is True assert cos(0, evaluate=False).is_algebraic assert cos(a).is_algebraic is None assert cos(na).is_algebraic is False q = Symbol('q', rational=True) assert cos(pi*q).is_algebraic assert cos(pi*Rational(2, 7)).is_algebraic assert cos(k*pi) == (-1)**k assert cos(2*k*pi) == 1 assert cos(0, evaluate=False).is_zero is False assert cos(Rational(1, 2)).is_zero is False # The following test will return None as the result, but really it should # be True even if it is not always possible to resolve an assumptions query. assert cos(asin(-1, evaluate=False), evaluate=False).is_zero is None for d in list(range(1, 22)) + [60, 85]: for n in range(2*d + 1): x = n*pi/d e = abs( float(cos(x)) - cos(float(x)) ) assert e < 1e-12 def test_issue_6190(): c = Float('123456789012345678901234567890.25', '') for cls in [sin, cos, tan, cot]: assert cls(c*pi) == cls(pi/4) assert cls(4.125*pi) == cls(pi/8) assert cls(4.7*pi) == cls((4.7 % 2)*pi) def test_cos_series(): assert cos(x).series(x, 0, 9) == \ 1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**9) def test_cos_rewrite(): assert cos(x).rewrite(exp) == exp(I*x)/2 + exp(-I*x)/2 assert cos(x).rewrite(tan) == (1 - tan(x/2)**2)/(1 + tan(x/2)**2) assert cos(x).rewrite(cot) == \ Piecewise((1, Eq(im(x), 0) & Eq(Mod(x, 2*pi), 0)), ((cot(x/2)**2 - 1)/(cot(x/2)**2 + 1), True)) assert cos(sinh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sinh(3)).n() assert cos(cosh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cosh(3)).n() assert cos(tanh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tanh(3)).n() assert cos(coth(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, coth(3)).n() assert cos(sin(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sin(3)).n() assert cos(cos(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cos(3)).n() assert cos(tan(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tan(3)).n() assert cos(cot(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cot(3)).n() assert cos(log(x)).rewrite(Pow) == x**I/2 + x**-I/2 assert cos(x).rewrite(sec) == 1/sec(x) assert cos(x).rewrite(sin) == sin(x + pi/2, evaluate=False) assert cos(x).rewrite(csc) == 1/csc(-x + pi/2, evaluate=False) assert cos(sin(x)).rewrite(Pow) == cos(sin(x)) def test_cos_expansion(): assert cos(x + y).expand(trig=True) == cos(x)*cos(y) - sin(x)*sin(y) assert cos(x - y).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y) assert cos(y - x).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y) assert cos(2*x).expand(trig=True) == 2*cos(x)**2 - 1 assert cos(3*x).expand(trig=True) == 4*cos(x)**3 - 3*cos(x) assert cos(4*x).expand(trig=True) == 8*cos(x)**4 - 8*cos(x)**2 + 1 _test_extrig(cos, 2, 2*cos(1)**2 - 1) _test_extrig(cos, 3, 4*cos(1)**3 - 3*cos(1)) def test_cos_AccumBounds(): assert cos(AccumBounds(-oo, oo)) == AccumBounds(-1, 1) assert cos(AccumBounds(0, oo)) == AccumBounds(-1, 1) assert cos(AccumBounds(-oo, 0)) == AccumBounds(-1, 1) assert cos(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1) assert cos(AccumBounds(-S.Pi/3, S.Pi/4)) == AccumBounds(cos(-S.Pi/3), 1) assert cos(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 4))) == AccumBounds(-1, cos(S.Pi*Rational(3, 4))) assert cos(AccumBounds(S.Pi*Rational(5, 4), S.Pi*Rational(4, 3))) == AccumBounds(cos(S.Pi*Rational(5, 4)), cos(S.Pi*Rational(4, 3))) assert cos(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(cos(S.Pi/3), cos(S.Pi/4)) def test_cos_fdiff(): assert cos(x).fdiff() == -sin(x) raises(ArgumentIndexError, lambda: cos(x).fdiff(2)) def test_tan(): assert tan(nan) is nan assert tan(zoo) is nan assert tan(oo) == AccumBounds(-oo, oo) assert tan(oo) - tan(oo) == AccumBounds(-oo, oo) assert tan.nargs == FiniteSet(1) assert tan(oo*I) == I assert tan(-oo*I) == -I assert tan(0) == 0 assert tan(atan(x)) == x assert tan(asin(x)) == x / sqrt(1 - x**2) assert tan(acos(x)) == sqrt(1 - x**2) / x assert tan(acot(x)) == 1 / x assert tan(acsc(x)) == 1 / (sqrt(1 - 1 / x**2) * x) assert tan(asec(x)) == sqrt(1 - 1 / x**2) * x assert tan(atan2(y, x)) == y/x assert tan(pi*I) == tanh(pi)*I assert tan(-pi*I) == -tanh(pi)*I assert tan(-2*I) == -tanh(2)*I assert tan(pi) == 0 assert tan(-pi) == 0 assert tan(2*pi) == 0 assert tan(-2*pi) == 0 assert tan(-3*10**73*pi) == 0 assert tan(pi/2) is zoo assert tan(pi*Rational(3, 2)) is zoo assert tan(pi/3) == sqrt(3) assert tan(pi*Rational(-2, 3)) == sqrt(3) assert tan(pi/4) is S.One assert tan(-pi/4) is S.NegativeOne assert tan(pi*Rational(17, 4)) is S.One assert tan(pi*Rational(-3, 4)) is S.One assert tan(pi/5) == sqrt(5 - 2*sqrt(5)) assert tan(pi*Rational(2, 5)) == sqrt(5 + 2*sqrt(5)) assert tan(pi*Rational(18, 5)) == -sqrt(5 + 2*sqrt(5)) assert tan(pi*Rational(-16, 5)) == -sqrt(5 - 2*sqrt(5)) assert tan(pi/6) == 1/sqrt(3) assert tan(-pi/6) == -1/sqrt(3) assert tan(pi*Rational(7, 6)) == 1/sqrt(3) assert tan(pi*Rational(-5, 6)) == 1/sqrt(3) assert tan(pi/8) == -1 + sqrt(2) assert tan(pi*Rational(3, 8)) == 1 + sqrt(2) # issue 15959 assert tan(pi*Rational(5, 8)) == -1 - sqrt(2) assert tan(pi*Rational(7, 8)) == 1 - sqrt(2) assert tan(pi/10) == sqrt(1 - 2*sqrt(5)/5) assert tan(pi*Rational(3, 10)) == sqrt(1 + 2*sqrt(5)/5) assert tan(pi*Rational(17, 10)) == -sqrt(1 + 2*sqrt(5)/5) assert tan(pi*Rational(-31, 10)) == -sqrt(1 - 2*sqrt(5)/5) assert tan(pi/12) == -sqrt(3) + 2 assert tan(pi*Rational(5, 12)) == sqrt(3) + 2 assert tan(pi*Rational(7, 12)) == -sqrt(3) - 2 assert tan(pi*Rational(11, 12)) == sqrt(3) - 2 assert tan(pi/24).radsimp() == -2 - sqrt(3) + sqrt(2) + sqrt(6) assert tan(pi*Rational(5, 24)).radsimp() == -2 + sqrt(3) - sqrt(2) + sqrt(6) assert tan(pi*Rational(7, 24)).radsimp() == 2 - sqrt(3) - sqrt(2) + sqrt(6) assert tan(pi*Rational(11, 24)).radsimp() == 2 + sqrt(3) + sqrt(2) + sqrt(6) assert tan(pi*Rational(13, 24)).radsimp() == -2 - sqrt(3) - sqrt(2) - sqrt(6) assert tan(pi*Rational(17, 24)).radsimp() == -2 + sqrt(3) + sqrt(2) - sqrt(6) assert tan(pi*Rational(19, 24)).radsimp() == 2 - sqrt(3) + sqrt(2) - sqrt(6) assert tan(pi*Rational(23, 24)).radsimp() == 2 + sqrt(3) - sqrt(2) - sqrt(6) assert tan(x*I) == tanh(x)*I assert tan(k*pi) == 0 assert tan(17*k*pi) == 0 assert tan(k*pi*I) == tanh(k*pi)*I assert tan(r).is_real is None assert tan(r).is_extended_real is True assert tan(0, evaluate=False).is_algebraic assert tan(a).is_algebraic is None assert tan(na).is_algebraic is False assert tan(pi*Rational(10, 7)) == tan(pi*Rational(3, 7)) assert tan(pi*Rational(11, 7)) == -tan(pi*Rational(3, 7)) assert tan(pi*Rational(-11, 7)) == tan(pi*Rational(3, 7)) assert tan(pi*Rational(15, 14)) == tan(pi/14) assert tan(pi*Rational(-15, 14)) == -tan(pi/14) assert tan(r).is_finite is None assert tan(I*r).is_finite is True # https://github.com/sympy/sympy/issues/21177 f = tan(pi*(x + S(3)/2))/(3*x) assert f.as_leading_term(x) == -1/(3*pi*x**2) def test_tan_series(): assert tan(x).series(x, 0, 9) == \ x + x**3/3 + 2*x**5/15 + 17*x**7/315 + O(x**9) def test_tan_rewrite(): neg_exp, pos_exp = exp(-x*I), exp(x*I) assert tan(x).rewrite(exp) == I*(neg_exp - pos_exp)/(neg_exp + pos_exp) assert tan(x).rewrite(sin) == 2*sin(x)**2/sin(2*x) assert tan(x).rewrite(cos) == cos(x - S.Pi/2, evaluate=False)/cos(x) assert tan(x).rewrite(cot) == 1/cot(x) assert tan(sinh(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sinh(3)).n() assert tan(cosh(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cosh(3)).n() assert tan(tanh(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tanh(3)).n() assert tan(coth(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, coth(3)).n() assert tan(sin(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sin(3)).n() assert tan(cos(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cos(3)).n() assert tan(tan(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tan(3)).n() assert tan(cot(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cot(3)).n() assert tan(log(x)).rewrite(Pow) == I*(x**-I - x**I)/(x**-I + x**I) assert tan(x).rewrite(sec) == sec(x)/sec(x - pi/2, evaluate=False) assert tan(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)/csc(x) assert tan(sin(x)).rewrite(Pow) == tan(sin(x)) @slow def test_tan_rewrite_slow(): assert 0 == (cos(pi/34)*tan(pi/34) - sin(pi/34)).rewrite(pow) assert 0 == (cos(pi/17)*tan(pi/17) - sin(pi/17)).rewrite(pow) assert tan(pi/19).rewrite(pow) == tan(pi/19) assert tan(pi*Rational(8, 19)).rewrite(sqrt) == tan(pi*Rational(8, 19)) assert tan(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == sqrt(sqrt(5)/8 + Rational(5, 8))/(Rational(-1, 4) + sqrt(5)/4) def test_tan_subs(): assert tan(x).subs(tan(x), y) == y assert tan(x).subs(x, y) == tan(y) assert tan(x).subs(x, S.Pi/2) is zoo assert tan(x).subs(x, S.Pi*Rational(3, 2)) is zoo def test_tan_expansion(): assert tan(x + y).expand(trig=True) == ((tan(x) + tan(y))/(1 - tan(x)*tan(y))).expand() assert tan(x - y).expand(trig=True) == ((tan(x) - tan(y))/(1 + tan(x)*tan(y))).expand() assert tan(x + y + z).expand(trig=True) == ( (tan(x) + tan(y) + tan(z) - tan(x)*tan(y)*tan(z))/ (1 - tan(x)*tan(y) - tan(x)*tan(z) - tan(y)*tan(z))).expand() assert 0 == tan(2*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 7))])*24 - 7 assert 0 == tan(3*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*55 - 37 assert 0 == tan(4*x - pi/4).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*239 - 1 _test_extrig(tan, 2, 2*tan(1)/(1 - tan(1)**2)) _test_extrig(tan, 3, (-tan(1)**3 + 3*tan(1))/(1 - 3*tan(1)**2)) def test_tan_AccumBounds(): assert tan(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo) assert tan(AccumBounds(S.Pi/3, S.Pi*Rational(2, 3))) == AccumBounds(-oo, oo) assert tan(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(tan(S.Pi/6), tan(S.Pi/3)) def test_tan_fdiff(): assert tan(x).fdiff() == tan(x)**2 + 1 raises(ArgumentIndexError, lambda: tan(x).fdiff(2)) def test_cot(): assert cot(nan) is nan assert cot.nargs == FiniteSet(1) assert cot(oo*I) == -I assert cot(-oo*I) == I assert cot(zoo) is nan assert cot(0) is zoo assert cot(2*pi) is zoo assert cot(acot(x)) == x assert cot(atan(x)) == 1 / x assert cot(asin(x)) == sqrt(1 - x**2) / x assert cot(acos(x)) == x / sqrt(1 - x**2) assert cot(acsc(x)) == sqrt(1 - 1 / x**2) * x assert cot(asec(x)) == 1 / (sqrt(1 - 1 / x**2) * x) assert cot(atan2(y, x)) == x/y assert cot(pi*I) == -coth(pi)*I assert cot(-pi*I) == coth(pi)*I assert cot(-2*I) == coth(2)*I assert cot(pi) == cot(2*pi) == cot(3*pi) assert cot(-pi) == cot(-2*pi) == cot(-3*pi) assert cot(pi/2) == 0 assert cot(-pi/2) == 0 assert cot(pi*Rational(5, 2)) == 0 assert cot(pi*Rational(7, 2)) == 0 assert cot(pi/3) == 1/sqrt(3) assert cot(pi*Rational(-2, 3)) == 1/sqrt(3) assert cot(pi/4) is S.One assert cot(-pi/4) is S.NegativeOne assert cot(pi*Rational(17, 4)) is S.One assert cot(pi*Rational(-3, 4)) is S.One assert cot(pi/6) == sqrt(3) assert cot(-pi/6) == -sqrt(3) assert cot(pi*Rational(7, 6)) == sqrt(3) assert cot(pi*Rational(-5, 6)) == sqrt(3) assert cot(pi/8) == 1 + sqrt(2) assert cot(pi*Rational(3, 8)) == -1 + sqrt(2) assert cot(pi*Rational(5, 8)) == 1 - sqrt(2) assert cot(pi*Rational(7, 8)) == -1 - sqrt(2) assert cot(pi/12) == sqrt(3) + 2 assert cot(pi*Rational(5, 12)) == -sqrt(3) + 2 assert cot(pi*Rational(7, 12)) == sqrt(3) - 2 assert cot(pi*Rational(11, 12)) == -sqrt(3) - 2 assert cot(pi/24).radsimp() == sqrt(2) + sqrt(3) + 2 + sqrt(6) assert cot(pi*Rational(5, 24)).radsimp() == -sqrt(2) - sqrt(3) + 2 + sqrt(6) assert cot(pi*Rational(7, 24)).radsimp() == -sqrt(2) + sqrt(3) - 2 + sqrt(6) assert cot(pi*Rational(11, 24)).radsimp() == sqrt(2) - sqrt(3) - 2 + sqrt(6) assert cot(pi*Rational(13, 24)).radsimp() == -sqrt(2) + sqrt(3) + 2 - sqrt(6) assert cot(pi*Rational(17, 24)).radsimp() == sqrt(2) - sqrt(3) + 2 - sqrt(6) assert cot(pi*Rational(19, 24)).radsimp() == sqrt(2) + sqrt(3) - 2 - sqrt(6) assert cot(pi*Rational(23, 24)).radsimp() == -sqrt(2) - sqrt(3) - 2 - sqrt(6) assert cot(x*I) == -coth(x)*I assert cot(k*pi*I) == -coth(k*pi)*I assert cot(r).is_real is None assert cot(r).is_extended_real is True assert cot(a).is_algebraic is None assert cot(na).is_algebraic is False assert cot(pi*Rational(10, 7)) == cot(pi*Rational(3, 7)) assert cot(pi*Rational(11, 7)) == -cot(pi*Rational(3, 7)) assert cot(pi*Rational(-11, 7)) == cot(pi*Rational(3, 7)) assert cot(pi*Rational(39, 34)) == cot(pi*Rational(5, 34)) assert cot(pi*Rational(-41, 34)) == -cot(pi*Rational(7, 34)) assert cot(x).is_finite is None assert cot(r).is_finite is None i = Symbol('i', imaginary=True) assert cot(i).is_finite is True assert cot(x).subs(x, 3*pi) is zoo # https://github.com/sympy/sympy/issues/21177 f = cot(pi*(x + 4))/(3*x) assert f.as_leading_term(x) == 1/(3*pi*x**2) def test_tan_cot_sin_cos_evalf(): assert abs((tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15)) - 1).evalf()) < 1e-14 assert abs((cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15)) - 1).evalf()) < 1e-14 @XFAIL def test_tan_cot_sin_cos_ratsimp(): assert 1 == (tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15))).ratsimp() assert 1 == (cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15))).ratsimp() def test_cot_series(): assert cot(x).series(x, 0, 9) == \ 1/x - x/3 - x**3/45 - 2*x**5/945 - x**7/4725 + O(x**9) # issue 6210 assert cot(x**4 + x**5).series(x, 0, 1) == \ x**(-4) - 1/x**3 + x**(-2) - 1/x + 1 + O(x) assert cot(pi*(1-x)).series(x, 0, 3) == -1/(pi*x) + pi*x/3 + O(x**3) assert cot(x).taylor_term(0, x) == 1/x assert cot(x).taylor_term(2, x) is S.Zero assert cot(x).taylor_term(3, x) == -x**3/45 def test_cot_rewrite(): neg_exp, pos_exp = exp(-x*I), exp(x*I) assert cot(x).rewrite(exp) == I*(pos_exp + neg_exp)/(pos_exp - neg_exp) assert cot(x).rewrite(sin) == sin(2*x)/(2*(sin(x)**2)) assert cot(x).rewrite(cos) == cos(x)/cos(x - pi/2, evaluate=False) assert cot(x).rewrite(tan) == 1/tan(x) def check(func): z = cot(func(x)).rewrite(exp) - cot(x).rewrite(exp).subs(x, func(x)) assert z.rewrite(exp).expand() == 0 check(sinh) check(cosh) check(tanh) check(coth) check(sin) check(cos) check(tan) assert cot(log(x)).rewrite(Pow) == -I*(x**-I + x**I)/(x**-I - x**I) assert cot(x).rewrite(sec) == sec(x - pi / 2, evaluate=False) / sec(x) assert cot(x).rewrite(csc) == csc(x) / csc(- x + pi / 2, evaluate=False) assert cot(sin(x)).rewrite(Pow) == cot(sin(x)) @slow def test_cot_rewrite_slow(): assert cot(pi*Rational(4, 34)).rewrite(pow).ratsimp() == \ (cos(pi*Rational(4, 34))/sin(pi*Rational(4, 34))).rewrite(pow).ratsimp() assert cot(pi*Rational(4, 17)).rewrite(pow) == \ (cos(pi*Rational(4, 17))/sin(pi*Rational(4, 17))).rewrite(pow) assert cot(pi/19).rewrite(pow) == cot(pi/19) assert cot(pi/19).rewrite(sqrt) == cot(pi/19) assert cot(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == \ (Rational(-1, 4) + sqrt(5)/4) / sqrt(sqrt(5)/8 + Rational(5, 8)) def test_cot_subs(): assert cot(x).subs(cot(x), y) == y assert cot(x).subs(x, y) == cot(y) assert cot(x).subs(x, 0) is zoo assert cot(x).subs(x, S.Pi) is zoo def test_cot_expansion(): assert cot(x + y).expand(trig=True).together() == ( (cot(x)*cot(y) - 1)/(cot(x) + cot(y))) assert cot(x - y).expand(trig=True).together() == ( cot(x)*cot(-y) - 1)/(cot(x) + cot(-y)) assert cot(x + y + z).expand(trig=True).together() == ( (cot(x)*cot(y)*cot(z) - cot(x) - cot(y) - cot(z))/ (-1 + cot(x)*cot(y) + cot(x)*cot(z) + cot(y)*cot(z))) assert cot(3*x).expand(trig=True).together() == ( (cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1)) assert cot(2*x).expand(trig=True) == cot(x)/2 - 1/(2*cot(x)) assert cot(3*x).expand(trig=True).together() == ( cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1) assert cot(4*x - pi/4).expand(trig=True).cancel() == ( -tan(x)**4 + 4*tan(x)**3 + 6*tan(x)**2 - 4*tan(x) - 1 )/(tan(x)**4 + 4*tan(x)**3 - 6*tan(x)**2 - 4*tan(x) + 1) _test_extrig(cot, 2, (-1 + cot(1)**2)/(2*cot(1))) _test_extrig(cot, 3, (-3*cot(1) + cot(1)**3)/(-1 + 3*cot(1)**2)) def test_cot_AccumBounds(): assert cot(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo) assert cot(AccumBounds(-S.Pi/3, S.Pi/3)) == AccumBounds(-oo, oo) assert cot(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(cot(S.Pi/3), cot(S.Pi/6)) def test_cot_fdiff(): assert cot(x).fdiff() == -cot(x)**2 - 1 raises(ArgumentIndexError, lambda: cot(x).fdiff(2)) def test_sinc(): assert isinstance(sinc(x), sinc) s = Symbol('s', zero=True) assert sinc(s) is S.One assert sinc(S.Infinity) is S.Zero assert sinc(S.NegativeInfinity) is S.Zero assert sinc(S.NaN) is S.NaN assert sinc(S.ComplexInfinity) is S.NaN n = Symbol('n', integer=True, nonzero=True) assert sinc(n*pi) is S.Zero assert sinc(-n*pi) is S.Zero assert sinc(pi/2) == 2 / pi assert sinc(-pi/2) == 2 / pi assert sinc(pi*Rational(5, 2)) == 2 / (5*pi) assert sinc(pi*Rational(7, 2)) == -2 / (7*pi) assert sinc(-x) == sinc(x) assert sinc(x).diff(x) == cos(x)/x - sin(x)/x**2 assert sinc(x).diff(x) == (sin(x)/x).diff(x) assert sinc(x).diff(x, x) == (-sin(x) - 2*cos(x)/x + 2*sin(x)/x**2)/x assert sinc(x).diff(x, x) == (sin(x)/x).diff(x, x) assert limit(sinc(x).diff(x), x, 0) == 0 assert limit(sinc(x).diff(x, x), x, 0) == -S(1)/3 # https://github.com/sympy/sympy/issues/11402 # # assert sinc(x).diff(x) == Piecewise(((x*cos(x) - sin(x)) / x**2, Ne(x, 0)), (0, True)) # # assert sinc(x).diff(x).equals(sinc(x).rewrite(sin).diff(x)) # # assert sinc(x).diff(x).subs(x, 0) is S.Zero assert sinc(x).series() == 1 - x**2/6 + x**4/120 + O(x**6) assert sinc(x).rewrite(jn) == jn(0, x) assert sinc(x).rewrite(sin) == Piecewise((sin(x)/x, Ne(x, 0)), (1, True)) assert sinc(pi, evaluate=False).is_zero is True assert sinc(0, evaluate=False).is_zero is False assert sinc(n*pi, evaluate=False).is_zero is True assert sinc(x).is_zero is None xr = Symbol('xr', real=True, nonzero=True) assert sinc(x).is_real is None assert sinc(xr).is_real is True assert sinc(I*xr).is_real is True assert sinc(I*100).is_real is True assert sinc(x).is_finite is None assert sinc(xr).is_finite is True def test_asin(): assert asin(nan) is nan assert asin.nargs == FiniteSet(1) assert asin(oo) == -I*oo assert asin(-oo) == I*oo assert asin(zoo) is zoo # Note: asin(-x) = - asin(x) assert asin(0) == 0 assert asin(1) == pi/2 assert asin(-1) == -pi/2 assert asin(sqrt(3)/2) == pi/3 assert asin(-sqrt(3)/2) == -pi/3 assert asin(sqrt(2)/2) == pi/4 assert asin(-sqrt(2)/2) == -pi/4 assert asin(sqrt((5 - sqrt(5))/8)) == pi/5 assert asin(-sqrt((5 - sqrt(5))/8)) == -pi/5 assert asin(S.Half) == pi/6 assert asin(Rational(-1, 2)) == -pi/6 assert asin((sqrt(2 - sqrt(2)))/2) == pi/8 assert asin(-(sqrt(2 - sqrt(2)))/2) == -pi/8 assert asin((sqrt(5) - 1)/4) == pi/10 assert asin(-(sqrt(5) - 1)/4) == -pi/10 assert asin((sqrt(3) - 1)/sqrt(2**3)) == pi/12 assert asin(-(sqrt(3) - 1)/sqrt(2**3)) == -pi/12 # check round-trip for exact values: for d in [5, 6, 8, 10, 12]: for n in range(-(d//2), d//2 + 1): if gcd(n, d) == 1: assert asin(sin(n*pi/d)) == n*pi/d assert asin(x).diff(x) == 1/sqrt(1 - x**2) assert asin(0.2, evaluate=False).is_real is True assert asin(-2).is_real is False assert asin(r).is_real is None assert asin(-2*I) == -I*asinh(2) assert asin(Rational(1, 7), evaluate=False).is_positive is True assert asin(Rational(-1, 7), evaluate=False).is_positive is False assert asin(p).is_positive is None assert asin(sin(Rational(7, 2))) == Rational(-7, 2) + pi assert asin(sin(Rational(-7, 4))) == Rational(7, 4) - pi assert unchanged(asin, cos(x)) def test_asin_series(): assert asin(x).series(x, 0, 9) == \ x + x**3/6 + 3*x**5/40 + 5*x**7/112 + O(x**9) t5 = asin(x).taylor_term(5, x) assert t5 == 3*x**5/40 assert asin(x).taylor_term(7, x, t5, 0) == 5*x**7/112 def test_asin_leading_term(): assert asin(x).as_leading_term(x) == x # Tests concerning branch points assert asin(x + 1).as_leading_term(x) == pi/2 assert asin(x - 1).as_leading_term(x) == -pi/2 assert asin(1/x).as_leading_term(x, cdir=1) == I*log(x) + pi/2 - I*log(2) assert asin(1/x).as_leading_term(x, cdir=-1) == -I*log(x) - 3*pi/2 + I*log(2) # Tests concerning points lying on branch cuts assert asin(I*x + 2).as_leading_term(x, cdir=1) == pi - asin(2) assert asin(-I*x + 2).as_leading_term(x, cdir=1) == asin(2) assert asin(I*x - 2).as_leading_term(x, cdir=1) == -asin(2) assert asin(-I*x - 2).as_leading_term(x, cdir=1) == -pi + asin(2) # Tests concerning im(ndir) == 0 assert asin(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == -pi/2 + I*log(2 - sqrt(3)) assert asin(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(2 - sqrt(3)) def test_asin_rewrite(): assert asin(x).rewrite(log) == -I*log(I*x + sqrt(1 - x**2)) assert asin(x).rewrite(atan) == 2*atan(x/(1 + sqrt(1 - x**2))) assert asin(x).rewrite(acos) == S.Pi/2 - acos(x) assert asin(x).rewrite(acot) == 2*acot((sqrt(-x**2 + 1) + 1)/x) assert asin(x).rewrite(asec) == -asec(1/x) + pi/2 assert asin(x).rewrite(acsc) == acsc(1/x) def test_asin_fdiff(): assert asin(x).fdiff() == 1/sqrt(1 - x**2) raises(ArgumentIndexError, lambda: asin(x).fdiff(2)) def test_acos(): assert acos(nan) is nan assert acos(zoo) is zoo assert acos.nargs == FiniteSet(1) assert acos(oo) == I*oo assert acos(-oo) == -I*oo # Note: acos(-x) = pi - acos(x) assert acos(0) == pi/2 assert acos(S.Half) == pi/3 assert acos(Rational(-1, 2)) == pi*Rational(2, 3) assert acos(1) == 0 assert acos(-1) == pi assert acos(sqrt(2)/2) == pi/4 assert acos(-sqrt(2)/2) == pi*Rational(3, 4) # check round-trip for exact values: for d in [5, 6, 8, 10, 12]: for num in range(d): if gcd(num, d) == 1: assert acos(cos(num*pi/d)) == num*pi/d assert acos(2*I) == pi/2 - asin(2*I) assert acos(x).diff(x) == -1/sqrt(1 - x**2) assert acos(0.2).is_real is True assert acos(-2).is_real is False assert acos(r).is_real is None assert acos(Rational(1, 7), evaluate=False).is_positive is True assert acos(Rational(-1, 7), evaluate=False).is_positive is True assert acos(Rational(3, 2), evaluate=False).is_positive is False assert acos(p).is_positive is None assert acos(2 + p).conjugate() != acos(10 + p) assert acos(-3 + n).conjugate() != acos(-3 + n) assert acos(Rational(1, 3)).conjugate() == acos(Rational(1, 3)) assert acos(Rational(-1, 3)).conjugate() == acos(Rational(-1, 3)) assert acos(p + n*I).conjugate() == acos(p - n*I) assert acos(z).conjugate() != acos(conjugate(z)) def test_acos_leading_term(): assert acos(x).as_leading_term(x) == pi/2 # Tests concerning branch points assert acos(x + 1).as_leading_term(x) == sqrt(2)*sqrt(-x) assert acos(x - 1).as_leading_term(x) == pi assert acos(1/x).as_leading_term(x, cdir=1) == -I*log(x) + I*log(2) assert acos(1/x).as_leading_term(x, cdir=-1) == I*log(x) + 2*pi - I*log(2) # Tests concerning points lying on branch cuts assert acos(I*x + 2).as_leading_term(x, cdir=1) == -acos(2) assert acos(-I*x + 2).as_leading_term(x, cdir=1) == acos(2) assert acos(I*x - 2).as_leading_term(x, cdir=1) == acos(-2) assert acos(-I*x - 2).as_leading_term(x, cdir=1) == 2*pi - acos(-2) # Tests concerning im(ndir) == 0 assert acos(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == pi + I*log(sqrt(3) + 2) assert acos(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == pi + I*log(sqrt(3) + 2) def test_acos_series(): assert acos(x).series(x, 0, 8) == \ pi/2 - x - x**3/6 - 3*x**5/40 - 5*x**7/112 + O(x**8) assert acos(x).series(x, 0, 8) == pi/2 - asin(x).series(x, 0, 8) t5 = acos(x).taylor_term(5, x) assert t5 == -3*x**5/40 assert acos(x).taylor_term(7, x, t5, 0) == -5*x**7/112 assert acos(x).taylor_term(0, x) == pi/2 assert acos(x).taylor_term(2, x) is S.Zero def test_acos_rewrite(): assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2)) assert acos(x).rewrite(atan) == pi*(-x*sqrt(x**(-2)) + 1)/2 + atan(sqrt(1 - x**2)/x) assert acos(0).rewrite(atan) == S.Pi/2 assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log) assert acos(x).rewrite(asin) == S.Pi/2 - asin(x) assert acos(x).rewrite(acot) == -2*acot((sqrt(-x**2 + 1) + 1)/x) + pi/2 assert acos(x).rewrite(asec) == asec(1/x) assert acos(x).rewrite(acsc) == -acsc(1/x) + pi/2 def test_acos_fdiff(): assert acos(x).fdiff() == -1/sqrt(1 - x**2) raises(ArgumentIndexError, lambda: acos(x).fdiff(2)) def test_atan(): assert atan(nan) is nan assert atan.nargs == FiniteSet(1) assert atan(oo) == pi/2 assert atan(-oo) == -pi/2 assert atan(zoo) == AccumBounds(-pi/2, pi/2) assert atan(0) == 0 assert atan(1) == pi/4 assert atan(sqrt(3)) == pi/3 assert atan(-(1 + sqrt(2))) == pi*Rational(-3, 8) assert atan(sqrt(5 - 2 * sqrt(5))) == pi/5 assert atan(-sqrt(1 - 2 * sqrt(5)/ 5)) == -pi/10 assert atan(sqrt(1 + 2 * sqrt(5) / 5)) == pi*Rational(3, 10) assert atan(-2 + sqrt(3)) == -pi/12 assert atan(2 + sqrt(3)) == pi*Rational(5, 12) assert atan(-2 - sqrt(3)) == pi*Rational(-5, 12) # check round-trip for exact values: for d in [5, 6, 8, 10, 12]: for num in range(-(d//2), d//2 + 1): if gcd(num, d) == 1: assert atan(tan(num*pi/d)) == num*pi/d assert atan(oo) == pi/2 assert atan(x).diff(x) == 1/(1 + x**2) assert atan(r).is_real is True assert atan(-2*I) == -I*atanh(2) assert unchanged(atan, cot(x)) assert atan(cot(Rational(1, 4))) == Rational(-1, 4) + pi/2 assert acot(Rational(1, 4)).is_rational is False for s in (x, p, n, np, nn, nz, ep, en, enp, enn, enz): if s.is_real or s.is_extended_real is None: assert s.is_nonzero is atan(s).is_nonzero assert s.is_positive is atan(s).is_positive assert s.is_negative is atan(s).is_negative assert s.is_nonpositive is atan(s).is_nonpositive assert s.is_nonnegative is atan(s).is_nonnegative else: assert s.is_extended_nonzero is atan(s).is_nonzero assert s.is_extended_positive is atan(s).is_positive assert s.is_extended_negative is atan(s).is_negative assert s.is_extended_nonpositive is atan(s).is_nonpositive assert s.is_extended_nonnegative is atan(s).is_nonnegative assert s.is_extended_nonzero is atan(s).is_extended_nonzero assert s.is_extended_positive is atan(s).is_extended_positive assert s.is_extended_negative is atan(s).is_extended_negative assert s.is_extended_nonpositive is atan(s).is_extended_nonpositive assert s.is_extended_nonnegative is atan(s).is_extended_nonnegative def test_atan_rewrite(): assert atan(x).rewrite(log) == I*(log(1 - I*x)-log(1 + I*x))/2 assert atan(x).rewrite(asin) == (-asin(1/sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x assert atan(x).rewrite(acos) == sqrt(x**2)*acos(1/sqrt(x**2 + 1))/x assert atan(x).rewrite(acot) == acot(1/x) assert atan(x).rewrite(asec) == sqrt(x**2)*asec(sqrt(x**2 + 1))/x assert atan(x).rewrite(acsc) == (-acsc(sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x assert atan(-5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:-5*I}) assert atan(5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:5*I}) def test_atan_fdiff(): assert atan(x).fdiff() == 1/(x**2 + 1) raises(ArgumentIndexError, lambda: atan(x).fdiff(2)) def test_atan_leading_term(): assert atan(x).as_leading_term(x) == x assert atan(1/x).as_leading_term(x, cdir=1) == pi/2 assert atan(1/x).as_leading_term(x, cdir=-1) == -pi/2 # Tests concerning branch points assert atan(x + I).as_leading_term(x, cdir=1) == -I*log(x)/2 + pi/4 + I*log(2)/2 assert atan(x + I).as_leading_term(x, cdir=-1) == -I*log(x)/2 - 3*pi/4 + I*log(2)/2 assert atan(x - I).as_leading_term(x, cdir=1) == I*log(x)/2 + pi/4 - I*log(2)/2 assert atan(x - I).as_leading_term(x, cdir=-1) == I*log(x)/2 + pi/4 - I*log(2)/2 # Tests concerning points lying on branch cuts assert atan(x + 2*I).as_leading_term(x, cdir=1) == I*atanh(2) assert atan(x + 2*I).as_leading_term(x, cdir=-1) == -pi + I*atanh(2) assert atan(x - 2*I).as_leading_term(x, cdir=1) == pi - I*atanh(2) assert atan(x - 2*I).as_leading_term(x, cdir=-1) == -I*atanh(2) # Tests concerning re(ndir) == 0 assert atan(2*I - I*x - x**2).as_leading_term(x, cdir=1) == -pi/2 + I*log(3)/2 assert atan(2*I - I*x - x**2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(3)/2 def test_atan2(): assert atan2.nargs == FiniteSet(2) assert atan2(0, 0) is S.NaN assert atan2(0, 1) == 0 assert atan2(1, 1) == pi/4 assert atan2(1, 0) == pi/2 assert atan2(1, -1) == pi*Rational(3, 4) assert atan2(0, -1) == pi assert atan2(-1, -1) == pi*Rational(-3, 4) assert atan2(-1, 0) == -pi/2 assert atan2(-1, 1) == -pi/4 i = symbols('i', imaginary=True) r = symbols('r', real=True) eq = atan2(r, i) ans = -I*log((i + I*r)/sqrt(i**2 + r**2)) reps = ((r, 2), (i, I)) assert eq.subs(reps) == ans.subs(reps) x = Symbol('x', negative=True) y = Symbol('y', negative=True) assert atan2(y, x) == atan(y/x) - pi y = Symbol('y', nonnegative=True) assert atan2(y, x) == atan(y/x) + pi y = Symbol('y') assert atan2(y, x) == atan2(y, x, evaluate=False) u = Symbol("u", positive=True) assert atan2(0, u) == 0 u = Symbol("u", negative=True) assert atan2(0, u) == pi assert atan2(y, oo) == 0 assert atan2(y, -oo)== 2*pi*Heaviside(re(y), S.Half) - pi assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2)) assert atan2(0, 0) is S.NaN ex = atan2(y, x) - arg(x + I*y) assert ex.subs({x:2, y:3}).rewrite(arg) == 0 assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5) assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I) assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(Rational(2, 3)) + atan(Rational(3, 2)) i = symbols('i', imaginary=True) r = symbols('r', real=True) e = atan2(i, r) rewrite = e.rewrite(arg) reps = {i: I, r: -2} assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2)) assert (e - rewrite).subs(reps).equals(0) assert atan2(0, x).rewrite(atan) == Piecewise((pi, re(x) < 0), (0, Ne(x, 0)), (nan, True)) assert atan2(0, r).rewrite(atan) == Piecewise((pi, r < 0), (0, Ne(r, 0)), (S.NaN, True)) assert atan2(0, i),rewrite(atan) == 0 assert atan2(0, r + i).rewrite(atan) == Piecewise((pi, r < 0), (0, True)) assert atan2(y, x).rewrite(atan) == Piecewise( (2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, (re(x) > 0) | Ne(im(x), 0)), (nan, True)) assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y)) assert diff(atan2(y, x), x) == -y/(x**2 + y**2) assert diff(atan2(y, x), y) == x/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), y)) == x/(x**2 + y**2) assert str(atan2(1, 2).evalf(5)) == '0.46365' raises(ArgumentIndexError, lambda: atan2(x, y).fdiff(3)) def test_issue_17461(): class A(Symbol): is_extended_real = True def _eval_evalf(self, prec): return Float(5.0) x = A('X') y = A('Y') assert abs(atan2(x, y).evalf() - 0.785398163397448) <= 1e-10 def test_acot(): assert acot(nan) is nan assert acot.nargs == FiniteSet(1) assert acot(-oo) == 0 assert acot(oo) == 0 assert acot(zoo) == 0 assert acot(1) == pi/4 assert acot(0) == pi/2 assert acot(sqrt(3)/3) == pi/3 assert acot(1/sqrt(3)) == pi/3 assert acot(-1/sqrt(3)) == -pi/3 assert acot(x).diff(x) == -1/(1 + x**2) assert acot(r).is_extended_real is True assert acot(I*pi) == -I*acoth(pi) assert acot(-2*I) == I*acoth(2) assert acot(x).is_positive is None assert acot(n).is_positive is False assert acot(p).is_positive is True assert acot(I).is_positive is False assert acot(Rational(1, 4)).is_rational is False assert unchanged(acot, cot(x)) assert unchanged(acot, tan(x)) assert acot(cot(Rational(1, 4))) == Rational(1, 4) assert acot(tan(Rational(-1, 4))) == Rational(1, 4) - pi/2 def test_acot_rewrite(): assert acot(x).rewrite(log) == I*(log(1 - I/x)-log(1 + I/x))/2 assert acot(x).rewrite(asin) == x*(-asin(sqrt(-x**2)/sqrt(-x**2 - 1)) + pi/2)*sqrt(x**(-2)) assert acot(x).rewrite(acos) == x*sqrt(x**(-2))*acos(sqrt(-x**2)/sqrt(-x**2 - 1)) assert acot(x).rewrite(atan) == atan(1/x) assert acot(x).rewrite(asec) == x*sqrt(x**(-2))*asec(sqrt((x**2 + 1)/x**2)) assert acot(x).rewrite(acsc) == x*(-acsc(sqrt((x**2 + 1)/x**2)) + pi/2)*sqrt(x**(-2)) assert acot(-I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:-I/5}) assert acot(I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:I/5}) def test_acot_fdiff(): assert acot(x).fdiff() == -1/(x**2 + 1) raises(ArgumentIndexError, lambda: acot(x).fdiff(2)) def test_acot_leading_term(): assert acot(1/x).as_leading_term(x) == x # Tests concerning branch points assert acot(x + I).as_leading_term(x, cdir=1) == I*log(x)/2 + pi/4 - I*log(2)/2 assert acot(x + I).as_leading_term(x, cdir=-1) == I*log(x)/2 + pi/4 - I*log(2)/2 assert acot(x - I).as_leading_term(x, cdir=1) == -I*log(x)/2 + pi/4 + I*log(2)/2 assert acot(x - I).as_leading_term(x, cdir=-1) == -I*log(x)/2 - 3*pi/4 + I*log(2)/2 # Tests concerning points lying on branch cuts assert acot(x).as_leading_term(x, cdir=1) == pi/2 assert acot(x).as_leading_term(x, cdir=-1) == -pi/2 assert acot(x + I/2).as_leading_term(x, cdir=1) == pi - I*acoth(S(1)/2) assert acot(x + I/2).as_leading_term(x, cdir=-1) == -I*acoth(S(1)/2) assert acot(x - I/2).as_leading_term(x, cdir=1) == I*acoth(S(1)/2) assert acot(x - I/2).as_leading_term(x, cdir=-1) == -pi + I*acoth(S(1)/2) # Tests concerning re(ndir) == 0 assert acot(I/2 - I*x - x**2).as_leading_term(x, cdir=1) == -pi/2 - I*log(3)/2 assert acot(I/2 - I*x - x**2).as_leading_term(x, cdir=-1) == -pi/2 - I*log(3)/2 def test_attributes(): assert sin(x).args == (x,) def test_sincos_rewrite(): assert sin(pi/2 - x) == cos(x) assert sin(pi - x) == sin(x) assert cos(pi/2 - x) == sin(x) assert cos(pi - x) == -cos(x) def _check_even_rewrite(func, arg): """Checks that the expr has been rewritten using f(-x) -> f(x) arg : -x """ return func(arg).args[0] == -arg def _check_odd_rewrite(func, arg): """Checks that the expr has been rewritten using f(-x) -> -f(x) arg : -x """ return func(arg).func.is_Mul def _check_no_rewrite(func, arg): """Checks that the expr is not rewritten""" return func(arg).args[0] == arg def test_evenodd_rewrite(): a = cos(2) # negative b = sin(1) # positive even = [cos] odd = [sin, tan, cot, asin, atan, acot] with_minus = [-1, -2**1024 * E, -pi/105, -x*y, -x - y] for func in even: for expr in with_minus: assert _check_even_rewrite(func, expr) assert _check_no_rewrite(func, a*b) assert func( x - y) == func(y - x) # it doesn't matter which form is canonical for func in odd: for expr in with_minus: assert _check_odd_rewrite(func, expr) assert _check_no_rewrite(func, a*b) assert func( x - y) == -func(y - x) # it doesn't matter which form is canonical def test_as_leading_term_issue_5272(): assert sin(x).as_leading_term(x) == x assert cos(x).as_leading_term(x) == 1 assert tan(x).as_leading_term(x) == x assert cot(x).as_leading_term(x) == 1/x def test_leading_terms(): assert sin(1/x).as_leading_term(x) == AccumBounds(-1, 1) assert sin(S.Half).as_leading_term(x) == sin(S.Half) assert cos(1/x).as_leading_term(x) == AccumBounds(-1, 1) assert cos(S.Half).as_leading_term(x) == cos(S.Half) assert sec(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity) assert csc(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity) assert tan(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity) assert cot(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity) # https://github.com/sympy/sympy/issues/21038 f = sin(pi*(x + 4))/(3*x) assert f.as_leading_term(x) == pi/3 def test_atan2_expansion(): assert cancel(atan2(x**2, x + 1).diff(x) - atan(x**2/(x + 1)).diff(x)) == 0 assert cancel(atan(y/x).series(y, 0, 5) - atan2(y, x).series(y, 0, 5) + atan2(0, x) - atan(0)) == O(y**5) assert cancel(atan(y/x).series(x, 1, 4) - atan2(y, x).series(x, 1, 4) + atan2(y, 1) - atan(y)) == O((x - 1)**4, (x, 1)) assert cancel(atan((y + x)/x).series(x, 1, 3) - atan2(y + x, x).series(x, 1, 3) + atan2(1 + y, 1) - atan(1 + y)) == O((x - 1)**3, (x, 1)) assert Matrix([atan2(y, x)]).jacobian([y, x]) == \ Matrix([[x/(y**2 + x**2), -y/(y**2 + x**2)]]) def test_aseries(): def t(n, v, d, e): assert abs( n(1/v).evalf() - n(1/x).series(x, dir=d).removeO().subs(x, v)) < e t(atan, 0.1, '+', 1e-5) t(atan, -0.1, '-', 1e-5) t(acot, 0.1, '+', 1e-5) t(acot, -0.1, '-', 1e-5) def test_issue_4420(): i = Symbol('i', integer=True) e = Symbol('e', even=True) o = Symbol('o', odd=True) # unknown parity for variable assert cos(4*i*pi) == 1 assert sin(4*i*pi) == 0 assert tan(4*i*pi) == 0 assert cot(4*i*pi) is zoo assert cos(3*i*pi) == cos(pi*i) # +/-1 assert sin(3*i*pi) == 0 assert tan(3*i*pi) == 0 assert cot(3*i*pi) is zoo assert cos(4.0*i*pi) == 1 assert sin(4.0*i*pi) == 0 assert tan(4.0*i*pi) == 0 assert cot(4.0*i*pi) is zoo assert cos(3.0*i*pi) == cos(pi*i) # +/-1 assert sin(3.0*i*pi) == 0 assert tan(3.0*i*pi) == 0 assert cot(3.0*i*pi) is zoo assert cos(4.5*i*pi) == cos(0.5*pi*i) assert sin(4.5*i*pi) == sin(0.5*pi*i) assert tan(4.5*i*pi) == tan(0.5*pi*i) assert cot(4.5*i*pi) == cot(0.5*pi*i) # parity of variable is known assert cos(4*e*pi) == 1 assert sin(4*e*pi) == 0 assert tan(4*e*pi) == 0 assert cot(4*e*pi) is zoo assert cos(3*e*pi) == 1 assert sin(3*e*pi) == 0 assert tan(3*e*pi) == 0 assert cot(3*e*pi) is zoo assert cos(4.0*e*pi) == 1 assert sin(4.0*e*pi) == 0 assert tan(4.0*e*pi) == 0 assert cot(4.0*e*pi) is zoo assert cos(3.0*e*pi) == 1 assert sin(3.0*e*pi) == 0 assert tan(3.0*e*pi) == 0 assert cot(3.0*e*pi) is zoo assert cos(4.5*e*pi) == cos(0.5*pi*e) assert sin(4.5*e*pi) == sin(0.5*pi*e) assert tan(4.5*e*pi) == tan(0.5*pi*e) assert cot(4.5*e*pi) == cot(0.5*pi*e) assert cos(4*o*pi) == 1 assert sin(4*o*pi) == 0 assert tan(4*o*pi) == 0 assert cot(4*o*pi) is zoo assert cos(3*o*pi) == -1 assert sin(3*o*pi) == 0 assert tan(3*o*pi) == 0 assert cot(3*o*pi) is zoo assert cos(4.0*o*pi) == 1 assert sin(4.0*o*pi) == 0 assert tan(4.0*o*pi) == 0 assert cot(4.0*o*pi) is zoo assert cos(3.0*o*pi) == -1 assert sin(3.0*o*pi) == 0 assert tan(3.0*o*pi) == 0 assert cot(3.0*o*pi) is zoo assert cos(4.5*o*pi) == cos(0.5*pi*o) assert sin(4.5*o*pi) == sin(0.5*pi*o) assert tan(4.5*o*pi) == tan(0.5*pi*o) assert cot(4.5*o*pi) == cot(0.5*pi*o) # x could be imaginary assert cos(4*x*pi) == cos(4*pi*x) assert sin(4*x*pi) == sin(4*pi*x) assert tan(4*x*pi) == tan(4*pi*x) assert cot(4*x*pi) == cot(4*pi*x) assert cos(3*x*pi) == cos(3*pi*x) assert sin(3*x*pi) == sin(3*pi*x) assert tan(3*x*pi) == tan(3*pi*x) assert cot(3*x*pi) == cot(3*pi*x) assert cos(4.0*x*pi) == cos(4.0*pi*x) assert sin(4.0*x*pi) == sin(4.0*pi*x) assert tan(4.0*x*pi) == tan(4.0*pi*x) assert cot(4.0*x*pi) == cot(4.0*pi*x) assert cos(3.0*x*pi) == cos(3.0*pi*x) assert sin(3.0*x*pi) == sin(3.0*pi*x) assert tan(3.0*x*pi) == tan(3.0*pi*x) assert cot(3.0*x*pi) == cot(3.0*pi*x) assert cos(4.5*x*pi) == cos(4.5*pi*x) assert sin(4.5*x*pi) == sin(4.5*pi*x) assert tan(4.5*x*pi) == tan(4.5*pi*x) assert cot(4.5*x*pi) == cot(4.5*pi*x) def test_inverses(): raises(AttributeError, lambda: sin(x).inverse()) raises(AttributeError, lambda: cos(x).inverse()) assert tan(x).inverse() == atan assert cot(x).inverse() == acot raises(AttributeError, lambda: csc(x).inverse()) raises(AttributeError, lambda: sec(x).inverse()) assert asin(x).inverse() == sin assert acos(x).inverse() == cos assert atan(x).inverse() == tan assert acot(x).inverse() == cot def test_real_imag(): a, b = symbols('a b', real=True) z = a + b*I for deep in [True, False]: assert sin( z).as_real_imag(deep=deep) == (sin(a)*cosh(b), cos(a)*sinh(b)) assert cos( z).as_real_imag(deep=deep) == (cos(a)*cosh(b), -sin(a)*sinh(b)) assert tan(z).as_real_imag(deep=deep) == (sin(2*a)/(cos(2*a) + cosh(2*b)), sinh(2*b)/(cos(2*a) + cosh(2*b))) assert cot(z).as_real_imag(deep=deep) == (-sin(2*a)/(cos(2*a) - cosh(2*b)), sinh(2*b)/(cos(2*a) - cosh(2*b))) assert sin(a).as_real_imag(deep=deep) == (sin(a), 0) assert cos(a).as_real_imag(deep=deep) == (cos(a), 0) assert tan(a).as_real_imag(deep=deep) == (tan(a), 0) assert cot(a).as_real_imag(deep=deep) == (cot(a), 0) @XFAIL def test_sin_cos_with_infinity(): # Test for issue 5196 # https://github.com/sympy/sympy/issues/5196 assert sin(oo) is S.NaN assert cos(oo) is S.NaN @slow def test_sincos_rewrite_sqrt(): # equivalent to testing rewrite(pow) for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p # The vertices `exp(i*pi/n)` of a regular `n`-gon can # be expressed by means of nested square roots if and # only if `n` is a product of Fermat primes, `p`, and # powers of 2, `t'. The code aims to check all vertices # not belonging to an `m`-gon for `m < n`(`gcd(i, n) == 1`). # For large `n` this makes the test too slow, therefore # the vertices are limited to those of index `i < 10`. for i in range(1, min((n + 1)//2 + 1, 10)): if 1 == gcd(i, n): x = i*pi/n s1 = sin(x).rewrite(sqrt) c1 = cos(x).rewrite(sqrt) assert not s1.has(cos, sin), "fails for %d*pi/%d" % (i, n) assert not c1.has(cos, sin), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs(sin(x.evalf(5)) - s1.evalf(2)), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs(cos(x.evalf(5)) - c1.evalf(2)), "fails for %d*pi/%d" % (i, n) assert cos(pi/14).rewrite(sqrt) == sqrt(cos(pi/7)/2 + S.Half) assert cos(pi*Rational(-15, 2)/11, evaluate=False).rewrite( sqrt) == -sqrt(-cos(pi*Rational(4, 11))/2 + S.Half) assert cos(Mul(2, pi, S.Half, evaluate=False), evaluate=False).rewrite( sqrt) == -1 e = cos(pi/3/17) # don't use pi/15 since that is caught at instantiation a = ( -3*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17) + 17)/64 - 3*sqrt(34)*sqrt(sqrt(17) + 17)/128 - sqrt(sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - sqrt(-sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 - Rational(1, 32) + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 + 3*sqrt(2)*sqrt(sqrt(17) + 17)/128 + sqrt(34)*sqrt(-sqrt(17) + 17)/128 + 13*sqrt(2)*sqrt(-sqrt(17) + 17)/128 + sqrt(17)*sqrt(-sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 + 5*sqrt(17)/32 + sqrt(3)*sqrt(-sqrt(2)*sqrt(sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/8 - 5*sqrt(2)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - 3*sqrt(2)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/32 + sqrt(34)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 + sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/2 + S.Half + sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + sqrt(34)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/32)/2) assert e.rewrite(sqrt) == a assert e.n() == a.n() # coverage of fermatCoords: multiplicity > 1; the following could be # different but that portion of the code should be tested in some way assert cos(pi/9/17).rewrite(sqrt) == \ sin(pi/9)*sin(pi*Rational(2, 17)) + cos(pi/9)*cos(pi*Rational(2, 17)) @slow def test_sincos_rewrite_sqrt_257(): assert cos(pi/257).rewrite(sqrt).evalf(64) == cos(pi/257).evalf(64) @slow def test_tancot_rewrite_sqrt(): # equivalent to testing rewrite(pow) for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p for i in range(1, min((n + 1)//2 + 1, 10)): if 1 == gcd(i, n): x = i*pi/n if 2*i != n and 3*i != 2*n: t1 = tan(x).rewrite(sqrt) assert not t1.has(cot, tan), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs( tan(x.evalf(7)) - t1.evalf(4) ), "fails for %d*pi/%d" % (i, n) if i != 0 and i != n: c1 = cot(x).rewrite(sqrt) assert not c1.has(cot, tan), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs( cot(x.evalf(7)) - c1.evalf(4) ), "fails for %d*pi/%d" % (i, n) def test_sec(): x = symbols('x', real=True) z = symbols('z') assert sec.nargs == FiniteSet(1) assert sec(zoo) is nan assert sec(0) == 1 assert sec(pi) == -1 assert sec(pi/2) is zoo assert sec(-pi/2) is zoo assert sec(pi/6) == 2*sqrt(3)/3 assert sec(pi/3) == 2 assert sec(pi*Rational(5, 2)) is zoo assert sec(pi*Rational(9, 7)) == -sec(pi*Rational(2, 7)) assert sec(pi*Rational(3, 4)) == -sqrt(2) # issue 8421 assert sec(I) == 1/cosh(1) assert sec(x*I) == 1/cosh(x) assert sec(-x) == sec(x) assert sec(asec(x)) == x assert sec(z).conjugate() == sec(conjugate(z)) assert (sec(z).as_real_imag() == (cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 + cos(re(z))**2*cosh(im(z))**2), sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 + cos(re(z))**2*cosh(im(z))**2))) assert sec(x).expand(trig=True) == 1/cos(x) assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1) assert sec(x).is_extended_real == True assert sec(z).is_real == None assert sec(a).is_algebraic is None assert sec(na).is_algebraic is False assert sec(x).as_leading_term() == sec(x) assert sec(0, evaluate=False).is_finite == True assert sec(x).is_finite == None assert sec(pi/2, evaluate=False).is_finite == False assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6) # https://github.com/sympy/sympy/issues/7166 assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6) # https://github.com/sympy/sympy/issues/7167 assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) == 1/sqrt(x - pi*Rational(3, 2)) + (x - pi*Rational(3, 2))**Rational(3, 2)/12 + (x - pi*Rational(3, 2))**Rational(7, 2)/160 + O((x - pi*Rational(3, 2))**4, (x, pi*Rational(3, 2)))) assert sec(x).diff(x) == tan(x)*sec(x) # Taylor Term checks assert sec(z).taylor_term(4, z) == 5*z**4/24 assert sec(z).taylor_term(6, z) == 61*z**6/720 assert sec(z).taylor_term(5, z) == 0 def test_sec_rewrite(): assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2) assert sec(x).rewrite(cos) == 1/cos(x) assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1) assert sec(x).rewrite(pow) == sec(x) assert sec(x).rewrite(sqrt) == sec(x) assert sec(z).rewrite(cot) == (cot(z/2)**2 + 1)/(cot(z/2)**2 - 1) assert sec(x).rewrite(sin) == 1 / sin(x + pi / 2, evaluate=False) assert sec(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (-tan(x / 2)**2 + 1) assert sec(x).rewrite(csc) == csc(-x + pi/2, evaluate=False) def test_sec_fdiff(): assert sec(x).fdiff() == tan(x)*sec(x) raises(ArgumentIndexError, lambda: sec(x).fdiff(2)) def test_csc(): x = symbols('x', real=True) z = symbols('z') # https://github.com/sympy/sympy/issues/6707 cosecant = csc('x') alternate = 1/sin('x') assert cosecant.equals(alternate) == True assert alternate.equals(cosecant) == True assert csc.nargs == FiniteSet(1) assert csc(0) is zoo assert csc(pi) is zoo assert csc(zoo) is nan assert csc(pi/2) == 1 assert csc(-pi/2) == -1 assert csc(pi/6) == 2 assert csc(pi/3) == 2*sqrt(3)/3 assert csc(pi*Rational(5, 2)) == 1 assert csc(pi*Rational(9, 7)) == -csc(pi*Rational(2, 7)) assert csc(pi*Rational(3, 4)) == sqrt(2) # issue 8421 assert csc(I) == -I/sinh(1) assert csc(x*I) == -I/sinh(x) assert csc(-x) == -csc(x) assert csc(acsc(x)) == x assert csc(z).conjugate() == csc(conjugate(z)) assert (csc(z).as_real_imag() == (sin(re(z))*cosh(im(z))/(sin(re(z))**2*cosh(im(z))**2 + cos(re(z))**2*sinh(im(z))**2), -cos(re(z))*sinh(im(z))/(sin(re(z))**2*cosh(im(z))**2 + cos(re(z))**2*sinh(im(z))**2))) assert csc(x).expand(trig=True) == 1/sin(x) assert csc(2*x).expand(trig=True) == 1/(2*sin(x)*cos(x)) assert csc(x).is_extended_real == True assert csc(z).is_real == None assert csc(a).is_algebraic is None assert csc(na).is_algebraic is False assert csc(x).as_leading_term() == csc(x) assert csc(0, evaluate=False).is_finite == False assert csc(x).is_finite == None assert csc(pi/2, evaluate=False).is_finite == True assert series(csc(x), x, x0=pi/2, n=6) == \ 1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2)) assert series(csc(x), x, x0=0, n=6) == \ 1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6) assert csc(x).diff(x) == -cot(x)*csc(x) assert csc(x).taylor_term(2, x) == 0 assert csc(x).taylor_term(3, x) == 7*x**3/360 assert csc(x).taylor_term(5, x) == 31*x**5/15120 raises(ArgumentIndexError, lambda: csc(x).fdiff(2)) def test_asec(): z = Symbol('z', zero=True) assert asec(z) is zoo assert asec(nan) is nan assert asec(1) == 0 assert asec(-1) == pi assert asec(oo) == pi/2 assert asec(-oo) == pi/2 assert asec(zoo) == pi/2 assert asec(sec(pi*Rational(13, 4))) == pi*Rational(3, 4) assert asec(1 + sqrt(5)) == pi*Rational(2, 5) assert asec(2/sqrt(3)) == pi/6 assert asec(sqrt(4 - 2*sqrt(2))) == pi/8 assert asec(-sqrt(4 + 2*sqrt(2))) == pi*Rational(5, 8) assert asec(sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(3, 10) assert asec(-sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(7, 10) assert asec(sqrt(2) - sqrt(6)) == pi*Rational(11, 12) assert asec(x).diff(x) == 1/(x**2*sqrt(1 - 1/x**2)) assert asec(x).rewrite(log) == I*log(sqrt(1 - 1/x**2) + I/x) + pi/2 assert asec(x).rewrite(asin) == -asin(1/x) + pi/2 assert asec(x).rewrite(acos) == acos(1/x) assert asec(x).rewrite(atan) == \ pi*(1 - sqrt(x**2)/x)/2 + sqrt(x**2)*atan(sqrt(x**2 - 1))/x assert asec(x).rewrite(acot) == \ pi*(1 - sqrt(x**2)/x)/2 + sqrt(x**2)*acot(1/sqrt(x**2 - 1))/x assert asec(x).rewrite(acsc) == -acsc(x) + pi/2 raises(ArgumentIndexError, lambda: asec(x).fdiff(2)) def test_asec_is_real(): assert asec(S.Half).is_real is False n = Symbol('n', positive=True, integer=True) assert asec(n).is_extended_real is True assert asec(x).is_real is None assert asec(r).is_real is None t = Symbol('t', real=False, finite=True) assert asec(t).is_real is False def test_asec_leading_term(): assert asec(1/x).as_leading_term(x) == pi/2 # Tests concerning branch points assert asec(x + 1).as_leading_term(x) == sqrt(2)*sqrt(x) assert asec(x - 1).as_leading_term(x) == pi # Tests concerning points lying on branch cuts assert asec(x).as_leading_term(x, cdir=1) == -I*log(x) + I*log(2) assert asec(x).as_leading_term(x, cdir=-1) == I*log(x) + 2*pi - I*log(2) assert asec(I*x + 1/2).as_leading_term(x, cdir=1) == asec(1/2) assert asec(-I*x + 1/2).as_leading_term(x, cdir=1) == -asec(1/2) assert asec(I*x - 1/2).as_leading_term(x, cdir=1) == 2*pi - asec(-1/2) assert asec(-I*x - 1/2).as_leading_term(x, cdir=1) == asec(-1/2) # Tests concerning im(ndir) == 0 assert asec(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=1) == pi + I*log(2 - sqrt(3)) assert asec(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=-1) == pi + I*log(2 - sqrt(3)) def test_asec_series(): assert asec(x).series(x, 0, 9) == \ I*log(2) - I*log(x) - I*x**2/4 - 3*I*x**4/32 \ - 5*I*x**6/96 - 35*I*x**8/1024 + O(x**9) t4 = asec(x).taylor_term(4, x) assert t4 == -3*I*x**4/32 assert asec(x).taylor_term(6, x, t4, 0) == -5*I*x**6/96 def test_acsc(): assert acsc(nan) is nan assert acsc(1) == pi/2 assert acsc(-1) == -pi/2 assert acsc(oo) == 0 assert acsc(-oo) == 0 assert acsc(zoo) == 0 assert acsc(0) is zoo assert acsc(csc(3)) == -3 + pi assert acsc(csc(4)) == -4 + pi assert acsc(csc(6)) == 6 - 2*pi assert unchanged(acsc, csc(x)) assert unchanged(acsc, sec(x)) assert acsc(2/sqrt(3)) == pi/3 assert acsc(csc(pi*Rational(13, 4))) == -pi/4 assert acsc(sqrt(2 + 2*sqrt(5)/5)) == pi/5 assert acsc(-sqrt(2 + 2*sqrt(5)/5)) == -pi/5 assert acsc(-2) == -pi/6 assert acsc(-sqrt(4 + 2*sqrt(2))) == -pi/8 assert acsc(sqrt(4 - 2*sqrt(2))) == pi*Rational(3, 8) assert acsc(1 + sqrt(5)) == pi/10 assert acsc(sqrt(2) - sqrt(6)) == pi*Rational(-5, 12) assert acsc(x).diff(x) == -1/(x**2*sqrt(1 - 1/x**2)) assert acsc(x).rewrite(log) == -I*log(sqrt(1 - 1/x**2) + I/x) assert acsc(x).rewrite(asin) == asin(1/x) assert acsc(x).rewrite(acos) == -acos(1/x) + pi/2 assert acsc(x).rewrite(atan) == \ (-atan(sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x assert acsc(x).rewrite(acot) == (-acot(1/sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x assert acsc(x).rewrite(asec) == -asec(x) + pi/2 raises(ArgumentIndexError, lambda: acsc(x).fdiff(2)) def test_csc_rewrite(): assert csc(x).rewrite(pow) == csc(x) assert csc(x).rewrite(sqrt) == csc(x) assert csc(x).rewrite(exp) == 2*I/(exp(I*x) - exp(-I*x)) assert csc(x).rewrite(sin) == 1/sin(x) assert csc(x).rewrite(tan) == (tan(x/2)**2 + 1)/(2*tan(x/2)) assert csc(x).rewrite(cot) == (cot(x/2)**2 + 1)/(2*cot(x/2)) assert csc(x).rewrite(cos) == 1/cos(x - pi/2, evaluate=False) assert csc(x).rewrite(sec) == sec(-x + pi/2, evaluate=False) # issue 17349 assert csc(1 - exp(-besselj(I, I))).rewrite(cos) == \ -1/cos(-pi/2 - 1 + cos(I*besselj(I, I)) + I*cos(-pi/2 + I*besselj(I, I), evaluate=False), evaluate=False) def test_acsc_leading_term(): assert acsc(1/x).as_leading_term(x) == x # Tests concerning branch points assert acsc(x + 1).as_leading_term(x) == pi/2 assert acsc(x - 1).as_leading_term(x) == -pi/2 # Tests concerning points lying on branch cuts assert acsc(x).as_leading_term(x, cdir=1) == I*log(x) + pi/2 - I*log(2) assert acsc(x).as_leading_term(x, cdir=-1) == -I*log(x) - 3*pi/2 + I*log(2) assert acsc(I*x + 1/2).as_leading_term(x, cdir=1) == acsc(1/2) assert acsc(-I*x + 1/2).as_leading_term(x, cdir=1) == pi - acsc(1/2) assert acsc(I*x - 1/2).as_leading_term(x, cdir=1) == -pi - acsc(-1/2) assert acsc(-I*x - 1/2).as_leading_term(x, cdir=1) == -acsc(1/2) # Tests concerning im(ndir) == 0 assert acsc(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=1) == -pi/2 + I*log(sqrt(3) + 2) assert acsc(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(sqrt(3) + 2) def test_acsc_series(): assert acsc(x).series(x, 0, 9) == \ -I*log(2) + pi/2 + I*log(x) + I*x**2/4 \ + 3*I*x**4/32 + 5*I*x**6/96 + 35*I*x**8/1024 + O(x**9) t6 = acsc(x).taylor_term(6, x) assert t6 == 5*I*x**6/96 assert acsc(x).taylor_term(8, x, t6, 0) == 35*I*x**8/1024 def test_asin_nseries(): assert asin(x + 2)._eval_nseries(x, 4, None, I) == -asin(2) + pi + \ sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4) assert asin(x + 2)._eval_nseries(x, 4, None, -I) == asin(2) - \ sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4) assert asin(x - 2)._eval_nseries(x, 4, None, I) == -asin(2) - \ sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4) assert asin(x - 2)._eval_nseries(x, 4, None, -I) == asin(2) - pi + \ sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4) # testing nseries for asin at branch points assert asin(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) - \ sqrt(2)*(-x)**(S(3)/2)/12 - 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3) assert asin(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) + \ sqrt(2)*x**(S(3)/2)/12 + 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3) assert asin(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) + \ sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3) assert asin(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - \ sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3) def test_acos_nseries(): assert acos(x + 2)._eval_nseries(x, 4, None, I) == -acos(2) - sqrt(3)*I*x/3 + \ sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4) assert acos(x + 2)._eval_nseries(x, 4, None, -I) == acos(2) + sqrt(3)*I*x/3 - \ sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4) assert acos(x - 2)._eval_nseries(x, 4, None, I) == acos(-2) + sqrt(3)*I*x/3 + \ sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4) assert acos(x - 2)._eval_nseries(x, 4, None, -I) == -acos(-2) + 2*pi - \ sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4) # testing nseries for acos at branch points assert acos(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) + \ sqrt(2)*(-x)**(S(3)/2)/12 + 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3) assert acos(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) - \ sqrt(2)*x**(S(3)/2)/12 - 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3) assert acos(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) - \ sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3) assert acos(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + \ sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3) def test_atan_nseries(): assert atan(x + 2*I)._eval_nseries(x, 4, None, 1) == I*atanh(2) - x/3 - \ 2*I*x**2/9 + 13*x**3/81 + O(x**4) assert atan(x + 2*I)._eval_nseries(x, 4, None, -1) == I*atanh(2) - pi - \ x/3 - 2*I*x**2/9 + 13*x**3/81 + O(x**4) assert atan(x - 2*I)._eval_nseries(x, 4, None, 1) == -I*atanh(2) + pi - \ x/3 + 2*I*x**2/9 + 13*x**3/81 + O(x**4) assert atan(x - 2*I)._eval_nseries(x, 4, None, -1) == -I*atanh(2) - x/3 + \ 2*I*x**2/9 + 13*x**3/81 + O(x**4) assert atan(1/x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2) assert atan(1/x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2) # testing nseries for atan at branch points assert atan(x + I)._eval_nseries(x, 4, None) == I*log(2)/2 + pi/4 - \ I*log(x)/2 + x/4 + I*x**2/16 - x**3/48 + O(x**4) assert atan(x - I)._eval_nseries(x, 4, None) == -I*log(2)/2 + pi/4 + \ I*log(x)/2 + x/4 - I*x**2/16 - x**3/48 + O(x**4) def test_acot_nseries(): assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, 1) == -I*acoth(S(1)/2) + \ pi - 4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4) assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, -1) == -I*acoth(S(1)/2) - \ 4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4) assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, 1) == I*acoth(S(1)/2) - \ 4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4) assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, -1) == I*acoth(S(1)/2) - \ pi - 4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4) assert acot(x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2) assert acot(x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2) # testing nseries for acot at branch points assert acot(x + I)._eval_nseries(x, 4, None) == -I*log(2)/2 + pi/4 + \ I*log(x)/2 - x/4 - I*x**2/16 + x**3/48 + O(x**4) assert acot(x - I)._eval_nseries(x, 4, None) == I*log(2)/2 + pi/4 - \ I*log(x)/2 - x/4 + I*x**2/16 + x**3/48 + O(x**4) def test_asec_nseries(): assert asec(x + S(1)/2)._eval_nseries(x, 4, None, I) == asec(S(1)/2) - \ 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4) assert asec(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -asec(S(1)/2) + \ 4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4) assert asec(x - S(1)/2)._eval_nseries(x, 4, None, I) == -asec(-S(1)/2) + \ 2*pi + 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4) assert asec(x - S(1)/2)._eval_nseries(x, 4, None, -I) == asec(-S(1)/2) - \ 4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4) # testing nseries for asec at branch points assert asec(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - \ 5*sqrt(2)*x**(S(3)/2)/12 + 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3) assert asec(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + \ 5*sqrt(2)*(-x)**(S(3)/2)/12 - 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3) assert asec(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - \ sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3) assert asec(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) + \ sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3) def test_acsc_nseries(): assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) + \ 4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4) assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + \ pi - 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4) assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) - pi -\ 4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4) assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + \ 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4) # testing nseries for acsc at branch points assert acsc(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + \ 5*sqrt(2)*x**(S(3)/2)/12 - 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3) assert acsc(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - \ 5*sqrt(2)*(-x)**(S(3)/2)/12 + 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3) assert acsc(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + \ sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3) assert acsc(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) - \ sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3) def test_issue_8653(): n = Symbol('n', integer=True) assert sin(n).is_irrational is None assert cos(n).is_irrational is None assert tan(n).is_irrational is None def test_issue_9157(): n = Symbol('n', integer=True, positive=True) assert atan(n - 1).is_nonnegative is True def test_trig_period(): x, y = symbols('x, y') assert sin(x).period() == 2*pi assert cos(x).period() == 2*pi assert tan(x).period() == pi assert cot(x).period() == pi assert sec(x).period() == 2*pi assert csc(x).period() == 2*pi assert sin(2*x).period() == pi assert cot(4*x - 6).period() == pi/4 assert cos((-3)*x).period() == pi*Rational(2, 3) assert cos(x*y).period(x) == 2*pi/abs(y) assert sin(3*x*y + 2*pi).period(y) == 2*pi/abs(3*x) assert tan(3*x).period(y) is S.Zero raises(NotImplementedError, lambda: sin(x**2).period(x)) def test_issue_7171(): assert sin(x).rewrite(sqrt) == sin(x) assert sin(x).rewrite(pow) == sin(x) def test_issue_11864(): w, k = symbols('w, k', real=True) F = Piecewise((1, Eq(2*pi*k, 0)), (sin(pi*k)/(pi*k), True)) soln = Piecewise((1, Eq(2*pi*k, 0)), (sinc(pi*k), True)) assert F.rewrite(sinc) == soln def test_real_assumptions(): z = Symbol('z', real=False, finite=True) assert sin(z).is_real is None assert cos(z).is_real is None assert tan(z).is_real is False assert sec(z).is_real is None assert csc(z).is_real is None assert cot(z).is_real is False assert asin(p).is_real is None assert asin(n).is_real is None assert asec(p).is_real is None assert asec(n).is_real is None assert acos(p).is_real is None assert acos(n).is_real is None assert acsc(p).is_real is None assert acsc(n).is_real is None assert atan(p).is_positive is True assert atan(n).is_negative is True assert acot(p).is_positive is True assert acot(n).is_negative is True def test_issue_14320(): assert asin(sin(2)) == -2 + pi and (-pi/2 <= -2 + pi <= pi/2) and sin(2) == sin(-2 + pi) assert asin(cos(2)) == -2 + pi/2 and (-pi/2 <= -2 + pi/2 <= pi/2) and cos(2) == sin(-2 + pi/2) assert acos(sin(2)) == -pi/2 + 2 and (0 <= -pi/2 + 2 <= pi) and sin(2) == cos(-pi/2 + 2) assert acos(cos(20)) == -6*pi + 20 and (0 <= -6*pi + 20 <= pi) and cos(20) == cos(-6*pi + 20) assert acos(cos(30)) == -30 + 10*pi and (0 <= -30 + 10*pi <= pi) and cos(30) == cos(-30 + 10*pi) assert atan(tan(17)) == -5*pi + 17 and (-pi/2 < -5*pi + 17 < pi/2) and tan(17) == tan(-5*pi + 17) assert atan(tan(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 < pi/2) and tan(15) == tan(-5*pi + 15) assert atan(cot(12)) == -12 + pi*Rational(7, 2) and (-pi/2 < -12 + pi*Rational(7, 2) < pi/2) and cot(12) == tan(-12 + pi*Rational(7, 2)) assert acot(cot(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 <= pi/2) and cot(15) == cot(-5*pi + 15) assert acot(tan(19)) == -19 + pi*Rational(13, 2) and (-pi/2 < -19 + pi*Rational(13, 2) <= pi/2) and tan(19) == cot(-19 + pi*Rational(13, 2)) assert asec(sec(11)) == -11 + 4*pi and (0 <= -11 + 4*pi <= pi) and cos(11) == cos(-11 + 4*pi) assert asec(csc(13)) == -13 + pi*Rational(9, 2) and (0 <= -13 + pi*Rational(9, 2) <= pi) and sin(13) == cos(-13 + pi*Rational(9, 2)) assert acsc(csc(14)) == -4*pi + 14 and (-pi/2 <= -4*pi + 14 <= pi/2) and sin(14) == sin(-4*pi + 14) assert acsc(sec(10)) == pi*Rational(-7, 2) + 10 and (-pi/2 <= pi*Rational(-7, 2) + 10 <= pi/2) and cos(10) == sin(pi*Rational(-7, 2) + 10) def test_issue_14543(): assert sec(2*pi + 11) == sec(11) assert sec(2*pi - 11) == sec(11) assert sec(pi + 11) == -sec(11) assert sec(pi - 11) == -sec(11) assert csc(2*pi + 17) == csc(17) assert csc(2*pi - 17) == -csc(17) assert csc(pi + 17) == -csc(17) assert csc(pi - 17) == csc(17) x = Symbol('x') assert csc(pi/2 + x) == sec(x) assert csc(pi/2 - x) == sec(x) assert csc(pi*Rational(3, 2) + x) == -sec(x) assert csc(pi*Rational(3, 2) - x) == -sec(x) assert sec(pi/2 - x) == csc(x) assert sec(pi/2 + x) == -csc(x) assert sec(pi*Rational(3, 2) + x) == csc(x) assert sec(pi*Rational(3, 2) - x) == -csc(x) def test_as_real_imag(): # This is for https://github.com/sympy/sympy/issues/17142 # If it start failing again in irrelevant builds or in the master # please open up the issue again. expr = atan(I/(I + I*tan(1))) assert expr.as_real_imag() == (expr, 0) def test_issue_18746(): e3 = cos(S.Pi*(x/4 + 1/4)) assert e3.period() == 8
419a56c392aaf43d66f26c65802542512b32e8deac2d559f6e399603047e1273
from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.expr import unchanged from sympy.core.function import (Function, diff, expand) from sympy.core.mul import Mul from sympy.core.numbers import (Float, I, Rational, oo, pi, zoo) from sympy.core.relational import (Eq, Ge, Gt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import (Abs, adjoint, arg, conjugate, im, re, transpose) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt) from sympy.functions.elementary.piecewise import (Piecewise, piecewise_fold, piecewise_exclusive, Undefined, ExprCondPair) from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.functions.special.delta_functions import (DiracDelta, Heaviside) from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.integrals.integrals import (Integral, integrate) from sympy.logic.boolalg import (And, ITE, Not, Or) from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.printing import srepr from sympy.sets.contains import Contains from sympy.sets.sets import Interval from sympy.solvers.solvers import solve from sympy.testing.pytest import raises, slow from sympy.utilities.lambdify import lambdify a, b, c, d, x, y = symbols('a:d, x, y') z = symbols('z', nonzero=True) def test_piecewise1(): # Test canonicalization assert unchanged(Piecewise, ExprCondPair(x, x < 1), ExprCondPair(0, True)) assert Piecewise((x, x < 1), (0, True)) == Piecewise(ExprCondPair(x, x < 1), ExprCondPair(0, True)) assert Piecewise((x, x < 1), (0, True), (1, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \ Piecewise((x, x < 1)) assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \ Piecewise((x, Or(x < 1, x < 2)), (0, True)) assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x assert Piecewise((x, True)) == x # Explicitly constructed empty Piecewise not accepted raises(TypeError, lambda: Piecewise()) # False condition is never retained assert Piecewise((2*x, x < 0), (x, False)) == \ Piecewise((2*x, x < 0), (x, False), evaluate=False) == \ Piecewise((2*x, x < 0)) assert Piecewise((x, False)) == Undefined raises(TypeError, lambda: Piecewise(x)) assert Piecewise((x, 1)) == x # 1 and 0 are accepted as True/False raises(TypeError, lambda: Piecewise((x, 2))) raises(TypeError, lambda: Piecewise((x, x**2))) raises(TypeError, lambda: Piecewise(([1], True))) assert Piecewise(((1, 2), True)) == Tuple(1, 2) cond = (Piecewise((1, x < 0), (2, True)) < y) assert Piecewise((1, cond) ) == Piecewise((1, ITE(x < 0, y > 1, y > 2))) assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1)) ) == Piecewise((1, x > 0), (2, x > -1)) assert Piecewise((1, x <= 0), (2, (x < 0) & (x > -1)) ) == Piecewise((1, x <= 0)) # test for supporting Contains in Piecewise pwise = Piecewise( (1, And(x <= 6, x > 1, Contains(x, S.Integers))), (0, True)) assert pwise.subs(x, pi) == 0 assert pwise.subs(x, 2) == 1 assert pwise.subs(x, 7) == 0 # Test subs p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0)) p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0)) assert p.subs(x, x**2) == p_x2 assert p.subs(x, -5) == -1 assert p.subs(x, -1) == 1 assert p.subs(x, 1) == log(1) # More subs tests p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi)) p3 = Piecewise((1, Eq(x, 0)), (1/x, True)) p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2)) assert p2.subs(x, 2) == 1 assert p2.subs(x, 4) == -1 assert p2.subs(x, 10) == 0 assert p3.subs(x, 0.0) == 1 assert p4.subs(x, 0.0) == 1 f, g, h = symbols('f,g,h', cls=Function) pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1)) pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1)) assert pg.subs(g, f) == pf assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1 assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0 assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1 assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1 assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \ Piecewise((1, Eq(exp(z), cos(z))), (0, True)) p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True)) assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True)) assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True) ).subs(x, 1) == Piecewise((-1, y < 1), (2, True)) assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1 p6 = Piecewise((x, x > 0)) n = symbols('n', negative=True) assert p6.subs(x, n) == Undefined # Test evalf assert p.evalf() == Piecewise((-1.0, x < -1), (x**2, x < 0), (log(x), True)) assert p.evalf(subs={x: -2}) == -1.0 assert p.evalf(subs={x: -1}) == 1.0 assert p.evalf(subs={x: 1}) == log(1) assert p6.evalf(subs={x: -5}) == Undefined # Test doit f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1)) assert f_int.doit() == Piecewise( (S.Half, x < 1) ) # Test differentiation f = x fp = x*p dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0)) fp_dx = x*dp + p assert diff(p, x) == dp assert diff(f*p, x) == fp_dx # Test simple arithmetic assert x*p == fp assert x*p + p == p + x*p assert p + f == f + p assert p + dp == dp + p assert p - dp == -(dp - p) # Test power dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0)) assert dp**2 == dp2 # Test _eval_interval f1 = x*y + 2 f2 = x*y**2 + 3 peval = Piecewise((f1, x < 0), (f2, x > 0)) peval_interval = f1.subs( x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0) assert peval._eval_interval(x, 0, 0) == 0 assert peval._eval_interval(x, -1, 1) == peval_interval peval2 = Piecewise((f1, x < 0), (f2, True)) assert peval2._eval_interval(x, 0, 0) == 0 assert peval2._eval_interval(x, 1, -1) == -peval_interval assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1) assert peval2._eval_interval(x, -1, 1) == peval_interval assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0) assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1) # Test integration assert p.integrate() == Piecewise( (-x, x < -1), (x**3/3 + Rational(4, 3), x < 0), (x*log(x) - x + Rational(4, 3), True)) p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x)) assert integrate(p, (x, -2, 2)) == Rational(5, 6) assert integrate(p, (x, 2, -2)) == Rational(-5, 6) p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True)) assert integrate(p, (x, -oo, oo)) == 2 p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x)) assert integrate(p, (x, -2, 2)) == Undefined # Test commutativity assert isinstance(p, Piecewise) and p.is_commutative is True def test_piecewise_free_symbols(): f = Piecewise((x, a < 0), (y, True)) assert f.free_symbols == {x, y, a} def test_piecewise_integrate1(): x, y = symbols('x y', real=True) f = Piecewise(((x - 2)**2, x >= 0), (1, True)) assert integrate(f, (x, -2, 2)) == Rational(14, 3) g = Piecewise(((x - 5)**5, x >= 4), (f, True)) assert integrate(g, (x, -2, 2)) == Rational(14, 3) assert integrate(g, (x, -2, 5)) == Rational(43, 6) assert g == Piecewise(((x - 5)**5, x >= 4), (f, x < 4)) g = Piecewise(((x - 5)**5, 2 <= x), (f, x < 2)) assert integrate(g, (x, -2, 2)) == Rational(14, 3) assert integrate(g, (x, -2, 5)) == Rational(-701, 6) assert g == Piecewise(((x - 5)**5, 2 <= x), (f, True)) g = Piecewise(((x - 5)**5, 2 <= x), (2*f, True)) assert integrate(g, (x, -2, 2)) == Rational(28, 3) assert integrate(g, (x, -2, 5)) == Rational(-673, 6) def test_piecewise_integrate1b(): g = Piecewise((1, x > 0), (0, Eq(x, 0)), (-1, x < 0)) assert integrate(g, (x, -1, 1)) == 0 g = Piecewise((1, x - y < 0), (0, True)) assert integrate(g, (y, -oo, 0)) == -Min(0, x) assert g.subs(x, -3).integrate((y, -oo, 0)) == 3 assert integrate(g, (y, 0, -oo)) == Min(0, x) assert integrate(g, (y, 0, oo)) == -Max(0, x) + oo assert integrate(g, (y, -oo, 42)) == -Min(42, x) + 42 assert integrate(g, (y, -oo, oo)) == -x + oo g = Piecewise((0, x < 0), (x, x <= 1), (1, True)) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) for yy in (-1, S.Half, 2): assert g.integrate((x, yy, 1)) == gy1.subs(y, yy) assert g.integrate((x, 1, yy)) == g1y.subs(y, yy) assert gy1 == Piecewise( (-Min(1, Max(0, y))**2/2 + S.Half, y < 1), (-y + 1, True)) assert g1y == Piecewise( (Min(1, Max(0, y))**2/2 - S.Half, y < 1), (y - 1, True)) @slow def test_piecewise_integrate1ca(): y = symbols('y', real=True) g = Piecewise( (1 - x, Interval(0, 1).contains(x)), (1 + x, Interval(-1, 0).contains(x)), (0, True) ) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) assert g.integrate((x, -2, 1)) == gy1.subs(y, -2) assert g.integrate((x, 1, -2)) == g1y.subs(y, -2) assert g.integrate((x, 0, 1)) == gy1.subs(y, 0) assert g.integrate((x, 1, 0)) == g1y.subs(y, 0) assert g.integrate((x, 2, 1)) == gy1.subs(y, 2) assert g.integrate((x, 1, 2)) == g1y.subs(y, 2) assert piecewise_fold(gy1.rewrite(Piecewise) ).simplify() == Piecewise( (1, y <= -1), (-y**2/2 - y + S.Half, y <= 0), (y**2/2 - y + S.Half, y < 1), (0, True)) assert piecewise_fold(g1y.rewrite(Piecewise) ).simplify() == Piecewise( (-1, y <= -1), (y**2/2 + y - S.Half, y <= 0), (-y**2/2 + y - S.Half, y < 1), (0, True)) assert gy1 == Piecewise( ( -Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) + Min(1, Max(0, y))**2 + S.Half, y < 1), (0, True) ) assert g1y == Piecewise( ( Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) - Min(1, Max(0, y))**2 - S.Half, y < 1), (0, True)) @slow def test_piecewise_integrate1cb(): y = symbols('y', real=True) g = Piecewise( (0, Or(x <= -1, x >= 1)), (1 - x, x > 0), (1 + x, True) ) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) assert g.integrate((x, -2, 1)) == gy1.subs(y, -2) assert g.integrate((x, 1, -2)) == g1y.subs(y, -2) assert g.integrate((x, 0, 1)) == gy1.subs(y, 0) assert g.integrate((x, 1, 0)) == g1y.subs(y, 0) assert g.integrate((x, 2, 1)) == gy1.subs(y, 2) assert g.integrate((x, 1, 2)) == g1y.subs(y, 2) assert piecewise_fold(gy1.rewrite(Piecewise) ).simplify() == Piecewise( (1, y <= -1), (-y**2/2 - y + S.Half, y <= 0), (y**2/2 - y + S.Half, y < 1), (0, True)) assert piecewise_fold(g1y.rewrite(Piecewise) ).simplify() == Piecewise( (-1, y <= -1), (y**2/2 + y - S.Half, y <= 0), (-y**2/2 + y - S.Half, y < 1), (0, True)) # g1y and gy1 should simplify if the condition that y < 1 # is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y) assert gy1 == Piecewise( ( -Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) + Min(1, Max(0, y))**2 + S.Half, y < 1), (0, True) ) assert g1y == Piecewise( ( Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) - Min(1, Max(0, y))**2 - S.Half, y < 1), (0, True)) def test_piecewise_integrate2(): from itertools import permutations lim = Tuple(x, c, d) p = Piecewise((1, x < a), (2, x > b), (3, True)) q = p.integrate(lim) assert q == Piecewise( (-c + 2*d - 2*Min(d, Max(a, c)) + Min(d, Max(a, b, c)), c < d), (-2*c + d + 2*Min(c, Max(a, d)) - Min(c, Max(a, b, d)), True)) for v in permutations((1, 2, 3, 4)): r = dict(zip((a, b, c, d), v)) assert p.subs(r).integrate(lim.subs(r)) == q.subs(r) def test_meijer_bypass(): # totally bypass meijerg machinery when dealing # with Piecewise in integrate assert Piecewise((1, x < 4), (0, True)).integrate((x, oo, 1)) == -3 def test_piecewise_integrate3_inequality_conditions(): from sympy.utilities.iterables import cartes lim = (x, 0, 5) # set below includes two pts below range, 2 pts in range, # 2 pts above range, and the boundaries N = (-2, -1, 0, 1, 2, 5, 6, 7) p = Piecewise((1, x > a), (2, x > b), (0, True)) ans = p.integrate(lim) for i, j in cartes(N, repeat=2): reps = dict(zip((a, b), (i, j))) assert ans.subs(reps) == p.subs(reps).integrate(lim) assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1 p = Piecewise((1, x > a), (2, x < b), (0, True)) ans = p.integrate(lim) for i, j in cartes(N, repeat=2): reps = dict(zip((a, b), (i, j))) assert ans.subs(reps) == p.subs(reps).integrate(lim) # delete old tests that involved c1 and c2 since those # reduce to the above except that a value of 0 was used # for two expressions whereas the above uses 3 different # values @slow def test_piecewise_integrate4_symbolic_conditions(): a = Symbol('a', real=True) b = Symbol('b', real=True) x = Symbol('x', real=True) y = Symbol('y', real=True) p0 = Piecewise((0, Or(x < a, x > b)), (1, True)) p1 = Piecewise((0, x < a), (0, x > b), (1, True)) p2 = Piecewise((0, x > b), (0, x < a), (1, True)) p3 = Piecewise((0, x < a), (1, x < b), (0, True)) p4 = Piecewise((0, x > b), (1, x > a), (0, True)) p5 = Piecewise((1, And(a < x, x < b)), (0, True)) # check values of a=1, b=3 (and reversed) with values # of y of 0, 1, 2, 3, 4 lim = Tuple(x, -oo, y) for p in (p0, p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a: 3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) lim = Tuple(x, y, oo) for p in (p0, p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a:3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) ans = Piecewise( (0, x <= Min(a, b)), (x - Min(a, b), x <= b), (b - Min(a, b), True)) for i in (p0, p1, p2, p4): assert i.integrate(x) == ans assert p3.integrate(x) == Piecewise( (0, x < a), (-a + x, x <= Max(a, b)), (-a + Max(a, b), True)) assert p5.integrate(x) == Piecewise( (0, x <= a), (-a + x, x <= Max(a, b)), (-a + Max(a, b), True)) p1 = Piecewise((0, x < a), (S.Half, x > b), (1, True)) p2 = Piecewise((S.Half, x > b), (0, x < a), (1, True)) p3 = Piecewise((0, x < a), (1, x < b), (S.Half, True)) p4 = Piecewise((S.Half, x > b), (1, x > a), (0, True)) p5 = Piecewise((1, And(a < x, x < b)), (S.Half, x > b), (0, True)) # check values of a=1, b=3 (and reversed) with values # of y of 0, 1, 2, 3, 4 lim = Tuple(x, -oo, y) for p in (p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a: 3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) def test_piecewise_integrate5_independent_conditions(): p = Piecewise((0, Eq(y, 0)), (x*y, True)) assert integrate(p, (x, 1, 3)) == Piecewise((0, Eq(y, 0)), (4*y, True)) def test_issue_22917(): p = (Piecewise((0, ITE((x - y > 1) | (2 * x - 2 * y > 1), False, ITE(x - y > 1, 2 * y - 2 < -1, 2 * x - 2 * y > 1))), (Piecewise((0, ITE(x - y > 1, True, 2 * x - 2 * y > 1)), (2 * Piecewise((0, x - y > 1), (y, True)), True)), True)) + 2 * Piecewise((1, ITE((x - y > 1) | (2 * x - 2 * y > 1), False, ITE(x - y > 1, 2 * y - 2 < -1, 2 * x - 2 * y > 1))), (Piecewise((1, ITE(x - y > 1, True, 2 * x - 2 * y > 1)), (2 * Piecewise((1, x - y > 1), (x, True)), True)), True))) assert piecewise_fold(p) == Piecewise((2, (x - y > S.Half) | (x - y > 1)), (2*y + 4, x - y > 1), (4*x + 2*y, True)) assert piecewise_fold(p > 1).rewrite(ITE) == ITE((x - y > S.Half) | (x - y > 1), True, ITE(x - y > 1, 2*y + 4 > 1, 4*x + 2*y > 1)) def test_piecewise_simplify(): p = Piecewise(((x**2 + 1)/x**2, Eq(x*(1 + x) - x**2, 0)), ((-1)**x*(-1), True)) assert p.simplify() == \ Piecewise((zoo, Eq(x, 0)), ((-1)**(x + 1), True)) # simplify when there are Eq in conditions assert Piecewise( (a, And(Eq(a, 0), Eq(a + b, 0))), (1, True)).simplify( ) == Piecewise( (0, And(Eq(a, 0), Eq(b, 0))), (1, True)) assert Piecewise((2*x*factorial(a)/(factorial(y)*factorial(-y + a)), Eq(y, 0) & Eq(-y + a, 0)), (2*factorial(a)/(factorial(y)*factorial(-y + a)), Eq(y, 0) & Eq(-y + a, 1)), (0, True)).simplify( ) == Piecewise( (2*x, And(Eq(a, 0), Eq(y, 0))), (2, And(Eq(a, 1), Eq(y, 0))), (0, True)) args = (2, And(Eq(x, 2), Ge(y, 0))), (x, True) assert Piecewise(*args).simplify() == Piecewise(*args) args = (1, Eq(x, 0)), (sin(x)/x, True) assert Piecewise(*args).simplify() == Piecewise(*args) assert Piecewise((2 + y, And(Eq(x, 2), Eq(y, 0))), (x, True) ).simplify() == x # check that x or f(x) are recognized as being Symbol-like for lhs args = Tuple((1, Eq(x, 0)), (sin(x) + 1 + x, True)) ans = x + sin(x) + 1 f = Function('f') assert Piecewise(*args).simplify() == ans assert Piecewise(*args.subs(x, f(x))).simplify() == ans.subs(x, f(x)) # issue 18634 d = Symbol("d", integer=True) n = Symbol("n", integer=True) t = Symbol("t", positive=True) expr = Piecewise((-d + 2*n, Eq(1/t, 1)), (t**(1 - 4*n)*t**(4*n - 1)*(-d + 2*n), True)) assert expr.simplify() == -d + 2*n # issue 22747 p = Piecewise((0, (t < -2) & (t < -1) & (t < 0)), ((t/2 + 1)*(t + 1)*(t + 2), (t < -1) & (t < 0)), ((S.Half - t/2)*(1 - t)*(t + 1), (t < -2) & (t < -1) & (t < 1)), ((t + 1)*(-t*(t/2 + 1) + (S.Half - t/2)*(1 - t)), (t < -2) & (t < -1) & (t < 0) & (t < 1)), ((t + 1)*((S.Half - t/2)*(1 - t) + (t/2 + 1)*(t + 2)), (t < -1) & (t < 1)), ((t + 1)*(-t*(t/2 + 1) + (S.Half - t/2)*(1 - t)), (t < -1) & (t < 0) & (t < 1)), (0, (t < -2) & (t < -1)), ((t/2 + 1)*(t + 1)*(t + 2), t < -1), ((t + 1)*(-t*(t/2 + 1) + (S.Half - t/2)*(t + 1)), (t < 0) & ((t < -2) | (t < 0))), ((S.Half - t/2)*(1 - t)*(t + 1), (t < 1) & ((t < -2) | (t < 1))), (0, True)) + Piecewise((0, (t < -1) & (t < 0) & (t < 1)), ((1 - t)*(t/2 + S.Half)*(t + 1), (t < 0) & (t < 1)), ((1 - t)*(1 - t/2)*(2 - t), (t < -1) & (t < 0) & (t < 2)), ((1 - t)*((1 - t)*(t/2 + S.Half) + (1 - t/2)*(2 - t)), (t < -1) & (t < 0) & (t < 1) & (t < 2)), ((1 - t)*((1 - t/2)*(2 - t) + (t/2 + S.Half)*(t + 1)), (t < 0) & (t < 2)), ((1 - t)*((1 - t)*(t/2 + S.Half) + (1 - t/2)*(2 - t)), (t < 0) & (t < 1) & (t < 2)), (0, (t < -1) & (t < 0)), ((1 - t)*(t/2 + S.Half)*(t + 1), t < 0), ((1 - t)*(t*(1 - t/2) + (1 - t)*(t/2 + S.Half)), (t < 1) & ((t < -1) | (t < 1))), ((1 - t)*(1 - t/2)*(2 - t), (t < 2) & ((t < -1) | (t < 2))), (0, True)) assert p.simplify() == Piecewise( (0, t < -2), ((t + 1)*(t + 2)**2/2, t < -1), (-3*t**3/2 - 5*t**2/2 + 1, t < 0), (3*t**3/2 - 5*t**2/2 + 1, t < 1), ((1 - t)*(t - 2)**2/2, t < 2), (0, True)) # coverage nan = Undefined covered = Piecewise((1, x > 3), (2, x < 2), (3, x > 1)) assert covered.simplify().args == covered.args assert Piecewise((1, x < 2), (2, x < 1), (3, True)).simplify( ) == Piecewise((1, x < 2), (3, True)) assert Piecewise((1, x > 2)).simplify() == Piecewise((1, x > 2), (nan, True)) assert Piecewise((1, (x >= 2) & (x < oo)) ).simplify() == Piecewise((1, (x >= 2) & (x < oo)), (nan, True)) assert Piecewise((1, x < 2), (2, (x > 1) & (x < 3)), (3, True) ). simplify() == Piecewise((1, x < 2), (2, x < 3), (3, True)) assert Piecewise((1, x < 2), (2, (x <= 3) & (x > 1)), (3, True) ).simplify() == Piecewise((1, x < 2), (2, x <= 3), (3, True)) assert Piecewise((1, x < 2), (2, (x > 2) & (x < 3)), (3, True) ).simplify() == Piecewise((1, x < 2), (2, (x > 2) & (x < 3)), (3, True)) assert Piecewise((1, x < 2), (2, (x >= 1) & (x <= 3)), (3, True) ).simplify() == Piecewise((1, x < 2), (2, x <= 3), (3, True)) assert Piecewise((1, x < 1), (2, (x >= 2) & (x <= 3)), (3, True) ).simplify() == Piecewise((1, x < 1), (2, (x >= 2) & (x <= 3)), (3, True)) def test_piecewise_solve(): abs2 = Piecewise((-x, x <= 0), (x, x > 0)) f = abs2.subs(x, x - 2) assert solve(f, x) == [2] assert solve(f - 1, x) == [1, 3] f = Piecewise(((x - 2)**2, x >= 0), (1, True)) assert solve(f, x) == [2] g = Piecewise(((x - 5)**5, x >= 4), (f, True)) assert solve(g, x) == [2, 5] g = Piecewise(((x - 5)**5, x >= 4), (f, x < 4)) assert solve(g, x) == [2, 5] g = Piecewise(((x - 5)**5, x >= 2), (f, x < 2)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (f, True)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (f, True), (10, False)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (-x + 2, x - 2 <= 0), (x - 2, x - 2 > 0)) assert solve(g, x) == [5] # if no symbol is given the piecewise detection must still work assert solve(Piecewise((x - 2, x > 2), (2 - x, True)) - 3) == [-1, 5] f = Piecewise(((x - 2)**2, x >= 0), (0, True)) raises(NotImplementedError, lambda: solve(f, x)) def nona(ans): return list(filter(lambda x: x is not S.NaN, ans)) p = Piecewise((x**2 - 4, x < y), (x - 2, True)) ans = solve(p, x) assert nona([i.subs(y, -2) for i in ans]) == [2] assert nona([i.subs(y, 2) for i in ans]) == [-2, 2] assert nona([i.subs(y, 3) for i in ans]) == [-2, 2] assert ans == [ Piecewise((-2, y > -2), (S.NaN, True)), Piecewise((2, y <= 2), (S.NaN, True)), Piecewise((2, y > 2), (S.NaN, True))] # issue 6060 absxm3 = Piecewise( (x - 3, 0 <= x - 3), (3 - x, 0 > x - 3) ) assert solve(absxm3 - y, x) == [ Piecewise((-y + 3, -y < 0), (S.NaN, True)), Piecewise((y + 3, y >= 0), (S.NaN, True))] p = Symbol('p', positive=True) assert solve(absxm3 - p, x) == [-p + 3, p + 3] # issue 6989 f = Function('f') assert solve(Eq(-f(x), Piecewise((1, x > 0), (0, True))), f(x)) == \ [Piecewise((-1, x > 0), (0, True))] # issue 8587 f = Piecewise((2*x**2, And(0 < x, x < 1)), (2, True)) assert solve(f - 1) == [1/sqrt(2)] def test_piecewise_fold(): p = Piecewise((x, x < 1), (1, 1 <= x)) assert piecewise_fold(x*p) == Piecewise((x**2, x < 1), (x, 1 <= x)) assert piecewise_fold(p + p) == Piecewise((2*x, x < 1), (2, 1 <= x)) assert piecewise_fold(Piecewise((1, x < 0), (2, True)) + Piecewise((10, x < 0), (-10, True))) == \ Piecewise((11, x < 0), (-8, True)) p1 = Piecewise((0, x < 0), (x, x <= 1), (0, True)) p2 = Piecewise((0, x < 0), (1 - x, x <= 1), (0, True)) p = 4*p1 + 2*p2 assert integrate( piecewise_fold(p), (x, -oo, oo)) == integrate(2*x + 2, (x, 0, 1)) assert piecewise_fold( Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True) )) == Piecewise((1, y <= 0), (-2, y >= 0)) assert piecewise_fold(Piecewise((x, ITE(x > 0, y < 1, y > 1))) ) == Piecewise((x, ((x <= 0) | (y < 1)) & ((x > 0) | (y > 1)))) a, b = (Piecewise((2, Eq(x, 0)), (0, True)), Piecewise((x, Eq(-x + y, 0)), (1, Eq(-x + y, 1)), (0, True))) assert piecewise_fold(Mul(a, b, evaluate=False) ) == piecewise_fold(Mul(b, a, evaluate=False)) def test_piecewise_fold_piecewise_in_cond(): p1 = Piecewise((cos(x), x < 0), (0, True)) p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True)) assert p2.subs(x, -pi/2) == 0 assert p2.subs(x, 1) == 0 assert p2.subs(x, -pi/4) == 1 p4 = Piecewise((0, Eq(p1, 0)), (1,True)) ans = piecewise_fold(p4) for i in range(-1, 1): assert ans.subs(x, i) == p4.subs(x, i) r1 = 1 < Piecewise((1, x < 1), (3, True)) ans = piecewise_fold(r1) for i in range(2): assert ans.subs(x, i) == r1.subs(x, i) p5 = Piecewise((1, x < 0), (3, True)) p6 = Piecewise((1, x < 1), (3, True)) p7 = Piecewise((1, p5 < p6), (0, True)) ans = piecewise_fold(p7) for i in range(-1, 2): assert ans.subs(x, i) == p7.subs(x, i) def test_piecewise_fold_piecewise_in_cond_2(): p1 = Piecewise((cos(x), x < 0), (0, True)) p2 = Piecewise((0, Eq(p1, 0)), (1 / p1, True)) p3 = Piecewise( (0, (x >= 0) | Eq(cos(x), 0)), (1/cos(x), x < 0), (zoo, True)) # redundant b/c all x are already covered assert(piecewise_fold(p2) == p3) def test_piecewise_fold_expand(): p1 = Piecewise((1, Interval(0, 1, False, True).contains(x)), (0, True)) p2 = piecewise_fold(expand((1 - x)*p1)) cond = ((x >= 0) & (x < 1)) assert piecewise_fold(expand((1 - x)*p1), evaluate=False ) == Piecewise((1 - x, cond), (-x, cond), (1, cond), (0, True), evaluate=False) assert piecewise_fold(expand((1 - x)*p1), evaluate=None ) == Piecewise((1 - x, cond), (0, True)) assert p2 == Piecewise((1 - x, cond), (0, True)) assert p2 == expand(piecewise_fold((1 - x)*p1)) def test_piecewise_duplicate(): p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x)) assert p == Piecewise(*p.args) def test_doit(): p1 = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x)) p2 = Piecewise((x, x < 1), (Integral(2 * x), -1 <= x), (x, 3 < x)) assert p2.doit() == p1 assert p2.doit(deep=False) == p2 # issue 17165 p1 = Sum(y**x, (x, -1, oo)).doit() assert p1.doit() == p1 def test_piecewise_interval(): p1 = Piecewise((x, Interval(0, 1).contains(x)), (0, True)) assert p1.subs(x, -0.5) == 0 assert p1.subs(x, 0.5) == 0.5 assert p1.diff(x) == Piecewise((1, Interval(0, 1).contains(x)), (0, True)) assert integrate(p1, x) == Piecewise( (0, x <= 0), (x**2/2, x <= 1), (S.Half, True)) def test_piecewise_exclusive(): p = Piecewise((0, x < 0), (S.Half, x <= 0), (1, True)) assert piecewise_exclusive(p) == Piecewise((0, x < 0), (S.Half, Eq(x, 0)), (1, x > 0), evaluate=False) assert piecewise_exclusive(p + 2) == Piecewise((0, x < 0), (S.Half, Eq(x, 0)), (1, x > 0), evaluate=False) + 2 assert piecewise_exclusive(Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True))) == \ Piecewise((1, y <= 0), (-Piecewise((2, y >= 0), (S.NaN, y < 0), evaluate=False), y > 0), evaluate=False) assert piecewise_exclusive(Piecewise((1, x > y))) == Piecewise((1, x > y), (S.NaN, x <= y), evaluate=False) assert piecewise_exclusive(Piecewise((1, x > y)), skip_nan=True) == Piecewise((1, x > y)) xr, yr = symbols('xr, yr', real=True) p1 = Piecewise((1, xr < 0), (2, True), evaluate=False) p1x = Piecewise((1, xr < 0), (2, xr >= 0), evaluate=False) p2 = Piecewise((p1, yr < 0), (3, True), evaluate=False) p2x = Piecewise((p1, yr < 0), (3, yr >= 0), evaluate=False) p2xx = Piecewise((p1x, yr < 0), (3, yr >= 0), evaluate=False) assert piecewise_exclusive(p2) == p2xx assert piecewise_exclusive(p2, deep=False) == p2x def test_piecewise_collapse(): assert Piecewise((x, True)) == x a = x < 1 assert Piecewise((x, a), (x + 1, a)) == Piecewise((x, a)) assert Piecewise((x, a), (x + 1, a.reversed)) == Piecewise((x, a)) b = x < 5 def canonical(i): if isinstance(i, Piecewise): return Piecewise(*i.args) return i for args in [ ((1, a), (Piecewise((2, a), (3, b)), b)), ((1, a), (Piecewise((2, a), (3, b.reversed)), b)), ((1, a), (Piecewise((2, a), (3, b)), b), (4, True)), ((1, a), (Piecewise((2, a), (3, b), (4, True)), b)), ((1, a), (Piecewise((2, a), (3, b), (4, True)), b), (5, True))]: for i in (0, 2, 10): assert canonical( Piecewise(*args, evaluate=False).subs(x, i) ) == canonical(Piecewise(*args).subs(x, i)) r1, r2, r3, r4 = symbols('r1:5') a = x < r1 b = x < r2 c = x < r3 d = x < r4 assert Piecewise((1, a), (Piecewise( (2, a), (3, b), (4, c)), b), (5, c) ) == Piecewise((1, a), (3, b), (5, c)) assert Piecewise((1, a), (Piecewise( (2, a), (3, b), (4, c), (6, True)), c), (5, d) ) == Piecewise((1, a), (Piecewise( (3, b), (4, c)), c), (5, d)) assert Piecewise((1, Or(a, d)), (Piecewise( (2, d), (3, b), (4, c)), b), (5, c) ) == Piecewise((1, Or(a, d)), (Piecewise( (2, d), (3, b)), b), (5, c)) assert Piecewise((1, c), (2, ~c), (3, S.true) ) == Piecewise((1, c), (2, S.true)) assert Piecewise((1, c), (2, And(~c, b)), (3,True) ) == Piecewise((1, c), (2, b), (3, True)) assert Piecewise((1, c), (2, Or(~c, b)), (3,True) ).subs(dict(zip((r1, r2, r3, r4, x), (1, 2, 3, 4, 3.5)))) == 2 assert Piecewise((1, c), (2, ~c)) == Piecewise((1, c), (2, True)) def test_piecewise_lambdify(): p = Piecewise( (x**2, x < 0), (x, Interval(0, 1, False, True).contains(x)), (2 - x, x >= 1), (0, True) ) f = lambdify(x, p) assert f(-2.0) == 4.0 assert f(0.0) == 0.0 assert f(0.5) == 0.5 assert f(2.0) == 0.0 def test_piecewise_series(): from sympy.series.order import O p1 = Piecewise((sin(x), x < 0), (cos(x), x > 0)) p2 = Piecewise((x + O(x**2), x < 0), (1 + O(x**2), x > 0)) assert p1.nseries(x, n=2) == p2 def test_piecewise_as_leading_term(): p1 = Piecewise((1/x, x > 1), (0, True)) p2 = Piecewise((x, x > 1), (0, True)) p3 = Piecewise((1/x, x > 1), (x, True)) p4 = Piecewise((x, x > 1), (1/x, True)) p5 = Piecewise((1/x, x > 1), (x, True)) p6 = Piecewise((1/x, x < 1), (x, True)) p7 = Piecewise((x, x < 1), (1/x, True)) p8 = Piecewise((x, x > 1), (1/x, True)) assert p1.as_leading_term(x) == 0 assert p2.as_leading_term(x) == 0 assert p3.as_leading_term(x) == x assert p4.as_leading_term(x) == 1/x assert p5.as_leading_term(x) == x assert p6.as_leading_term(x) == 1/x assert p7.as_leading_term(x) == x assert p8.as_leading_term(x) == 1/x def test_piecewise_complex(): p1 = Piecewise((2, x < 0), (1, 0 <= x)) p2 = Piecewise((2*I, x < 0), (I, 0 <= x)) p3 = Piecewise((I*x, x > 1), (1 + I, True)) p4 = Piecewise((-I*conjugate(x), x > 1), (1 - I, True)) assert conjugate(p1) == p1 assert conjugate(p2) == piecewise_fold(-p2) assert conjugate(p3) == p4 assert p1.is_imaginary is False assert p1.is_real is True assert p2.is_imaginary is True assert p2.is_real is False assert p3.is_imaginary is None assert p3.is_real is None assert p1.as_real_imag() == (p1, 0) assert p2.as_real_imag() == (0, -I*p2) def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) p = Piecewise((A*B**2, x > 0), (A**2*B, True)) assert p.adjoint() == \ Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True)) assert p.conjugate() == \ Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True)) assert p.transpose() == \ Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True)) def test_piecewise_evaluate(): assert Piecewise((x, True)) == x assert Piecewise((x, True), evaluate=True) == x assert Piecewise((1, Eq(1, x))).args == ((1, Eq(x, 1)),) assert Piecewise((1, Eq(1, x)), evaluate=False).args == ( (1, Eq(1, x)),) # like the additive and multiplicative identities that # cannot be kept in Add/Mul, we also do not keep a single True p = Piecewise((x, True), evaluate=False) assert p == x def test_as_expr_set_pairs(): assert Piecewise((x, x > 0), (-x, x <= 0)).as_expr_set_pairs() == \ [(x, Interval(0, oo, True, True)), (-x, Interval(-oo, 0))] assert Piecewise(((x - 2)**2, x >= 0), (0, True)).as_expr_set_pairs() == \ [((x - 2)**2, Interval(0, oo)), (0, Interval(-oo, 0, True, True))] def test_S_srepr_is_identity(): p = Piecewise((10, Eq(x, 0)), (12, True)) q = S(srepr(p)) assert p == q def test_issue_12587(): # sort holes into intervals p = Piecewise((1, x > 4), (2, Not((x <= 3) & (x > -1))), (3, True)) assert p.integrate((x, -5, 5)) == 23 p = Piecewise((1, x > 1), (2, x < y), (3, True)) lim = x, -3, 3 ans = p.integrate(lim) for i in range(-1, 3): assert ans.subs(y, i) == p.subs(y, i).integrate(lim) def test_issue_11045(): assert integrate(1/(x*sqrt(x**2 - 1)), (x, 1, 2)) == pi/3 # handle And with Or arguments assert Piecewise((1, And(Or(x < 1, x > 3), x < 2)), (0, True) ).integrate((x, 0, 3)) == 1 # hidden false assert Piecewise((1, x > 1), (2, x > x + 1), (3, True) ).integrate((x, 0, 3)) == 5 # targetcond is Eq assert Piecewise((1, x > 1), (2, Eq(1, x)), (3, True) ).integrate((x, 0, 4)) == 6 # And has Relational needing to be solved assert Piecewise((1, And(2*x > x + 1, x < 2)), (0, True) ).integrate((x, 0, 3)) == 1 # Or has Relational needing to be solved assert Piecewise((1, Or(2*x > x + 2, x < 1)), (0, True) ).integrate((x, 0, 3)) == 2 # ignore hidden false (handled in canonicalization) assert Piecewise((1, x > 1), (2, x > x + 1), (3, True) ).integrate((x, 0, 3)) == 5 # watch for hidden True Piecewise assert Piecewise((2, Eq(1 - x, x*(1/x - 1))), (0, True) ).integrate((x, 0, 3)) == 6 # overlapping conditions of targetcond are recognized and ignored; # the condition x > 3 will be pre-empted by the first condition assert Piecewise((1, Or(x < 1, x > 2)), (2, x > 3), (3, True) ).integrate((x, 0, 4)) == 6 # convert Ne to Or assert Piecewise((1, Ne(x, 0)), (2, True) ).integrate((x, -1, 1)) == 2 # no default but well defined assert Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4)) ).integrate((x, 1, 4)) == 5 p = Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4))) nan = Undefined i = p.integrate((x, 1, y)) assert i == Piecewise( (y - 1, y < 1), (Min(3, y)**2/2 - Min(3, y) + Min(4, y) - S.Half, y <= Min(4, y)), (nan, True)) assert p.integrate((x, 1, -1)) == i.subs(y, -1) assert p.integrate((x, 1, 4)) == 5 assert p.integrate((x, 1, 5)) is nan # handle Not p = Piecewise((1, x > 1), (2, Not(And(x > 1, x< 3))), (3, True)) assert p.integrate((x, 0, 3)) == 4 # handle updating of int_expr when there is overlap p = Piecewise( (1, And(5 > x, x > 1)), (2, Or(x < 3, x > 7)), (4, x < 8)) assert p.integrate((x, 0, 10)) == 20 # And with Eq arg handling assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)) ).integrate((x, 0, 3)) is S.NaN assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)), (3, True) ).integrate((x, 0, 3)) == 7 assert Piecewise((1, x < 0), (2, And(Eq(x, 3), x < 1)), (3, True) ).integrate((x, -1, 1)) == 4 # middle condition doesn't matter: it's a zero width interval assert Piecewise((1, x < 1), (2, Eq(x, 3) & (y < x)), (3, True) ).integrate((x, 0, 3)) == 7 def test_holes(): nan = Undefined assert Piecewise((1, x < 2)).integrate(x) == Piecewise( (x, x < 2), (nan, True)) assert Piecewise((1, And(x > 1, x < 2))).integrate(x) == Piecewise( (nan, x < 1), (x, x < 2), (nan, True)) assert Piecewise((1, And(x > 1, x < 2))).integrate((x, 0, 3)) is nan assert Piecewise((1, And(x > 0, x < 4))).integrate((x, 1, 3)) == 2 # this also tests that the integrate method is used on non-Piecwise # arguments in _eval_integral A, B = symbols("A B") a, b = symbols('a b', real=True) assert Piecewise((A, And(x < 0, a < 1)), (B, Or(x < 1, a > 2)) ).integrate(x) == Piecewise( (B*x, (a > 2)), (Piecewise((A*x, x < 0), (B*x, x < 1), (nan, True)), a < 1), (Piecewise((B*x, x < 1), (nan, True)), True)) def test_issue_11922(): def f(x): return Piecewise((0, x < -1), (1 - x**2, x < 1), (0, True)) autocorr = lambda k: ( f(x) * f(x + k)).integrate((x, -1, 1)) assert autocorr(1.9) > 0 k = symbols('k') good_autocorr = lambda k: ( (1 - x**2) * f(x + k)).integrate((x, -1, 1)) a = good_autocorr(k) assert a.subs(k, 3) == 0 k = symbols('k', positive=True) a = good_autocorr(k) assert a.subs(k, 3) == 0 assert Piecewise((0, x < 1), (10, (x >= 1)) ).integrate() == Piecewise((0, x < 1), (10*x - 10, True)) def test_issue_5227(): f = 0.0032513612725229*Piecewise((0, x < -80.8461538461539), (-0.0160799238820171*x + 1.33215984776403, x < 2), (Piecewise((0.3, x > 123), (0.7, True)) + Piecewise((0.4, x > 2), (0.6, True)), x <= 123), (-0.00817409766454352*x + 2.10541401273885, x < 380.571428571429), (0, True)) i = integrate(f, (x, -oo, oo)) assert i == Integral(f, (x, -oo, oo)).doit() assert str(i) == '1.00195081676351' assert Piecewise((1, x - y < 0), (0, True) ).integrate(y) == Piecewise((0, y <= x), (-x + y, True)) def test_issue_10137(): a = Symbol('a', real=True) b = Symbol('b', real=True) x = Symbol('x', real=True) y = Symbol('y', real=True) p0 = Piecewise((0, Or(x < a, x > b)), (1, True)) p1 = Piecewise((0, Or(a > x, b < x)), (1, True)) assert integrate(p0, (x, y, oo)) == integrate(p1, (x, y, oo)) p3 = Piecewise((1, And(0 < x, x < a)), (0, True)) p4 = Piecewise((1, And(a > x, x > 0)), (0, True)) ip3 = integrate(p3, x) assert ip3 == Piecewise( (0, x <= 0), (x, x <= Max(0, a)), (Max(0, a), True)) ip4 = integrate(p4, x) assert ip4 == ip3 assert p3.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2 assert p4.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2 def test_stackoverflow_43852159(): f = lambda x: Piecewise((1, (x >= -1) & (x <= 1)), (0, True)) Conv = lambda x: integrate(f(x - y)*f(y), (y, -oo, +oo)) cx = Conv(x) assert cx.subs(x, -1.5) == cx.subs(x, 1.5) assert cx.subs(x, 3) == 0 assert piecewise_fold(f(x - y)*f(y)) == Piecewise( (1, (y >= -1) & (y <= 1) & (x - y >= -1) & (x - y <= 1)), (0, True)) def test_issue_12557(): ''' # 3200 seconds to compute the fourier part of issue import sympy as sym x,y,z,t = sym.symbols('x y z t') k = sym.symbols("k", integer=True) fourier = sym.fourier_series(sym.cos(k*x)*sym.sqrt(x**2), (x, -sym.pi, sym.pi)) assert fourier == FourierSeries( sqrt(x**2)*cos(k*x), (x, -pi, pi), (Piecewise((pi**2, Eq(k, 0)), (2*(-1)**k/k**2 - 2/k**2, True))/(2*pi), SeqFormula(Piecewise((pi**2, (Eq(_n, 0) & Eq(k, 0)) | (Eq(_n, 0) & Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(k, 0) & Eq(_n, -k)) | (Eq(_n, 0) & Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), (pi**2/2, Eq(_n, k) | Eq(_n, -k) | (Eq(_n, 0) & Eq(_n, k)) | (Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(_n, -k)) | (Eq(_n, k) & Eq(_n, -k)) | (Eq(k, 0) & Eq(_n, -k)) | (Eq(_n, 0) & Eq(_n, k) & Eq(_n, -k)) | (Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), ((-1)**k*pi**2*_n**3*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi**2*_n**3*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) + (-1)**k*pi*_n**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi*_n**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) - (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) + (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) + (-1)**k*pi*k**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi*k**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) - (2*_n**2 + 2*k**2)/(_n**4 - 2*_n**2*k**2 + k**4), True))*cos(_n*x)/pi, (_n, 1, oo)), SeqFormula(0, (_k, 1, oo)))) ''' x = symbols("x", real=True) k = symbols('k', integer=True, finite=True) abs2 = lambda x: Piecewise((-x, x <= 0), (x, x > 0)) assert integrate(abs2(x), (x, -pi, pi)) == pi**2 func = cos(k*x)*sqrt(x**2) assert integrate(func, (x, -pi, pi)) == Piecewise( (2*(-1)**k/k**2 - 2/k**2, Ne(k, 0)), (pi**2, True)) def test_issue_6900(): from itertools import permutations t0, t1, T, t = symbols('t0, t1 T t') f = Piecewise((0, t < t0), (x, And(t0 <= t, t < t1)), (0, t >= t1)) g = f.integrate(t) assert g == Piecewise( (0, t <= t0), (t*x - t0*x, t <= Max(t0, t1)), (-t0*x + x*Max(t0, t1), True)) for i in permutations(range(2)): reps = dict(zip((t0,t1), i)) for tt in range(-1,3): assert (g.xreplace(reps).subs(t,tt) == f.xreplace(reps).integrate(t).subs(t,tt)) lim = Tuple(t, t0, T) g = f.integrate(lim) ans = Piecewise( (-t0*x + x*Min(T, Max(t0, t1)), T > t0), (0, True)) for i in permutations(range(3)): reps = dict(zip((t0,t1,T), i)) tru = f.xreplace(reps).integrate(lim.xreplace(reps)) assert tru == ans.xreplace(reps) assert g == ans def test_issue_10122(): assert solve(abs(x) + abs(x - 1) - 1 > 0, x ) == Or(And(-oo < x, x < S.Zero), And(S.One < x, x < oo)) def test_issue_4313(): u = Piecewise((0, x <= 0), (1, x >= a), (x/a, True)) e = (u - u.subs(x, y))**2/(x - y)**2 M = Max(0, a) assert integrate(e, x).expand() == Piecewise( (Piecewise( (0, x <= 0), (-y**2/(a**2*x - a**2*y) + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 - y/a**2, x <= M), (-y**2/(-a**2*y + a**2*M) + 1/(-y + M) - 1/(x - y) - 2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 - y/a**2 + M/a**2, True)), ((a <= y) & (y <= 0)) | ((y <= 0) & (y > -oo))), (Piecewise( (-1/(x - y), x <= 0), (-a**2/(a**2*x - a**2*y) + 2*a*y/(a**2*x - a**2*y) - y**2/(a**2*x - a**2*y) + 2*log(-y)/a - 2*log(x - y)/a + 2/a + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 - y/a**2, x <= M), (-a**2/(-a**2*y + a**2*M) + 2*a*y/(-a**2*y + a**2*M) - y**2/(-a**2*y + a**2*M) + 2*log(-y)/a - 2*log(-y + M)/a + 2/a - 2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 - y/a**2 + M/a**2, True)), a <= y), (Piecewise( (-y**2/(a**2*x - a**2*y), x <= 0), (x/a**2 + y/a**2, x <= M), (a**2/(-a**2*y + a**2*M) - a**2/(a**2*x - a**2*y) - 2*a*y/(-a**2*y + a**2*M) + 2*a*y/(a**2*x - a**2*y) + y**2/(-a**2*y + a**2*M) - y**2/(a**2*x - a**2*y) + y/a**2 + M/a**2, True)), True)) def test__intervals(): assert Piecewise((x + 2, Eq(x, 3)))._intervals(x) == (True, []) assert Piecewise( (1, x > x + 1), (Piecewise((1, x < x + 1)), 2*x < 2*x + 1), (1, True))._intervals(x) == (True, [(-oo, oo, 1, 1)]) assert Piecewise((1, Ne(x, I)), (0, True))._intervals(x) == (True, [(-oo, oo, 1, 0)]) assert Piecewise((-cos(x), sin(x) >= 0), (cos(x), True) )._intervals(x) == (True, [(0, pi, -cos(x), 0), (-oo, oo, cos(x), 1)]) # the following tests that duplicates are removed and that non-Eq # generated zero-width intervals are removed assert Piecewise((1, Abs(x**(-2)) > 1), (0, True) )._intervals(x) == (True, [(-1, 0, 1, 0), (0, 1, 1, 0), (-oo, oo, 0, 1)]) def test_containment(): a, b, c, d, e = [1, 2, 3, 4, 5] p = (Piecewise((d, x > 1), (e, True))* Piecewise((a, Abs(x - 1) < 1), (b, Abs(x - 2) < 2), (c, True))) assert p.integrate(x).diff(x) == Piecewise( (c*e, x <= 0), (a*e, x <= 1), (a*d, x < 2), # this is what we want to get right (b*d, x < 4), (c*d, True)) def test_piecewise_with_DiracDelta(): d1 = DiracDelta(x - 1) assert integrate(d1, (x, -oo, oo)) == 1 assert integrate(d1, (x, 0, 2)) == 1 assert Piecewise((d1, Eq(x, 2)), (0, True)).integrate(x) == 0 assert Piecewise((d1, x < 2), (0, True)).integrate(x) == Piecewise( (Heaviside(x - 1), x < 2), (1, True)) # TODO raise error if function is discontinuous at limit of # integration, e.g. integrate(d1, (x, -2, 1)) or Piecewise( # (d1, Eq(x, 1) def test_issue_10258(): assert Piecewise((0, x < 1), (1, True)).is_zero is None assert Piecewise((-1, x < 1), (1, True)).is_zero is False a = Symbol('a', zero=True) assert Piecewise((0, x < 1), (a, True)).is_zero assert Piecewise((1, x < 1), (a, x < 3)).is_zero is None a = Symbol('a') assert Piecewise((0, x < 1), (a, True)).is_zero is None assert Piecewise((0, x < 1), (1, True)).is_nonzero is None assert Piecewise((1, x < 1), (2, True)).is_nonzero assert Piecewise((0, x < 1), (oo, True)).is_finite is None assert Piecewise((0, x < 1), (1, True)).is_finite b = Basic() assert Piecewise((b, x < 1)).is_finite is None # 10258 c = Piecewise((1, x < 0), (2, True)) < 3 assert c != True assert piecewise_fold(c) == True def test_issue_10087(): a, b = Piecewise((x, x > 1), (2, True)), Piecewise((x, x > 3), (3, True)) m = a*b f = piecewise_fold(m) for i in (0, 2, 4): assert m.subs(x, i) == f.subs(x, i) m = a + b f = piecewise_fold(m) for i in (0, 2, 4): assert m.subs(x, i) == f.subs(x, i) def test_issue_8919(): c = symbols('c:5') x = symbols("x") f1 = Piecewise((c[1], x < 1), (c[2], True)) f2 = Piecewise((c[3], x < Rational(1, 3)), (c[4], True)) assert integrate(f1*f2, (x, 0, 2) ) == c[1]*c[3]/3 + 2*c[1]*c[4]/3 + c[2]*c[4] f1 = Piecewise((0, x < 1), (2, True)) f2 = Piecewise((3, x < 2), (0, True)) assert integrate(f1*f2, (x, 0, 3)) == 6 y = symbols("y", positive=True) a, b, c, x, z = symbols("a,b,c,x,z", real=True) I = Integral(Piecewise( (0, (x >= y) | (x < 0) | (b > c)), (a, True)), (x, 0, z)) ans = I.doit() assert ans == Piecewise((0, b > c), (a*Min(y, z) - a*Min(0, z), True)) for cond in (True, False): for yy in range(1, 3): for zz in range(-yy, 0, yy): reps = [(b > c, cond), (y, yy), (z, zz)] assert ans.subs(reps) == I.subs(reps).doit() def test_unevaluated_integrals(): f = Function('f') p = Piecewise((1, Eq(f(x) - 1, 0)), (2, x - 10 < 0), (0, True)) assert p.integrate(x) == Integral(p, x) assert p.integrate((x, 0, 5)) == Integral(p, (x, 0, 5)) # test it by replacing f(x) with x%2 which will not # affect the answer: the integrand is essentially 2 over # the domain of integration assert Integral(p, (x, 0, 5)).subs(f(x), x%2).n() == 10.0 # this is a test of using _solve_inequality when # solve_univariate_inequality fails assert p.integrate(y) == Piecewise( (y, Eq(f(x), 1) | ((x < 10) & Eq(f(x), 1))), (2*y, (x > -oo) & (x < 10)), (0, True)) def test_conditions_as_alternate_booleans(): a, b, c = symbols('a:c') assert Piecewise((x, Piecewise((y < 1, x > 0), (y > 1, True))) ) == Piecewise((x, ITE(x > 0, y < 1, y > 1))) def test_Piecewise_rewrite_as_ITE(): a, b, c, d = symbols('a:d') def _ITE(*args): return Piecewise(*args).rewrite(ITE) assert _ITE((a, x < 1), (b, x >= 1)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, x < oo)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, Or(y < 1, x < oo)), (c, y > 0) ) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, True)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, x < 2), (c, True) ) == ITE(x < 1, a, ITE(x < 2, b, c)) assert _ITE((a, x < 1), (b, y < 2), (c, True) ) == ITE(x < 1, a, ITE(y < 2, b, c)) assert _ITE((a, x < 1), (b, x < oo), (c, y < 1) ) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (c, y < 1), (b, x < oo), (d, True) ) == ITE(x < 1, a, ITE(y < 1, c, b)) assert _ITE((a, x < 0), (b, Or(x < oo, y < 1)) ) == ITE(x < 0, a, b) raises(TypeError, lambda: _ITE((x + 1, x < 1), (x, True))) # if `a` in the following were replaced with y then the coverage # is complete but something other than as_set would need to be # used to detect this raises(NotImplementedError, lambda: _ITE((x, x < y), (y, x >= a))) raises(ValueError, lambda: _ITE((a, x < 2), (b, x > 3))) def test_issue_14052(): assert integrate(abs(sin(x)), (x, 0, 2*pi)) == 4 def test_issue_14240(): assert piecewise_fold( Piecewise((1, a), (2, b), (4, True)) + Piecewise((8, a), (16, True)) ) == Piecewise((9, a), (18, b), (20, True)) assert piecewise_fold( Piecewise((2, a), (3, b), (5, True)) * Piecewise((7, a), (11, True)) ) == Piecewise((14, a), (33, b), (55, True)) # these will hang if naive folding is used assert piecewise_fold(Add(*[ Piecewise((i, a), (0, True)) for i in range(40)]) ) == Piecewise((780, a), (0, True)) assert piecewise_fold(Mul(*[ Piecewise((i, a), (0, True)) for i in range(1, 41)]) ) == Piecewise((factorial(40), a), (0, True)) def test_issue_14787(): x = Symbol('x') f = Piecewise((x, x < 1), ((S(58) / 7), True)) assert str(f.evalf()) == "Piecewise((x, x < 1), (8.28571428571429, True))" def test_issue_8458(): x, y = symbols('x y') # Original issue p1 = Piecewise((0, Eq(x, 0)), (sin(x), True)) assert p1.simplify() == sin(x) # Slightly larger variant p2 = Piecewise((x, Eq(x, 0)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True)) assert p2.simplify() == sin(x) # Test for problem highlighted during review p3 = Piecewise((x+1, Eq(x, -1)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True)) assert p3.simplify() == Piecewise((0, Eq(x, -1)), (sin(x), True)) def test_issue_16417(): z = Symbol('z') assert unchanged(Piecewise, (1, Or(Eq(im(z), 0), Gt(re(z), 0))), (2, True)) x = Symbol('x') assert unchanged(Piecewise, (S.Pi, re(x) < 0), (0, Or(re(x) > 0, Ne(im(x), 0))), (S.NaN, True)) r = Symbol('r', real=True) p = Piecewise((S.Pi, re(r) < 0), (0, Or(re(r) > 0, Ne(im(r), 0))), (S.NaN, True)) assert p == Piecewise((S.Pi, r < 0), (0, r > 0), (S.NaN, True), evaluate=False) # Does not work since imaginary != 0... #i = Symbol('i', imaginary=True) #p = Piecewise((S.Pi, re(i) < 0), # (0, Or(re(i) > 0, Ne(im(i), 0))), # (S.NaN, True)) #assert p == Piecewise((0, Ne(im(i), 0)), # (S.NaN, True), evaluate=False) i = I*r p = Piecewise((S.Pi, re(i) < 0), (0, Or(re(i) > 0, Ne(im(i), 0))), (S.NaN, True)) assert p == Piecewise((0, Ne(im(i), 0)), (S.NaN, True), evaluate=False) assert p == Piecewise((0, Ne(r, 0)), (S.NaN, True), evaluate=False) def test_eval_rewrite_as_KroneckerDelta(): x, y, z, n, t, m = symbols('x y z n t m') K = KroneckerDelta f = lambda p: expand(p.rewrite(K)) p1 = Piecewise((0, Eq(x, y)), (1, True)) assert f(p1) == 1 - K(x, y) p2 = Piecewise((x, Eq(y,0)), (z, Eq(t,0)), (n, True)) assert f(p2) == n*K(0, t)*K(0, y) - n*K(0, t) - n*K(0, y) + n + \ x*K(0, y) - z*K(0, t)*K(0, y) + z*K(0, t) p3 = Piecewise((1, Ne(x, y)), (0, True)) assert f(p3) == 1 - K(x, y) p4 = Piecewise((1, Eq(x, 3)), (4, True), (5, True)) assert f(p4) == 4 - 3*K(3, x) p5 = Piecewise((3, Ne(x, 2)), (4, Eq(y, 2)), (5, True)) assert f(p5) == -K(2, x)*K(2, y) + 2*K(2, x) + 3 p6 = Piecewise((0, Ne(x, 1) & Ne(y, 4)), (1, True)) assert f(p6) == -K(1, x)*K(4, y) + K(1, x) + K(4, y) p7 = Piecewise((2, Eq(y, 3) & Ne(x, 2)), (1, True)) assert f(p7) == -K(2, x)*K(3, y) + K(3, y) + 1 p8 = Piecewise((4, Eq(x, 3) & Ne(y, 2)), (1, True)) assert f(p8) == -3*K(2, y)*K(3, x) + 3*K(3, x) + 1 p9 = Piecewise((6, Eq(x, 4) & Eq(y, 1)), (1, True)) assert f(p9) == 5 * K(1, y) * K(4, x) + 1 p10 = Piecewise((4, Ne(x, -4) | Ne(y, 1)), (1, True)) assert f(p10) == -3 * K(-4, x) * K(1, y) + 4 p11 = Piecewise((1, Eq(y, 2) | Ne(x, -3)), (2, True)) assert f(p11) == -K(-3, x)*K(2, y) + K(-3, x) + 1 p12 = Piecewise((-1, Eq(x, 1) | Ne(y, 3)), (1, True)) assert f(p12) == -2*K(1, x)*K(3, y) + 2*K(3, y) - 1 p13 = Piecewise((3, Eq(x, 2) | Eq(y, 4)), (1, True)) assert f(p13) == -2*K(2, x)*K(4, y) + 2*K(2, x) + 2*K(4, y) + 1 p14 = Piecewise((1, Ne(x, 0) | Ne(y, 1)), (3, True)) assert f(p14) == 2 * K(0, x) * K(1, y) + 1 p15 = Piecewise((2, Eq(x, 3) | Ne(y, 2)), (3, Eq(x, 4) & Eq(y, 5)), (1, True)) assert f(p15) == -2*K(2, y)*K(3, x)*K(4, x)*K(5, y) + K(2, y)*K(3, x) + \ 2*K(2, y)*K(4, x)*K(5, y) - K(2, y) + 2 p16 = Piecewise((0, Ne(m, n)), (1, True))*Piecewise((0, Ne(n, t)), (1, True))\ *Piecewise((0, Ne(n, x)), (1, True)) - Piecewise((0, Ne(t, x)), (1, True)) assert f(p16) == K(m, n)*K(n, t)*K(n, x) - K(t, x) p17 = Piecewise((0, Ne(t, x) & (Ne(m, n) | Ne(n, t) | Ne(n, x))), (1, Ne(t, x)), (-1, Ne(m, n) | Ne(n, t) | Ne(n, x)), (0, True)) assert f(p17) == K(m, n)*K(n, t)*K(n, x) - K(t, x) p18 = Piecewise((-4, Eq(y, 1) | (Eq(x, -5) & Eq(x, z))), (4, True)) assert f(p18) == 8*K(-5, x)*K(1, y)*K(x, z) - 8*K(-5, x)*K(x, z) - 8*K(1, y) + 4 p19 = Piecewise((0, x > 2), (1, True)) assert f(p19) == p19 p20 = Piecewise((0, And(x < 2, x > -5)), (1, True)) assert f(p20) == p20 p21 = Piecewise((0, Or(x > 1, x < 0)), (1, True)) assert f(p21) == p21 p22 = Piecewise((0, ~((Eq(y, -1) | Ne(x, 0)) & (Ne(x, 1) | Ne(y, -1)))), (1, True)) assert f(p22) == K(-1, y)*K(0, x) - K(-1, y)*K(1, x) - K(0, x) + 1 @slow def test_identical_conds_issue(): from sympy.stats import Uniform, density u1 = Uniform('u1', 0, 1) u2 = Uniform('u2', 0, 1) # Result is quite big, so not really important here (and should ideally be # simpler). Should not give an exception though. density(u1 + u2) def test_issue_7370(): f = Piecewise((1, x <= 2400)) v = integrate(f, (x, 0, Float("252.4", 30))) assert str(v) == '252.400000000000000000000000000' def test_issue_14933(): x = Symbol('x') y = Symbol('y') inp = MatrixSymbol('inp', 1, 1) rep_dict = {y: inp[0, 0], x: inp[0, 0]} p = Piecewise((1, ITE(y > 0, x < 0, True))) assert p.xreplace(rep_dict) == Piecewise((1, ITE(inp[0, 0] > 0, inp[0, 0] < 0, True))) def test_issue_16715(): raises(NotImplementedError, lambda: Piecewise((x, x<0), (0, y>1)).as_expr_set_pairs()) def test_issue_20360(): t, tau = symbols("t tau", real=True) n = symbols("n", integer=True) lam = pi * (n - S.Half) eq = integrate(exp(lam * tau), (tau, 0, t)) assert eq.simplify() == (2*exp(pi*t*(2*n - 1)/2) - 2)/(pi*(2*n - 1)) def test_piecewise_eval(): # XXX these tests might need modification if this # simplification is moved out of eval and into # boolalg or Piecewise simplification functions f = lambda x: x.args[0].cond # unsimplified assert f(Piecewise((x, (x > -oo) & (x < 3))) ) == ((x > -oo) & (x < 3)) assert f(Piecewise((x, (x > -oo) & (x < oo))) ) == ((x > -oo) & (x < oo)) assert f(Piecewise((x, (x > -3) & (x < 3))) ) == ((x > -3) & (x < 3)) assert f(Piecewise((x, (x > -3) & (x < oo))) ) == ((x > -3) & (x < oo)) assert f(Piecewise((x, (x <= 3) & (x > -oo))) ) == ((x <= 3) & (x > -oo)) assert f(Piecewise((x, (x <= 3) & (x > -3))) ) == ((x <= 3) & (x > -3)) assert f(Piecewise((x, (x >= -3) & (x < 3))) ) == ((x >= -3) & (x < 3)) assert f(Piecewise((x, (x >= -3) & (x < oo))) ) == ((x >= -3) & (x < oo)) assert f(Piecewise((x, (x >= -3) & (x <= 3))) ) == ((x >= -3) & (x <= 3)) # could simplify by keeping only the first # arg of result assert f(Piecewise((x, (x <= oo) & (x > -oo))) ) == (x > -oo) & (x <= oo) assert f(Piecewise((x, (x <= oo) & (x > -3))) ) == (x > -3) & (x <= oo) assert f(Piecewise((x, (x >= -oo) & (x < 3))) ) == (x < 3) & (x >= -oo) assert f(Piecewise((x, (x >= -oo) & (x < oo))) ) == (x < oo) & (x >= -oo) assert f(Piecewise((x, (x >= -oo) & (x <= 3))) ) == (x <= 3) & (x >= -oo) assert f(Piecewise((x, (x >= -oo) & (x <= oo))) ) == (x <= oo) & (x >= -oo) # but cannot be True unless x is real assert f(Piecewise((x, (x >= -3) & (x <= oo))) ) == (x >= -3) & (x <= oo) assert f(Piecewise((x, (Abs(arg(a)) <= 1) | (Abs(arg(a)) < 1))) ) == (Abs(arg(a)) <= 1) | (Abs(arg(a)) < 1) def test_issue_22533(): x = Symbol('x', real=True) f = Piecewise((-1 / x, x <= 0), (1 / x, True)) assert integrate(f, x) == Piecewise((-log(x), x <= 0), (log(x), True)) def test_issue_24072(): assert Piecewise((1, x > 1), (2, x <= 1), (3, x <= 1) ) == Piecewise((1, x > 1), (2, True)) def test_piecewise__eval_is_meromorphic(): """ Issue 24127: Tests eval_is_meromorphic auxiliary method """ x = symbols('x', real=True) f = Piecewise((1, x < 0), (sqrt(1 - x), True)) assert f.is_meromorphic(x, I) is None assert f.is_meromorphic(x, -1) == True assert f.is_meromorphic(x, 0) == None assert f.is_meromorphic(x, 1) == False assert f.is_meromorphic(x, 2) == True assert f.is_meromorphic(x, Symbol('a')) == None assert f.is_meromorphic(x, Symbol('a', real=True)) == None
d289acab73ac1cae9660a7ad44c94bb2877fe1eb8aa1ed6784eaa6050381fabc
import itertools as it from sympy.core.expr import unchanged from sympy.core.function import Function from sympy.core.numbers import I, oo, Rational from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.external import import_module from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor, ceiling from sympy.functions.elementary.miscellaneous import (sqrt, cbrt, root, Min, Max, real_root, Rem) from sympy.functions.elementary.trigonometric import cos, sin from sympy.functions.special.delta_functions import Heaviside from sympy.utilities.lambdify import lambdify from sympy.testing.pytest import raises, skip, ignore_warnings def test_Min(): from sympy.abc import x, y, z n = Symbol('n', negative=True) n_ = Symbol('n_', negative=True) nn = Symbol('nn', nonnegative=True) nn_ = Symbol('nn_', nonnegative=True) p = Symbol('p', positive=True) p_ = Symbol('p_', positive=True) np = Symbol('np', nonpositive=True) np_ = Symbol('np_', nonpositive=True) r = Symbol('r', real=True) assert Min(5, 4) == 4 assert Min(-oo, -oo) is -oo assert Min(-oo, n) is -oo assert Min(n, -oo) is -oo assert Min(-oo, np) is -oo assert Min(np, -oo) is -oo assert Min(-oo, 0) is -oo assert Min(0, -oo) is -oo assert Min(-oo, nn) is -oo assert Min(nn, -oo) is -oo assert Min(-oo, p) is -oo assert Min(p, -oo) is -oo assert Min(-oo, oo) is -oo assert Min(oo, -oo) is -oo assert Min(n, n) == n assert unchanged(Min, n, np) assert Min(np, n) == Min(n, np) assert Min(n, 0) == n assert Min(0, n) == n assert Min(n, nn) == n assert Min(nn, n) == n assert Min(n, p) == n assert Min(p, n) == n assert Min(n, oo) == n assert Min(oo, n) == n assert Min(np, np) == np assert Min(np, 0) == np assert Min(0, np) == np assert Min(np, nn) == np assert Min(nn, np) == np assert Min(np, p) == np assert Min(p, np) == np assert Min(np, oo) == np assert Min(oo, np) == np assert Min(0, 0) == 0 assert Min(0, nn) == 0 assert Min(nn, 0) == 0 assert Min(0, p) == 0 assert Min(p, 0) == 0 assert Min(0, oo) == 0 assert Min(oo, 0) == 0 assert Min(nn, nn) == nn assert unchanged(Min, nn, p) assert Min(p, nn) == Min(nn, p) assert Min(nn, oo) == nn assert Min(oo, nn) == nn assert Min(p, p) == p assert Min(p, oo) == p assert Min(oo, p) == p assert Min(oo, oo) is oo assert Min(n, n_).func is Min assert Min(nn, nn_).func is Min assert Min(np, np_).func is Min assert Min(p, p_).func is Min # lists assert Min() is S.Infinity assert Min(x) == x assert Min(x, y) == Min(y, x) assert Min(x, y, z) == Min(z, y, x) assert Min(x, Min(y, z)) == Min(z, y, x) assert Min(x, Max(y, -oo)) == Min(x, y) assert Min(p, oo, n, p, p, p_) == n assert Min(p_, n_, p) == n_ assert Min(n, oo, -7, p, p, 2) == Min(n, -7) assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_) assert Min(0, x, 1, y) == Min(0, x, y) assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100) assert unchanged(Min, sin(x), cos(x)) assert Min(sin(x), cos(x)) == Min(cos(x), sin(x)) assert Min(cos(x), sin(x)).subs(x, 1) == cos(1) assert Min(cos(x), sin(x)).subs(x, S.Half) == sin(S.Half) raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I)) raises(ValueError, lambda: Min(I)) raises(ValueError, lambda: Min(I, x)) raises(ValueError, lambda: Min(S.ComplexInfinity, x)) assert Min(1, x).diff(x) == Heaviside(1 - x) assert Min(x, 1).diff(x) == Heaviside(1 - x) assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \ - 2*Heaviside(2*x + Min(0, -x) - 1) # issue 7619 f = Function('f') assert Min(1, 2*Min(f(1), 2)) # doesn't fail # issue 7233 e = Min(0, x) assert e.n().args == (0, x) # issue 8643 m = Min(n, p_, n_, r) assert m.is_positive is False assert m.is_nonnegative is False assert m.is_negative is True m = Min(p, p_) assert m.is_positive is True assert m.is_nonnegative is True assert m.is_negative is False m = Min(p, nn_, p_) assert m.is_positive is None assert m.is_nonnegative is True assert m.is_negative is False m = Min(nn, p, r) assert m.is_positive is None assert m.is_nonnegative is None assert m.is_negative is None def test_Max(): from sympy.abc import x, y, z n = Symbol('n', negative=True) n_ = Symbol('n_', negative=True) nn = Symbol('nn', nonnegative=True) p = Symbol('p', positive=True) p_ = Symbol('p_', positive=True) r = Symbol('r', real=True) assert Max(5, 4) == 5 # lists assert Max() is S.NegativeInfinity assert Max(x) == x assert Max(x, y) == Max(y, x) assert Max(x, y, z) == Max(z, y, x) assert Max(x, Max(y, z)) == Max(z, y, x) assert Max(x, Min(y, oo)) == Max(x, y) assert Max(n, -oo, n_, p, 2) == Max(p, 2) assert Max(n, -oo, n_, p) == p assert Max(2, x, p, n, -oo, S.NegativeInfinity, n_, p, 2) == Max(2, x, p) assert Max(0, x, 1, y) == Max(1, x, y) assert Max(r, r + 1, r - 1) == 1 + r assert Max(1000, 100, -100, x, p, n) == Max(p, x, 1000) assert Max(cos(x), sin(x)) == Max(sin(x), cos(x)) assert Max(cos(x), sin(x)).subs(x, 1) == sin(1) assert Max(cos(x), sin(x)).subs(x, S.Half) == cos(S.Half) raises(ValueError, lambda: Max(cos(x), sin(x)).subs(x, I)) raises(ValueError, lambda: Max(I)) raises(ValueError, lambda: Max(I, x)) raises(ValueError, lambda: Max(S.ComplexInfinity, 1)) assert Max(n, -oo, n_, p, 2) == Max(p, 2) assert Max(n, -oo, n_, p, 1000) == Max(p, 1000) assert Max(1, x).diff(x) == Heaviside(x - 1) assert Max(x, 1).diff(x) == Heaviside(x - 1) assert Max(x**2, 1 + x, 1).diff(x) == \ 2*x*Heaviside(x**2 - Max(1, x + 1)) \ + Heaviside(x - Max(1, x**2) + 1) e = Max(0, x) assert e.n().args == (0, x) # issue 8643 m = Max(p, p_, n, r) assert m.is_positive is True assert m.is_nonnegative is True assert m.is_negative is False m = Max(n, n_) assert m.is_positive is False assert m.is_nonnegative is False assert m.is_negative is True m = Max(n, n_, r) assert m.is_positive is None assert m.is_nonnegative is None assert m.is_negative is None m = Max(n, nn, r) assert m.is_positive is None assert m.is_nonnegative is True assert m.is_negative is False def test_minmax_assumptions(): r = Symbol('r', real=True) a = Symbol('a', real=True, algebraic=True) t = Symbol('t', real=True, transcendental=True) q = Symbol('q', rational=True) p = Symbol('p', irrational=True) n = Symbol('n', rational=True, integer=False) i = Symbol('i', integer=True) o = Symbol('o', odd=True) e = Symbol('e', even=True) k = Symbol('k', prime=True) reals = [r, a, t, q, p, n, i, o, e, k] for ext in (Max, Min): for x, y in it.product(reals, repeat=2): # Must be real assert ext(x, y).is_real # Algebraic? if x.is_algebraic and y.is_algebraic: assert ext(x, y).is_algebraic elif x.is_transcendental and y.is_transcendental: assert ext(x, y).is_transcendental else: assert ext(x, y).is_algebraic is None # Rational? if x.is_rational and y.is_rational: assert ext(x, y).is_rational elif x.is_irrational and y.is_irrational: assert ext(x, y).is_irrational else: assert ext(x, y).is_rational is None # Integer? if x.is_integer and y.is_integer: assert ext(x, y).is_integer elif x.is_noninteger and y.is_noninteger: assert ext(x, y).is_noninteger else: assert ext(x, y).is_integer is None # Odd? if x.is_odd and y.is_odd: assert ext(x, y).is_odd elif x.is_odd is False and y.is_odd is False: assert ext(x, y).is_odd is False else: assert ext(x, y).is_odd is None # Even? if x.is_even and y.is_even: assert ext(x, y).is_even elif x.is_even is False and y.is_even is False: assert ext(x, y).is_even is False else: assert ext(x, y).is_even is None # Prime? if x.is_prime and y.is_prime: assert ext(x, y).is_prime elif x.is_prime is False and y.is_prime is False: assert ext(x, y).is_prime is False else: assert ext(x, y).is_prime is None def test_issue_8413(): x = Symbol('x', real=True) # we can't evaluate in general because non-reals are not # comparable: Min(floor(3.2 + I), 3.2 + I) -> ValueError assert Min(floor(x), x) == floor(x) assert Min(ceiling(x), x) == x assert Max(floor(x), x) == x assert Max(ceiling(x), x) == ceiling(x) def test_root(): from sympy.abc import x n = Symbol('n', integer=True) k = Symbol('k', integer=True) assert root(2, 2) == sqrt(2) assert root(2, 1) == 2 assert root(2, 3) == 2**Rational(1, 3) assert root(2, 3) == cbrt(2) assert root(2, -5) == 2**Rational(4, 5)/2 assert root(-2, 1) == -2 assert root(-2, 2) == sqrt(2)*I assert root(-2, 1) == -2 assert root(x, 2) == sqrt(x) assert root(x, 1) == x assert root(x, 3) == x**Rational(1, 3) assert root(x, 3) == cbrt(x) assert root(x, -5) == x**Rational(-1, 5) assert root(x, n) == x**(1/n) assert root(x, -n) == x**(-1/n) assert root(x, n, k) == (-1)**(2*k/n)*x**(1/n) def test_real_root(): assert real_root(-8, 3) == -2 assert real_root(-16, 4) == root(-16, 4) r = root(-7, 4) assert real_root(r) == r r1 = root(-1, 3) r2 = r1**2 r3 = root(-1, 4) assert real_root(r1 + r2 + r3) == -1 + r2 + r3 assert real_root(root(-2, 3)) == -root(2, 3) assert real_root(-8., 3) == -2.0 x = Symbol('x') n = Symbol('n') g = real_root(x, n) assert g.subs(dict(x=-8, n=3)) == -2 assert g.subs(dict(x=8, n=3)) == 2 # give principle root if there is no real root -- if this is not desired # then maybe a Root class is needed to raise an error instead assert g.subs(dict(x=I, n=3)) == cbrt(I) assert g.subs(dict(x=-8, n=2)) == sqrt(-8) assert g.subs(dict(x=I, n=2)) == sqrt(I) def test_issue_11463(): numpy = import_module('numpy') if not numpy: skip("numpy not installed.") x = Symbol('x') f = lambdify(x, real_root((log(x/(x-2))), 3), 'numpy') # numpy.select evaluates all options before considering conditions, # so it raises a warning about root of negative number which does # not affect the outcome. This warning is suppressed here with ignore_warnings(RuntimeWarning): assert f(numpy.array(-1)) < -1 def test_rewrite_MaxMin_as_Heaviside(): from sympy.abc import x assert Max(0, x).rewrite(Heaviside) == x*Heaviside(x) assert Max(3, x).rewrite(Heaviside) == x*Heaviside(x - 3) + \ 3*Heaviside(-x + 3) assert Max(0, x+2, 2*x).rewrite(Heaviside) == \ 2*x*Heaviside(2*x)*Heaviside(x - 2) + \ (x + 2)*Heaviside(-x + 2)*Heaviside(x + 2) assert Min(0, x).rewrite(Heaviside) == x*Heaviside(-x) assert Min(3, x).rewrite(Heaviside) == x*Heaviside(-x + 3) + \ 3*Heaviside(x - 3) assert Min(x, -x, -2).rewrite(Heaviside) == \ x*Heaviside(-2*x)*Heaviside(-x - 2) - \ x*Heaviside(2*x)*Heaviside(x - 2) \ - 2*Heaviside(-x + 2)*Heaviside(x + 2) def test_rewrite_MaxMin_as_Piecewise(): from sympy.core.symbol import symbols from sympy.functions.elementary.piecewise import Piecewise x, y, z, a, b = symbols('x y z a b', real=True) vx, vy, va = symbols('vx vy va') assert Max(a, b).rewrite(Piecewise) == Piecewise((a, a >= b), (b, True)) assert Max(x, y, z).rewrite(Piecewise) == Piecewise((x, (x >= y) & (x >= z)), (y, y >= z), (z, True)) assert Max(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a >= b) & (a >= x) & (a >= y)), (b, (b >= x) & (b >= y)), (x, x >= y), (y, True)) assert Min(a, b).rewrite(Piecewise) == Piecewise((a, a <= b), (b, True)) assert Min(x, y, z).rewrite(Piecewise) == Piecewise((x, (x <= y) & (x <= z)), (y, y <= z), (z, True)) assert Min(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a <= b) & (a <= x) & (a <= y)), (b, (b <= x) & (b <= y)), (x, x <= y), (y, True)) # Piecewise rewriting of Min/Max does also takes place for not explicitly real arguments assert Max(vx, vy).rewrite(Piecewise) == Piecewise((vx, vx >= vy), (vy, True)) assert Min(va, vx, vy).rewrite(Piecewise) == Piecewise((va, (va <= vx) & (va <= vy)), (vx, vx <= vy), (vy, True)) def test_issue_11099(): from sympy.abc import x, y # some fixed value tests fixed_test_data = {x: -2, y: 3} assert Min(x, y).evalf(subs=fixed_test_data) == \ Min(x, y).subs(fixed_test_data).evalf() assert Max(x, y).evalf(subs=fixed_test_data) == \ Max(x, y).subs(fixed_test_data).evalf() # randomly generate some test data from sympy.core.random import randint for i in range(20): random_test_data = {x: randint(-100, 100), y: randint(-100, 100)} assert Min(x, y).evalf(subs=random_test_data) == \ Min(x, y).subs(random_test_data).evalf() assert Max(x, y).evalf(subs=random_test_data) == \ Max(x, y).subs(random_test_data).evalf() def test_issue_12638(): from sympy.abc import a, b, c assert Min(a, b, c, Max(a, b)) == Min(a, b, c) assert Min(a, b, Max(a, b, c)) == Min(a, b) assert Min(a, b, Max(a, c)) == Min(a, b) def test_issue_21399(): from sympy.abc import a, b, c assert Max(Min(a, b), Min(a, b, c)) == Min(a, b) def test_instantiation_evaluation(): from sympy.abc import v, w, x, y, z assert Min(1, Max(2, x)) == 1 assert Max(3, Min(2, x)) == 3 assert Min(Max(x, y), Max(x, z)) == Max(x, Min(y, z)) assert set(Min(Max(w, x), Max(y, z)).args) == { Max(w, x), Max(y, z)} assert Min(Max(x, y), Max(x, z), w) == Min( w, Max(x, Min(y, z))) A, B = Min, Max for i in range(2): assert A(x, B(x, y)) == x assert A(x, B(y, A(x, w, z))) == A(x, B(y, A(w, z))) A, B = B, A assert Min(w, Max(x, y), Max(v, x, z)) == Min( w, Max(x, Min(y, Max(v, z)))) def test_rewrite_as_Abs(): from itertools import permutations from sympy.functions.elementary.complexes import Abs from sympy.abc import x, y, z, w def test(e): free = e.free_symbols a = e.rewrite(Abs) assert not a.has(Min, Max) for i in permutations(range(len(free))): reps = dict(zip(free, i)) assert a.xreplace(reps) == e.xreplace(reps) test(Min(x, y)) test(Max(x, y)) test(Min(x, y, z)) test(Min(Max(w, x), Max(y, z))) def test_issue_14000(): assert isinstance(sqrt(4, evaluate=False), Pow) == True assert isinstance(cbrt(3.5, evaluate=False), Pow) == True assert isinstance(root(16, 4, evaluate=False), Pow) == True assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False) assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False) assert root(4, 2, evaluate=False) == Pow(4, S.Half, evaluate=False) assert root(16, 4, 2, evaluate=False).has(Pow) == True assert real_root(-8, 3, evaluate=False).has(Pow) == True def test_issue_6899(): from sympy.core.function import Lambda x = Symbol('x') eqn = Lambda(x, x) assert eqn.func(*eqn.args) == eqn def test_Rem(): from sympy.abc import x, y assert Rem(5, 3) == 2 assert Rem(-5, 3) == -2 assert Rem(5, -3) == 2 assert Rem(-5, -3) == -2 assert Rem(x**3, y) == Rem(x**3, y) assert Rem(Rem(-5, 3) + 3, 3) == 1 def test_minmax_no_evaluate(): from sympy import evaluate p = Symbol('p', positive=True) assert Max(1, 3) == 3 assert Max(1, 3).args == () assert Max(0, p) == p assert Max(0, p).args == () assert Min(0, p) == 0 assert Min(0, p).args == () assert Max(1, 3, evaluate=False) != 3 assert Max(1, 3, evaluate=False).args == (1, 3) assert Max(0, p, evaluate=False) != p assert Max(0, p, evaluate=False).args == (0, p) assert Min(0, p, evaluate=False) != 0 assert Min(0, p, evaluate=False).args == (0, p) with evaluate(False): assert Max(1, 3) != 3 assert Max(1, 3).args == (1, 3) assert Max(0, p) != p assert Max(0, p).args == (0, p) assert Min(0, p) != 0 assert Min(0, p).args == (0, p)
533f66c8f0f321cd928075ee5c9f6e8b4a3a9243b302d097dbe1a233e388df2f
from sympy.core.add import Add from sympy.core.assumptions import check_assumptions from sympy.core.containers import Tuple from sympy.core.exprtools import factor_terms from sympy.core.function import _mexpand from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.numbers import igcdex, ilcm, igcd from sympy.core.power import integer_nthroot, isqrt from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.sorting import default_sort_key, ordered from sympy.core.symbol import Symbol, symbols from sympy.core.sympify import _sympify from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.ntheory.factor_ import ( divisors, factorint, multiplicity, perfect_power) from sympy.ntheory.generate import nextprime from sympy.ntheory.primetest import is_square, isprime from sympy.ntheory.residue_ntheory import sqrt_mod from sympy.polys.polyerrors import GeneratorsNeeded from sympy.polys.polytools import Poly, factor_list from sympy.simplify.simplify import signsimp from sympy.solvers.solveset import solveset_real from sympy.utilities import numbered_symbols from sympy.utilities.misc import as_int, filldedent from sympy.utilities.iterables import (is_sequence, subsets, permute_signs, signed_permutations, ordered_partitions) # these are imported with 'from sympy.solvers.diophantine import * __all__ = ['diophantine', 'classify_diop'] class DiophantineSolutionSet(set): """ Container for a set of solutions to a particular diophantine equation. The base representation is a set of tuples representing each of the solutions. Parameters ========== symbols : list List of free symbols in the original equation. parameters: list List of parameters to be used in the solution. Examples ======== Adding solutions: >>> from sympy.solvers.diophantine.diophantine import DiophantineSolutionSet >>> from sympy.abc import x, y, t, u >>> s1 = DiophantineSolutionSet([x, y], [t, u]) >>> s1 set() >>> s1.add((2, 3)) >>> s1.add((-1, u)) >>> s1 {(-1, u), (2, 3)} >>> s2 = DiophantineSolutionSet([x, y], [t, u]) >>> s2.add((3, 4)) >>> s1.update(*s2) >>> s1 {(-1, u), (2, 3), (3, 4)} Conversion of solutions into dicts: >>> list(s1.dict_iterator()) [{x: -1, y: u}, {x: 2, y: 3}, {x: 3, y: 4}] Substituting values: >>> s3 = DiophantineSolutionSet([x, y], [t, u]) >>> s3.add((t**2, t + u)) >>> s3 {(t**2, t + u)} >>> s3.subs({t: 2, u: 3}) {(4, 5)} >>> s3.subs(t, -1) {(1, u - 1)} >>> s3.subs(t, 3) {(9, u + 3)} Evaluation at specific values. Positional arguments are given in the same order as the parameters: >>> s3(-2, 3) {(4, 1)} >>> s3(5) {(25, u + 5)} >>> s3(None, 2) {(t**2, t + 2)} """ def __init__(self, symbols_seq, parameters): super().__init__() if not is_sequence(symbols_seq): raise ValueError("Symbols must be given as a sequence.") if not is_sequence(parameters): raise ValueError("Parameters must be given as a sequence.") self.symbols = tuple(symbols_seq) self.parameters = tuple(parameters) def add(self, solution): if len(solution) != len(self.symbols): raise ValueError("Solution should have a length of %s, not %s" % (len(self.symbols), len(solution))) super().add(Tuple(*solution)) def update(self, *solutions): for solution in solutions: self.add(solution) def dict_iterator(self): for solution in ordered(self): yield dict(zip(self.symbols, solution)) def subs(self, *args, **kwargs): result = DiophantineSolutionSet(self.symbols, self.parameters) for solution in self: result.add(solution.subs(*args, **kwargs)) return result def __call__(self, *args): if len(args) > len(self.parameters): raise ValueError("Evaluation should have at most %s values, not %s" % (len(self.parameters), len(args))) rep = {p: v for p, v in zip(self.parameters, args) if v is not None} return self.subs(rep) class DiophantineEquationType: """ Internal representation of a particular diophantine equation type. Parameters ========== equation : The diophantine equation that is being solved. free_symbols : list (optional) The symbols being solved for. Attributes ========== total_degree : The maximum of the degrees of all terms in the equation homogeneous : Does the equation contain a term of degree 0 homogeneous_order : Does the equation contain any coefficient that is in the symbols being solved for dimension : The number of symbols being solved for """ name = None # type: str def __init__(self, equation, free_symbols=None): self.equation = _sympify(equation).expand(force=True) if free_symbols is not None: self.free_symbols = free_symbols else: self.free_symbols = list(self.equation.free_symbols) self.free_symbols.sort(key=default_sort_key) if not self.free_symbols: raise ValueError('equation should have 1 or more free symbols') self.coeff = self.equation.as_coefficients_dict() if not all(_is_int(c) for c in self.coeff.values()): raise TypeError("Coefficients should be Integers") self.total_degree = Poly(self.equation).total_degree() self.homogeneous = 1 not in self.coeff self.homogeneous_order = not (set(self.coeff) & set(self.free_symbols)) self.dimension = len(self.free_symbols) self._parameters = None def matches(self): """ Determine whether the given equation can be matched to the particular equation type. """ return False @property def n_parameters(self): return self.dimension @property def parameters(self): if self._parameters is None: self._parameters = symbols('t_:%i' % (self.n_parameters,), integer=True) return self._parameters def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet: raise NotImplementedError('No solver has been written for %s.' % self.name) def pre_solve(self, parameters=None): if not self.matches(): raise ValueError("This equation does not match the %s equation type." % self.name) if parameters is not None: if len(parameters) != self.n_parameters: raise ValueError("Expected %s parameter(s) but got %s" % (self.n_parameters, len(parameters))) self._parameters = parameters class Univariate(DiophantineEquationType): """ Representation of a univariate diophantine equation. A univariate diophantine equation is an equation of the form `a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x` is an integer variable. Examples ======== >>> from sympy.solvers.diophantine.diophantine import Univariate >>> from sympy.abc import x >>> Univariate((x - 2)*(x - 3)**2).solve() # solves equation (x - 2)*(x - 3)**2 == 0 {(2,), (3,)} """ name = 'univariate' def matches(self): return self.dimension == 1 def solve(self, parameters=None, limit=None): self.pre_solve(parameters) result = DiophantineSolutionSet(self.free_symbols, parameters=self.parameters) for i in solveset_real(self.equation, self.free_symbols[0]).intersect(S.Integers): result.add((i,)) return result class Linear(DiophantineEquationType): """ Representation of a linear diophantine equation. A linear diophantine equation is an equation of the form `a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables. Examples ======== >>> from sympy.solvers.diophantine.diophantine import Linear >>> from sympy.abc import x, y, z >>> l1 = Linear(2*x - 3*y - 5) >>> l1.matches() # is this equation linear True >>> l1.solve() # solves equation 2*x - 3*y - 5 == 0 {(3*t_0 - 5, 2*t_0 - 5)} Here x = -3*t_0 - 5 and y = -2*t_0 - 5 >>> Linear(2*x - 3*y - 4*z -3).solve() {(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)} """ name = 'linear' def matches(self): return self.total_degree == 1 def solve(self, parameters=None, limit=None): self.pre_solve(parameters) coeff = self.coeff var = self.free_symbols if 1 in coeff: # negate coeff[] because input is of the form: ax + by + c == 0 # but is used as: ax + by == -c c = -coeff[1] else: c = 0 result = DiophantineSolutionSet(var, parameters=self.parameters) params = result.parameters if len(var) == 1: q, r = divmod(c, coeff[var[0]]) if not r: result.add((q,)) return result else: return result ''' base_solution_linear() can solve diophantine equations of the form: a*x + b*y == c We break down multivariate linear diophantine equations into a series of bivariate linear diophantine equations which can then be solved individually by base_solution_linear(). Consider the following: a_0*x_0 + a_1*x_1 + a_2*x_2 == c which can be re-written as: a_0*x_0 + g_0*y_0 == c where g_0 == gcd(a_1, a_2) and y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0 This leaves us with two binary linear diophantine equations. For the first equation: a == a_0 b == g_0 c == c For the second: a == a_1/g_0 b == a_2/g_0 c == the solution we find for y_0 in the first equation. The arrays A and B are the arrays of integers used for 'a' and 'b' in each of the n-1 bivariate equations we solve. ''' A = [coeff[v] for v in var] B = [] if len(var) > 2: B.append(igcd(A[-2], A[-1])) A[-2] = A[-2] // B[0] A[-1] = A[-1] // B[0] for i in range(len(A) - 3, 0, -1): gcd = igcd(B[0], A[i]) B[0] = B[0] // gcd A[i] = A[i] // gcd B.insert(0, gcd) B.append(A[-1]) ''' Consider the trivariate linear equation: 4*x_0 + 6*x_1 + 3*x_2 == 2 This can be re-written as: 4*x_0 + 3*y_0 == 2 where y_0 == 2*x_1 + x_2 (Note that gcd(3, 6) == 3) The complete integral solution to this equation is: x_0 == 2 + 3*t_0 y_0 == -2 - 4*t_0 where 't_0' is any integer. Now that we have a solution for 'x_0', find 'x_1' and 'x_2': 2*x_1 + x_2 == -2 - 4*t_0 We can then solve for '-2' and '-4' independently, and combine the results: 2*x_1a + x_2a == -2 x_1a == 0 + t_0 x_2a == -2 - 2*t_0 2*x_1b + x_2b == -4*t_0 x_1b == 0*t_0 + t_1 x_2b == -4*t_0 - 2*t_1 ==> x_1 == t_0 + t_1 x_2 == -2 - 6*t_0 - 2*t_1 where 't_0' and 't_1' are any integers. Note that: 4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2 for any integral values of 't_0', 't_1'; as required. This method is generalised for many variables, below. ''' solutions = [] for Ai, Bi in zip(A, B): tot_x, tot_y = [], [] for j, arg in enumerate(Add.make_args(c)): if arg.is_Integer: # example: 5 -> k = 5 k, p = arg, S.One pnew = params[0] else: # arg is a Mul or Symbol # example: 3*t_1 -> k = 3 # example: t_0 -> k = 1 k, p = arg.as_coeff_Mul() pnew = params[params.index(p) + 1] sol = sol_x, sol_y = base_solution_linear(k, Ai, Bi, pnew) if p is S.One: if None in sol: return result else: # convert a + b*pnew -> a*p + b*pnew if isinstance(sol_x, Add): sol_x = sol_x.args[0]*p + sol_x.args[1] if isinstance(sol_y, Add): sol_y = sol_y.args[0]*p + sol_y.args[1] tot_x.append(sol_x) tot_y.append(sol_y) solutions.append(Add(*tot_x)) c = Add(*tot_y) solutions.append(c) result.add(solutions) return result class BinaryQuadratic(DiophantineEquationType): """ Representation of a binary quadratic diophantine equation. A binary quadratic diophantine equation is an equation of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`, where `A, B, C, D, E, F` are integer constants and `x` and `y` are integer variables. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import BinaryQuadratic >>> b1 = BinaryQuadratic(x**3 + y**2 + 1) >>> b1.matches() False >>> b2 = BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2) >>> b2.matches() True >>> b2.solve() {(-1, -1)} References ========== .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online], Available: http://www.alpertron.com.ar/METHODS.HTM .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online], Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf """ name = 'binary_quadratic' def matches(self): return self.total_degree == 2 and self.dimension == 2 def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet: self.pre_solve(parameters) var = self.free_symbols coeff = self.coeff x, y = var A = coeff[x**2] B = coeff[x*y] C = coeff[y**2] D = coeff[x] E = coeff[y] F = coeff[S.One] A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)] # (1) Simple-Hyperbolic case: A = C = 0, B != 0 # In this case equation can be converted to (Bx + E)(By + D) = DE - BF # We consider two cases; DE - BF = 0 and DE - BF != 0 # More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb result = DiophantineSolutionSet(var, self.parameters) t, u = result.parameters discr = B**2 - 4*A*C if A == 0 and C == 0 and B != 0: if D*E - B*F == 0: q, r = divmod(E, B) if not r: result.add((-q, t)) q, r = divmod(D, B) if not r: result.add((t, -q)) else: div = divisors(D*E - B*F) div = div + [-term for term in div] for d in div: x0, r = divmod(d - E, B) if not r: q, r = divmod(D*E - B*F, d) if not r: y0, r = divmod(q - D, B) if not r: result.add((x0, y0)) # (2) Parabolic case: B**2 - 4*A*C = 0 # There are two subcases to be considered in this case. # sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0 # More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol elif discr == 0: if A == 0: s = BinaryQuadratic(self.equation, free_symbols=[y, x]).solve(parameters=[t, u]) for soln in s: result.add((soln[1], soln[0])) else: g = sign(A)*igcd(A, C) a = A // g c = C // g e = sign(B / A) sqa = isqrt(a) sqc = isqrt(c) _c = e*sqc*D - sqa*E if not _c: z = Symbol("z", real=True) eq = sqa*g*z**2 + D*z + sqa*F roots = solveset_real(eq, z).intersect(S.Integers) for root in roots: ans = diop_solve(sqa*x + e*sqc*y - root) result.add((ans[0], ans[1])) elif _is_int(c): solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t \ - (e*sqc*g*u**2 + E*u + e*sqc*F) // _c solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \ + (sqa*g*u**2 + D*u + sqa*F) // _c for z0 in range(0, abs(_c)): # Check if the coefficients of y and x obtained are integers or not if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and divisible(e*sqc*g*z0**2 + E*z0 + e*sqc*F, _c)): result.add((solve_x(z0), solve_y(z0))) # (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper # by John P. Robertson. # https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf elif is_square(discr): if A != 0: r = sqrt(discr) u, v = symbols("u, v", integer=True) eq = _mexpand( 4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) + 2*A*4*A*E*(u - v) + 4*A*r*4*A*F) solution = diop_solve(eq, t) for s0, t0 in solution: num = B*t0 + r*s0 + r*t0 - B*s0 x_0 = S(num) / (4*A*r) y_0 = S(s0 - t0) / (2*r) if isinstance(s0, Symbol) or isinstance(t0, Symbol): if len(check_param(x_0, y_0, 4*A*r, parameters)) > 0: ans = check_param(x_0, y_0, 4*A*r, parameters) result.update(*ans) elif x_0.is_Integer and y_0.is_Integer: if is_solution_quad(var, coeff, x_0, y_0): result.add((x_0, y_0)) else: s = BinaryQuadratic(self.equation, free_symbols=var[::-1]).solve(parameters=[t, u]) # Interchange x and y while s: result.add(s.pop()[::-1]) # and solution <--------+ # (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0 else: P, Q = _transformation_to_DN(var, coeff) D, N = _find_DN(var, coeff) solns_pell = diop_DN(D, N) if D < 0: for x0, y0 in solns_pell: for x in [-x0, x0]: for y in [-y0, y0]: s = P*Matrix([x, y]) + Q try: result.add([as_int(_) for _ in s]) except ValueError: pass else: # In this case equation can be transformed into a Pell equation solns_pell = set(solns_pell) for X, Y in list(solns_pell): solns_pell.add((-X, -Y)) a = diop_DN(D, 1) T = a[0][0] U = a[0][1] if all(_is_int(_) for _ in P[:4] + Q[:2]): for r, s in solns_pell: _a = (r + s*sqrt(D))*(T + U*sqrt(D))**t _b = (r - s*sqrt(D))*(T - U*sqrt(D))**t x_n = _mexpand(S(_a + _b) / 2) y_n = _mexpand(S(_a - _b) / (2*sqrt(D))) s = P*Matrix([x_n, y_n]) + Q result.add(s) else: L = ilcm(*[_.q for _ in P[:4] + Q[:2]]) k = 1 T_k = T U_k = U while (T_k - 1) % L != 0 or U_k % L != 0: T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T k += 1 for X, Y in solns_pell: for i in range(k): if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q): _a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t _b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t Xt = S(_a + _b) / 2 Yt = S(_a - _b) / (2*sqrt(D)) s = P*Matrix([Xt, Yt]) + Q result.add(s) X, Y = X*T + D*U*Y, X*U + Y*T return result class InhomogeneousTernaryQuadratic(DiophantineEquationType): """ Representation of an inhomogeneous ternary quadratic. No solver is currently implemented for this equation type. """ name = 'inhomogeneous_ternary_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension == 3): return False if not self.homogeneous: return False return not self.homogeneous_order class HomogeneousTernaryQuadraticNormal(DiophantineEquationType): """ Representation of a homogeneous ternary quadratic normal diophantine equation. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadraticNormal >>> HomogeneousTernaryQuadraticNormal(4*x**2 - 5*y**2 + z**2).solve() {(1, 2, 4)} """ name = 'homogeneous_ternary_quadratic_normal' def matches(self): if not (self.total_degree == 2 and self.dimension == 3): return False if not self.homogeneous: return False if not self.homogeneous_order: return False nonzero = [k for k in self.coeff if self.coeff[k]] return len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols) def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet: self.pre_solve(parameters) var = self.free_symbols coeff = self.coeff x, y, z = var a = coeff[x**2] b = coeff[y**2] c = coeff[z**2] (sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \ sqf_normal(a, b, c, steps=True) A = -a_2*c_2 B = -b_2*c_2 result = DiophantineSolutionSet(var, parameters=self.parameters) # If following two conditions are satisfied then there are no solutions if A < 0 and B < 0: return result if ( sqrt_mod(-b_2*c_2, a_2) is None or sqrt_mod(-c_2*a_2, b_2) is None or sqrt_mod(-a_2*b_2, c_2) is None): return result z_0, x_0, y_0 = descent(A, B) z_0, q = _rational_pq(z_0, abs(c_2)) x_0 *= q y_0 *= q x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0) # Holzer reduction if sign(a) == sign(b): x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2)) elif sign(a) == sign(c): x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2)) else: y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2)) x_0 = reconstruct(b_1, c_1, x_0) y_0 = reconstruct(a_1, c_1, y_0) z_0 = reconstruct(a_1, b_1, z_0) sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c) x_0 = abs(x_0*sq_lcm // sqf_of_a) y_0 = abs(y_0*sq_lcm // sqf_of_b) z_0 = abs(z_0*sq_lcm // sqf_of_c) result.add(_remove_gcd(x_0, y_0, z_0)) return result class HomogeneousTernaryQuadratic(DiophantineEquationType): """ Representation of a homogeneous ternary quadratic diophantine equation. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadratic >>> HomogeneousTernaryQuadratic(x**2 + y**2 - 3*z**2 + x*y).solve() {(-1, 2, 1)} >>> HomogeneousTernaryQuadratic(3*x**2 + y**2 - 3*z**2 + 5*x*y + y*z).solve() {(3, 12, 13)} """ name = 'homogeneous_ternary_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension == 3): return False if not self.homogeneous: return False if not self.homogeneous_order: return False nonzero = [k for k in self.coeff if self.coeff[k]] return not (len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols)) def solve(self, parameters=None, limit=None): self.pre_solve(parameters) _var = self.free_symbols coeff = self.coeff x, y, z = _var var = [x, y, z] # Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the # coefficients A, B, C are non-zero. # There are infinitely many solutions for the equation. # Ex: (0, 0, t), (0, t, 0), (t, 0, 0) # Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather # unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by # using methods for binary quadratic diophantine equations. Let's select the # solution which minimizes |x| + |z| result = DiophantineSolutionSet(var, parameters=self.parameters) def unpack_sol(sol): if len(sol) > 0: return list(sol)[0] return None, None, None if not any(coeff[i**2] for i in var): if coeff[x*z]: sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z) s = sols.pop() min_sum = abs(s[0]) + abs(s[1]) for r in sols: m = abs(r[0]) + abs(r[1]) if m < min_sum: s = r min_sum = m result.add(_remove_gcd(s[0], -coeff[x*z], s[1])) return result else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) if x_0 is not None: result.add((x_0, y_0, z_0)) return result if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: if coeff[x*y] or coeff[x*z]: # Apply the transformation x --> X - (B*y + C*z)/(2*A) A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = {} _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, _coeff)) if x_0 is None: return result p, q = _rational_pq(B*y_0 + C*z_0, 2*A) x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q elif coeff[z*y] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. A = coeff[x**2] E = coeff[y*z] b, a = _rational_pq(-E, A) x_0, y_0, z_0 = b, a, b else: # Ax**2 + E*y*z + F*z**2 = 0 var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: # Ax**2 + D*y**2 + F*z**2 = 0, C may be zero x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic_normal(var, coeff)) if x_0 is None: return result result.add(_remove_gcd(x_0, y_0, z_0)) return result class InhomogeneousGeneralQuadratic(DiophantineEquationType): """ Representation of an inhomogeneous general quadratic. No solver is currently implemented for this equation type. """ name = 'inhomogeneous_general_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return True else: # there may be Pow keys like x**2 or Mul keys like x*y if any(k.is_Mul for k in self.coeff): # cross terms return not self.homogeneous return False class HomogeneousGeneralQuadratic(DiophantineEquationType): """ Representation of a homogeneous general quadratic. No solver is currently implemented for this equation type. """ name = 'homogeneous_general_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return False else: # there may be Pow keys like x**2 or Mul keys like x*y if any(k.is_Mul for k in self.coeff): # cross terms return self.homogeneous return False class GeneralSumOfSquares(DiophantineEquationType): r""" Representation of the diophantine equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Details ======= When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be no solutions. Refer [1]_ for more details. Examples ======== >>> from sympy.solvers.diophantine.diophantine import GeneralSumOfSquares >>> from sympy.abc import a, b, c, d, e >>> GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve() {(15, 22, 22, 24, 24)} By default only 1 solution is returned. Use the `limit` keyword for more: >>> sorted(GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve(limit=3)) [(15, 22, 22, 24, 24), (16, 19, 24, 24, 24), (16, 20, 22, 23, 26)] References ========== .. [1] Representing an integer as a sum of three squares, [online], Available: http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares """ name = 'general_sum_of_squares' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return False if any(k.is_Mul for k in self.coeff): return False return all(self.coeff[k] == 1 for k in self.coeff if k != 1) def solve(self, parameters=None, limit=1): self.pre_solve(parameters) var = self.free_symbols k = -int(self.coeff[1]) n = self.dimension result = DiophantineSolutionSet(var, parameters=self.parameters) if k < 0 or limit < 1: return result signs = [-1 if x.is_nonpositive else 1 for x in var] negs = signs.count(-1) != 0 took = 0 for t in sum_of_squares(k, n, zeros=True): if negs: result.add([signs[i]*j for i, j in enumerate(t)]) else: result.add(t) took += 1 if took == limit: break return result class GeneralPythagorean(DiophantineEquationType): """ Representation of the general pythagorean equation, `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import GeneralPythagorean >>> from sympy.abc import a, b, c, d, e, x, y, z, t >>> GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve() {(t_0**2 + t_1**2 - t_2**2, 2*t_0*t_2, 2*t_1*t_2, t_0**2 + t_1**2 + t_2**2)} >>> GeneralPythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2).solve(parameters=[x, y, z, t]) {(-10*t**2 + 10*x**2 + 10*y**2 + 10*z**2, 15*t**2 + 15*x**2 + 15*y**2 + 15*z**2, 15*t*x, 12*t*y, 60*t*z)} """ name = 'general_pythagorean' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return False if any(k.is_Mul for k in self.coeff): return False if all(self.coeff[k] == 1 for k in self.coeff if k != 1): return False if not all(is_square(abs(self.coeff[k])) for k in self.coeff): return False # all but one has the same sign # e.g. 4*x**2 + y**2 - 4*z**2 return abs(sum(sign(self.coeff[k]) for k in self.coeff)) == self.dimension - 2 @property def n_parameters(self): return self.dimension - 1 def solve(self, parameters=None, limit=1): self.pre_solve(parameters) coeff = self.coeff var = self.free_symbols n = self.dimension if sign(coeff[var[0] ** 2]) + sign(coeff[var[1] ** 2]) + sign(coeff[var[2] ** 2]) < 0: for key in coeff.keys(): coeff[key] = -coeff[key] result = DiophantineSolutionSet(var, parameters=self.parameters) index = 0 for i, v in enumerate(var): if sign(coeff[v ** 2]) == -1: index = i m = result.parameters ith = sum(m_i ** 2 for m_i in m) L = [ith - 2 * m[n - 2] ** 2] L.extend([2 * m[i] * m[n - 2] for i in range(n - 2)]) sol = L[:index] + [ith] + L[index:] lcm = 1 for i, v in enumerate(var): if i == index or (index > 0 and i == 0) or (index == 0 and i == 1): lcm = ilcm(lcm, sqrt(abs(coeff[v ** 2]))) else: s = sqrt(coeff[v ** 2]) lcm = ilcm(lcm, s if _odd(s) else s // 2) for i, v in enumerate(var): sol[i] = (lcm * sol[i]) / sqrt(abs(coeff[v ** 2])) result.add(sol) return result class CubicThue(DiophantineEquationType): """ Representation of a cubic Thue diophantine equation. A cubic Thue diophantine equation is a polynomial of the form `f(x, y) = r` of degree 3, where `x` and `y` are integers and `r` is a rational number. No solver is currently implemented for this equation type. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import CubicThue >>> c1 = CubicThue(x**3 + y**2 + 1) >>> c1.matches() True """ name = 'cubic_thue' def matches(self): return self.total_degree == 3 and self.dimension == 2 class GeneralSumOfEvenPowers(DiophantineEquationType): """ Representation of the diophantine equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0` where `e` is an even, integer power. Examples ======== >>> from sympy.solvers.diophantine.diophantine import GeneralSumOfEvenPowers >>> from sympy.abc import a, b >>> GeneralSumOfEvenPowers(a**4 + b**4 - (2**4 + 3**4)).solve() {(2, 3)} """ name = 'general_sum_of_even_powers' def matches(self): if not self.total_degree > 3: return False if self.total_degree % 2 != 0: return False if not all(k.is_Pow and k.exp == self.total_degree for k in self.coeff if k != 1): return False return all(self.coeff[k] == 1 for k in self.coeff if k != 1) def solve(self, parameters=None, limit=1): self.pre_solve(parameters) var = self.free_symbols coeff = self.coeff p = None for q in coeff.keys(): if q.is_Pow and coeff[q]: p = q.exp k = len(var) n = -coeff[1] result = DiophantineSolutionSet(var, parameters=self.parameters) if n < 0 or limit < 1: return result sign = [-1 if x.is_nonpositive else 1 for x in var] negs = sign.count(-1) != 0 took = 0 for t in power_representation(n, p, k): if negs: result.add([sign[i]*j for i, j in enumerate(t)]) else: result.add(t) took += 1 if took == limit: break return result # these types are known (but not necessarily handled) # note that order is important here (in the current solver state) all_diop_classes = [ Linear, Univariate, BinaryQuadratic, InhomogeneousTernaryQuadratic, HomogeneousTernaryQuadraticNormal, HomogeneousTernaryQuadratic, InhomogeneousGeneralQuadratic, HomogeneousGeneralQuadratic, GeneralSumOfSquares, GeneralPythagorean, CubicThue, GeneralSumOfEvenPowers, ] diop_known = {diop_class.name for diop_class in all_diop_classes} def _is_int(i): try: as_int(i) return True except ValueError: pass def _sorted_tuple(*i): return tuple(sorted(i)) def _remove_gcd(*x): try: g = igcd(*x) except ValueError: fx = list(filter(None, x)) if len(fx) < 2: return x g = igcd(*[i.as_content_primitive()[0] for i in fx]) except TypeError: raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)') if g == 1: return x return tuple([i//g for i in x]) def _rational_pq(a, b): # return `(numer, denom)` for a/b; sign in numer and gcd removed return _remove_gcd(sign(b)*a, abs(b)) def _nint_or_floor(p, q): # return nearest int to p/q; in case of tie return floor(p/q) w, r = divmod(p, q) if abs(r) <= abs(q)//2: return w return w + 1 def _odd(i): return i % 2 != 0 def _even(i): return i % 2 == 0 def diophantine(eq, param=symbols("t", integer=True), syms=None, permute=False): """ Simplify the solution procedure of diophantine equation ``eq`` by converting it into a product of terms which should equal zero. Explanation =========== For example, when solving, `x^2 - y^2 = 0` this is treated as `(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved independently and combined. Each term is solved by calling ``diop_solve()``. (Although it is possible to call ``diop_solve()`` directly, one must be careful to pass an equation in the correct form and to interpret the output correctly; ``diophantine()`` is the public-facing function to use in general.) Output of ``diophantine()`` is a set of tuples. The elements of the tuple are the solutions for each variable in the equation and are arranged according to the alphabetic ordering of the variables. e.g. For an equation with two variables, `a` and `b`, the first element of the tuple is the solution for `a` and the second for `b`. Usage ===== ``diophantine(eq, t, syms)``: Solve the diophantine equation ``eq``. ``t`` is the optional parameter to be used by ``diop_solve()``. ``syms`` is an optional list of symbols which determines the order of the elements in the returned tuple. By default, only the base solution is returned. If ``permute`` is set to True then permutations of the base solution and/or permutations of the signs of the values will be returned when applicable. Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy import diophantine >>> from sympy.abc import a, b >>> eq = a**4 + b**4 - (2**4 + 3**4) >>> diophantine(eq) {(2, 3)} >>> diophantine(eq, permute=True) {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} >>> from sympy.abc import x, y, z >>> diophantine(x**2 - y**2) {(t_0, -t_0), (t_0, t_0)} >>> diophantine(x*(2*x + 3*y - z)) {(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)} >>> diophantine(x**2 + 3*x*y + 4*x) {(0, n1), (3*t_0 - 4, -t_0)} See Also ======== diop_solve sympy.utilities.iterables.permute_signs sympy.utilities.iterables.signed_permutations """ eq = _sympify(eq) if isinstance(eq, Eq): eq = eq.lhs - eq.rhs try: var = list(eq.expand(force=True).free_symbols) var.sort(key=default_sort_key) if syms: if not is_sequence(syms): raise TypeError( 'syms should be given as a sequence, e.g. a list') syms = [i for i in syms if i in var] if syms != var: dict_sym_index = dict(zip(syms, range(len(syms)))) return {tuple([t[dict_sym_index[i]] for i in var]) for t in diophantine(eq, param, permute=permute)} n, d = eq.as_numer_denom() if n.is_number: return set() if not d.is_number: dsol = diophantine(d) good = diophantine(n) - dsol return {s for s in good if _mexpand(d.subs(zip(var, s)))} else: eq = n eq = factor_terms(eq) assert not eq.is_number eq = eq.as_independent(*var, as_Add=False)[1] p = Poly(eq) assert not any(g.is_number for g in p.gens) eq = p.as_expr() assert eq.is_polynomial() except (GeneratorsNeeded, AssertionError): raise TypeError(filldedent(''' Equation should be a polynomial with Rational coefficients.''')) # permute only sign do_permute_signs = False # permute sign and values do_permute_signs_var = False # permute few signs permute_few_signs = False try: # if we know that factoring should not be attempted, skip # the factoring step v, c, t = classify_diop(eq) # check for permute sign if permute: len_var = len(v) permute_signs_for = [ GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name] permute_signs_check = [ HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, BinaryQuadratic.name] if t in permute_signs_for: do_permute_signs_var = True elif t in permute_signs_check: # if all the variables in eq have even powers # then do_permute_sign = True if len_var == 3: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y), (x, z), (y, z)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul) # if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then # `xy_coeff` => True and do_permute_sign => False. # Means no permuted solution. for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any((xy_coeff, x_coeff)): # means only x**2, y**2, z**2, const is present do_permute_signs = True elif not x_coeff: permute_few_signs = True elif len_var == 2: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul) for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any((xy_coeff, x_coeff)): # means only x**2, y**2 and const is present # so we can get more soln by permuting this soln. do_permute_signs = True elif not x_coeff: # when coeff(x), coeff(y) is not present then signs of # x, y can be permuted such that their sign are same # as sign of x*y. # e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val) # 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val) permute_few_signs = True if t == 'general_sum_of_squares': # trying to factor such expressions will sometimes hang terms = [(eq, 1)] else: raise TypeError except (TypeError, NotImplementedError): fl = factor_list(eq) if fl[0].is_Rational and fl[0] != 1: return diophantine(eq/fl[0], param=param, syms=syms, permute=permute) terms = fl[1] sols = set() for term in terms: base, _ = term var_t, _, eq_type = classify_diop(base, _dict=False) _, base = signsimp(base, evaluate=False).as_coeff_Mul() solution = diop_solve(base, param) if eq_type in [ Linear.name, HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, GeneralPythagorean.name]: sols.add(merge_solution(var, var_t, solution)) elif eq_type in [ BinaryQuadratic.name, GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name, Univariate.name]: for sol in solution: sols.add(merge_solution(var, var_t, sol)) else: raise NotImplementedError('unhandled type: %s' % eq_type) # remove null merge results if () in sols: sols.remove(()) null = tuple([0]*len(var)) # if there is no solution, return trivial solution if not sols and eq.subs(zip(var, null)).is_zero: sols.add(null) final_soln = set() for sol in sols: if all(_is_int(s) for s in sol): if do_permute_signs: permuted_sign = set(permute_signs(sol)) final_soln.update(permuted_sign) elif permute_few_signs: lst = list(permute_signs(sol)) lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst)) permuted_sign = set(lst) final_soln.update(permuted_sign) elif do_permute_signs_var: permuted_sign_var = set(signed_permutations(sol)) final_soln.update(permuted_sign_var) else: final_soln.add(sol) else: final_soln.add(sol) return final_soln def merge_solution(var, var_t, solution): """ This is used to construct the full solution from the solutions of sub equations. Explanation =========== For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`, solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But we should introduce a value for z when we output the solution for the original equation. This function converts `(t, t)` into `(t, t, n_{1})` where `n_{1}` is an integer parameter. """ sol = [] if None in solution: return () solution = iter(solution) params = numbered_symbols("n", integer=True, start=1) for v in var: if v in var_t: sol.append(next(solution)) else: sol.append(next(params)) for val, symb in zip(sol, var): if check_assumptions(val, **symb.assumptions0) is False: return tuple() return tuple(sol) def _diop_solve(eq, params=None): for diop_type in all_diop_classes: if diop_type(eq).matches(): return diop_type(eq).solve(parameters=params) def diop_solve(eq, param=symbols("t", integer=True)): """ Solves the diophantine equation ``eq``. Explanation =========== Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses ``classify_diop()`` to determine the type of the equation and calls the appropriate solver function. Use of ``diophantine()`` is recommended over other helper functions. ``diop_solve()`` can return either a set or a tuple depending on the nature of the equation. Usage ===== ``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t`` as a parameter if needed. Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is a parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine import diop_solve >>> from sympy.abc import x, y, z, w >>> diop_solve(2*x + 3*y - 5) (3*t_0 - 5, 5 - 2*t_0) >>> diop_solve(4*x + 3*y - 4*z + 5) (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) >>> diop_solve(x + 3*y - 4*z + w - 6) (t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6) >>> diop_solve(x**2 + y**2 - 5) {(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)} See Also ======== diophantine() """ var, coeff, eq_type = classify_diop(eq, _dict=False) if eq_type == Linear.name: return diop_linear(eq, param) elif eq_type == BinaryQuadratic.name: return diop_quadratic(eq, param) elif eq_type == HomogeneousTernaryQuadratic.name: return diop_ternary_quadratic(eq, parameterize=True) elif eq_type == HomogeneousTernaryQuadraticNormal.name: return diop_ternary_quadratic_normal(eq, parameterize=True) elif eq_type == GeneralPythagorean.name: return diop_general_pythagorean(eq, param) elif eq_type == Univariate.name: return diop_univariate(eq) elif eq_type == GeneralSumOfSquares.name: return diop_general_sum_of_squares(eq, limit=S.Infinity) elif eq_type == GeneralSumOfEvenPowers.name: return diop_general_sum_of_even_powers(eq, limit=S.Infinity) if eq_type is not None and eq_type not in diop_known: raise ValueError(filldedent(''' Although this type of equation was identified, it is not yet handled. It should, however, be listed in `diop_known` at the top of this file. Developers should see comments at the end of `classify_diop`. ''')) # pragma: no cover else: raise NotImplementedError( 'No solver has been written for %s.' % eq_type) def classify_diop(eq, _dict=True): # docstring supplied externally matched = False diop_type = None for diop_class in all_diop_classes: diop_type = diop_class(eq) if diop_type.matches(): matched = True break if matched: return diop_type.free_symbols, dict(diop_type.coeff) if _dict else diop_type.coeff, diop_type.name # new diop type instructions # -------------------------- # if this error raises and the equation *can* be classified, # * it should be identified in the if-block above # * the type should be added to the diop_known # if a solver can be written for it, # * a dedicated handler should be written (e.g. diop_linear) # * it should be passed to that handler in diop_solve raise NotImplementedError(filldedent(''' This equation is not yet recognized or else has not been simplified sufficiently to put it in a form recognized by diop_classify().''')) classify_diop.func_doc = ( # type: ignore ''' Helper routine used by diop_solve() to find information about ``eq``. Explanation =========== Returns a tuple containing the type of the diophantine equation along with the variables (free symbols) and their coefficients. Variables are returned as a list and coefficients are returned as a dict with the key being the respective term and the constant term is keyed to 1. The type is one of the following: * %s Usage ===== ``classify_diop(eq)``: Return variables, coefficients and type of the ``eq``. Details ======= ``eq`` should be an expression which is assumed to be zero. ``_dict`` is for internal use: when True (default) a dict is returned, otherwise a defaultdict which supplies 0 for missing keys is returned. Examples ======== >>> from sympy.solvers.diophantine import classify_diop >>> from sympy.abc import x, y, z, w, t >>> classify_diop(4*x + 6*y - 4) ([x, y], {1: -4, x: 4, y: 6}, 'linear') >>> classify_diop(x + 3*y -4*z + 5) ([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear') >>> classify_diop(x**2 + y**2 - x*y + x + 5) ([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic') ''' % ('\n * '.join(sorted(diop_known)))) def diop_linear(eq, param=symbols("t", integer=True)): """ Solves linear diophantine equations. A linear diophantine equation is an equation of the form `a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables. Usage ===== ``diop_linear(eq)``: Returns a tuple containing solutions to the diophantine equation ``eq``. Values in the tuple is arranged in the same order as the sorted variables. Details ======= ``eq`` is a linear diophantine equation which is assumed to be zero. ``param`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_linear >>> from sympy.abc import x, y, z >>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0 (3*t_0 - 5, 2*t_0 - 5) Here x = -3*t_0 - 5 and y = -2*t_0 - 5 >>> diop_linear(2*x - 3*y - 4*z -3) (t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3) See Also ======== diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(), diop_general_sum_of_squares() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == Linear.name: parameters = None if param is not None: parameters = symbols('%s_0:%i' % (param, len(var)), integer=True) result = Linear(eq).solve(parameters=parameters) if param is None: result = result(*[0]*len(result.parameters)) if len(result) > 0: return list(result)[0] else: return tuple([None]*len(result.parameters)) def base_solution_linear(c, a, b, t=None): """ Return the base solution for the linear equation, `ax + by = c`. Explanation =========== Used by ``diop_linear()`` to find the base solution of a linear Diophantine equation. If ``t`` is given then the parametrized solution is returned. Usage ===== ``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients in `ax + by = c` and ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine.diophantine import base_solution_linear >>> from sympy.abc import t >>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5 (-5, 5) >>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0 (0, 0) >>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5 (3*t - 5, 5 - 2*t) >>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0 (7*t, -5*t) """ a, b, c = _remove_gcd(a, b, c) if c == 0: if t is not None: if b < 0: t = -t return (b*t, -a*t) else: return (0, 0) else: x0, y0, d = igcdex(abs(a), abs(b)) x0 *= sign(a) y0 *= sign(b) if divisible(c, d): if t is not None: if b < 0: t = -t return (c*x0 + b*t, c*y0 - a*t) else: return (c*x0, c*y0) else: return (None, None) def diop_univariate(eq): """ Solves a univariate diophantine equations. Explanation =========== A univariate diophantine equation is an equation of the form `a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x` is an integer variable. Usage ===== ``diop_univariate(eq)``: Returns a set containing solutions to the diophantine equation ``eq``. Details ======= ``eq`` is a univariate diophantine equation which is assumed to be zero. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_univariate >>> from sympy.abc import x >>> diop_univariate((x - 2)*(x - 3)**2) # solves equation (x - 2)*(x - 3)**2 == 0 {(2,), (3,)} """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == Univariate.name: return {(int(i),) for i in solveset_real( eq, var[0]).intersect(S.Integers)} def divisible(a, b): """ Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise. """ return not a % b def diop_quadratic(eq, param=symbols("t", integer=True)): """ Solves quadratic diophantine equations. i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a set containing the tuples `(x, y)` which contains the solutions. If there are no solutions then `(None, None)` is returned. Usage ===== ``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine equation. ``param`` is used to indicate the parameter to be used in the solution. Details ======= ``eq`` should be an expression which is assumed to be zero. ``param`` is a parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, t >>> from sympy.solvers.diophantine.diophantine import diop_quadratic >>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t) {(-1, -1)} References ========== .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online], Available: http://www.alpertron.com.ar/METHODS.HTM .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online], Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf See Also ======== diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(), diop_general_pythagorean() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == BinaryQuadratic.name: if param is not None: parameters = [param, Symbol("u", integer=True)] else: parameters = None return set(BinaryQuadratic(eq).solve(parameters=parameters)) def is_solution_quad(var, coeff, u, v): """ Check whether `(u, v)` is solution to the quadratic binary diophantine equation with the variable list ``var`` and coefficient dictionary ``coeff``. Not intended for use by normal users. """ reps = dict(zip(var, (u, v))) eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()]) return _mexpand(eq) == 0 def diop_DN(D, N, t=symbols("t", integer=True)): """ Solves the equation `x^2 - Dy^2 = N`. Explanation =========== Mainly concerned with the case `D > 0, D` is not a perfect square, which is the same as the generalized Pell equation. The LMM algorithm [1]_ is used to solve this equation. Returns one solution tuple, (`x, y)` for each class of the solutions. Other solutions of the class can be constructed according to the values of ``D`` and ``N``. Usage ===== ``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_DN >>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4 [(3, 1), (393, 109), (36, 10)] The output can be interpreted as follows: There are three fundamental solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109) and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means that `x = 3` and `y = 1`. >>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1 [(49299, 1570)] See Also ======== find_DN(), diop_bf_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Pages 16 - 17. [online], Available: https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf """ if D < 0: if N == 0: return [(0, 0)] elif N < 0: return [] elif N > 0: sol = [] for d in divisors(square_factor(N)): sols = cornacchia(1, -D, N // d**2) if sols: for x, y in sols: sol.append((d*x, d*y)) if D == -1: sol.append((d*y, d*x)) return sol elif D == 0: if N < 0: return [] if N == 0: return [(0, t)] sN, _exact = integer_nthroot(N, 2) if _exact: return [(sN, t)] else: return [] else: # D > 0 sD, _exact = integer_nthroot(D, 2) if _exact: if N == 0: return [(sD*t, t)] else: sol = [] for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1): try: sq, _exact = integer_nthroot(D*y**2 + N, 2) except ValueError: _exact = False if _exact: sol.append((sq, y)) return sol elif 1 < N**2 < D: # It is much faster to call `_special_diop_DN`. return _special_diop_DN(D, N) else: if N == 0: return [(0, 0)] elif abs(N) == 1: pqa = PQa(0, 1, D) j = 0 G = [] B = [] for i in pqa: a = i[2] G.append(i[5]) B.append(i[4]) if j != 0 and a == 2*sD: break j = j + 1 if _odd(j): if N == -1: x = G[j - 1] y = B[j - 1] else: count = j while count < 2*j - 1: i = next(pqa) G.append(i[5]) B.append(i[4]) count += 1 x = G[count] y = B[count] else: if N == 1: x = G[j - 1] y = B[j - 1] else: return [] return [(x, y)] else: fs = [] sol = [] div = divisors(N) for d in div: if divisible(N, d**2): fs.append(d) for f in fs: m = N // f**2 zs = sqrt_mod(D, abs(m), all_roots=True) zs = [i for i in zs if i <= abs(m) // 2 ] if abs(m) != 2: zs = zs + [-i for i in zs if i] # omit dupl 0 for z in zs: pqa = PQa(z, abs(m), D) j = 0 G = [] B = [] for i in pqa: G.append(i[5]) B.append(i[4]) if j != 0 and abs(i[1]) == 1: r = G[j-1] s = B[j-1] if r**2 - D*s**2 == m: sol.append((f*r, f*s)) elif diop_DN(D, -1) != []: a = diop_DN(D, -1) sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0]))) break j = j + 1 if j == length(z, abs(m), D): break return sol def _special_diop_DN(D, N): """ Solves the equation `x^2 - Dy^2 = N` for the special case where `1 < N**2 < D` and `D` is not a perfect square. It is better to call `diop_DN` rather than this function, as the former checks the condition `1 < N**2 < D`, and calls the latter only if appropriate. Usage ===== WARNING: Internal method. Do not call directly! ``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`. Details ======= ``D`` and ``N`` correspond to D and N in the equation. Examples ======== >>> from sympy.solvers.diophantine.diophantine import _special_diop_DN >>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3 [(7, 2), (137, 38)] The output can be interpreted as follows: There are two fundamental solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and (137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means that `x = 7` and `y = 2`. >>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20 [(445, 9), (17625560, 356454), (698095554475, 14118073569)] See Also ======== diop_DN() References ========== .. [1] Section 4.4.4 of the following book: Quadratic Diophantine Equations, T. Andreescu and D. Andrica, Springer, 2015. """ # The following assertion was removed for efficiency, with the understanding # that this method is not called directly. The parent method, `diop_DN` # is responsible for performing the appropriate checks. # # assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1]) sqrt_D = sqrt(D) F = [(N, 1)] f = 2 while True: f2 = f**2 if f2 > abs(N): break n, r = divmod(N, f2) if r == 0: F.append((n, f)) f += 1 P = 0 Q = 1 G0, G1 = 0, 1 B0, B1 = 1, 0 solutions = [] i = 0 while True: a = floor((P + sqrt_D) / Q) P = a*Q - P Q = (D - P**2) // Q G2 = a*G1 + G0 B2 = a*B1 + B0 for n, f in F: if G2**2 - D*B2**2 == n: solutions.append((f*G2, f*B2)) i += 1 if Q == 1 and i % 2 == 0: break G0, G1 = G1, G2 B0, B1 = B1, B2 return solutions def cornacchia(a, b, m): r""" Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`. Explanation =========== Uses the algorithm due to Cornacchia. The method only finds primitive solutions, i.e. ones with `\gcd(x, y) = 1`. So this method cannot be used to find the solutions of `x^2 + y^2 = 20` since the only solution to former is `(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the solutions with `x \leq y` are found. For more details, see the References. Examples ======== >>> from sympy.solvers.diophantine.diophantine import cornacchia >>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35 {(2, 3), (4, 1)} >>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25 {(4, 3)} References =========== .. [1] A. Nitaj, "L'algorithme de Cornacchia" .. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's method, [online], Available: http://www.numbertheory.org/php/cornacchia.html See Also ======== sympy.utilities.iterables.signed_permutations """ sols = set() a1 = igcdex(a, m)[0] v = sqrt_mod(-b*a1, m, all_roots=True) if not v: return None for t in v: if t < m // 2: continue u, r = t, m while True: u, r = r, u % r if a*r**2 < m: break m1 = m - a*r**2 if m1 % b == 0: m1 = m1 // b s, _exact = integer_nthroot(m1, 2) if _exact: if a == b and r < s: r, s = s, r sols.add((int(r), int(s))) return sols def PQa(P_0, Q_0, D): r""" Returns useful information needed to solve the Pell equation. Explanation =========== There are six sequences of integers defined related to the continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`}, {`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns these values as a 6-tuple in the same order as mentioned above. Refer [1]_ for more detailed information. Usage ===== ``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding to `P_{0}`, `Q_{0}` and `D` in the continued fraction `\\frac{P_{0} + \sqrt{D}}{Q_{0}}`. Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free. Examples ======== >>> from sympy.solvers.diophantine.diophantine import PQa >>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4 >>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0) (13, 4, 3, 3, 1, -1) >>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1) (-1, 1, 1, 4, 1, 3) References ========== .. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P. Robertson, July 31, 2004, Pages 4 - 8. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf """ A_i_2 = B_i_1 = 0 A_i_1 = B_i_2 = 1 G_i_2 = -P_0 G_i_1 = Q_0 P_i = P_0 Q_i = Q_0 while True: a_i = floor((P_i + sqrt(D))/Q_i) A_i = a_i*A_i_1 + A_i_2 B_i = a_i*B_i_1 + B_i_2 G_i = a_i*G_i_1 + G_i_2 yield P_i, Q_i, a_i, A_i, B_i, G_i A_i_1, A_i_2 = A_i, A_i_1 B_i_1, B_i_2 = B_i, B_i_1 G_i_1, G_i_2 = G_i, G_i_1 P_i = a_i*Q_i - P_i Q_i = (D - P_i**2)/Q_i def diop_bf_DN(D, N, t=symbols("t", integer=True)): r""" Uses brute force to solve the equation, `x^2 - Dy^2 = N`. Explanation =========== Mainly concerned with the generalized Pell equation which is the case when `D > 0, D` is not a perfect square. For more information on the case refer [1]_. Let `(t, u)` be the minimal positive solution of the equation `x^2 - Dy^2 = 1`. Then this method requires `\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small. Usage ===== ``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_bf_DN >>> diop_bf_DN(13, -4) [(3, 1), (-3, 1), (36, 10)] >>> diop_bf_DN(986, 1) [(49299, 1570)] See Also ======== diop_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 15. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf """ D = as_int(D) N = as_int(N) sol = [] a = diop_DN(D, 1) u = a[0][0] if abs(N) == 1: return diop_DN(D, N) elif N > 1: L1 = 0 L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1 elif N < -1: L1, _exact = integer_nthroot(-int(N/D), 2) if not _exact: L1 += 1 L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1 else: # N = 0 if D < 0: return [(0, 0)] elif D == 0: return [(0, t)] else: sD, _exact = integer_nthroot(D, 2) if _exact: return [(sD*t, t), (-sD*t, t)] else: return [(0, 0)] for y in range(L1, L2): try: x, _exact = integer_nthroot(N + D*y**2, 2) except ValueError: _exact = False if _exact: sol.append((x, y)) if not equivalent(x, y, -x, y, D, N): sol.append((-x, y)) return sol def equivalent(u, v, r, s, D, N): """ Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N` belongs to the same equivalence class and False otherwise. Explanation =========== Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by `N`. See reference [1]_. No test is performed to test whether `(u, v)` and `(r, s)` are actually solutions to the equation. User should take care of this. Usage ===== ``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions of the equation `x^2 - Dy^2 = N` and all parameters involved are integers. Examples ======== >>> from sympy.solvers.diophantine.diophantine import equivalent >>> equivalent(18, 5, -18, -5, 13, -1) True >>> equivalent(3, 1, -18, 393, 109, -4) False References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 12. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf """ return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N) def length(P, Q, D): r""" Returns the (length of aperiodic part + length of periodic part) of continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`. It is important to remember that this does NOT return the length of the periodic part but the sum of the lengths of the two parts as mentioned above. Usage ===== ``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to the continued fraction `\\frac{P + \sqrt{D}}{Q}`. Details ======= ``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction, `\\frac{P + \sqrt{D}}{Q}`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import length >>> length(-2, 4, 5) # (-2 + sqrt(5))/4 3 >>> length(-5, 4, 17) # (-5 + sqrt(17))/4 4 See Also ======== sympy.ntheory.continued_fraction.continued_fraction_periodic """ from sympy.ntheory.continued_fraction import continued_fraction_periodic v = continued_fraction_periodic(P, Q, D) if isinstance(v[-1], list): rpt = len(v[-1]) nonrpt = len(v) - 1 else: rpt = 0 nonrpt = len(v) return rpt + nonrpt def transformation_to_DN(eq): """ This function transforms general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0` to more easy to deal with `X^2 - DY^2 = N` form. Explanation =========== This is used to solve the general quadratic equation by transforming it to the latter form. Refer to [1]_ for more detailed information on the transformation. This function returns a tuple (A, B) where A is a 2 X 2 matrix and B is a 2 X 1 matrix such that, Transpose([x y]) = A * Transpose([X Y]) + B Usage ===== ``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import transformation_to_DN >>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1) >>> A Matrix([ [1/26, 3/26], [ 0, 1/13]]) >>> B Matrix([ [-6/13], [-4/13]]) A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B. Substituting these values for `x` and `y` and a bit of simplifying work will give an equation of the form `x^2 - Dy^2 = N`. >>> from sympy.abc import X, Y >>> from sympy import Matrix, simplify >>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x >>> u X/26 + 3*Y/26 - 6/13 >>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y >>> v Y/13 - 4/13 Next we will substitute these formulas for `x` and `y` and do ``simplify()``. >>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v)))) >>> eq X**2/676 - Y**2/52 + 17/13 By multiplying the denominator appropriately, we can get a Pell equation in the standard form. >>> eq * 676 X**2 - 13*Y**2 + 884 If only the final equation is needed, ``find_DN()`` can be used. See Also ======== find_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == BinaryQuadratic.name: return _transformation_to_DN(var, coeff) def _transformation_to_DN(var, coeff): x, y = var a = coeff[x**2] b = coeff[x*y] c = coeff[y**2] d = coeff[x] e = coeff[y] f = coeff[1] a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)] X, Y = symbols("X, Y", integer=True) if b: B, C = _rational_pq(2*a, b) A, T = _rational_pq(a, B**2) # eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*B_0 else: if d: B, C = _rational_pq(2*a, d) A, T = _rational_pq(a, B**2) # eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2 coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S.One/B, 0, 0, 1])*A_0, Matrix(2, 2, [S.One/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0]) else: if e: B, C = _rational_pq(2*c, e) A, T = _rational_pq(c, B**2) # eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2 coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [1, 0, 0, S.One/B])*A_0, Matrix(2, 2, [1, 0, 0, S.One/B])*B_0 + Matrix([0, -S(C)/B]) else: # TODO: pre-simplification: Not necessary but may simplify # the equation. return Matrix(2, 2, [S.One/a, 0, 0, 1]), Matrix([0, 0]) def find_DN(eq): """ This function returns a tuple, `(D, N)` of the simplified form, `x^2 - Dy^2 = N`, corresponding to the general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0`. Solving the general quadratic is then equivalent to solving the equation `X^2 - DY^2 = N` and transforming the solutions by using the transformation matrices returned by ``transformation_to_DN()``. Usage ===== ``find_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import find_DN >>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1) (13, -884) Interpretation of the output is that we get `X^2 -13Y^2 = -884` after transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned by ``transformation_to_DN()``. See Also ======== transformation_to_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == BinaryQuadratic.name: return _find_DN(var, coeff) def _find_DN(var, coeff): x, y = var X, Y = symbols("X, Y", integer=True) A, B = _transformation_to_DN(var, coeff) u = (A*Matrix([X, Y]) + B)[0] v = (A*Matrix([X, Y]) + B)[1] eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1] simplified = _mexpand(eq.subs(zip((x, y), (u, v)))) coeff = simplified.as_coefficients_dict() return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2] def check_param(x, y, a, params): """ If there is a number modulo ``a`` such that ``x`` and ``y`` are both integers, then return a parametric representation for ``x`` and ``y`` else return (None, None). Here ``x`` and ``y`` are functions of ``t``. """ from sympy.simplify.simplify import clear_coefficients if x.is_number and not x.is_Integer: return DiophantineSolutionSet([x, y], parameters=params) if y.is_number and not y.is_Integer: return DiophantineSolutionSet([x, y], parameters=params) m, n = symbols("m, n", integer=True) c, p = (m*x + n*y).as_content_primitive() if a % c.q: return DiophantineSolutionSet([x, y], parameters=params) # clear_coefficients(mx + b, R)[1] -> (R - b)/m eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1] junk, eq = eq.as_content_primitive() return _diop_solve(eq, params=params) def diop_ternary_quadratic(eq, parameterize=False): """ Solves the general quadratic ternary form, `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Returns a tuple `(x, y, z)` which is a base solution for the above equation. If there are no solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution to ``eq``. Details ======= ``eq`` should be an homogeneous expression of degree two in three variables and it is assumed to be zero. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic >>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2) (28, 45, 105) >>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) (9, 1, 5) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name): sol = _diop_ternary_quadratic(var, coeff) if len(sol) > 0: x_0, y_0, z_0 = list(sol)[0] else: x_0, y_0, z_0 = None, None, None if parameterize: return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) return x_0, y_0, z_0 def _diop_ternary_quadratic(_var, coeff): eq = sum([i*coeff[i] for i in coeff]) if HomogeneousTernaryQuadratic(eq).matches(): return HomogeneousTernaryQuadratic(eq, free_symbols=_var).solve() elif HomogeneousTernaryQuadraticNormal(eq).matches(): return HomogeneousTernaryQuadraticNormal(eq, free_symbols=_var).solve() def transformation_to_normal(eq): """ Returns the transformation Matrix that converts a general ternary quadratic equation ``eq`` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`) to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is not used in solving ternary quadratics; it is only implemented for the sake of completeness. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): return _transformation_to_normal(var, coeff) def _transformation_to_normal(var, coeff): _var = list(var) # copy x, y, z = var if not any(coeff[i**2] for i in var): # https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065 a = coeff[x*y] b = coeff[y*z] c = coeff[x*z] swap = False if not a: # b can't be 0 or else there aren't 3 vars swap = True a, b = b, a T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1))) if swap: T.row_swap(0, 1) T.col_swap(0, 1) return T if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T # Apply the transformation x --> X - (B*Y + C*Z)/(2*A) if coeff[x*y] != 0 or coeff[x*z] != 0: A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = {} _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 T_0 = _transformation_to_normal(_var, _coeff) return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0 elif coeff[y*z] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. # Apply transformation y -> Y + Z ans z -> Y - Z return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1]) else: # Ax**2 + E*y*z + F*z**2 = 0 _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T else: return Matrix.eye(3) def parametrize_ternary_quadratic(eq): """ Returns the parametrized general solution for the ternary quadratic equation ``eq`` which has the form `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Examples ======== >>> from sympy import Tuple, ordered >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import parametrize_ternary_quadratic The parametrized solution may be returned with three parameters: >>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2) (p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r) There might also be only two parameters: >>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2) (2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2) Notes ===== Consider ``p`` and ``q`` in the previous 2-parameter solution and observe that more than one solution can be represented by a given pair of parameters. If `p` and ``q`` are not coprime, this is trivially true since the common factor will also be a common factor of the solution values. But it may also be true even when ``p`` and ``q`` are coprime: >>> sol = Tuple(*_) >>> p, q = ordered(sol.free_symbols) >>> sol.subs([(p, 3), (q, 2)]) (6, 12, 12) >>> sol.subs([(q, 1), (p, 1)]) (-1, 2, 2) >>> sol.subs([(q, 0), (p, 1)]) (2, -4, 4) >>> sol.subs([(q, 1), (p, 0)]) (-3, -6, 6) Except for sign and a common factor, these are equivalent to the solution of (1, 2, 2). References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): x_0, y_0, z_0 = list(_diop_ternary_quadratic(var, coeff))[0] return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) def _parametrize_ternary_quadratic(solution, _var, coeff): # called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0 assert 1 not in coeff x_0, y_0, z_0 = solution v = list(_var) # copy if x_0 is None: return (None, None, None) if solution.count(0) >= 2: # if there are 2 zeros the equation reduces # to k*X**2 == 0 where X is x, y, or z so X must # be zero, too. So there is only the trivial # solution. return (None, None, None) if x_0 == 0: v[0], v[1] = v[1], v[0] y_p, x_p, z_p = _parametrize_ternary_quadratic( (y_0, x_0, z_0), v, coeff) return x_p, y_p, z_p x, y, z = v r, p, q = symbols("r, p, q", integer=True) eq = sum(k*v for k, v in coeff.items()) eq_1 = _mexpand(eq.subs(zip( (x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q)))) A, B = eq_1.as_independent(r, as_Add=True) x = A*x_0 y = (A*y_0 - _mexpand(B/r*p)) z = (A*z_0 - _mexpand(B/r*q)) return _remove_gcd(x, y, z) def diop_ternary_quadratic_normal(eq, parameterize=False): """ Solves the quadratic ternary diophantine equation, `ax^2 + by^2 + cz^2 = 0`. Explanation =========== Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the equation will be a quadratic binary or univariate equation. If solvable, returns a tuple `(x, y, z)` that satisfies the given equation. If the equation does not have integer solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form `ax^2 + by^2 + cz^2 = 0`. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic_normal >>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2) (4, 9, 1) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == HomogeneousTernaryQuadraticNormal.name: sol = _diop_ternary_quadratic_normal(var, coeff) if len(sol) > 0: x_0, y_0, z_0 = list(sol)[0] else: x_0, y_0, z_0 = None, None, None if parameterize: return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) return x_0, y_0, z_0 def _diop_ternary_quadratic_normal(var, coeff): eq = sum([i * coeff[i] for i in coeff]) return HomogeneousTernaryQuadraticNormal(eq, free_symbols=var).solve() def sqf_normal(a, b, c, steps=False): """ Return `a', b', c'`, the coefficients of the square-free normal form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise prime. If `steps` is True then also return three tuples: `sq`, `sqf`, and `(a', b', c')` where `sq` contains the square factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`; `sqf` contains the values of `a`, `b` and `c` after removing both the `gcd(a, b, c)` and the square factors. The solutions for `ax^2 + by^2 + cz^2 = 0` can be recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sqf_normal >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) (11, 1, 5) >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True) ((3, 1, 7), (5, 55, 11), (11, 1, 5)) References ========== .. [1] Legendre's Theorem, Legrange's Descent, http://public.csusm.edu/aitken_html/notes/legendre.pdf See Also ======== reconstruct() """ ABC = _remove_gcd(a, b, c) sq = tuple(square_factor(i) for i in ABC) sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)]) pc = igcd(A, B) A /= pc B /= pc pa = igcd(B, C) B /= pa C /= pa pb = igcd(A, C) A /= pb B /= pb A *= pa B *= pb C *= pc if steps: return (sq, sqf, (A, B, C)) else: return A, B, C def square_factor(a): r""" Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square free. `a` can be given as an integer or a dictionary of factors. Examples ======== >>> from sympy.solvers.diophantine.diophantine import square_factor >>> square_factor(24) 2 >>> square_factor(-36*3) 6 >>> square_factor(1) 1 >>> square_factor({3: 2, 2: 1, -1: 1}) # -18 3 See Also ======== sympy.ntheory.factor_.core """ f = a if isinstance(a, dict) else factorint(a) return Mul(*[p**(e//2) for p, e in f.items()]) def reconstruct(A, B, z): """ Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2` from the `z` value of a solution of the square-free normal form of the equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square free and `gcd(a', b', c') == 1`. """ f = factorint(igcd(A, B)) for p, e in f.items(): if e != 1: raise ValueError('a and b should be square-free') z *= p return z def ldescent(A, B): """ Return a non-trivial solution to `w^2 = Ax^2 + By^2` using Lagrange's method; return None if there is no such solution. . Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a tuple `(w_0, x_0, y_0)` which is a solution to the above equation. Examples ======== >>> from sympy.solvers.diophantine.diophantine import ldescent >>> ldescent(1, 1) # w^2 = x^2 + y^2 (1, 1, 0) >>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2 (2, -1, 0) This means that `x = -1, y = 0` and `w = 2` is a solution to the equation `w^2 = 4x^2 - 7y^2` >>> ldescent(5, -1) # w^2 = 5x^2 - y^2 (2, 1, -1) References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, [online], Available: https://nottingham-repository.worktribe.com/output/1023265/efficient-solution-of-rational-conics """ if abs(A) > abs(B): w, y, x = ldescent(B, A) return w, x, y if A == 1: return (1, 1, 0) if B == 1: return (1, 0, 1) if B == -1: # and A == -1 return r = sqrt_mod(A, B) Q = (r**2 - A) // B if Q == 0: B_0 = 1 d = 0 else: div = divisors(Q) B_0 = None for i in div: sQ, _exact = integer_nthroot(abs(Q) // i, 2) if _exact: B_0, d = sign(Q)*i, sQ break if B_0 is not None: W, X, Y = ldescent(A, B_0) return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d)) def descent(A, B): """ Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2` using Lagrange's descent method with lattice-reduction. `A` and `B` are assumed to be valid for such a solution to exist. This is faster than the normal Lagrange's descent algorithm because the Gaussian reduction is used. Examples ======== >>> from sympy.solvers.diophantine.diophantine import descent >>> descent(3, 1) # x**2 = 3*y**2 + z**2 (1, 0, 1) `(x, y, z) = (1, 0, 1)` is a solution to the above equation. >>> descent(41, -113) (-16, -3, 1) References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ if abs(A) > abs(B): x, y, z = descent(B, A) return x, z, y if B == 1: return (1, 0, 1) if A == 1: return (1, 1, 0) if B == -A: return (0, 1, 1) if B == A: x, z, y = descent(-1, A) return (A*y, z, x) w = sqrt_mod(A, B) x_0, z_0 = gaussian_reduce(w, A, B) t = (x_0**2 - A*z_0**2) // B t_2 = square_factor(t) t_1 = t // t_2**2 x_1, z_1, y_1 = descent(A, t_1) return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1) def gaussian_reduce(w, a, b): r""" Returns a reduced solution `(x, z)` to the congruence `X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal. Details ======= Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)` References ========== .. [1] Gaussian lattice Reduction [online]. Available: http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404 .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ u = (0, 1) v = (1, 0) if dot(u, v, w, a, b) < 0: v = (-v[0], -v[1]) if norm(u, w, a, b) < norm(v, w, a, b): u, v = v, u while norm(u, w, a, b) > norm(v, w, a, b): k = dot(u, v, w, a, b) // dot(v, v, w, a, b) u, v = v, (u[0]- k*v[0], u[1]- k*v[1]) u, v = v, u if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b): c = v else: c = (u[0] - v[0], u[1] - v[1]) return c[0]*w + b*c[1], c[0] def dot(u, v, w, a, b): r""" Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})` which is defined in order to reduce solution of the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`. """ u_1, u_2 = u v_1, v_2 = v return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1 def norm(u, w, a, b): r""" Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}` where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`. """ u_1, u_2 = u return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b)) def holzer(x, y, z, a, b, c): r""" Simplify the solution `(x, y, z)` of the equation `ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`. The algorithm is an interpretation of Mordell's reduction as described on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in reference [2]_. References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. .. [2] Diophantine Equations, L. J. Mordell, page 48. """ if _odd(c): k = 2*c else: k = c//2 small = a*b*c step = 0 while True: t1, t2, t3 = a*x**2, b*y**2, c*z**2 # check that it's a solution if t1 + t2 != t3: if step == 0: raise ValueError('bad starting solution') break x_0, y_0, z_0 = x, y, z if max(t1, t2, t3) <= small: # Holzer condition break uv = u, v = base_solution_linear(k, y_0, -x_0) if None in uv: break p, q = -(a*u*x_0 + b*v*y_0), c*z_0 r = Rational(p, q) if _even(c): w = _nint_or_floor(p, q) assert abs(w - r) <= S.Half else: w = p//q # floor if _odd(a*u + b*v + c*w): w += 1 assert abs(w - r) <= S.One A = (a*u**2 + b*v**2 + c*w**2) B = (a*u*x_0 + b*v*y_0 + c*w*z_0) x = Rational(x_0*A - 2*u*B, k) y = Rational(y_0*A - 2*v*B, k) z = Rational(z_0*A - 2*w*B, k) assert all(i.is_Integer for i in (x, y, z)) step += 1 return tuple([int(i) for i in (x_0, y_0, z_0)]) def diop_general_pythagorean(eq, param=symbols("m", integer=True)): """ Solves the general pythagorean equation, `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`. Returns a tuple which contains a parametrized solution to the equation, sorted in the same order as the input variables. Usage ===== ``diop_general_pythagorean(eq, param)``: where ``eq`` is a general pythagorean equation which is assumed to be zero and ``param`` is the base parameter used to construct other parameters by subscripting. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_general_pythagorean >>> from sympy.abc import a, b, c, d, e >>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2) (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) >>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2) (10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == GeneralPythagorean.name: if param is None: params = None else: params = symbols('%s1:%i' % (param, len(var)), integer=True) return list(GeneralPythagorean(eq).solve(parameters=params))[0] def diop_general_sum_of_squares(eq, limit=1): r""" Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Details ======= When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be no solutions. Refer to [1]_ for more details. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares >>> from sympy.abc import a, b, c, d, e >>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345) {(15, 22, 22, 24, 24)} Reference ========= .. [1] Representing an integer as a sum of three squares, [online], Available: http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == GeneralSumOfSquares.name: return set(GeneralSumOfSquares(eq).solve(limit=limit)) def diop_general_sum_of_even_powers(eq, limit=1): """ Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0` where `e` is an even, integer power. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_even_powers >>> from sympy.abc import a, b >>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4)) {(2, 3)} See Also ======== power_representation """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == GeneralSumOfEvenPowers.name: return set(GeneralSumOfEvenPowers(eq).solve(limit=limit)) ## Functions below this comment can be more suitably grouped under ## an Additive number theory module rather than the Diophantine ## equation module. def partition(n, k=None, zeros=False): """ Returns a generator that can be used to generate partitions of an integer `n`. Explanation =========== A partition of `n` is a set of positive integers which add up to `n`. For example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned as a tuple. If ``k`` equals None, then all possible partitions are returned irrespective of their size, otherwise only the partitions of size ``k`` are returned. If the ``zero`` parameter is set to True then a suitable number of zeros are added at the end of every partition of size less than ``k``. ``zero`` parameter is considered only if ``k`` is not None. When the partitions are over, the last `next()` call throws the ``StopIteration`` exception, so this function should always be used inside a try - except block. Details ======= ``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size of the partition which is also positive integer. Examples ======== >>> from sympy.solvers.diophantine.diophantine import partition >>> f = partition(5) >>> next(f) (1, 1, 1, 1, 1) >>> next(f) (1, 1, 1, 2) >>> g = partition(5, 3) >>> next(g) (1, 1, 3) >>> next(g) (1, 2, 2) >>> g = partition(5, 3, zeros=True) >>> next(g) (0, 0, 5) """ if not zeros or k is None: for i in ordered_partitions(n, k): yield tuple(i) else: for m in range(1, k + 1): for i in ordered_partitions(n, m): i = tuple(i) yield (0,)*(k - len(i)) + i def prime_as_sum_of_two_squares(p): """ Represent a prime `p` as a unique sum of two squares; this can only be done if the prime is congruent to 1 mod 4. Examples ======== >>> from sympy.solvers.diophantine.diophantine import prime_as_sum_of_two_squares >>> prime_as_sum_of_two_squares(7) # can't be done >>> prime_as_sum_of_two_squares(5) (1, 2) Reference ========= .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if not p % 4 == 1: return if p % 8 == 5: b = 2 else: b = 3 while pow(b, (p - 1) // 2, p) == 1: b = nextprime(b) b = pow(b, (p - 1) // 4, p) a = p while b**2 > p: a, b = b, a % b return (int(a % b), int(b)) # convert from long def sum_of_three_squares(n): r""" Returns a 3-tuple $(a, b, c)$ such that $a^2 + b^2 + c^2 = n$ and $a, b, c \geq 0$. Returns None if $n = 4^a(8m + 7)$ for some `a, m \in \mathbb{Z}`. See [1]_ for more details. Usage ===== ``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sum_of_three_squares >>> sum_of_three_squares(44542) (18, 37, 207) References ========== .. [1] Representing a number as a sum of three squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0), 85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15), 526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36), 2986: (21, 32, 39), 9634: (56, 57, 57)} v = 0 if n == 0: return (0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: return if n in special.keys(): x, y, z = special[n] return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) s, _exact = integer_nthroot(n, 2) if _exact: return (2**v*s, 0, 0) x = None if n % 8 == 3: s = s if _odd(s) else s - 1 for x in range(s, -1, -2): N = (n - x**2) // 2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z)) return if n % 8 in (2, 6): s = s if _odd(s) else s - 1 else: s = s - 1 if _odd(s) else s for x in range(s, -1, -2): N = n - x**2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) def sum_of_four_squares(n): r""" Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`. Here `a, b, c, d \geq 0`. Usage ===== ``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sum_of_four_squares >>> sum_of_four_squares(3456) (8, 8, 32, 48) >>> sum_of_four_squares(1294585930293) (0, 1234, 2161, 1137796) References ========== .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if n == 0: return (0, 0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: d = 2 n = n - 4 elif n % 8 in (2, 6): d = 1 n = n - 1 else: d = 0 x, y, z = sum_of_three_squares(n) return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z) def power_representation(n, p, k, zeros=False): r""" Returns a generator for finding k-tuples of integers, `(n_{1}, n_{2}, . . . n_{k})`, such that `n = n_{1}^p + n_{2}^p + . . . n_{k}^p`. Usage ===== ``power_representation(n, p, k, zeros)``: Represent non-negative number ``n`` as a sum of ``k`` ``p``\ th powers. If ``zeros`` is true, then the solutions is allowed to contain zeros. Examples ======== >>> from sympy.solvers.diophantine.diophantine import power_representation Represent 1729 as a sum of two cubes: >>> f = power_representation(1729, 3, 2) >>> next(f) (9, 10) >>> next(f) (1, 12) If the flag `zeros` is True, the solution may contain tuples with zeros; any such solutions will be generated after the solutions without zeros: >>> list(power_representation(125, 2, 3, zeros=True)) [(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)] For even `p` the `permute_sign` function can be used to get all signed values: >>> from sympy.utilities.iterables import permute_signs >>> list(permute_signs((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12)] All possible signed permutations can also be obtained: >>> from sympy.utilities.iterables import signed_permutations >>> list(signed_permutations((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)] """ n, p, k = [as_int(i) for i in (n, p, k)] if n < 0: if p % 2: for t in power_representation(-n, p, k, zeros): yield tuple(-i for i in t) return if p < 1 or k < 1: raise ValueError(filldedent(''' Expecting positive integers for `(p, k)`, but got `(%s, %s)`''' % (p, k))) if n == 0: if zeros: yield (0,)*k return if k == 1: if p == 1: yield (n,) else: be = perfect_power(n) if be: b, e = be d, r = divmod(e, p) if not r: yield (b**d,) return if p == 1: for t in partition(n, k, zeros=zeros): yield t return if p == 2: feasible = _can_do_sum_of_squares(n, k) if not feasible: return if not zeros and n > 33 and k >= 5 and k <= n and n - k in ( 13, 10, 7, 5, 4, 2, 1): '''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online]. Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf''' return if feasible is not True: # it's prime and k == 2 yield prime_as_sum_of_two_squares(n) return if k == 2 and p > 2: be = perfect_power(n) if be and be[1] % p == 0: return # Fermat: a**n + b**n = c**n has no solution for n > 2 if n >= k: a = integer_nthroot(n - (k - 1), p)[0] for t in pow_rep_recursive(a, k, n, [], p): yield tuple(reversed(t)) if zeros: a = integer_nthroot(n, p)[0] for i in range(1, k): for t in pow_rep_recursive(a, i, n, [], p): yield tuple(reversed(t + (0,)*(k - i))) sum_of_powers = power_representation def pow_rep_recursive(n_i, k, n_remaining, terms, p): # Invalid arguments if n_i <= 0 or k <= 0: return # No solutions may exist if n_remaining < k: return if k * pow(n_i, p) < n_remaining: return if k == 0 and n_remaining == 0: yield tuple(terms) elif k == 1: # next_term^p must equal to n_remaining next_term, exact = integer_nthroot(n_remaining, p) if exact and next_term <= n_i: yield tuple(terms + [next_term]) return else: # TODO: Fall back to diop_DN when k = 2 if n_i >= 1 and k > 0: for next_term in range(1, n_i + 1): residual = n_remaining - pow(next_term, p) if residual < 0: break yield from pow_rep_recursive(next_term, k - 1, residual, terms + [next_term], p) def sum_of_squares(n, k, zeros=False): """Return a generator that yields the k-tuples of nonnegative values, the squares of which sum to n. If zeros is False (default) then the solution will not contain zeros. The nonnegative elements of a tuple are sorted. * If k == 1 and n is square, (n,) is returned. * If k == 2 then n can only be written as a sum of squares if every prime in the factorization of n that has the form 4*k + 3 has an even multiplicity. If n is prime then it can only be written as a sum of two squares if it is in the form 4*k + 1. * if k == 3 then n can be written as a sum of squares if it does not have the form 4**m*(8*k + 7). * all integers can be written as the sum of 4 squares. * if k > 4 then n can be partitioned and each partition can be written as a sum of 4 squares; if n is not evenly divisible by 4 then n can be written as a sum of squares only if the an additional partition can be written as sum of squares. For example, if k = 6 then n is partitioned into two parts, the first being written as a sum of 4 squares and the second being written as a sum of 2 squares -- which can only be done if the condition above for k = 2 can be met, so this will automatically reject certain partitions of n. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sum_of_squares >>> list(sum_of_squares(25, 2)) [(3, 4)] >>> list(sum_of_squares(25, 2, True)) [(3, 4), (0, 5)] >>> list(sum_of_squares(25, 4)) [(1, 2, 2, 4)] See Also ======== sympy.utilities.iterables.signed_permutations """ yield from power_representation(n, 2, k, zeros) def _can_do_sum_of_squares(n, k): """Return True if n can be written as the sum of k squares, False if it cannot, or 1 if ``k == 2`` and ``n`` is prime (in which case it *can* be written as a sum of two squares). A False is returned only if it cannot be written as ``k``-squares, even if 0s are allowed. """ if k < 1: return False if n < 0: return False if n == 0: return True if k == 1: return is_square(n) if k == 2: if n in (1, 2): return True if isprime(n): if n % 4 == 1: return 1 # signal that it was prime return False else: f = factorint(n) for p, m in f.items(): # we can proceed iff no prime factor in the form 4*k + 3 # has an odd multiplicity if (p % 4 == 3) and m % 2: return False return True if k == 3: if (n//4**multiplicity(4, n)) % 8 == 7: return False # every number can be written as a sum of 4 squares; for k > 4 partitions # can be 0 return True
b58b8ab9eacfccb42de8f0eb2304bb64d5ad7af880a62d98f952be90968e5b3b
r""" This module contains :py:meth:`~sympy.solvers.ode.dsolve` and different helper functions that it uses. :py:meth:`~sympy.solvers.ode.dsolve` solves ordinary differential equations. See the docstring on the various functions for their uses. Note that partial differential equations support is in ``pde.py``. Note that hint functions have docstrings describing their various methods, but they are intended for internal use. Use ``dsolve(ode, func, hint=hint)`` to solve an ODE using a specific hint. See also the docstring on :py:meth:`~sympy.solvers.ode.dsolve`. **Functions in this module** These are the user functions in this module: - :py:meth:`~sympy.solvers.ode.dsolve` - Solves ODEs. - :py:meth:`~sympy.solvers.ode.classify_ode` - Classifies ODEs into possible hints for :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.checkodesol` - Checks if an equation is the solution to an ODE. - :py:meth:`~sympy.solvers.ode.homogeneous_order` - Returns the homogeneous order of an expression. - :py:meth:`~sympy.solvers.ode.infinitesimals` - Returns the infinitesimals of the Lie group of point transformations of an ODE, such that it is invariant. - :py:meth:`~sympy.solvers.ode.checkinfsol` - Checks if the given infinitesimals are the actual infinitesimals of a first order ODE. These are the non-solver helper functions that are for internal use. The user should use the various options to :py:meth:`~sympy.solvers.ode.dsolve` to obtain the functionality provided by these functions: - :py:meth:`~sympy.solvers.ode.ode.odesimp` - Does all forms of ODE simplification. - :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity` - A key function for comparing solutions by simplicity. - :py:meth:`~sympy.solvers.ode.constantsimp` - Simplifies arbitrary constants. - :py:meth:`~sympy.solvers.ode.ode.constant_renumber` - Renumber arbitrary constants. - :py:meth:`~sympy.solvers.ode.ode._handle_Integral` - Evaluate unevaluated Integrals. See also the docstrings of these functions. **Currently implemented solver methods** The following methods are implemented for solving ordinary differential equations. See the docstrings of the various hint functions for more information on each (run ``help(ode)``): - 1st order separable differential equations. - 1st order differential equations whose coefficients or `dx` and `dy` are functions homogeneous of the same order. - 1st order exact differential equations. - 1st order linear differential equations. - 1st order Bernoulli differential equations. - Power series solutions for first order differential equations. - Lie Group method of solving first order differential equations. - 2nd order Liouville differential equations. - Power series solutions for second order differential equations at ordinary and regular singular points. - `n`\th order differential equation that can be solved with algebraic rearrangement and integration. - `n`\th order linear homogeneous differential equation with constant coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of undetermined coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of variation of parameters. **Philosophy behind this module** This module is designed to make it easy to add new ODE solving methods without having to mess with the solving code for other methods. The idea is that there is a :py:meth:`~sympy.solvers.ode.classify_ode` function, which takes in an ODE and tells you what hints, if any, will solve the ODE. It does this without attempting to solve the ODE, so it is fast. Each solving method is a hint, and it has its own function, named ``ode_<hint>``. That function takes in the ODE and any match expression gathered by :py:meth:`~sympy.solvers.ode.classify_ode` and returns a solved result. If this result has any integrals in it, the hint function will return an unevaluated :py:class:`~sympy.integrals.integrals.Integral` class. :py:meth:`~sympy.solvers.ode.dsolve`, which is the user wrapper function around all of this, will then call :py:meth:`~sympy.solvers.ode.ode.odesimp` on the result, which, among other things, will attempt to solve the equation for the dependent variable (the function we are solving for), simplify the arbitrary constants in the expression, and evaluate any integrals, if the hint allows it. **How to add new solution methods** If you have an ODE that you want :py:meth:`~sympy.solvers.ode.dsolve` to be able to solve, try to avoid adding special case code here. Instead, try finding a general method that will solve your ODE, as well as others. This way, the :py:mod:`~sympy.solvers.ode` module will become more robust, and unhindered by special case hacks. WolphramAlpha and Maple's DETools[odeadvisor] function are two resources you can use to classify a specific ODE. It is also better for a method to work with an `n`\th order ODE instead of only with specific orders, if possible. To add a new method, there are a few things that you need to do. First, you need a hint name for your method. Try to name your hint so that it is unambiguous with all other methods, including ones that may not be implemented yet. If your method uses integrals, also include a ``hint_Integral`` hint. If there is more than one way to solve ODEs with your method, include a hint for each one, as well as a ``<hint>_best`` hint. Your ``ode_<hint>_best()`` function should choose the best using min with ``ode_sol_simplicity`` as the key argument. See :obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest`, for example. The function that uses your method will be called ``ode_<hint>()``, so the hint must only use characters that are allowed in a Python function name (alphanumeric characters and the underscore '``_``' character). Include a function for every hint, except for ``_Integral`` hints (:py:meth:`~sympy.solvers.ode.dsolve` takes care of those automatically). Hint names should be all lowercase, unless a word is commonly capitalized (such as Integral or Bernoulli). If you have a hint that you do not want to run with ``all_Integral`` that does not have an ``_Integral`` counterpart (such as a best hint that would defeat the purpose of ``all_Integral``), you will need to remove it manually in the :py:meth:`~sympy.solvers.ode.dsolve` code. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for guidelines on writing a hint name. Determine *in general* how the solutions returned by your method compare with other methods that can potentially solve the same ODEs. Then, put your hints in the :py:data:`~sympy.solvers.ode.allhints` tuple in the order that they should be called. The ordering of this tuple determines which hints are default. Note that exceptions are ok, because it is easy for the user to choose individual hints with :py:meth:`~sympy.solvers.ode.dsolve`. In general, ``_Integral`` variants should go at the end of the list, and ``_best`` variants should go before the various hints they apply to. For example, the ``undetermined_coefficients`` hint comes before the ``variation_of_parameters`` hint because, even though variation of parameters is more general than undetermined coefficients, undetermined coefficients generally returns cleaner results for the ODEs that it can solve than variation of parameters does, and it does not require integration, so it is much faster. Next, you need to have a match expression or a function that matches the type of the ODE, which you should put in :py:meth:`~sympy.solvers.ode.classify_ode` (if the match function is more than just a few lines. It should match the ODE without solving for it as much as possible, so that :py:meth:`~sympy.solvers.ode.classify_ode` remains fast and is not hindered by bugs in solving code. Be sure to consider corner cases. For example, if your solution method involves dividing by something, make sure you exclude the case where that division will be 0. In most cases, the matching of the ODE will also give you the various parts that you need to solve it. You should put that in a dictionary (``.match()`` will do this for you), and add that as ``matching_hints['hint'] = matchdict`` in the relevant part of :py:meth:`~sympy.solvers.ode.classify_ode`. :py:meth:`~sympy.solvers.ode.classify_ode` will then send this to :py:meth:`~sympy.solvers.ode.dsolve`, which will send it to your function as the ``match`` argument. Your function should be named ``ode_<hint>(eq, func, order, match)`. If you need to send more information, put it in the ``match`` dictionary. For example, if you had to substitute in a dummy variable in :py:meth:`~sympy.solvers.ode.classify_ode` to match the ODE, you will need to pass it to your function using the `match` dict to access it. You can access the independent variable using ``func.args[0]``, and the dependent variable (the function you are trying to solve for) as ``func.func``. If, while trying to solve the ODE, you find that you cannot, raise ``NotImplementedError``. :py:meth:`~sympy.solvers.ode.dsolve` will catch this error with the ``all`` meta-hint, rather than causing the whole routine to fail. Add a docstring to your function that describes the method employed. Like with anything else in SymPy, you will need to add a doctest to the docstring, in addition to real tests in ``test_ode.py``. Try to maintain consistency with the other hint functions' docstrings. Add your method to the list at the top of this docstring. Also, add your method to ``ode.rst`` in the ``docs/src`` directory, so that the Sphinx docs will pull its docstring into the main SymPy documentation. Be sure to make the Sphinx documentation by running ``make html`` from within the doc directory to verify that the docstring formats correctly. If your solution method involves integrating, use :py:obj:`~.Integral` instead of :py:meth:`~sympy.core.expr.Expr.integrate`. This allows the user to bypass hard/slow integration by using the ``_Integral`` variant of your hint. In most cases, calling :py:meth:`sympy.core.basic.Basic.doit` will integrate your solution. If this is not the case, you will need to write special code in :py:meth:`~sympy.solvers.ode.ode._handle_Integral`. Arbitrary constants should be symbols named ``C1``, ``C2``, and so on. All solution methods should return an equality instance. If you need an arbitrary number of arbitrary constants, you can use ``constants = numbered_symbols(prefix='C', cls=Symbol, start=1)``. If it is possible to solve for the dependent function in a general way, do so. Otherwise, do as best as you can, but do not call solve in your ``ode_<hint>()`` function. :py:meth:`~sympy.solvers.ode.ode.odesimp` will attempt to solve the solution for you, so you do not need to do that. Lastly, if your ODE has a common simplification that can be applied to your solutions, you can add a special case in :py:meth:`~sympy.solvers.ode.ode.odesimp` for it. For example, solutions returned from the ``1st_homogeneous_coeff`` hints often have many :obj:`~sympy.functions.elementary.exponential.log` terms, so :py:meth:`~sympy.solvers.ode.ode.odesimp` calls :py:meth:`~sympy.simplify.simplify.logcombine` on them (it also helps to write the arbitrary constant as ``log(C1)`` instead of ``C1`` in this case). Also consider common ways that you can rearrange your solution to have :py:meth:`~sympy.solvers.ode.constantsimp` take better advantage of it. It is better to put simplification in :py:meth:`~sympy.solvers.ode.ode.odesimp` than in your method, because it can then be turned off with the simplify flag in :py:meth:`~sympy.solvers.ode.dsolve`. If you have any extraneous simplification in your function, be sure to only run it using ``if match.get('simplify', True):``, especially if it can be slow or if it can reduce the domain of the solution. Finally, as with every contribution to SymPy, your method will need to be tested. Add a test for each method in ``test_ode.py``. Follow the conventions there, i.e., test the solver using ``dsolve(eq, f(x), hint=your_hint)``, and also test the solution using :py:meth:`~sympy.solvers.ode.checkodesol` (you can put these in a separate tests and skip/XFAIL if it runs too slow/does not work). Be sure to call your hint specifically in :py:meth:`~sympy.solvers.ode.dsolve`, that way the test will not be broken simply by the introduction of another matching hint. If your method works for higher order (>1) ODEs, you will need to run ``sol = constant_renumber(sol, 'C', 1, order)`` for each solution, where ``order`` is the order of the ODE. This is because ``constant_renumber`` renumbers the arbitrary constants by printing order, which is platform dependent. Try to test every corner case of your solver, including a range of orders if it is a `n`\th order solver, but if your solver is slow, such as if it involves hard integration, try to keep the test run time down. Feel free to refactor existing hints to avoid duplicating code or creating inconsistencies. If you can show that your method exactly duplicates an existing method, including in the simplicity and speed of obtaining the solutions, then you can remove the old, less general method. The existing code is tested extensively in ``test_ode.py``, so if anything is broken, one of those tests will surely fail. """ from sympy.core import Add, S, Mul, Pow, oo from sympy.core.containers import Tuple from sympy.core.expr import AtomicExpr, Expr from sympy.core.function import (Function, Derivative, AppliedUndef, diff, expand, expand_mul, Subs) from sympy.core.multidimensional import vectorize from sympy.core.numbers import nan, zoo, Number from sympy.core.relational import Equality, Eq from sympy.core.sorting import default_sort_key, ordered from sympy.core.symbol import Symbol, Wild, Dummy, symbols from sympy.core.sympify import sympify from sympy.core.traversal import preorder_traversal from sympy.logic.boolalg import (BooleanAtom, BooleanTrue, BooleanFalse) from sympy.functions import exp, log, sqrt from sympy.functions.combinatorial.factorials import factorial from sympy.integrals.integrals import Integral from sympy.polys import (Poly, terms_gcd, PolynomialError, lcm) from sympy.polys.polytools import cancel from sympy.series import Order from sympy.series.series import series from sympy.simplify import (collect, logcombine, powsimp, # type: ignore separatevars, simplify, cse) from sympy.simplify.radsimp import collect_const from sympy.solvers import checksol, solve from sympy.utilities import numbered_symbols from sympy.utilities.iterables import uniq, sift, iterable from sympy.solvers.deutils import _preprocess, ode_order, _desolve #: This is a list of hints in the order that they should be preferred by #: :py:meth:`~sympy.solvers.ode.classify_ode`. In general, hints earlier in the #: list should produce simpler solutions than those later in the list (for #: ODEs that fit both). For now, the order of this list is based on empirical #: observations by the developers of SymPy. #: #: The hint used by :py:meth:`~sympy.solvers.ode.dsolve` for a specific ODE #: can be overridden (see the docstring). #: #: In general, ``_Integral`` hints are grouped at the end of the list, unless #: there is a method that returns an unevaluable integral most of the time #: (which go near the end of the list anyway). ``default``, ``all``, #: ``best``, and ``all_Integral`` meta-hints should not be included in this #: list, but ``_best`` and ``_Integral`` hints should be included. allhints = ( "factorable", "nth_algebraic", "separable", "1st_exact", "1st_linear", "Bernoulli", "1st_rational_riccati", "Riccati_special_minus2", "1st_homogeneous_coeff_best", "1st_homogeneous_coeff_subs_indep_div_dep", "1st_homogeneous_coeff_subs_dep_div_indep", "almost_linear", "linear_coefficients", "separable_reduced", "1st_power_series", "lie_group", "nth_linear_constant_coeff_homogeneous", "nth_linear_euler_eq_homogeneous", "nth_linear_constant_coeff_undetermined_coefficients", "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients", "nth_linear_constant_coeff_variation_of_parameters", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters", "Liouville", "2nd_linear_airy", "2nd_linear_bessel", "2nd_hypergeometric", "2nd_hypergeometric_Integral", "nth_order_reducible", "2nd_power_series_ordinary", "2nd_power_series_regular", "nth_algebraic_Integral", "separable_Integral", "1st_exact_Integral", "1st_linear_Integral", "Bernoulli_Integral", "1st_homogeneous_coeff_subs_indep_div_dep_Integral", "1st_homogeneous_coeff_subs_dep_div_indep_Integral", "almost_linear_Integral", "linear_coefficients_Integral", "separable_reduced_Integral", "nth_linear_constant_coeff_variation_of_parameters_Integral", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral", "Liouville_Integral", "2nd_nonlinear_autonomous_conserved", "2nd_nonlinear_autonomous_conserved_Integral", ) def get_numbered_constants(eq, num=1, start=1, prefix='C'): """ Returns a list of constants that do not occur in eq already. """ ncs = iter_numbered_constants(eq, start, prefix) Cs = [next(ncs) for i in range(num)] return (Cs[0] if num == 1 else tuple(Cs)) def iter_numbered_constants(eq, start=1, prefix='C'): """ Returns an iterator of constants that do not occur in eq already. """ if isinstance(eq, (Expr, Eq)): eq = [eq] elif not iterable(eq): raise ValueError("Expected Expr or iterable but got %s" % eq) atom_set = set().union(*[i.free_symbols for i in eq]) func_set = set().union(*[i.atoms(Function) for i in eq]) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) def dsolve(eq, func=None, hint="default", simplify=True, ics= None, xi=None, eta=None, x0=0, n=6, **kwargs): r""" Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations. For single ordinary differential equation ========================================= It is classified under this when number of equation in ``eq`` is one. **Usage** ``dsolve(eq, f(x), hint)`` -> Solve ordinary differential equation ``eq`` for function ``f(x)``, using method ``hint``. **Details** ``eq`` can be any supported ordinary differential equation (see the :py:mod:`~sympy.solvers.ode` docstring for supported methods). This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``f(x)`` is a function of one variable whose derivatives in that variable make up the ordinary differential equation ``eq``. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it could not be detected). ``hint`` is the solving method that you want dsolve to use. Use ``classify_ode(eq, f(x))`` to get all of the possible hints for an ODE. The default hint, ``default``, will use whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. See Hints below for more options that you can use for hint. ``simplify`` enables simplification by :py:meth:`~sympy.solvers.ode.ode.odesimp`. See its docstring for more information. Turn this off, for example, to disable solving of solutions for ``func`` or simplification of arbitrary constants. It will still integrate with this hint. Note that the solution may contain more arbitrary constants than the order of the ODE with this option enabled. ``xi`` and ``eta`` are the infinitesimal functions of an ordinary differential equation. They are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. The user can specify values for the infinitesimals. If nothing is specified, ``xi`` and ``eta`` are calculated using :py:meth:`~sympy.solvers.ode.infinitesimals` with the help of various heuristics. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. For power series solutions, if no initial conditions are specified ``f(0)`` is assumed to be ``C0`` and the power series solution is calculated about 0. ``x0`` is the point about which the power series solution of a differential equation is to be evaluated. ``n`` gives the exponent of the dependent variable up to which the power series solution of a differential equation is to be evaluated. **Hints** Aside from the various solving methods, there are also some meta-hints that you can pass to :py:meth:`~sympy.solvers.ode.dsolve`: ``default``: This uses whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. This is the default argument to :py:meth:`~sympy.solvers.ode.dsolve`. ``all``: To make :py:meth:`~sympy.solvers.ode.dsolve` apply all relevant classification hints, use ``dsolve(ODE, func, hint="all")``. This will return a dictionary of ``hint:solution`` terms. If a hint causes dsolve to raise the ``NotImplementedError``, value of that hint's key will be the exception object raised. The dictionary will also include some special keys: - ``order``: The order of the ODE. See also :py:meth:`~sympy.solvers.deutils.ode_order` in ``deutils.py``. - ``best``: The simplest hint; what would be returned by ``best`` below. - ``best_hint``: The hint that would produce the solution given by ``best``. If more than one hint produces the best solution, the first one in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode` is chosen. - ``default``: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode`. ``all_Integral``: This is the same as ``all``, except if a hint also has a corresponding ``_Integral`` hint, it only returns the ``_Integral`` hint. This is useful if ``all`` causes :py:meth:`~sympy.solvers.ode.dsolve` to hang because of a difficult or impossible integral. This meta-hint will also be much faster than ``all``, because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. ``best``: To have :py:meth:`~sympy.solvers.ode.dsolve` try all methods and return the simplest one. This takes into account whether the solution is solvable in the function, whether it contains any Integral classes (i.e. unevaluatable integrals), and which one is the shortest in size. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for more info on hints, and the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints. **Tips** - You can declare the derivative of an unknown function this way: >>> from sympy import Function, Derivative >>> from sympy.abc import x # x is the independent variable >>> f = Function("f")(x) # f is a function of x >>> # f_ will be the derivative of f with respect to x >>> f_ = Derivative(f, x) - See ``test_ode.py`` for many tests, which serves also as a set of examples for how to use :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.dsolve` always returns an :py:class:`~sympy.core.relational.Equality` class (except for the case when the hint is ``all`` or ``all_Integral``). If possible, it solves the solution explicitly for the function being solved for. Otherwise, it returns an implicit solution. - Arbitrary constants are symbols named ``C1``, ``C2``, and so on. - Because all solutions should be mathematically equivalent, some hints may return the exact same result for an ODE. Often, though, two different hints will return the same solution formatted differently. The two should be equivalent. Also note that sometimes the values of the arbitrary constants in two different solutions may not be the same, because one constant may have "absorbed" other constants into it. - Do ``help(ode.ode_<hintname>)`` to get help more information on a specific hint, where ``<hintname>`` is the name of a hint without ``_Integral``. For system of ordinary differential equations ============================================= **Usage** ``dsolve(eq, func)`` -> Solve a system of ordinary differential equations ``eq`` for ``func`` being list of functions including `x(t)`, `y(t)`, `z(t)` where number of functions in the list depends upon the number of equations provided in ``eq``. **Details** ``eq`` can be any supported system of ordinary differential equations This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``func`` holds ``x(t)`` and ``y(t)`` being functions of one variable which together with some of their derivatives make up the system of ordinary differential equation ``eq``. It is not necessary to provide this; it will be autodetected (and an error raised if it could not be detected). **Hints** The hints are formed by parameters returned by classify_sysode, combining them give hints name used later for forming method name. Examples ======== >>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x)) Eq(f(x), C1*sin(3*x) + C2*cos(3*x)) >>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x) >>> dsolve(eq, hint='1st_exact') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> dsolve(eq, hint='almost_linear') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> t = symbols('t') >>> x, y = symbols('x, y', cls=Function) >>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t))) >>> dsolve(eq) [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t)), Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t) + exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)))] >>> eq = (Eq(Derivative(x(t),t),x(t)*y(t)*sin(t)), Eq(Derivative(y(t),t),y(t)**2*sin(t))) >>> dsolve(eq) {Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))} """ if iterable(eq): from sympy.solvers.ode.systems import dsolve_system # This may have to be changed in future # when we have weakly and strongly # connected components. This have to # changed to show the systems that haven't # been solved. try: sol = dsolve_system(eq, funcs=func, ics=ics, doit=True) return sol[0] if len(sol) == 1 else sol except NotImplementedError: pass match = classify_sysode(eq, func) eq = match['eq'] order = match['order'] func = match['func'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] # keep highest order term coefficient positive for i in range(len(eq)): for func_ in func: if isinstance(func_, list): pass else: if eq[i].coeff(diff(func[i],t,ode_order(eq[i], func[i]))).is_negative: eq[i] = -eq[i] match['eq'] = eq if len(set(order.values()))!=1: raise ValueError("It solves only those systems of equations whose orders are equal") match['order'] = list(order.values())[0] def recur_len(l): return sum(recur_len(item) if isinstance(item,list) else 1 for item in l) if recur_len(func) != len(eq): raise ValueError("dsolve() and classify_sysode() work with " "number of functions being equal to number of equations") if match['type_of_equation'] is None: raise NotImplementedError else: if match['is_linear'] == True: solvefunc = globals()['sysode_linear_%(no_of_equation)seq_order%(order)s' % match] else: solvefunc = globals()['sysode_nonlinear_%(no_of_equation)seq_order%(order)s' % match] sols = solvefunc(match) if ics: constants = Tuple(*sols).free_symbols - Tuple(*eq).free_symbols solved_constants = solve_ics(sols, func, constants, ics) return [sol.subs(solved_constants) for sol in sols] return sols else: given_hint = hint # hint given by the user # See the docstring of _desolve for more details. hints = _desolve(eq, func=func, hint=hint, simplify=True, xi=xi, eta=eta, type='ode', ics=ics, x0=x0, n=n, **kwargs) eq = hints.pop('eq', eq) all_ = hints.pop('all', False) if all_: retdict = {} failed_hints = {} gethints = classify_ode(eq, dict=True, hint='all') orderedhints = gethints['ordered_hints'] for hint in hints: try: rv = _helper_simplify(eq, hint, hints[hint], simplify) except NotImplementedError as detail: failed_hints[hint] = detail else: retdict[hint] = rv func = hints[hint]['func'] retdict['best'] = min(list(retdict.values()), key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) if given_hint == 'best': return retdict['best'] for i in orderedhints: if retdict['best'] == retdict.get(i, None): retdict['best_hint'] = i break retdict['default'] = gethints['default'] retdict['order'] = gethints['order'] retdict.update(failed_hints) return retdict else: # The key 'hint' stores the hint needed to be solved for. hint = hints['hint'] return _helper_simplify(eq, hint, hints, simplify, ics=ics) def _helper_simplify(eq, hint, match, simplify=True, ics=None, **kwargs): r""" Helper function of dsolve that calls the respective :py:mod:`~sympy.solvers.ode` functions to solve for the ordinary differential equations. This minimizes the computation in calling :py:meth:`~sympy.solvers.deutils._desolve` multiple times. """ r = match func = r['func'] order = r['order'] match = r[hint] if isinstance(match, SingleODESolver): solvefunc = match elif hint.endswith('_Integral'): solvefunc = globals()['ode_' + hint[:-len('_Integral')]] else: solvefunc = globals()['ode_' + hint] free = eq.free_symbols cons = lambda s: s.free_symbols.difference(free) if simplify: # odesimp() will attempt to integrate, if necessary, apply constantsimp(), # attempt to solve for func, and apply any other hint specific # simplifications if isinstance(solvefunc, SingleODESolver): sols = solvefunc.get_general_solution() else: sols = solvefunc(eq, func, order, match) if iterable(sols): rv = [odesimp(eq, s, func, hint) for s in sols] else: rv = odesimp(eq, sols, func, hint) else: # We still want to integrate (you can disable it separately with the hint) if isinstance(solvefunc, SingleODESolver): exprs = solvefunc.get_general_solution(simplify=False) else: match['simplify'] = False # Some hints can take advantage of this option exprs = solvefunc(eq, func, order, match) if isinstance(exprs, list): rv = [_handle_Integral(expr, func, hint) for expr in exprs] else: rv = _handle_Integral(exprs, func, hint) if isinstance(rv, list): if simplify: rv = _remove_redundant_solutions(eq, rv, order, func.args[0]) if len(rv) == 1: rv = rv[0] if ics and 'power_series' not in hint: if isinstance(rv, (Expr, Eq)): solved_constants = solve_ics([rv], [r['func']], cons(rv), ics) rv = rv.subs(solved_constants) else: rv1 = [] for s in rv: try: solved_constants = solve_ics([s], [r['func']], cons(s), ics) except ValueError: continue rv1.append(s.subs(solved_constants)) if len(rv1) == 1: return rv1[0] rv = rv1 return rv def solve_ics(sols, funcs, constants, ics): """ Solve for the constants given initial conditions ``sols`` is a list of solutions. ``funcs`` is a list of functions. ``constants`` is a list of constants. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. Returns a dictionary mapping constants to values. ``solution.subs(constants)`` will replace the constants in ``solution``. Example ======= >>> # From dsolve(f(x).diff(x) - f(x), f(x)) >>> from sympy import symbols, Eq, exp, Function >>> from sympy.solvers.ode.ode import solve_ics >>> f = Function('f') >>> x, C1 = symbols('x C1') >>> sols = [Eq(f(x), C1*exp(x))] >>> funcs = [f(x)] >>> constants = [C1] >>> ics = {f(0): 2} >>> solved_constants = solve_ics(sols, funcs, constants, ics) >>> solved_constants {C1: 2} >>> sols[0].subs(solved_constants) Eq(f(x), 2*exp(x)) """ # Assume ics are of the form f(x0): value or Subs(diff(f(x), x, n), (x, # x0)): value (currently checked by classify_ode). To solve, replace x # with x0, f(x0) with value, then solve for constants. For f^(n)(x0), # differentiate the solution n times, so that f^(n)(x) appears. x = funcs[0].args[0] diff_sols = [] subs_sols = [] diff_variables = set() for funcarg, value in ics.items(): if isinstance(funcarg, AppliedUndef): x0 = funcarg.args[0] matching_func = [f for f in funcs if f.func == funcarg.func][0] S = sols elif isinstance(funcarg, (Subs, Derivative)): if isinstance(funcarg, Subs): # Make sure it stays a subs. Otherwise subs below will produce # a different looking term. funcarg = funcarg.doit() if isinstance(funcarg, Subs): deriv = funcarg.expr x0 = funcarg.point[0] variables = funcarg.expr.variables matching_func = deriv elif isinstance(funcarg, Derivative): deriv = funcarg x0 = funcarg.variables[0] variables = (x,)*len(funcarg.variables) matching_func = deriv.subs(x0, x) for sol in sols: if sol.has(deriv.expr.func): diff_sols.append(Eq(sol.lhs.diff(*variables), sol.rhs.diff(*variables))) diff_variables.add(variables) S = diff_sols else: raise NotImplementedError("Unrecognized initial condition") for sol in S: if sol.has(matching_func): sol2 = sol sol2 = sol2.subs(x, x0) sol2 = sol2.subs(funcarg, value) # This check is necessary because of issue #15724 if not isinstance(sol2, BooleanAtom) or not subs_sols: subs_sols = [s for s in subs_sols if not isinstance(s, BooleanAtom)] subs_sols.append(sol2) # TODO: Use solveset here try: solved_constants = solve(subs_sols, constants, dict=True) except NotImplementedError: solved_constants = [] # XXX: We can't differentiate between the solution not existing because of # invalid initial conditions, and not existing because solve is not smart # enough. If we could use solveset, this might be improvable, but for now, # we use NotImplementedError in this case. if not solved_constants: raise ValueError("Couldn't solve for initial conditions") if solved_constants == True: raise ValueError("Initial conditions did not produce any solutions for constants. Perhaps they are degenerate.") if len(solved_constants) > 1: raise NotImplementedError("Initial conditions produced too many solutions for constants") return solved_constants[0] def classify_ode(eq, func=None, dict=False, ics=None, *, prep=True, xi=None, eta=None, n=None, **kwargs): r""" Returns a tuple of possible :py:meth:`~sympy.solvers.ode.dsolve` classifications for an ODE. The tuple is ordered so that first item is the classification that :py:meth:`~sympy.solvers.ode.dsolve` uses to solve the ODE by default. In general, classifications at the near the beginning of the list will produce better solutions faster than those near the end, thought there are always exceptions. To make :py:meth:`~sympy.solvers.ode.dsolve` use a different classification, use ``dsolve(ODE, func, hint=<classification>)``. See also the :py:meth:`~sympy.solvers.ode.dsolve` docstring for different meta-hints you can use. If ``dict`` is true, :py:meth:`~sympy.solvers.ode.classify_ode` will return a dictionary of ``hint:match`` expression terms. This is intended for internal use by :py:meth:`~sympy.solvers.ode.dsolve`. Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple. You can get help on different hints by executing ``help(ode.ode_hintname)``, where ``hintname`` is the name of the hint without ``_Integral``. See :py:data:`~sympy.solvers.ode.allhints` or the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints that can be returned from :py:meth:`~sympy.solvers.ode.classify_ode`. Notes ===== These are remarks on hint names. ``_Integral`` If a classification has ``_Integral`` at the end, it will return the expression with an unevaluated :py:class:`~.Integral` class in it. Note that a hint may do this anyway if :py:meth:`~sympy.core.expr.Expr.integrate` cannot do the integral, though just using an ``_Integral`` will do so much faster. Indeed, an ``_Integral`` hint will always be faster than its corresponding hint without ``_Integral`` because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. If :py:meth:`~sympy.solvers.ode.dsolve` hangs, it is probably because :py:meth:`~sympy.core.expr.Expr.integrate` is hanging on a tough or impossible integral. Try using an ``_Integral`` hint or ``all_Integral`` to get it return something. Note that some hints do not have ``_Integral`` counterparts. This is because :py:func:`~sympy.integrals.integrals.integrate` is not used in solving the ODE for those method. For example, `n`\th order linear homogeneous ODEs with constant coefficients do not require integration to solve, so there is no ``nth_linear_homogeneous_constant_coeff_Integrate`` hint. You can easily evaluate any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s in an expression by doing ``expr.doit()``. Ordinals Some hints contain an ordinal such as ``1st_linear``. This is to help differentiate them from other hints, as well as from other methods that may not be implemented yet. If a hint has ``nth`` in it, such as the ``nth_linear`` hints, this means that the method used to applies to ODEs of any order. ``indep`` and ``dep`` Some hints contain the words ``indep`` or ``dep``. These reference the independent variable and the dependent function, respectively. For example, if an ODE is in terms of `f(x)`, then ``indep`` will refer to `x` and ``dep`` will refer to `f`. ``subs`` If a hints has the word ``subs`` in it, it means that the ODE is solved by substituting the expression given after the word ``subs`` for a single dummy variable. This is usually in terms of ``indep`` and ``dep`` as above. The substituted expression will be written only in characters allowed for names of Python objects, meaning operators will be spelled out. For example, ``indep``/``dep`` will be written as ``indep_div_dep``. ``coeff`` The word ``coeff`` in a hint refers to the coefficients of something in the ODE, usually of the derivative terms. See the docstring for the individual methods for more info (``help(ode)``). This is contrast to ``coefficients``, as in ``undetermined_coefficients``, which refers to the common name of a method. ``_best`` Methods that have more than one fundamental way to solve will have a hint for each sub-method and a ``_best`` meta-classification. This will evaluate all hints and return the best, using the same considerations as the normal ``best`` meta-hint. Examples ======== >>> from sympy import Function, classify_ode, Eq >>> from sympy.abc import x >>> f = Function('f') >>> classify_ode(Eq(f(x).diff(x), 0), f(x)) ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') >>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4) ('factorable', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_constant_coeff_variation_of_parameters_Integral') """ ics = sympify(ics) if func and len(func.args) != 1: raise ValueError("dsolve() and classify_ode() only " "work with functions of one variable, not %s" % func) if isinstance(eq, Equality): eq = eq.lhs - eq.rhs # Some methods want the unprocessed equation eq_orig = eq if prep or func is None: eq, func_ = _preprocess(eq, func) if func is None: func = func_ x = func.args[0] f = func.func y = Dummy('y') terms = 5 if n is None else n order = ode_order(eq, f(x)) # hint:matchdict or hint:(tuple of matchdicts) # Also will contain "default":<default hint> and "order":order items. matching_hints = {"order": order} df = f(x).diff(x) a = Wild('a', exclude=[f(x)]) d = Wild('d', exclude=[df, f(x).diff(x, 2)]) e = Wild('e', exclude=[df]) n = Wild('n', exclude=[x, f(x), df]) c1 = Wild('c1', exclude=[x]) a3 = Wild('a3', exclude=[f(x), df, f(x).diff(x, 2)]) b3 = Wild('b3', exclude=[f(x), df, f(x).diff(x, 2)]) c3 = Wild('c3', exclude=[f(x), df, f(x).diff(x, 2)]) boundary = {} # Used to extract initial conditions C1 = Symbol("C1") # Preprocessing to get the initial conditions out if ics is not None: for funcarg in ics: # Separating derivatives if isinstance(funcarg, (Subs, Derivative)): # f(x).diff(x).subs(x, 0) is a Subs, but f(x).diff(x).subs(x, # y) is a Derivative if isinstance(funcarg, Subs): deriv = funcarg.expr old = funcarg.variables[0] new = funcarg.point[0] elif isinstance(funcarg, Derivative): deriv = funcarg # No information on this. Just assume it was x old = x new = funcarg.variables[0] if (isinstance(deriv, Derivative) and isinstance(deriv.args[0], AppliedUndef) and deriv.args[0].func == f and len(deriv.args[0].args) == 1 and old == x and not new.has(x) and all(i == deriv.variables[0] for i in deriv.variables) and x not in ics[funcarg].free_symbols): dorder = ode_order(deriv, x) temp = 'f' + str(dorder) boundary.update({temp: new, temp + 'val': ics[funcarg]}) else: raise ValueError("Invalid boundary conditions for Derivatives") # Separating functions elif isinstance(funcarg, AppliedUndef): if (funcarg.func == f and len(funcarg.args) == 1 and not funcarg.args[0].has(x) and x not in ics[funcarg].free_symbols): boundary.update({'f0': funcarg.args[0], 'f0val': ics[funcarg]}) else: raise ValueError("Invalid boundary conditions for Function") else: raise ValueError("Enter boundary conditions of the form ics={f(point): value, f(x).diff(x, order).subs(x, point): value}") ode = SingleODEProblem(eq_orig, func, x, prep=prep, xi=xi, eta=eta) user_hint = kwargs.get('hint', 'default') # Used when dsolve is called without an explicit hint. # We exit early to return the first valid match early_exit = (user_hint=='default') if user_hint.endswith('_Integral'): user_hint = user_hint[:-len('_Integral')] user_map = solver_map # An explicit hint has been given to dsolve # Skip matching code for other hints if user_hint not in ['default', 'all', 'all_Integral', 'best'] and user_hint in solver_map: user_map = {user_hint: solver_map[user_hint]} for hint in user_map: solver = user_map[hint](ode) if solver.matches(): matching_hints[hint] = solver if user_map[hint].has_integral: matching_hints[hint + "_Integral"] = solver if dict and early_exit: matching_hints["default"] = hint return matching_hints eq = expand(eq) # Precondition to try remove f(x) from highest order derivative reduced_eq = None if eq.is_Add: deriv_coef = eq.coeff(f(x).diff(x, order)) if deriv_coef not in (1, 0): r = deriv_coef.match(a*f(x)**c1) if r and r[c1]: den = f(x)**r[c1] reduced_eq = Add(*[arg/den for arg in eq.args]) if not reduced_eq: reduced_eq = eq if order == 1: # NON-REDUCED FORM OF EQUATION matches r = collect(eq, df, exact=True).match(d + e * df) if r: r['d'] = d r['e'] = e r['y'] = y r[d] = r[d].subs(f(x), y) r[e] = r[e].subs(f(x), y) # FIRST ORDER POWER SERIES WHICH NEEDS INITIAL CONDITIONS # TODO: Hint first order series should match only if d/e is analytic. # For now, only d/e and (d/e).diff(arg) is checked for existence at # at a given point. # This is currently done internally in ode_1st_power_series. point = boundary.get('f0', 0) value = boundary.get('f0val', C1) check = cancel(r[d]/r[e]) check1 = check.subs({x: point, y: value}) if not check1.has(oo) and not check1.has(zoo) and \ not check1.has(nan) and not check1.has(-oo): check2 = (check1.diff(x)).subs({x: point, y: value}) if not check2.has(oo) and not check2.has(zoo) and \ not check2.has(nan) and not check2.has(-oo): rseries = r.copy() rseries.update({'terms': terms, 'f0': point, 'f0val': value}) matching_hints["1st_power_series"] = rseries elif order == 2: # Homogeneous second order differential equation of the form # a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3 # It has a definite power series solution at point x0 if, b3/a3 and c3/a3 # are analytic at x0. deq = a3*(f(x).diff(x, 2)) + b3*df + c3*f(x) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) ordinary = False if r: if not all(r[key].is_polynomial() for key in r): n, d = reduced_eq.as_numer_denom() reduced_eq = expand(n) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) if r and r[a3] != 0: p = cancel(r[b3]/r[a3]) # Used below q = cancel(r[c3]/r[a3]) # Used below point = kwargs.get('x0', 0) check = p.subs(x, point) if not check.has(oo, nan, zoo, -oo): check = q.subs(x, point) if not check.has(oo, nan, zoo, -oo): ordinary = True r.update({'a3': a3, 'b3': b3, 'c3': c3, 'x0': point, 'terms': terms}) matching_hints["2nd_power_series_ordinary"] = r # Checking if the differential equation has a regular singular point # at x0. It has a regular singular point at x0, if (b3/a3)*(x - x0) # and (c3/a3)*((x - x0)**2) are analytic at x0. if not ordinary: p = cancel((x - point)*p) check = p.subs(x, point) if not check.has(oo, nan, zoo, -oo): q = cancel(((x - point)**2)*q) check = q.subs(x, point) if not check.has(oo, nan, zoo, -oo): coeff_dict = {'p': p, 'q': q, 'x0': point, 'terms': terms} matching_hints["2nd_power_series_regular"] = coeff_dict # Order keys based on allhints. retlist = [i for i in allhints if i in matching_hints] if dict: # Dictionaries are ordered arbitrarily, so make note of which # hint would come first for dsolve(). Use an ordered dict in Py 3. matching_hints["default"] = retlist[0] if retlist else None matching_hints["ordered_hints"] = tuple(retlist) return matching_hints else: return tuple(retlist) def classify_sysode(eq, funcs=None, **kwargs): r""" Returns a dictionary of parameter names and values that define the system of ordinary differential equations in ``eq``. The parameters are further used in :py:meth:`~sympy.solvers.ode.dsolve` for solving that system. Some parameter names and values are: 'is_linear' (boolean), which tells whether the given system is linear. Note that "linear" here refers to the operator: terms such as ``x*diff(x,t)`` are nonlinear, whereas terms like ``sin(t)*diff(x,t)`` are still linear operators. 'func' (list) contains the :py:class:`~sympy.core.function.Function`s that appear with a derivative in the ODE, i.e. those that we are trying to solve the ODE for. 'order' (dict) with the maximum derivative for each element of the 'func' parameter. 'func_coeff' (dict or Matrix) with the coefficient for each triple ``(equation number, function, order)```. The coefficients are those subexpressions that do not appear in 'func', and hence can be considered constant for purposes of ODE solving. The value of this parameter can also be a Matrix if the system of ODEs are linear first order of the form X' = AX where X is the vector of dependent variables. Here, this function returns the coefficient matrix A. 'eq' (list) with the equations from ``eq``, sympified and transformed into expressions (we are solving for these expressions to be zero). 'no_of_equations' (int) is the number of equations (same as ``len(eq)``). 'type_of_equation' (string) is an internal classification of the type of ODE. 'is_constant' (boolean), which tells if the system of ODEs is constant coefficient or not. This key is temporary addition for now and is in the match dict only when the system of ODEs is linear first order constant coefficient homogeneous. So, this key's value is True for now if it is available else it does not exist. 'is_homogeneous' (boolean), which tells if the system of ODEs is homogeneous. Like the key 'is_constant', this key is a temporary addition and it is True since this key value is available only when the system is linear first order constant coefficient homogeneous. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm -A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists Examples ======== >>> from sympy import Function, Eq, symbols, diff >>> from sympy.solvers.ode.ode import classify_sysode >>> from sympy.abc import t >>> f, x, y = symbols('f, x, y', cls=Function) >>> k, l, m, n = symbols('k, l, m, n', Integer=True) >>> x1 = diff(x(t), t) ; y1 = diff(y(t), t) >>> x2 = diff(x(t), t, t) ; y2 = diff(y(t), t, t) >>> eq = (Eq(x1, 12*x(t) - 6*y(t)), Eq(y1, 11*x(t) + 3*y(t))) >>> classify_sysode(eq) {'eq': [-12*x(t) + 6*y(t) + Derivative(x(t), t), -11*x(t) - 3*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -12, (0, x(t), 1): 1, (0, y(t), 0): 6, (0, y(t), 1): 0, (1, x(t), 0): -11, (1, x(t), 1): 0, (1, y(t), 0): -3, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': None} >>> eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t) + 2), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) >>> classify_sysode(eq) {'eq': [-t**2*y(t) - 5*t*x(t) + Derivative(x(t), t) - 2, t**2*x(t) - 5*t*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -5*t, (0, x(t), 1): 1, (0, y(t), 0): -t**2, (0, y(t), 1): 0, (1, x(t), 0): t**2, (1, x(t), 1): 0, (1, y(t), 0): -5*t, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': None} """ # Sympify equations and convert iterables of equations into # a list of equations def _sympify(eq): return list(map(sympify, eq if iterable(eq) else [eq])) eq, funcs = (_sympify(w) for w in [eq, funcs]) for i, fi in enumerate(eq): if isinstance(fi, Equality): eq[i] = fi.lhs - fi.rhs t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] matching_hints = {"no_of_equation":i+1} matching_hints['eq'] = eq if i==0: raise ValueError("classify_sysode() works for systems of ODEs. " "For scalar ODEs, classify_ode should be used") # find all the functions if not given order = {} if funcs==[None]: funcs = _extract_funcs(eq) funcs = list(set(funcs)) if len(funcs) != len(eq): raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs) # This logic of list of lists in funcs to # be replaced later. func_dict = {} for func in funcs: if not order.get(func, False): max_order = 0 for i, eqs_ in enumerate(eq): order_ = ode_order(eqs_,func) if max_order < order_: max_order = order_ eq_no = i if eq_no in func_dict: func_dict[eq_no] = [func_dict[eq_no], func] else: func_dict[eq_no] = func order[func] = max_order funcs = [func_dict[i] for i in range(len(func_dict))] matching_hints['func'] = funcs for func in funcs: if isinstance(func, list): for func_elem in func: if len(func_elem.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) else: if func and len(func.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) # find the order of all equation in system of odes matching_hints["order"] = order # find coefficients of terms f(t), diff(f(t),t) and higher derivatives # and similarly for other functions g(t), diff(g(t),t) in all equations. # Here j denotes the equation number, funcs[l] denotes the function about # which we are talking about and k denotes the order of function funcs[l] # whose coefficient we are calculating. def linearity_check(eqs, j, func, is_linear_): for k in range(order[func] + 1): func_coef[j, func, k] = collect(eqs.expand(), [diff(func, t, k)]).coeff(diff(func, t, k)) if is_linear_ == True: if func_coef[j, func, k] == 0: if k == 0: coef = eqs.as_independent(func, as_Add=True)[1] for xr in range(1, ode_order(eqs,func) + 1): coef -= eqs.as_independent(diff(func, t, xr), as_Add=True)[1] if coef != 0: is_linear_ = False else: if eqs.as_independent(diff(func, t, k), as_Add=True)[1]: is_linear_ = False else: for func_ in funcs: if isinstance(func_, list): for elem_func_ in func_: dep = func_coef[j, func, k].as_independent(elem_func_, as_Add=True)[1] if dep != 0: is_linear_ = False else: dep = func_coef[j, func, k].as_independent(func_, as_Add=True)[1] if dep != 0: is_linear_ = False return is_linear_ func_coef = {} is_linear = True for j, eqs in enumerate(eq): for func in funcs: if isinstance(func, list): for func_elem in func: is_linear = linearity_check(eqs, j, func_elem, is_linear) else: is_linear = linearity_check(eqs, j, func, is_linear) matching_hints['func_coeff'] = func_coef matching_hints['is_linear'] = is_linear if len(set(order.values())) == 1: order_eq = list(matching_hints['order'].values())[0] if matching_hints['is_linear'] == True: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_linear_2eq_order1(eq, funcs, func_coef) else: type_of_equation = None # If the equation does not match up with any of the # general case solvers in systems.py and the number # of equations is greater than 2, then NotImplementedError # should be raised. else: type_of_equation = None else: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_nonlinear_2eq_order1(eq, funcs, func_coef) else: type_of_equation = None elif matching_hints['no_of_equation'] == 3: if order_eq == 1: type_of_equation = check_nonlinear_3eq_order1(eq, funcs, func_coef) else: type_of_equation = None else: type_of_equation = None else: type_of_equation = None matching_hints['type_of_equation'] = type_of_equation return matching_hints def check_linear_2eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = {} # for equations Eq(a1*diff(x(t),t), b1*x(t) + c1*y(t) + d1) # and Eq(a2*diff(y(t),t), b2*x(t) + c2*y(t) + d2) r['a1'] = fc[0,x(t),1] ; r['a2'] = fc[1,y(t),1] r['b1'] = -fc[0,x(t),0]/fc[0,x(t),1] ; r['b2'] = -fc[1,x(t),0]/fc[1,y(t),1] r['c1'] = -fc[0,y(t),0]/fc[0,x(t),1] ; r['c2'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S.Zero,S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): # We can handle homogeneous case and simple constant forcings r['d1'] = forcing[0] r['d2'] = forcing[1] else: # Issue #9244: nonhomogeneous linear systems are not supported return None # Conditions to check for type 6 whose equations are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and # Eq(diff(y(t),t), a*[f(t) + a*h(t)]x(t) + a*[g(t) - h(t)]*y(t)) p = 0 q = 0 p1 = cancel(r['b2']/(cancel(r['b2']/r['c2']).as_numer_denom()[0])) p2 = cancel(r['b1']/(cancel(r['b1']/r['c1']).as_numer_denom()[0])) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q and n==0: if ((r['b2']/j - r['b1'])/(r['c1'] - r['c2']/j)) == j: p = 1 elif q and n==1: if ((r['b1']/j - r['b2'])/(r['c2'] - r['c1']/j)) == j: p = 2 # End of condition for type 6 if r['d1']!=0 or r['d2']!=0: return None else: if not any(r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()): return None else: r['b1'] = r['b1']/r['a1'] ; r['b2'] = r['b2']/r['a2'] r['c1'] = r['c1']/r['a1'] ; r['c2'] = r['c2']/r['a2'] if p: return "type6" else: # Equations for type 7 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), h(t)*x(t) + p(t)*y(t)) return "type7" def check_nonlinear_2eq_order1(eq, func, func_coef): t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] f = Wild('f') g = Wild('g') u, v = symbols('u, v', cls=Dummy) def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) if r1 and r2 and not (r1[f].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t) \ or r2[g].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t)): return 'type5' else: return None for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func eq_type = check_type(x, y) if not eq_type: eq_type = check_type(y, x) return eq_type x = func[0].func y = func[1].func fc = func_coef n = Wild('n', exclude=[x(t),y(t)]) f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r = eq[0].match(diff(x(t),t) - x(t)**n*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type1' r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type2' g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) if r1 and r2 and not (r1[f].subs(x(t),u).subs(y(t),v).has(t) or \ r2[g].subs(x(t),u).subs(y(t),v).has(t)): return 'type3' r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) # phi = (r1[f].subs(x(t),u).subs(y(t),v))/num if R1 and R2: return 'type4' return None def check_nonlinear_2eq_order2(eq, func, func_coef): return None def check_nonlinear_3eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] u, v, w = symbols('u, v, w', cls=Dummy) a = Wild('a', exclude=[x(t), y(t), z(t), t]) b = Wild('b', exclude=[x(t), y(t), z(t), t]) c = Wild('c', exclude=[x(t), y(t), z(t), t]) f = Wild('f') F1 = Wild('F1') F2 = Wild('F2') F3 = Wild('F3') for i in range(3): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r1 = eq[0].match(diff(x(t),t) - a*y(t)*z(t)) r2 = eq[1].match(diff(y(t),t) - b*z(t)*x(t)) r3 = eq[2].match(diff(z(t),t) - c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type1' r = eq[0].match(diff(x(t),t) - y(t)*z(t)*f) if r: r1 = collect_const(r[f]).match(a*f) r2 = ((diff(y(t),t) - eq[1])/r1[f]).match(b*z(t)*x(t)) r3 = ((diff(z(t),t) - eq[2])/r1[f]).match(c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type2' r = eq[0].match(diff(x(t),t) - (F2-F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = eq[1].match(diff(y(t),t) - a*r1[F3] + r1[c]*F1) if r2: r3 = (eq[2] == diff(z(t),t) - r1[b]*r2[F1] + r2[a]*r1[F2]) if r1 and r2 and r3: return 'type3' r = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(a*x(t)*r1[F3] - r1[c]*z(t)*F1) if r2: r3 = (diff(z(t),t) - eq[2] == r1[b]*y(t)*r2[F1] - r2[a]*x(t)*r1[F2]) if r1 and r2 and r3: return 'type4' r = (diff(x(t),t) - eq[0]).match(x(t)*(F2 - F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(y(t)*(a*r1[F3] - r1[c]*F1)) if r2: r3 = (diff(z(t),t) - eq[2] == z(t)*(r1[b]*r2[F1] - r2[a]*r1[F2])) if r1 and r2 and r3: return 'type5' return None def check_nonlinear_3eq_order2(eq, func, func_coef): return None @vectorize(0) def odesimp(ode, eq, func, hint): r""" Simplifies solutions of ODEs, including trying to solve for ``func`` and running :py:meth:`~sympy.solvers.ode.constantsimp`. It may use knowledge of the type of solution that the hint returns to apply additional simplifications. It also attempts to integrate any :py:class:`~sympy.integrals.integrals.Integral`\s in the expression, if the hint is not an ``_Integral`` hint. This function should have no effect on expressions returned by :py:meth:`~sympy.solvers.ode.dsolve`, as :py:meth:`~sympy.solvers.ode.dsolve` already calls :py:meth:`~sympy.solvers.ode.ode.odesimp`, but the individual hint functions do not call :py:meth:`~sympy.solvers.ode.ode.odesimp` (because the :py:meth:`~sympy.solvers.ode.dsolve` wrapper does). Therefore, this function is designed for mainly internal use. Examples ======== >>> from sympy import sin, symbols, dsolve, pprint, Function >>> from sympy.solvers.ode.ode import odesimp >>> x, u2, C1= symbols('x,u2,C1') >>> f = Function('f') >>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral', ... simplify=False) >>> pprint(eq, wrap_line=False) x ---- f(x) / | | / 1 \ | -|u1 + -------| | | /1 \| | | sin|--|| | \ \u1// log(f(x)) = log(C1) + | ---------------- d(u1) | 2 | u1 | / >>> pprint(odesimp(eq, f(x), 1, {C1}, ... hint='1st_homogeneous_coeff_subs_indep_div_dep' ... )) #doctest: +SKIP x --------- = C1 /f(x)\ tan|----| \2*x / """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) constants = eq.free_symbols - ode.free_symbols # First, integrate if the hint allows it. eq = _handle_Integral(eq, func, hint) if hint.startswith("nth_linear_euler_eq_nonhomogeneous"): eq = simplify(eq) if not isinstance(eq, Equality): raise TypeError("eq should be an instance of Equality") # Second, clean up the arbitrary constants. # Right now, nth linear hints can put as many as 2*order constants in an # expression. If that number grows with another hint, the third argument # here should be raised accordingly, or constantsimp() rewritten to handle # an arbitrary number of constants. eq = constantsimp(eq, constants) # Lastly, now that we have cleaned up the expression, try solving for func. # When CRootOf is implemented in solve(), we will want to return a CRootOf # every time instead of an Equality. # Get the f(x) on the left if possible. if eq.rhs == func and not eq.lhs.has(func): eq = [Eq(eq.rhs, eq.lhs)] # make sure we are working with lists of solutions in simplified form. if eq.lhs == func and not eq.rhs.has(func): # The solution is already solved eq = [eq] else: # The solution is not solved, so try to solve it try: floats = any(i.is_Float for i in eq.atoms(Number)) eqsol = solve(eq, func, force=True, rational=False if floats else None) if not eqsol: raise NotImplementedError except (NotImplementedError, PolynomialError): eq = [eq] else: def _expand(expr): numer, denom = expr.as_numer_denom() if denom.is_Add: return expr else: return powsimp(expr.expand(), combine='exp', deep=True) # XXX: the rest of odesimp() expects each ``t`` to be in a # specific normal form: rational expression with numerator # expanded, but with combined exponential functions (at # least in this setup all tests pass). eq = [Eq(f(x), _expand(t)) for t in eqsol] # special simplification of the lhs. if hint.startswith("1st_homogeneous_coeff"): for j, eqi in enumerate(eq): newi = logcombine(eqi, force=True) if isinstance(newi.lhs, log) and newi.rhs == 0: newi = Eq(newi.lhs.args[0]/C1, C1) eq[j] = newi # We cleaned up the constants before solving to help the solve engine with # a simpler expression, but the solved expression could have introduced # things like -C1, so rerun constantsimp() one last time before returning. for i, eqi in enumerate(eq): eq[i] = constantsimp(eqi, constants) eq[i] = constant_renumber(eq[i], ode.free_symbols) # If there is only 1 solution, return it; # otherwise return the list of solutions. if len(eq) == 1: eq = eq[0] return eq def ode_sol_simplicity(sol, func, trysolving=True): r""" Returns an extended integer representing how simple a solution to an ODE is. The following things are considered, in order from most simple to least: - ``sol`` is solved for ``func``. - ``sol`` is not solved for ``func``, but can be if passed to solve (e.g., a solution returned by ``dsolve(ode, func, simplify=False``). - If ``sol`` is not solved for ``func``, then base the result on the length of ``sol``, as computed by ``len(str(sol))``. - If ``sol`` has any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s, this will automatically be considered less simple than any of the above. This function returns an integer such that if solution A is simpler than solution B by above metric, then ``ode_sol_simplicity(sola, func) < ode_sol_simplicity(solb, func)``. Currently, the following are the numbers returned, but if the heuristic is ever improved, this may change. Only the ordering is guaranteed. +----------------------------------------------+-------------------+ | Simplicity | Return | +==============================================+===================+ | ``sol`` solved for ``func`` | ``-2`` | +----------------------------------------------+-------------------+ | ``sol`` not solved for ``func`` but can be | ``-1`` | +----------------------------------------------+-------------------+ | ``sol`` is not solved nor solvable for | ``len(str(sol))`` | | ``func`` | | +----------------------------------------------+-------------------+ | ``sol`` contains an | ``oo`` | | :obj:`~sympy.integrals.integrals.Integral` | | +----------------------------------------------+-------------------+ ``oo`` here means the SymPy infinity, which should compare greater than any integer. If you already know :py:meth:`~sympy.solvers.solvers.solve` cannot solve ``sol``, you can use ``trysolving=False`` to skip that step, which is the only potentially slow step. For example, :py:meth:`~sympy.solvers.ode.dsolve` with the ``simplify=False`` flag should do this. If ``sol`` is a list of solutions, if the worst solution in the list returns ``oo`` it returns that, otherwise it returns ``len(str(sol))``, that is, the length of the string representation of the whole list. Examples ======== This function is designed to be passed to ``min`` as the key argument, such as ``min(listofsolutions, key=lambda i: ode_sol_simplicity(i, f(x)))``. >>> from sympy import symbols, Function, Eq, tan, Integral >>> from sympy.solvers.ode.ode import ode_sol_simplicity >>> x, C1, C2 = symbols('x, C1, C2') >>> f = Function('f') >>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x)) -2 >>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x)) -1 >>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x)) oo >>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1) >>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2) >>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]] [28, 35] >>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x))) Eq(f(x)/tan(f(x)/(2*x)), C1) """ # TODO: if two solutions are solved for f(x), we still want to be # able to get the simpler of the two # See the docstring for the coercion rules. We check easier (faster) # things here first, to save time. if iterable(sol): # See if there are Integrals for i in sol: if ode_sol_simplicity(i, func, trysolving=trysolving) == oo: return oo return len(str(sol)) if sol.has(Integral): return oo # Next, try to solve for func. This code will change slightly when CRootOf # is implemented in solve(). Probably a CRootOf solution should fall # somewhere between a normal solution and an unsolvable expression. # First, see if they are already solved if sol.lhs == func and not sol.rhs.has(func) or \ sol.rhs == func and not sol.lhs.has(func): return -2 # We are not so lucky, try solving manually if trysolving: try: sols = solve(sol, func) if not sols: raise NotImplementedError except NotImplementedError: pass else: return -1 # Finally, a naive computation based on the length of the string version # of the expression. This may favor combined fractions because they # will not have duplicate denominators, and may slightly favor expressions # with fewer additions and subtractions, as those are separated by spaces # by the printer. # Additional ideas for simplicity heuristics are welcome, like maybe # checking if a equation has a larger domain, or if constantsimp has # introduced arbitrary constants numbered higher than the order of a # given ODE that sol is a solution of. return len(str(sol)) def _extract_funcs(eqs): funcs = [] for eq in eqs: derivs = [node for node in preorder_traversal(eq) if isinstance(node, Derivative)] func = [] for d in derivs: func += list(d.atoms(AppliedUndef)) for func_ in func: funcs.append(func_) funcs = list(uniq(funcs)) return funcs def _get_constant_subexpressions(expr, Cs): Cs = set(Cs) Ces = [] def _recursive_walk(expr): expr_syms = expr.free_symbols if expr_syms and expr_syms.issubset(Cs): Ces.append(expr) else: if expr.func == exp: expr = expr.expand(mul=True) if expr.func in (Add, Mul): d = sift(expr.args, lambda i : i.free_symbols.issubset(Cs)) if len(d[True]) > 1: x = expr.func(*d[True]) if not x.is_number: Ces.append(x) elif isinstance(expr, Integral): if expr.free_symbols.issubset(Cs) and \ all(len(x) == 3 for x in expr.limits): Ces.append(expr) for i in expr.args: _recursive_walk(i) return _recursive_walk(expr) return Ces def __remove_linear_redundancies(expr, Cs): cnts = {i: expr.count(i) for i in Cs} Cs = [i for i in Cs if cnts[i] > 0] def _linear(expr): if isinstance(expr, Add): xs = [i for i in Cs if expr.count(i)==cnts[i] \ and 0 == expr.diff(i, 2)] d = {} for x in xs: y = expr.diff(x) if y not in d: d[y]=[] d[y].append(x) for y in d: if len(d[y]) > 1: d[y].sort(key=str) for x in d[y][1:]: expr = expr.subs(x, 0) return expr def _recursive_walk(expr): if len(expr.args) != 0: expr = expr.func(*[_recursive_walk(i) for i in expr.args]) expr = _linear(expr) return expr if isinstance(expr, Equality): lhs, rhs = [_recursive_walk(i) for i in expr.args] f = lambda i: isinstance(i, Number) or i in Cs if isinstance(lhs, Symbol) and lhs in Cs: rhs, lhs = lhs, rhs if lhs.func in (Add, Symbol) and rhs.func in (Add, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) drhs = sift([rhs] if isinstance(rhs, AtomicExpr) else rhs.args, f) for i in [True, False]: for hs in [dlhs, drhs]: if i not in hs: hs[i] = [0] # this calculation can be simplified lhs = Add(*dlhs[False]) - Add(*drhs[False]) rhs = Add(*drhs[True]) - Add(*dlhs[True]) elif lhs.func in (Mul, Symbol) and rhs.func in (Mul, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) if True in dlhs: if False not in dlhs: dlhs[False] = [1] lhs = Mul(*dlhs[False]) rhs = rhs/Mul(*dlhs[True]) return Eq(lhs, rhs) else: return _recursive_walk(expr) @vectorize(0) def constantsimp(expr, constants): r""" Simplifies an expression with arbitrary constants in it. This function is written specifically to work with :py:meth:`~sympy.solvers.ode.dsolve`, and is not intended for general use. Simplification is done by "absorbing" the arbitrary constants into other arbitrary constants, numbers, and symbols that they are not independent of. The symbols must all have the same name with numbers after it, for example, ``C1``, ``C2``, ``C3``. The ``symbolname`` here would be '``C``', the ``startnumber`` would be 1, and the ``endnumber`` would be 3. If the arbitrary constants are independent of the variable ``x``, then the independent symbol would be ``x``. There is no need to specify the dependent function, such as ``f(x)``, because it already has the independent symbol, ``x``, in it. Because terms are "absorbed" into arbitrary constants and because constants are renumbered after simplifying, the arbitrary constants in expr are not necessarily equal to the ones of the same name in the returned result. If two or more arbitrary constants are added, multiplied, or raised to the power of each other, they are first absorbed together into a single arbitrary constant. Then the new constant is combined into other terms if necessary. Absorption of constants is done with limited assistance: 1. terms of :py:class:`~sympy.core.add.Add`\s are collected to try join constants so `e^x (C_1 \cos(x) + C_2 \cos(x))` will simplify to `e^x C_1 \cos(x)`; 2. powers with exponents that are :py:class:`~sympy.core.add.Add`\s are expanded so `e^{C_1 + x}` will be simplified to `C_1 e^x`. Use :py:meth:`~sympy.solvers.ode.ode.constant_renumber` to renumber constants after simplification or else arbitrary numbers on constants may appear, e.g. `C_1 + C_3 x`. In rare cases, a single constant can be "simplified" into two constants. Every differential equation solution should have as many arbitrary constants as the order of the differential equation. The result here will be technically correct, but it may, for example, have `C_1` and `C_2` in an expression, when `C_1` is actually equal to `C_2`. Use your discretion in such situations, and also take advantage of the ability to use hints in :py:meth:`~sympy.solvers.ode.dsolve`. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.ode.ode import constantsimp >>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y') >>> constantsimp(2*C1*x, {C1, C2, C3}) C1*x >>> constantsimp(C1 + 2 + x, {C1, C2, C3}) C1 + x >>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3}) C1 + C3*x """ # This function works recursively. The idea is that, for Mul, # Add, Pow, and Function, if the class has a constant in it, then # we can simplify it, which we do by recursing down and # simplifying up. Otherwise, we can skip that part of the # expression. Cs = constants orig_expr = expr constant_subexprs = _get_constant_subexpressions(expr, Cs) for xe in constant_subexprs: xes = list(xe.free_symbols) if not xes: continue if all(expr.count(c) == xe.count(c) for c in xes): xes.sort(key=str) expr = expr.subs(xe, xes[0]) # try to perform common sub-expression elimination of constant terms try: commons, rexpr = cse(expr) commons.reverse() rexpr = rexpr[0] for s in commons: cs = list(s[1].atoms(Symbol)) if len(cs) == 1 and cs[0] in Cs and \ cs[0] not in rexpr.atoms(Symbol) and \ not any(cs[0] in ex for ex in commons if ex != s): rexpr = rexpr.subs(s[0], cs[0]) else: rexpr = rexpr.subs(*s) expr = rexpr except IndexError: pass expr = __remove_linear_redundancies(expr, Cs) def _conditional_term_factoring(expr): new_expr = terms_gcd(expr, clear=False, deep=True, expand=False) # we do not want to factor exponentials, so handle this separately if new_expr.is_Mul: infac = False asfac = False for m in new_expr.args: if isinstance(m, exp): asfac = True elif m.is_Add: infac = any(isinstance(fi, exp) for t in m.args for fi in Mul.make_args(t)) if asfac and infac: new_expr = expr break return new_expr expr = _conditional_term_factoring(expr) # call recursively if more simplification is possible if orig_expr != expr: return constantsimp(expr, Cs) return expr def constant_renumber(expr, variables=None, newconstants=None): r""" Renumber arbitrary constants in ``expr`` to use the symbol names as given in ``newconstants``. In the process, this reorders expression terms in a standard way. If ``newconstants`` is not provided then the new constant names will be ``C1``, ``C2`` etc. Otherwise ``newconstants`` should be an iterable giving the new symbols to use for the constants in order. The ``variables`` argument is a list of non-constant symbols. All other free symbols found in ``expr`` are assumed to be constants and will be renumbered. If ``variables`` is not given then any numbered symbol beginning with ``C`` (e.g. ``C1``) is assumed to be a constant. Symbols are renumbered based on ``.sort_key()``, so they should be numbered roughly in the order that they appear in the final, printed expression. Note that this ordering is based in part on hashes, so it can produce different results on different machines. The structure of this function is very similar to that of :py:meth:`~sympy.solvers.ode.constantsimp`. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.ode.ode import constant_renumber >>> x, C1, C2, C3 = symbols('x,C1:4') >>> expr = C3 + C2*x + C1*x**2 >>> expr C1*x**2 + C2*x + C3 >>> constant_renumber(expr) C1 + C2*x + C3*x**2 The ``variables`` argument specifies which are constants so that the other symbols will not be renumbered: >>> constant_renumber(expr, [C1, x]) C1*x**2 + C2 + C3*x The ``newconstants`` argument is used to specify what symbols to use when replacing the constants: >>> constant_renumber(expr, [x], newconstants=symbols('E1:4')) E1 + E2*x + E3*x**2 """ # System of expressions if isinstance(expr, (set, list, tuple)): return type(expr)(constant_renumber(Tuple(*expr), variables=variables, newconstants=newconstants)) # Symbols in solution but not ODE are constants if variables is not None: variables = set(variables) free_symbols = expr.free_symbols constantsymbols = list(free_symbols - variables) # Any Cn is a constant... else: variables = set() isconstant = lambda s: s.startswith('C') and s[1:].isdigit() constantsymbols = [sym for sym in expr.free_symbols if isconstant(sym.name)] # Find new constants checking that they aren't already in the ODE if newconstants is None: iter_constants = numbered_symbols(start=1, prefix='C', exclude=variables) else: iter_constants = (sym for sym in newconstants if sym not in variables) constants_found = [] # make a mapping to send all constantsymbols to S.One and use # that to make sure that term ordering is not dependent on # the indexed value of C C_1 = [(ci, S.One) for ci in constantsymbols] sort_key=lambda arg: default_sort_key(arg.subs(C_1)) def _constant_renumber(expr): r""" We need to have an internal recursive function """ # For system of expressions if isinstance(expr, Tuple): renumbered = [_constant_renumber(e) for e in expr] return Tuple(*renumbered) if isinstance(expr, Equality): return Eq( _constant_renumber(expr.lhs), _constant_renumber(expr.rhs)) if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and \ not expr.has(*constantsymbols): # Base case, as above. Hope there aren't constants inside # of some other class, because they won't be renumbered. return expr elif expr.is_Piecewise: return expr elif expr in constantsymbols: if expr not in constants_found: constants_found.append(expr) return expr elif expr.is_Function or expr.is_Pow: return expr.func( *[_constant_renumber(x) for x in expr.args]) else: sortedargs = list(expr.args) sortedargs.sort(key=sort_key) return expr.func(*[_constant_renumber(x) for x in sortedargs]) expr = _constant_renumber(expr) # Don't renumber symbols present in the ODE. constants_found = [c for c in constants_found if c not in variables] # Renumbering happens here subs_dict = {var: cons for var, cons in zip(constants_found, iter_constants)} expr = expr.subs(subs_dict, simultaneous=True) return expr def _handle_Integral(expr, func, hint): r""" Converts a solution with Integrals in it into an actual solution. For most hints, this simply runs ``expr.doit()``. """ if hint == "nth_linear_constant_coeff_homogeneous": sol = expr elif not hint.endswith("_Integral"): sol = expr.doit() else: sol = expr return sol # XXX: Should this function maybe go somewhere else? def homogeneous_order(eq, *symbols): r""" Returns the order `n` if `g` is homogeneous and ``None`` if it is not homogeneous. Determines if a function is homogeneous and if so of what order. A function `f(x, y, \cdots)` is homogeneous of order `n` if `f(t x, t y, \cdots) = t^n f(x, y, \cdots)`. If the function is of two variables, `F(x, y)`, then `f` being homogeneous of any order is equivalent to being able to rewrite `F(x, y)` as `G(x/y)` or `H(y/x)`. This fact is used to solve 1st order ordinary differential equations whose coefficients are homogeneous of the same order (see the docstrings of :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` and :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`). Symbols can be functions, but every argument of the function must be a symbol, and the arguments of the function that appear in the expression must match those given in the list of symbols. If a declared function appears with different arguments than given in the list of symbols, ``None`` is returned. Examples ======== >>> from sympy import Function, homogeneous_order, sqrt >>> from sympy.abc import x, y >>> f = Function('f') >>> homogeneous_order(f(x), f(x)) is None True >>> homogeneous_order(f(x,y), f(y, x), x, y) is None True >>> homogeneous_order(f(x), f(x), x) 1 >>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x)) 2 >>> homogeneous_order(x**2+f(x), x, f(x)) is None True """ if not symbols: raise ValueError("homogeneous_order: no symbols were given.") symset = set(symbols) eq = sympify(eq) # The following are not supported if eq.has(Order, Derivative): return None # These are all constants if (eq.is_Number or eq.is_NumberSymbol or eq.is_number ): return S.Zero # Replace all functions with dummy variables dum = numbered_symbols(prefix='d', cls=Dummy) newsyms = set() for i in [j for j in symset if getattr(j, 'is_Function')]: iargs = set(i.args) if iargs.difference(symset): return None else: dummyvar = next(dum) eq = eq.subs(i, dummyvar) symset.remove(i) newsyms.add(dummyvar) symset.update(newsyms) if not eq.free_symbols & symset: return None # assuming order of a nested function can only be equal to zero if isinstance(eq, Function): return None if homogeneous_order( eq.args[0], *tuple(symset)) != 0 else S.Zero # make the replacement of x with x*t and see if t can be factored out t = Dummy('t', positive=True) # It is sufficient that t > 0 eqs = separatevars(eq.subs([(i, t*i) for i in symset]), [t], dict=True)[t] if eqs is S.One: return S.Zero # there was no term with only t i, d = eqs.as_independent(t, as_Add=False) b, e = d.as_base_exp() if b == t: return e def ode_2nd_power_series_ordinary(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) y(x) = 0 For simplicity it is assumed that `P(x)`, `Q(x)` and `R(x)` are polynomials, it is sufficient that `\frac{Q(x)}{P(x)}` and `\frac{R(x)}{P(x)}` exists at `x_{0}`. A recurrence relation is obtained by substituting `y` as `\sum_{n=0}^\infty a_{n}x^{n}`, in the differential equation, and equating the nth term. Using this relation various terms can be generated. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function("f") >>> eq = f(x).diff(x, 2) + f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_ordinary')) / 4 2 \ / 2\ |x x | | x | / 6\ f(x) = C2*|-- - -- + 1| + C1*x*|1 - --| + O\x / \24 2 / \ 6 / References ========== - http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = Dummy("n", integer=True) s = Wild("s") k = Wild("k", exclude=[x]) x0 = match['x0'] terms = match['terms'] p = match[match['a3']] q = match[match['b3']] r = match[match['c3']] seriesdict = {} recurr = Function("r") # Generating the recurrence relation which works this way: # for the second order term the summation begins at n = 2. The coefficients # p is multiplied with an*(n - 1)*(n - 2)*x**n-2 and a substitution is made such that # the exponent of x becomes n. # For example, if p is x, then the second degree recurrence term is # an*(n - 1)*(n - 2)*x**n-1, substituting (n - 1) as n, it transforms to # an+1*n*(n - 1)*x**n. # A similar process is done with the first order and zeroth order term. coefflist = [(recurr(n), r), (n*recurr(n), q), (n*(n - 1)*recurr(n), p)] for index, coeff in enumerate(coefflist): if coeff[1]: f2 = powsimp(expand((coeff[1]*(x - x0)**(n - index)).subs(x, x + x0))) if f2.is_Add: addargs = f2.args else: addargs = [f2] for arg in addargs: powm = arg.match(s*x**k) term = coeff[0]*powm[s] if not powm[k].is_Symbol: term = term.subs(n, n - powm[k].as_independent(n)[0]) startind = powm[k].subs(n, index) # Seeing if the startterm can be reduced further. # If it vanishes for n lesser than startind, it is # equal to summation from n. if startind: for i in reversed(range(startind)): if not term.subs(n, i): seriesdict[term] = i else: seriesdict[term] = i + 1 break else: seriesdict[term] = S.Zero # Stripping of terms so that the sum starts with the same number. teq = S.Zero suminit = seriesdict.values() rkeys = seriesdict.keys() req = Add(*rkeys) if any(suminit): maxval = max(suminit) for term in seriesdict: val = seriesdict[term] if val != maxval: for i in range(val, maxval): teq += term.subs(n, val) finaldict = {} if teq: fargs = teq.atoms(AppliedUndef) if len(fargs) == 1: finaldict[fargs.pop()] = 0 else: maxf = max(fargs, key = lambda x: x.args[0]) sol = solve(teq, maxf) if isinstance(sol, list): sol = sol[0] finaldict[maxf] = sol # Finding the recurrence relation in terms of the largest term. fargs = req.atoms(AppliedUndef) maxf = max(fargs, key = lambda x: x.args[0]) minf = min(fargs, key = lambda x: x.args[0]) if minf.args[0].is_Symbol: startiter = 0 else: startiter = -minf.args[0].as_independent(n)[0] lhs = maxf rhs = solve(req, maxf) if isinstance(rhs, list): rhs = rhs[0] # Checking how many values are already present tcounter = len([t for t in finaldict.values() if t]) for _ in range(tcounter, terms - 3): # Assuming c0 and c1 to be arbitrary check = rhs.subs(n, startiter) nlhs = lhs.subs(n, startiter) nrhs = check.subs(finaldict) finaldict[nlhs] = nrhs startiter += 1 # Post processing series = C0 + C1*(x - x0) for term in finaldict: if finaldict[term]: fact = term.args[0] series += (finaldict[term].subs([(recurr(0), C0), (recurr(1), C1)])*( x - x0)**fact) series = collect(expand_mul(series), [C0, C1]) + Order(x**terms) return Eq(f(x), series) def ode_2nd_power_series_regular(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) y(x) = 0 A point is said to regular singular at `x0` if `x - x0\frac{Q(x)}{P(x)}` and `(x - x0)^{2}\frac{R(x)}{P(x)}` are analytic at `x0`. For simplicity `P(x)`, `Q(x)` and `R(x)` are assumed to be polynomials. The algorithm for finding the power series solutions is: 1. Try expressing `(x - x0)P(x)` and `((x - x0)^{2})Q(x)` as power series solutions about x0. Find `p0` and `q0` which are the constants of the power series expansions. 2. Solve the indicial equation `f(m) = m(m - 1) + m*p0 + q0`, to obtain the roots `m1` and `m2` of the indicial equation. 3. If `m1 - m2` is a non integer there exists two series solutions. If `m1 = m2`, there exists only one solution. If `m1 - m2` is an integer, then the existence of one solution is confirmed. The other solution may or may not exist. The power series solution is of the form `x^{m}\sum_{n=0}^\infty a_{n}x^{n}`. The coefficients are determined by the following recurrence relation. `a_{n} = -\frac{\sum_{k=0}^{n-1} q_{n-k} + (m + k)p_{n-k}}{f(m + n)}`. For the case in which `m1 - m2` is an integer, it can be seen from the recurrence relation that for the lower root `m`, when `n` equals the difference of both the roots, the denominator becomes zero. So if the numerator is not equal to zero, a second series solution exists. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function("f") >>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_regular')) / 6 4 2 \ | x x x | / 4 2 \ C1*|- --- + -- - -- + 1| | x x | \ 720 24 2 / / 6\ f(x) = C2*|--- - -- + 1| + ------------------------ + O\x / \120 6 / x References ========== - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) m = Dummy("m") # for solving the indicial equation x0 = match['x0'] terms = match['terms'] p = match['p'] q = match['q'] # Generating the indicial equation indicial = [] for term in [p, q]: if not term.has(x): indicial.append(term) else: term = series(term, x=x, n=1, x0=x0) if isinstance(term, Order): indicial.append(S.Zero) else: for arg in term.args: if not arg.has(x): indicial.append(arg) break p0, q0 = indicial sollist = solve(m*(m - 1) + m*p0 + q0, m) if sollist and isinstance(sollist, list) and all( sol.is_real for sol in sollist): serdict1 = {} serdict2 = {} if len(sollist) == 1: # Only one series solution exists in this case. m1 = m2 = sollist.pop() if terms-m1-1 <= 0: return Eq(f(x), Order(terms)) serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) else: m1 = sollist[0] m2 = sollist[1] if m1 < m2: m1, m2 = m2, m1 # Irrespective of whether m1 - m2 is an integer or not, one # Frobenius series solution exists. serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) if not (m1 - m2).is_integer: # Second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1) else: # Check if second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1, check=m1) if serdict1: finalseries1 = C0 for key in serdict1: power = int(key.name[1:]) finalseries1 += serdict1[key]*(x - x0)**power finalseries1 = (x - x0)**m1*finalseries1 finalseries2 = S.Zero if serdict2: for key in serdict2: power = int(key.name[1:]) finalseries2 += serdict2[key]*(x - x0)**power finalseries2 += C1 finalseries2 = (x - x0)**m2*finalseries2 return Eq(f(x), collect(finalseries1 + finalseries2, [C0, C1]) + Order(x**terms)) def _frobenius(n, m, p0, q0, p, q, x0, x, c, check=None): r""" Returns a dict with keys as coefficients and values as their values in terms of C0 """ n = int(n) # In cases where m1 - m2 is not an integer m2 = check d = Dummy("d") numsyms = numbered_symbols("C", start=0) numsyms = [next(numsyms) for i in range(n + 1)] serlist = [] for ser in [p, q]: # Order term not present if ser.is_polynomial(x) and Poly(ser, x).degree() <= n: if x0: ser = ser.subs(x, x + x0) dict_ = Poly(ser, x).as_dict() # Order term present else: tseries = series(ser, x=x0, n=n+1) # Removing order dict_ = Poly(list(ordered(tseries.args))[: -1], x).as_dict() # Fill in with zeros, if coefficients are zero. for i in range(n + 1): if (i,) not in dict_: dict_[(i,)] = S.Zero serlist.append(dict_) pseries = serlist[0] qseries = serlist[1] indicial = d*(d - 1) + d*p0 + q0 frobdict = {} for i in range(1, n + 1): num = c*(m*pseries[(i,)] + qseries[(i,)]) for j in range(1, i): sym = Symbol("C" + str(j)) num += frobdict[sym]*((m + j)*pseries[(i - j,)] + qseries[(i - j,)]) # Checking for cases when m1 - m2 is an integer. If num equals zero # then a second Frobenius series solution cannot be found. If num is not zero # then set constant as zero and proceed. if m2 is not None and i == m2 - m: if num: return False else: frobdict[numsyms[i]] = S.Zero else: frobdict[numsyms[i]] = -num/(indicial.subs(d, m+i)) return frobdict def _remove_redundant_solutions(eq, solns, order, var): r""" Remove redundant solutions from the set of solutions. This function is needed because otherwise dsolve can return redundant solutions. As an example consider: eq = Eq((f(x).diff(x, 2))*f(x).diff(x), 0) There are two ways to find solutions to eq. The first is to solve f(x).diff(x, 2) = 0 leading to solution f(x)=C1 + C2*x. The second is to solve the equation f(x).diff(x) = 0 leading to the solution f(x) = C1. In this particular case we then see that the second solution is a special case of the first and we do not want to return it. This does not always happen. If we have eq = Eq((f(x)**2-4)*(f(x).diff(x)-4), 0) then we get the algebraic solution f(x) = [-2, 2] and the integral solution f(x) = x + C1 and in this case the two solutions are not equivalent wrt initial conditions so both should be returned. """ def is_special_case_of(soln1, soln2): return _is_special_case_of(soln1, soln2, eq, order, var) unique_solns = [] for soln1 in solns: for soln2 in unique_solns[:]: if is_special_case_of(soln1, soln2): break elif is_special_case_of(soln2, soln1): unique_solns.remove(soln2) else: unique_solns.append(soln1) return unique_solns def _is_special_case_of(soln1, soln2, eq, order, var): r""" True if soln1 is found to be a special case of soln2 wrt some value of the constants that appear in soln2. False otherwise. """ # The solutions returned by dsolve may be given explicitly or implicitly. # We will equate the sol1=(soln1.rhs - soln1.lhs), sol2=(soln2.rhs - soln2.lhs) # of the two solutions. # # Since this is supposed to hold for all x it also holds for derivatives. # For an order n ode we should be able to differentiate # each solution n times to get n+1 equations. # # We then try to solve those n+1 equations for the integrations constants # in sol2. If we can find a solution that does not depend on x then it # means that some value of the constants in sol1 is a special case of # sol2 corresponding to a particular choice of the integration constants. # In case the solution is in implicit form we subtract the sides soln1 = soln1.rhs - soln1.lhs soln2 = soln2.rhs - soln2.lhs # Work for the series solution if soln1.has(Order) and soln2.has(Order): if soln1.getO() == soln2.getO(): soln1 = soln1.removeO() soln2 = soln2.removeO() else: return False elif soln1.has(Order) or soln2.has(Order): return False constants1 = soln1.free_symbols.difference(eq.free_symbols) constants2 = soln2.free_symbols.difference(eq.free_symbols) constants1_new = get_numbered_constants(Tuple(soln1, soln2), len(constants1)) if len(constants1) == 1: constants1_new = {constants1_new} for c_old, c_new in zip(constants1, constants1_new): soln1 = soln1.subs(c_old, c_new) # n equations for sol1 = sol2, sol1'=sol2', ... lhs = soln1 rhs = soln2 eqns = [Eq(lhs, rhs)] for n in range(1, order): lhs = lhs.diff(var) rhs = rhs.diff(var) eq = Eq(lhs, rhs) eqns.append(eq) # BooleanTrue/False awkwardly show up for trivial equations if any(isinstance(eq, BooleanFalse) for eq in eqns): return False eqns = [eq for eq in eqns if not isinstance(eq, BooleanTrue)] try: constant_solns = solve(eqns, constants2) except NotImplementedError: return False # Sometimes returns a dict and sometimes a list of dicts if isinstance(constant_solns, dict): constant_solns = [constant_solns] # after solving the issue 17418, maybe we don't need the following checksol code. for constant_soln in constant_solns: for eq in eqns: eq=eq.rhs-eq.lhs if checksol(eq, constant_soln) is not True: return False # If any solution gives all constants as expressions that don't depend on # x then there exists constants for soln2 that give soln1 for constant_soln in constant_solns: if not any(c.has(var) for c in constant_soln.values()): return True return False def ode_1st_power_series(eq, func, order, match): r""" The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation. For a first order differential equation `\frac{dy}{dx} = h(x, y)`, a power series solution exists at a point `x = x_{0}` if `h(x, y)` is analytic at `x_{0}`. The solution is given by .. math:: y(x) = y(x_{0}) + \sum_{n = 1}^{\infty} \frac{F_{n}(x_{0},b)(x - x_{0})^n}{n!}, where `y(x_{0}) = b` is the value of y at the initial value of `x_{0}`. To compute the values of the `F_{n}(x_{0},b)` the following algorithm is followed, until the required number of terms are generated. 1. `F_1 = h(x_{0}, b)` 2. `F_{n+1} = \frac{\partial F_{n}}{\partial x} + \frac{\partial F_{n}}{\partial y}F_{1}` Examples ======== >>> from sympy import Function, pprint, exp, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> eq = exp(x)*(f(x).diff(x)) - f(x) >>> pprint(dsolve(eq, hint='1st_power_series')) 3 4 5 C1*x C1*x C1*x / 6\ f(x) = C1 + C1*x - ----- + ----- + ----- + O\x / 6 24 60 References ========== - Travis W. Walker, Analytic power series technique for solving first-order differential equations, p.p 17, 18 """ x = func.args[0] y = match['y'] f = func.func h = -match[match['d']]/match[match['e']] point = match['f0'] value = match['f0val'] terms = match['terms'] # First term F = h if not h: return Eq(f(x), value) # Initialization series = value if terms > 1: hc = h.subs({x: point, y: value}) if hc.has(oo) or hc.has(nan) or hc.has(zoo): # Derivative does not exist, not analytic return Eq(f(x), oo) elif hc: series += hc*(x - point) for factcount in range(2, terms): Fnew = F.diff(x) + F.diff(y)*h Fnewc = Fnew.subs({x: point, y: value}) # Same logic as above if Fnewc.has(oo) or Fnewc.has(nan) or Fnewc.has(-oo) or Fnewc.has(zoo): return Eq(f(x), oo) series += Fnewc*((x - point)**factcount)/factorial(factcount) F = Fnew series += Order(x**terms) return Eq(f(x), series) def checkinfsol(eq, infinitesimals, func=None, order=None): r""" This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs. As of now, it simply checks, by substituting the infinitesimals in the partial differential equation. .. math:: \frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x}\right)*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi\frac{\partial h}{\partial x} - \eta\frac{\partial h}{\partial y} = 0 where `\eta`, and `\xi` are the infinitesimals and `h(x,y) = \frac{dy}{dx}` The infinitesimals should be given in the form of a list of dicts ``[{xi(x, y): inf, eta(x, y): inf}]``, corresponding to the output of the function infinitesimals. It returns a list of values of the form ``[(True/False, sol)]`` where ``sol`` is the value obtained after substituting the infinitesimals in the PDE. If it is ``True``, then ``sol`` would be 0. """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Lie groups solver has been implemented " "only for first order differential equations") else: df = func.diff(x) a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy('y') h = h.subs(func, y) xi = Function('xi')(x, y) eta = Function('eta')(x, y) dxi = Function('xi')(x, func) deta = Function('eta')(x, func) pde = (eta.diff(x) + (eta.diff(y) - xi.diff(x))*h - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y))) soltup = [] for sol in infinitesimals: tsol = {xi: S(sol[dxi]).subs(func, y), eta: S(sol[deta]).subs(func, y)} sol = simplify(pde.subs(tsol).doit()) if sol: soltup.append((False, sol.subs(y, func))) else: soltup.append((True, 0)) return soltup def sysode_linear_2eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] r = {} t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(2): eq[i] = Add(*[terms/fc[i,func[i],1] for terms in Add.make_args(eq[i])]) # for equations Eq(a1*diff(x(t),t), a*x(t) + b*y(t) + k1) # and Eq(a2*diff(x(t),t), c*x(t) + d*y(t) + k2) r['a'] = -fc[0,x(t),0]/fc[0,x(t),1] r['c'] = -fc[1,x(t),0]/fc[1,y(t),1] r['b'] = -fc[0,y(t),0]/fc[0,x(t),1] r['d'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S.Zero,S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): r['k1'] = forcing[0] r['k2'] = forcing[1] else: raise NotImplementedError("Only homogeneous problems are supported" + " (and constant inhomogeneity)") if match_['type_of_equation'] == 'type6': sol = _linear_2eq_order1_type6(x, y, t, r, eq) if match_['type_of_equation'] == 'type7': sol = _linear_2eq_order1_type7(x, y, t, r, eq) return sol def _linear_2eq_order1_type6(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = a [f(t) + a h(t)] x + a [g(t) - h(t)] y This is solved by first multiplying the first equation by `-a` and adding it to the second equation to obtain .. math:: y' - a x' = -a h(t) (y - a x) Setting `U = y - ax` and integrating the equation we arrive at .. math:: y - ax = C_1 e^{-a \int h(t) \,dt} and on substituting the value of y in first equation give rise to first order ODEs. After solving for `x`, we can obtain `y` by substituting the value of `x` in second equation. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) p = 0 q = 0 p1 = cancel(r['c']/cancel(r['c']/r['d']).as_numer_denom()[0]) p2 = cancel(r['a']/cancel(r['a']/r['b']).as_numer_denom()[0]) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q!=0 and n==0: if ((r['c']/j - r['a'])/(r['b'] - r['d']/j)) == j: p = 1 s = j break if q!=0 and n==1: if ((r['a']/j - r['c'])/(r['d'] - r['b']/j)) == j: p = 2 s = j break if p == 1: equ = diff(x(t),t) - r['a']*x(t) - r['b']*(s*x(t) + C1*exp(-s*Integral(r['b'] - r['d']/s, t))) hint1 = classify_ode(equ)[1] sol1 = dsolve(equ, hint=hint1+'_Integral').rhs sol2 = s*sol1 + C1*exp(-s*Integral(r['b'] - r['d']/s, t)) elif p ==2: equ = diff(y(t),t) - r['c']*y(t) - r['d']*s*y(t) + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) hint1 = classify_ode(equ)[1] sol2 = dsolve(equ, hint=hint1+'_Integral').rhs sol1 = s*sol2 + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type7(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = h(t) x + p(t) y Differentiating the first equation and substituting the value of `y` from second equation will give a second-order linear equation .. math:: g x'' - (fg + gp + g') x' + (fgp - g^{2} h + f g' - f' g) x = 0 This above equation can be easily integrated if following conditions are satisfied. 1. `fgp - g^{2} h + f g' - f' g = 0` 2. `fgp - g^{2} h + f g' - f' g = ag, fg + gp + g' = bg` If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes a constant coefficient differential equation which is also solved by current solver. Otherwise if the above condition fails then, a particular solution is assumed as `x = x_0(t)` and `y = y_0(t)` Then the general solution is expressed as .. math:: x = C_1 x_0(t) + C_2 x_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt .. math:: y = C_1 y_0(t) + C_2 [\frac{F(t) P(t)}{x_0(t)} + y_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt] where C1 and C2 are arbitrary constants and .. math:: F(t) = e^{\int f(t) \,dt}, P(t) = e^{\int p(t) \,dt} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) e1 = r['a']*r['b']*r['c'] - r['b']**2*r['c'] + r['a']*diff(r['b'],t) - diff(r['a'],t)*r['b'] e2 = r['a']*r['c']*r['d'] - r['b']*r['c']**2 + diff(r['c'],t)*r['d'] - r['c']*diff(r['d'],t) m1 = r['a']*r['b'] + r['b']*r['d'] + diff(r['b'],t) m2 = r['a']*r['c'] + r['c']*r['d'] + diff(r['c'],t) if e1 == 0: sol1 = dsolve(r['b']*diff(x(t),t,t) - m1*diff(x(t),t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif e2 == 0: sol2 = dsolve(r['c']*diff(y(t),t,t) - m2*diff(y(t),t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs elif not (e1/r['b']).has(t) and not (m1/r['b']).has(t): sol1 = dsolve(diff(x(t),t,t) - (m1/r['b'])*diff(x(t),t) - (e1/r['b'])*x(t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif not (e2/r['c']).has(t) and not (m2/r['c']).has(t): sol2 = dsolve(diff(y(t),t,t) - (m2/r['c'])*diff(y(t),t) - (e2/r['c'])*y(t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs else: x0 = Function('x0')(t) # x0 and y0 being particular solutions y0 = Function('y0')(t) F = exp(Integral(r['a'],t)) P = exp(Integral(r['d'],t)) sol1 = C1*x0 + C2*x0*Integral(r['b']*F*P/x0**2, t) sol2 = C1*y0 + C2*(F*P/x0 + y0*Integral(r['b']*F*P/x0**2, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def sysode_nonlinear_2eq_order1(match_): func = match_['func'] eq = match_['eq'] fc = match_['func_coeff'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type5': sol = _nonlinear_2eq_order1_type5(func, t, eq) return sol x = func[0].func y = func[1].func for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs if match_['type_of_equation'] == 'type1': sol = _nonlinear_2eq_order1_type1(x, y, t, eq) elif match_['type_of_equation'] == 'type2': sol = _nonlinear_2eq_order1_type2(x, y, t, eq) elif match_['type_of_equation'] == 'type3': sol = _nonlinear_2eq_order1_type3(x, y, t, eq) elif match_['type_of_equation'] == 'type4': sol = _nonlinear_2eq_order1_type4(x, y, t, eq) return sol def _nonlinear_2eq_order1_type1(x, y, t, eq): r""" Equations: .. math:: x' = x^n F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `n \neq 1` .. math:: \varphi = [C_1 + (1-n) \int \frac{1}{g(y)} \,dy]^{\frac{1}{1-n}} if `n = 1` .. math:: \varphi = C_1 e^{\int \frac{1}{g(y)} \,dy} where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - x(t)**n*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n!=1: phi = (C1 + (1-n)*Integral(1/g, v))**(1/(1-n)) else: phi = C1*exp(Integral(1/g, v)) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type2(x, y, t, eq): r""" Equations: .. math:: x' = e^{\lambda x} F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `\lambda \neq 0` .. math:: \varphi = -\frac{1}{\lambda} log(C_1 - \lambda \int \frac{1}{g(y)} \,dy) if `\lambda = 0` .. math:: \varphi = C_1 + \int \frac{1}{g(y)} \,dy where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n: phi = -1/n*log(C1 - n*Integral(1/g, v)) else: phi = C1 + Integral(1/g, v) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type3(x, y, t, eq): r""" Autonomous system of general form .. math:: x' = F(x,y) .. math:: y' = G(x,y) Assuming `y = y(x, C_1)` where `C_1` is an arbitrary constant is the general solution of the first-order equation .. math:: F(x,y) y'_x = G(x,y) Then the general solution of the original system of equations has the form .. math:: \int \frac{1}{F(x,y(x,C_1))} \,dx = t + C_1 """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) v = Function('v') u = Symbol('u') f = Wild('f') g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) F = r1[f].subs(x(t), u).subs(y(t), v(u)) G = r2[g].subs(x(t), u).subs(y(t), v(u)) sol2r = dsolve(Eq(diff(v(u), u), G/F)) if isinstance(sol2r, Equality): sol2r = [sol2r] for sol2s in sol2r: sol1 = solve(Integral(1/F.subs(v(u), sol2s.rhs), u).doit() - t - C2, u) sol = [] for sols in sol1: sol.append(Eq(x(t), sols)) sol.append(Eq(y(t), (sol2s.rhs).subs(u, sols))) return sol def _nonlinear_2eq_order1_type4(x, y, t, eq): r""" Equation: .. math:: x' = f_1(x) g_1(y) \phi(x,y,t) .. math:: y' = f_2(x) g_2(y) \phi(x,y,t) First integral: .. math:: \int \frac{f_2(x)}{f_1(x)} \,dx - \int \frac{g_1(y)}{g_2(y)} \,dy = C where `C` is an arbitrary constant. On solving the first integral for `x` (resp., `y` ) and on substituting the resulting expression into either equation of the original solution, one arrives at a first-order equation for determining `y` (resp., `x` ). """ C1, C2 = get_numbered_constants(eq, num=2) u, v = symbols('u, v') U, V = symbols('U, V', cls=Function) f = Wild('f') g = Wild('g') f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) phi = (r1[f].subs(x(t),u).subs(y(t),v))/num F1 = R1[f1]; F2 = R2[f2] G1 = R1[g1]; G2 = R2[g2] sol1r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, u) sol2r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, v) sol = [] for sols in sol1r: sol.append(Eq(y(t), dsolve(diff(V(t),t) - F2.subs(u,sols).subs(v,V(t))*G2.subs(v,V(t))*phi.subs(u,sols).subs(v,V(t))).rhs)) for sols in sol2r: sol.append(Eq(x(t), dsolve(diff(U(t),t) - F1.subs(u,U(t))*G1.subs(v,sols).subs(u,U(t))*phi.subs(v,sols).subs(u,U(t))).rhs)) return set(sol) def _nonlinear_2eq_order1_type5(func, t, eq): r""" Clairaut system of ODEs .. math:: x = t x' + F(x',y') .. math:: y = t y' + G(x',y') The following are solutions of the system `(i)` straight lines: .. math:: x = C_1 t + F(C_1, C_2), y = C_2 t + G(C_1, C_2) where `C_1` and `C_2` are arbitrary constants; `(ii)` envelopes of the above lines; `(iii)` continuously differentiable lines made up from segments of the lines `(i)` and `(ii)`. """ C1, C2 = get_numbered_constants(eq, num=2) f = Wild('f') g = Wild('g') def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) return [r1, r2] for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func [r1, r2] = check_type(x, y) if not (r1 and r2): [r1, r2] = check_type(y, x) x, y = y, x x1 = diff(x(t),t); y1 = diff(y(t),t) return {Eq(x(t), C1*t + r1[f].subs(x1,C1).subs(y1,C2)), Eq(y(t), C2*t + r2[g].subs(x1,C1).subs(y1,C2))} def sysode_nonlinear_3eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func z = match_['func'][2].func eq = match_['eq'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type1': sol = _nonlinear_3eq_order1_type1(x, y, z, t, eq) if match_['type_of_equation'] == 'type2': sol = _nonlinear_3eq_order1_type2(x, y, z, t, eq) if match_['type_of_equation'] == 'type3': sol = _nonlinear_3eq_order1_type3(x, y, z, t, eq) if match_['type_of_equation'] == 'type4': sol = _nonlinear_3eq_order1_type4(x, y, z, t, eq) if match_['type_of_equation'] == 'type5': sol = _nonlinear_3eq_order1_type5(x, y, z, t, eq) return sol def _nonlinear_3eq_order1_type1(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z, \enspace b y' = (c - a) z x, \enspace c z' = (a - b) x y First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a separable first-order equation on `x`. Similarly doing that for other two equations, we will arrive at first order equation on `y` and `z` too. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) r = (diff(x(t),t) - eq[0]).match(p*y(t)*z(t)) r.update((diff(y(t),t) - eq[1]).match(q*z(t)*x(t))) r.update((diff(z(t),t) - eq[2]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, d3*u-d3*v-n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) b = vals[0].subs(w, c) a = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type2(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z f(x, y, z, t) .. math:: b y' = (c - a) z x f(x, y, z, t) .. math:: c z' = (a - b) x y f(x, y, z, t) First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a first-order differential equations on `x`. Similarly doing that for other two equations we will arrive at first order equation on `y` and `z`. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) f = Wild('f') r1 = (diff(x(t),t) - eq[0]).match(y(t)*z(t)*f) r = collect_const(r1[f]).match(p*f) r.update(((diff(y(t),t) - eq[1])/r[f]).match(q*z(t)*x(t))) r.update(((diff(z(t),t) - eq[2])/r[f]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, -d3*u+d3*v+n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) a = vals[0].subs(w, c) b = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x*r[f]) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y*r[f]) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z*r[f]) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type3(x, y, z, t, eq): r""" Equations: .. math:: x' = c F_2 - b F_3, \enspace y' = a F_3 - c F_1, \enspace z' = b F_1 - a F_2 where `F_n = F_n(x, y, z, t)`. 1. First Integral: .. math:: a x + b y + c z = C_1, where C is an arbitrary constant. 2. If we assume function `F_n` to be independent of `t`,i.e, `F_n` = `F_n (x, y, z)` Then, on eliminating `t` and `z` from the first two equation of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a F_3 (x, y, z) - c F_1 (x, y, z)}{c F_2 (x, y, z) - b F_3 (x, y, z)} where `z = \frac{1}{c} (C_1 - a x - b y)` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0404.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') fu, fv, fw = symbols('u, v, w', cls=Function) p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = (diff(x(t), t) - eq[0]).match(F2-F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(p*r[F3] - r[s]*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t),v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t),v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t),v).subs(z(t), w) z_xy = (C1-a*u-b*v)/c y_zx = (C1-a*u-c*w)/b x_yz = (C1-b*v-c*w)/a y_x = dsolve(diff(fv(u),u) - ((a*F3-c*F1)/(c*F2-b*F3)).subs(w,z_xy).subs(v,fv(u))).rhs z_x = dsolve(diff(fw(u),u) - ((b*F1-a*F2)/(c*F2-b*F3)).subs(v,y_zx).subs(w,fw(u))).rhs z_y = dsolve(diff(fw(v),v) - ((b*F1-a*F2)/(a*F3-c*F1)).subs(u,x_yz).subs(w,fw(v))).rhs x_y = dsolve(diff(fu(v),v) - ((c*F2-b*F3)/(a*F3-c*F1)).subs(w,z_xy).subs(u,fu(v))).rhs y_z = dsolve(diff(fv(w),w) - ((a*F3-c*F1)/(b*F1-a*F2)).subs(u,x_yz).subs(v,fv(w))).rhs x_z = dsolve(diff(fu(w),w) - ((c*F2-b*F3)/(b*F1-a*F2)).subs(v,y_zx).subs(u,fu(w))).rhs sol1 = dsolve(diff(fu(t),t) - (c*F2 - b*F3).subs(v,y_x).subs(w,z_x).subs(u,fu(t))).rhs sol2 = dsolve(diff(fv(t),t) - (a*F3 - c*F1).subs(u,x_y).subs(w,z_y).subs(v,fv(t))).rhs sol3 = dsolve(diff(fw(t),t) - (b*F1 - a*F2).subs(u,x_z).subs(v,y_z).subs(w,fw(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type4(x, y, z, t, eq): r""" Equations: .. math:: x' = c z F_2 - b y F_3, \enspace y' = a x F_3 - c z F_1, \enspace z' = b y F_1 - a x F_2 where `F_n = F_n (x, y, z, t)` 1. First integral: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 where `C` is an arbitrary constant. 2. Assuming the function `F_n` is independent of `t`: `F_n = F_n (x, y, z)`. Then on eliminating `t` and `z` from the first two equations of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a x F_3 (x, y, z) - c z F_1 (x, y, z)} {c z F_2 (x, y, z) - b y F_3 (x, y, z)} where `z = \pm \sqrt{\frac{1}{c} (C_1 - a x^{2} - b y^{2})}` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0405.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t),t) - eq[1]).match(p*x(t)*r[F3] - r[s]*z(t)*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w) F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w) F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w) x_yz = sqrt((C1 - b*v**2 - c*w**2)/a) y_zx = sqrt((C1 - c*w**2 - a*u**2)/b) z_xy = sqrt((C1 - a*u**2 - b*v**2)/c) y_x = dsolve(diff(v(u),u) - ((a*u*F3-c*w*F1)/(c*w*F2-b*v*F3)).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((b*v*F1-a*u*F2)/(c*w*F2-b*v*F3)).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((b*v*F1-a*u*F2)/(a*u*F3-c*w*F1)).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((c*w*F2-b*v*F3)/(a*u*F3-c*w*F1)).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((a*u*F3-c*w*F1)/(b*v*F1-a*u*F2)).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((c*w*F2-b*v*F3)/(b*v*F1-a*u*F2)).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (c*w*F2 - b*v*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (a*u*F3 - c*w*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (b*v*F1 - a*u*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type5(x, y, z, t, eq): r""" .. math:: x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2) where `F_n = F_n (x, y, z, t)` and are arbitrary functions. First Integral: .. math:: \left|x\right|^{a} \left|y\right|^{b} \left|z\right|^{c} = C_1 where `C` is an arbitrary constant. If the function `F_n` is independent of `t`, then, by eliminating `t` and `z` from the first two equations of the system, one arrives at a first-order equation. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0406.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') fu, fv, fw = symbols('u, v, w', cls=Function) p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t), t) - x(t)*F2 + x(t)*F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(y(t)*(p*r[F3] - r[s]*F1))) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t), v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t), v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t), v).subs(z(t), w) x_yz = (C1*v**-b*w**-c)**-a y_zx = (C1*w**-c*u**-a)**-b z_xy = (C1*u**-a*v**-b)**-c y_x = dsolve(diff(fv(u), u) - ((v*(a*F3 - c*F1))/(u*(c*F2 - b*F3))).subs(w, z_xy).subs(v, fv(u))).rhs z_x = dsolve(diff(fw(u), u) - ((w*(b*F1 - a*F2))/(u*(c*F2 - b*F3))).subs(v, y_zx).subs(w, fw(u))).rhs z_y = dsolve(diff(fw(v), v) - ((w*(b*F1 - a*F2))/(v*(a*F3 - c*F1))).subs(u, x_yz).subs(w, fw(v))).rhs x_y = dsolve(diff(fu(v), v) - ((u*(c*F2 - b*F3))/(v*(a*F3 - c*F1))).subs(w, z_xy).subs(u, fu(v))).rhs y_z = dsolve(diff(fv(w), w) - ((v*(a*F3 - c*F1))/(w*(b*F1 - a*F2))).subs(u, x_yz).subs(v, fv(w))).rhs x_z = dsolve(diff(fu(w), w) - ((u*(c*F2 - b*F3))/(w*(b*F1 - a*F2))).subs(v, y_zx).subs(u, fu(w))).rhs sol1 = dsolve(diff(fu(t), t) - (u*(c*F2 - b*F3)).subs(v, y_x).subs(w, z_x).subs(u, fu(t))).rhs sol2 = dsolve(diff(fv(t), t) - (v*(a*F3 - c*F1)).subs(u, x_y).subs(w, z_y).subs(v, fv(t))).rhs sol3 = dsolve(diff(fw(t), t) - (w*(b*F1 - a*F2)).subs(u, x_z).subs(v, y_z).subs(w, fw(t))).rhs return [sol1, sol2, sol3] #This import is written at the bottom to avoid circular imports. from .single import SingleODEProblem, SingleODESolver, solver_map
00487e0bbd05a2632191c77884f2d109d28b1a5e0acff1b1111b0c8af650baa0
# # This is the module for ODE solver classes for single ODEs. # from __future__ import annotations from typing import ClassVar, Iterator from .riccati import match_riccati, solve_riccati from sympy.core import Add, S, Pow, Rational from sympy.core.cache import cached_property from sympy.core.exprtools import factor_terms from sympy.core.expr import Expr from sympy.core.function import AppliedUndef, Derivative, diff, Function, expand, Subs, _mexpand from sympy.core.numbers import zoo from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Dummy, Wild from sympy.core.mul import Mul from sympy.functions import exp, tan, log, sqrt, besselj, bessely, cbrt, airyai, airybi from sympy.integrals import Integral from sympy.polys import Poly from sympy.polys.polytools import cancel, factor, degree from sympy.simplify import collect, simplify, separatevars, logcombine, posify # type: ignore from sympy.simplify.radsimp import fraction from sympy.utilities import numbered_symbols from sympy.solvers.solvers import solve from sympy.solvers.deutils import ode_order, _preprocess from sympy.polys.matrices.linsolve import _lin_eq2dict from sympy.polys.solvers import PolyNonlinearError from .hypergeometric import equivalence_hypergeometric, match_2nd_2F1_hypergeometric, \ get_sol_2F1_hypergeometric, match_2nd_hypergeometric from .nonhomogeneous import _get_euler_characteristic_eq_sols, _get_const_characteristic_eq_sols, \ _solve_undetermined_coefficients, _solve_variation_of_parameters, _test_term, _undetermined_coefficients_match, \ _get_simplified_sol from .lie_group import _ode_lie_group class ODEMatchError(NotImplementedError): """Raised if a SingleODESolver is asked to solve an ODE it does not match""" pass class SingleODEProblem: """Represents an ordinary differential equation (ODE) This class is used internally in the by dsolve and related functions/classes so that properties of an ODE can be computed efficiently. Examples ======== This class is used internally by dsolve. To instantiate an instance directly first define an ODE problem: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> eq = f(x).diff(x, 2) Now you can create a SingleODEProblem instance and query its properties: >>> from sympy.solvers.ode.single import SingleODEProblem >>> problem = SingleODEProblem(f(x).diff(x), f(x), x) >>> problem.eq Derivative(f(x), x) >>> problem.func f(x) >>> problem.sym x """ # Instance attributes: eq = None # type: Expr func = None # type: AppliedUndef sym = None # type: Symbol _order = None # type: int _eq_expanded = None # type: Expr _eq_preprocessed = None # type: Expr _eq_high_order_free = None def __init__(self, eq, func, sym, prep=True, **kwargs): assert isinstance(eq, Expr) assert isinstance(func, AppliedUndef) assert isinstance(sym, Symbol) assert isinstance(prep, bool) self.eq = eq self.func = func self.sym = sym self.prep = prep self.params = kwargs @cached_property def order(self) -> int: return ode_order(self.eq, self.func) @cached_property def eq_preprocessed(self) -> Expr: return self._get_eq_preprocessed() @cached_property def eq_high_order_free(self) -> Expr: a = Wild('a', exclude=[self.func]) c1 = Wild('c1', exclude=[self.sym]) # Precondition to try remove f(x) from highest order derivative reduced_eq = None if self.eq.is_Add: deriv_coef = self.eq.coeff(self.func.diff(self.sym, self.order)) if deriv_coef not in (1, 0): r = deriv_coef.match(a*self.func**c1) if r and r[c1]: den = self.func**r[c1] reduced_eq = Add(*[arg/den for arg in self.eq.args]) if not reduced_eq: reduced_eq = expand(self.eq) return reduced_eq @cached_property def eq_expanded(self) -> Expr: return expand(self.eq_preprocessed) def _get_eq_preprocessed(self) -> Expr: if self.prep: process_eq, process_func = _preprocess(self.eq, self.func) if process_func != self.func: raise ValueError else: process_eq = self.eq return process_eq def get_numbered_constants(self, num=1, start=1, prefix='C') -> list[Symbol]: """ Returns a list of constants that do not occur in eq already. """ ncs = self.iter_numbered_constants(start, prefix) Cs = [next(ncs) for i in range(num)] return Cs def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]: """ Returns an iterator of constants that do not occur in eq already. """ atom_set = self.eq.free_symbols func_set = self.eq.atoms(Function) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) @cached_property def is_autonomous(self): u = Dummy('u') x = self.sym syms = self.eq.subs(self.func, u).free_symbols return x not in syms def get_linear_coefficients(self, eq, func, order): r""" Matches a differential equation to the linear form: .. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 Returns a dict of order:coeff terms, where order is the order of the derivative on each term, and coeff is the coefficient of that derivative. The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is not linear. This function assumes that ``func`` has already been checked to be good. Examples ======== >>> from sympy import Function, cos, sin >>> from sympy.abc import x >>> from sympy.solvers.ode.single import SingleODEProblem >>> f = Function('f') >>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ ... sin(x) >>> obj = SingleODEProblem(eq, f(x), x) >>> obj.get_linear_coefficients(eq, f(x), 3) {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} >>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ ... sin(f(x)) >>> obj = SingleODEProblem(eq, f(x), x) >>> obj.get_linear_coefficients(eq, f(x), 3) == None True """ f = func.func x = func.args[0] symset = {Derivative(f(x), x, i) for i in range(order+1)} try: rhs, lhs_terms = _lin_eq2dict(eq, symset) except PolyNonlinearError: return None if rhs.has(func) or any(c.has(func) for c in lhs_terms.values()): return None terms = {i: lhs_terms.get(f(x).diff(x, i), S.Zero) for i in range(order+1)} terms[-1] = rhs return terms # TODO: Add methods that can be used by many ODE solvers: # order # is_linear() # get_linear_coefficients() # eq_prepared (the ODE in prepared form) class SingleODESolver: """ Base class for Single ODE solvers. Subclasses should implement the _matches and _get_general_solution methods. This class is not intended to be instantiated directly but its subclasses are as part of dsolve. Examples ======== You can use a subclass of SingleODEProblem to solve a particular type of ODE. We first define a particular ODE problem: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> eq = f(x).diff(x, 2) Now we solve this problem using the NthAlgebraic solver which is a subclass of SingleODESolver: >>> from sympy.solvers.ode.single import NthAlgebraic, SingleODEProblem >>> problem = SingleODEProblem(eq, f(x), x) >>> solver = NthAlgebraic(problem) >>> solver.get_general_solution() [Eq(f(x), _C*x + _C)] The normal way to solve an ODE is to use dsolve (which would use NthAlgebraic and other solvers internally). When using dsolve a number of other things are done such as evaluating integrals, simplifying the solution and renumbering the constants: >>> from sympy import dsolve >>> dsolve(eq, hint='nth_algebraic') Eq(f(x), C1 + C2*x) """ # Subclasses should store the hint name (the argument to dsolve) in this # attribute hint: ClassVar[str] # Subclasses should define this to indicate if they support an _Integral # hint. has_integral: ClassVar[bool] # The ODE to be solved ode_problem = None # type: SingleODEProblem # Cache whether or not the equation has matched the method _matched: bool | None = None # Subclasses should store in this attribute the list of order(s) of ODE # that subclass can solve or leave it to None if not specific to any order order: list | None = None def __init__(self, ode_problem): self.ode_problem = ode_problem def matches(self) -> bool: if self.order is not None and self.ode_problem.order not in self.order: self._matched = False return self._matched if self._matched is None: self._matched = self._matches() return self._matched def get_general_solution(self, *, simplify: bool = True) -> list[Equality]: if not self.matches(): msg = "%s solver cannot solve:\n%s" raise ODEMatchError(msg % (self.hint, self.ode_problem.eq)) return self._get_general_solution(simplify_flag=simplify) def _matches(self) -> bool: msg = "Subclasses of SingleODESolver should implement matches." raise NotImplementedError(msg) def _get_general_solution(self, *, simplify_flag: bool = True) -> list[Equality]: msg = "Subclasses of SingleODESolver should implement get_general_solution." raise NotImplementedError(msg) class SinglePatternODESolver(SingleODESolver): '''Superclass for ODE solvers based on pattern matching''' def wilds(self): prob = self.ode_problem f = prob.func.func x = prob.sym order = prob.order return self._wilds(f, x, order) def wilds_match(self): match = self._wilds_match return [match.get(w, S.Zero) for w in self.wilds()] def _matches(self): eq = self.ode_problem.eq_expanded f = self.ode_problem.func.func x = self.ode_problem.sym order = self.ode_problem.order df = f(x).diff(x, order) if order not in [1, 2]: return False pattern = self._equation(f(x), x, order) if not pattern.coeff(df).has(Wild): eq = expand(eq / eq.coeff(df)) eq = eq.collect([f(x).diff(x), f(x)], func = cancel) self._wilds_match = match = eq.match(pattern) if match is not None: return self._verify(f(x)) return False def _verify(self, fx) -> bool: return True def _wilds(self, f, x, order): msg = "Subclasses of SingleODESolver should implement _wilds" raise NotImplementedError(msg) def _equation(self, fx, x, order): msg = "Subclasses of SingleODESolver should implement _equation" raise NotImplementedError(msg) class NthAlgebraic(SingleODESolver): r""" Solves an `n`\th order ordinary differential equation using algebra and integrals. There is no general form for the kind of equation that this can solve. The the equation is solved algebraically treating differentiation as an invertible algebraic function. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0) >>> dsolve(eq, f(x), hint='nth_algebraic') [Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)] Note that this solver can return algebraic solutions that do not have any integration constants (f(x) = 0 in the above example). """ hint = 'nth_algebraic' has_integral = True # nth_algebraic_Integral hint def _matches(self): r""" Matches any differential equation that nth_algebraic can solve. Uses `sympy.solve` but teaches it how to integrate derivatives. This involves calling `sympy.solve` and does most of the work of finding a solution (apart from evaluating the integrals). """ eq = self.ode_problem.eq func = self.ode_problem.func var = self.ode_problem.sym # Derivative that solve can handle: diffx = self._get_diffx(var) # Replace derivatives wrt the independent variable with diffx def replace(eq, var): def expand_diffx(*args): differand, diffs = args[0], args[1:] toreplace = differand for v, n in diffs: for _ in range(n): if v == var: toreplace = diffx(toreplace) else: toreplace = Derivative(toreplace, v) return toreplace return eq.replace(Derivative, expand_diffx) # Restore derivatives in solution afterwards def unreplace(eq, var): return eq.replace(diffx, lambda e: Derivative(e, var)) subs_eqn = replace(eq, var) try: # turn off simplification to protect Integrals that have # _t instead of fx in them and would otherwise factor # as t_*Integral(1, x) solns = solve(subs_eqn, func, simplify=False) except NotImplementedError: solns = [] solns = [simplify(unreplace(soln, var)) for soln in solns] solns = [Equality(func, soln) for soln in solns] self.solutions = solns return len(solns) != 0 def _get_general_solution(self, *, simplify_flag: bool = True): return self.solutions # This needs to produce an invertible function but the inverse depends # which variable we are integrating with respect to. Since the class can # be stored in cached results we need to ensure that we always get the # same class back for each particular integration variable so we store these # classes in a global dict: _diffx_stored: dict[Symbol, type[Function]] = {} @staticmethod def _get_diffx(var): diffcls = NthAlgebraic._diffx_stored.get(var, None) if diffcls is None: # A class that behaves like Derivative wrt var but is "invertible". class diffx(Function): def inverse(self): # don't use integrate here because fx has been replaced by _t # in the equation; integrals will not be correct while solve # is at work. return lambda expr: Integral(expr, var) + Dummy('C') diffcls = NthAlgebraic._diffx_stored.setdefault(var, diffx) return diffcls class FirstExact(SinglePatternODESolver): r""" Solves 1st order exact ordinary differential equations. A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation .. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0 is exact if there is some function `F(x, y)` such that `P(x, y) = \partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can be shown that a necessary and sufficient condition for a first order ODE to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`. Then, the solution will be as given below:: >>> from sympy import Function, Eq, Integral, symbols, pprint >>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1') >>> P, Q, F= map(Function, ['P', 'Q', 'F']) >>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + ... Integral(Q(x0, t), (t, y0, y))), C1)) x y / / | | F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1 | | / / x0 y0 Where the first partials of `P` and `Q` exist and are continuous in a simply connected region. A note: SymPy currently has no way to represent inert substitution on an expression, so the hint ``1st_exact_Integral`` will return an integral with `dy`. This is supposed to represent the function that you are solving for. Examples ======== >>> from sympy import Function, dsolve, cos, sin >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), ... f(x), hint='1st_exact') Eq(x*cos(f(x)) + f(x)**3/3, C1) References ========== - https://en.wikipedia.org/wiki/Exact_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 73 # indirect doctest """ hint = "1st_exact" has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x).diff(x)]) Q = Wild('Q', exclude=[f(x).diff(x)]) return P, Q def _equation(self, fx, x, order): P, Q = self.wilds() return P + Q*fx.diff(x) def _verify(self, fx) -> bool: P, Q = self.wilds() x = self.ode_problem.sym y = Dummy('y') m, n = self.wilds_match() m = m.subs(fx, y) n = n.subs(fx, y) numerator = cancel(m.diff(y) - n.diff(x)) if numerator.is_zero: # Is exact return True else: # The following few conditions try to convert a non-exact # differential equation into an exact one. # References: # 1. Differential equations with applications # and historical notes - George E. Simmons # 2. https://math.okstate.edu/people/binegar/2233-S99/2233-l12.pdf factor_n = cancel(numerator/n) factor_m = cancel(-numerator/m) if y not in factor_n.free_symbols: # If (dP/dy - dQ/dx) / Q = f(x) # then exp(integral(f(x))*equation becomes exact factor = factor_n integration_variable = x elif x not in factor_m.free_symbols: # If (dP/dy - dQ/dx) / -P = f(y) # then exp(integral(f(y))*equation becomes exact factor = factor_m integration_variable = y else: # Couldn't convert to exact return False factor = exp(Integral(factor, integration_variable)) m *= factor n *= factor self._wilds_match[P] = m.subs(y, fx) self._wilds_match[Q] = n.subs(y, fx) return True def _get_general_solution(self, *, simplify_flag: bool = True): m, n = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) y = Dummy('y') m = m.subs(fx, y) n = n.subs(fx, y) gen_sol = Eq(Subs(Integral(m, x) + Integral(n - Integral(m, x).diff(y), y), y, fx), C1) return [gen_sol] class FirstLinear(SinglePatternODESolver): r""" Solves 1st order linear differential equations. These are differential equations of the form .. math:: dy/dx + P(x) y = Q(x)\text{.} These kinds of differential equations can be solved in a general way. The integrating factor `e^{\int P(x) \,dx}` will turn the equation into a separable equation. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint, diff, sin >>> from sympy.abc import x >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)) >>> pprint(genform) d P(x)*f(x) + --(f(x)) = Q(x) dx >>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral')) / / \ | | | | | / | / | | | | | | | | P(x) dx | - | P(x) dx | | | | | | | / | / f(x) = |C1 + | Q(x)*e dx|*e | | | \ / / Examples ======== >>> f = Function('f') >>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), ... f(x), '1st_linear')) f(x) = x*(C1 - cos(x)) References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation#First-order_equation_with_variable_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 92 # indirect doctest """ hint = '1st_linear' has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x)]) Q = Wild('Q', exclude=[f(x), f(x).diff(x)]) return P, Q def _equation(self, fx, x, order): P, Q = self.wilds() return fx.diff(x) + P*fx - Q def _get_general_solution(self, *, simplify_flag: bool = True): P, Q = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) gensol = Eq(fx, ((C1 + Integral(Q*exp(Integral(P, x)), x)) * exp(-Integral(P, x)))) return [gensol] class AlmostLinear(SinglePatternODESolver): r""" Solves an almost-linear differential equation. The general form of an almost linear differential equation is .. math:: a(x) g'(f(x)) f'(x) + b(x) g(f(x)) + c(x) Here `f(x)` is the function to be solved for (the dependent variable). The substitution `g(f(x)) = u(x)` leads to a linear differential equation for `u(x)` of the form `a(x) u' + b(x) u + c(x) = 0`. This can be solved for `u(x)` by the `first_linear` hint and then `f(x)` is found by solving `g(f(x)) = u(x)`. See Also ======== :obj:`sympy.solvers.ode.single.FirstLinear` Examples ======== >>> from sympy import dsolve, Function, pprint, sin, cos >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = x*d + x*f(x) + 1 >>> dsolve(eq, f(x), hint='almost_linear') Eq(f(x), (C1 - Ei(x))*exp(-x)) >>> pprint(dsolve(eq, f(x), hint='almost_linear')) -x f(x) = (C1 - Ei(x))*e >>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1 >>> pprint(example) d sin(f(x)) + cos(f(x))*--(f(x)) + 1 dx >>> pprint(dsolve(example, f(x), hint='almost_linear')) / -x \ / -x \ [f(x) = pi - asin\C1*e - 1/, f(x) = asin\C1*e - 1/] References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ hint = "almost_linear" has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x).diff(x)]) Q = Wild('Q', exclude=[f(x).diff(x)]) return P, Q def _equation(self, fx, x, order): P, Q = self.wilds() return P*fx.diff(x) + Q def _verify(self, fx): a, b = self.wilds_match() c, b = b.as_independent(fx) if b.is_Add else (S.Zero, b) # a, b and c are the function a(x), b(x) and c(x) respectively. # c(x) is obtained by separating out b as terms with and without fx i.e, l(y) # The following conditions checks if the given equation is an almost-linear differential equation using the fact that # a(x)*(l(y))' / l(y)' is independent of l(y) if b.diff(fx) != 0 and not simplify(b.diff(fx)/a).has(fx): self.ly = factor_terms(b).as_independent(fx, as_Add=False)[1] # Gives the term containing fx i.e., l(y) self.ax = a / self.ly.diff(fx) self.cx = -c # cx is taken as -c(x) to simplify expression in the solution integral self.bx = factor_terms(b) / self.ly return True return False def _get_general_solution(self, *, simplify_flag: bool = True): x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) gensol = Eq(self.ly, ((C1 + Integral((self.cx/self.ax)*exp(Integral(self.bx/self.ax, x)), x)) * exp(-Integral(self.bx/self.ax, x)))) return [gensol] class Bernoulli(SinglePatternODESolver): r""" Solves Bernoulli differential equations. These are equations of the form .. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.} The substitution `w = 1/y^{1-n}` will transform an equation of this form into one that is linear (see the docstring of :obj:`~sympy.solvers.ode.single.FirstLinear`). The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, n >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n) >>> pprint(genform) d n P(x)*f(x) + --(f(x)) = Q(x)*f (x) dx >>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110) -1 ----- n - 1 // / / \ \ || | | | | || | / | / | / | || | | | | | | | || | -(n - 1)* | P(x) dx | -(n - 1)* | P(x) dx | (n - 1)* | P(x) dx| || | | | | | | | || | / | / | / | f(x) = ||C1 - n* | Q(x)*e dx + | Q(x)*e dx|*e | || | | | | \\ / / / / Note that the equation is separable when `n = 1` (see the docstring of :obj:`~sympy.solvers.ode.single.Separable`). >>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x), ... hint='separable_Integral')) f(x) / | / | 1 | | - dy = C1 + | (-P(x) + Q(x)) dx | y | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2), ... f(x), hint='Bernoulli')) 1 f(x) = ----------------- C1*x + log(x) + 1 References ========== - https://en.wikipedia.org/wiki/Bernoulli_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 95 # indirect doctest """ hint = "Bernoulli" has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x)]) Q = Wild('Q', exclude=[f(x)]) n = Wild('n', exclude=[x, f(x), f(x).diff(x)]) return P, Q, n def _equation(self, fx, x, order): P, Q, n = self.wilds() return fx.diff(x) + P*fx - Q*fx**n def _get_general_solution(self, *, simplify_flag: bool = True): P, Q, n = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) if n==1: gensol = Eq(log(fx), ( C1 + Integral((-P + Q), x) )) else: gensol = Eq(fx**(1-n), ( (C1 - (n - 1) * Integral(Q*exp(-n*Integral(P, x)) * exp(Integral(P, x)), x) ) * exp(-(1 - n)*Integral(P, x))) ) return [gensol] class Factorable(SingleODESolver): r""" Solves equations having a solvable factor. This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the list of solutions. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x)) >>> pprint(dsolve(eq, f(x))) -x [f(x) = 2, f(x) = -2, f(x) = C1*e ] """ hint = "factorable" has_integral = False def _matches(self): eq_orig = self.ode_problem.eq f = self.ode_problem.func.func x = self.ode_problem.sym df = f(x).diff(x) self.eqs = [] eq = eq_orig.collect(f(x), func = cancel) eq = fraction(factor(eq))[0] factors = Mul.make_args(factor(eq)) roots = [fac.as_base_exp() for fac in factors if len(fac.args)!=0] if len(roots)>1 or roots[0][1]>1: for base, expo in roots: if base.has(f(x)): self.eqs.append(base) if len(self.eqs)>0: return True roots = solve(eq, df) if len(roots)>0: self.eqs = [(df - root) for root in roots] # Avoid infinite recursion matches = self.eqs != [eq_orig] return matches for i in factors: if i.has(f(x)): self.eqs.append(i) return len(self.eqs)>0 and len(factors)>1 def _get_general_solution(self, *, simplify_flag: bool = True): func = self.ode_problem.func.func x = self.ode_problem.sym eqns = self.eqs sols = [] for eq in eqns: try: sol = dsolve(eq, func(x)) except NotImplementedError: continue else: if isinstance(sol, list): sols.extend(sol) else: sols.append(sol) if sols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the factorable group method") return sols class RiccatiSpecial(SinglePatternODESolver): r""" The general Riccati equation has the form .. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.} While it does not have a general solution [1], the "special" form, `dy/dx = a y^2 - b x^c`, does have solutions in many cases [2]. This routine returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained by using a suitable change of variables to reduce it to the special form and is valid when neither `a` nor `b` are zero and either `c` or `d` is zero. >>> from sympy.abc import x, a, b, c, d >>> from sympy import dsolve, checkodesol, pprint, Function >>> f = Function('f') >>> y = f(x) >>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2) >>> sol = dsolve(genform, y, hint="Riccati_special_minus2") >>> pprint(sol, wrap_line=False) / / __________________ \\ | __________________ | / 2 || | / 2 | \/ 4*b*d - (a + c) *log(x)|| -|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------|| \ \ 2*a // f(x) = ------------------------------------------------------------------------ 2*b*x >>> checkodesol(genform, sol, order=1)[0] True References ========== - http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati - http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf """ hint = "Riccati_special_minus2" has_integral = False order = [1] def _wilds(self, f, x, order): a = Wild('a', exclude=[x, f(x), f(x).diff(x), 0]) b = Wild('b', exclude=[x, f(x), f(x).diff(x), 0]) c = Wild('c', exclude=[x, f(x), f(x).diff(x)]) d = Wild('d', exclude=[x, f(x), f(x).diff(x)]) return a, b, c, d def _equation(self, fx, x, order): a, b, c, d = self.wilds() return a*fx.diff(x) + b*fx**2 + c*fx/x + d/x**2 def _get_general_solution(self, *, simplify_flag: bool = True): a, b, c, d = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) mu = sqrt(4*d*b - (a - c)**2) gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x)) return [gensol] class RationalRiccati(SinglePatternODESolver): r""" Gives general solutions to the first order Riccati differential equations that have atleast one rational particular solution. .. math :: y' = b_0(x) + b_1(x) y + b_2(x) y^2 where `b_0`, `b_1` and `b_2` are rational functions of `x` with `b_2 \ne 0` (`b_2 = 0` would make it a Bernoulli equation). Examples ======== >>> from sympy import Symbol, Function, dsolve, checkodesol >>> f = Function('f') >>> x = Symbol('x') >>> eq = -x**4*f(x)**2 + x**3*f(x).diff(x) + x**2*f(x) + 20 >>> sol = dsolve(eq, hint="1st_rational_riccati") >>> sol Eq(f(x), (4*C1 - 5*x**9 - 4)/(x**2*(C1 + x**9 - 1))) >>> checkodesol(eq, sol) (True, 0) References ========== - Riccati ODE: https://en.wikipedia.org/wiki/Riccati_equation - N. Thieu Vo - Rational and Algebraic Solutions of First-Order Algebraic ODEs: Algorithm 11, pp. 78 - https://www3.risc.jku.at/publications/download/risc_5387/PhDThesisThieu.pdf """ has_integral = False hint = "1st_rational_riccati" order = [1] def _wilds(self, f, x, order): b0 = Wild('b0', exclude=[f(x), f(x).diff(x)]) b1 = Wild('b1', exclude=[f(x), f(x).diff(x)]) b2 = Wild('b2', exclude=[f(x), f(x).diff(x)]) return (b0, b1, b2) def _equation(self, fx, x, order): b0, b1, b2 = self.wilds() return fx.diff(x) - b0 - b1*fx - b2*fx**2 def _matches(self): eq = self.ode_problem.eq_expanded f = self.ode_problem.func.func x = self.ode_problem.sym order = self.ode_problem.order if order != 1: return False match, funcs = match_riccati(eq, f, x) if not match: return False _b0, _b1, _b2 = funcs b0, b1, b2 = self.wilds() self._wilds_match = match = {b0: _b0, b1: _b1, b2: _b2} return True def _get_general_solution(self, *, simplify_flag: bool = True): # Match the equation b0, b1, b2 = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym return solve_riccati(fx, x, b0, b1, b2, gensol=True) class SecondNonlinearAutonomousConserved(SinglePatternODESolver): r""" Gives solution for the autonomous second order nonlinear differential equation of the form .. math :: f''(x) = g(f(x)) The solution for this differential equation can be computed by multiplying by `f'(x)` and integrating on both sides, converting it into a first order differential equation. Examples ======== >>> from sympy import Function, symbols, dsolve >>> f, g = symbols('f g', cls=Function) >>> x = symbols('x') >>> eq = f(x).diff(x, 2) - g(f(x)) >>> dsolve(eq, simplify=False) [Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 - x)] >>> from sympy import exp, log >>> eq = f(x).diff(x, 2) - exp(f(x)) + log(f(x)) >>> dsolve(eq, simplify=False) [Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 - x)] References ========== - http://eqworld.ipmnet.ru/en/solutions/ode/ode0301.pdf """ hint = "2nd_nonlinear_autonomous_conserved" has_integral = True order = [2] def _wilds(self, f, x, order): fy = Wild('fy', exclude=[0, f(x).diff(x), f(x).diff(x, 2)]) return (fy, ) def _equation(self, fx, x, order): fy = self.wilds()[0] return fx.diff(x, 2) + fy def _verify(self, fx): return self.ode_problem.is_autonomous def _get_general_solution(self, *, simplify_flag: bool = True): g = self.wilds_match()[0] fx = self.ode_problem.func x = self.ode_problem.sym u = Dummy('u') g = g.subs(fx, u) C1, C2 = self.ode_problem.get_numbered_constants(num=2) inside = -2*Integral(g, u) + C1 lhs = Integral(1/sqrt(inside), (u, fx)) return [Eq(lhs, C2 + x), Eq(lhs, C2 - x)] class Liouville(SinglePatternODESolver): r""" Solves 2nd order Liouville differential equations. The general form of a Liouville ODE is .. math:: \frac{d^2 y}{dx^2} + g(y) \left(\! \frac{dy}{dx}\!\right)^2 + h(x) \frac{dy}{dx}\text{.} The general solution is: >>> from sympy import Function, dsolve, Eq, pprint, diff >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 + ... h(x)*diff(f(x),x), 0) >>> pprint(genform) 2 2 /d \ d d g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0 \dx / dx 2 dx >>> pprint(dsolve(genform, f(x), hint='Liouville_Integral')) f(x) / / | | | / | / | | | | | - | h(x) dx | | g(y) dy | | | | | / | / C1 + C2* | e dx + | e dy = 0 | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + ... diff(f(x), x)/x, f(x), hint='Liouville')) ________________ ________________ [f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ] References ========== - Goldstein and Braun, "Advanced Methods for the Solution of Differential Equations", pp. 98 - http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville # indirect doctest """ hint = "Liouville" has_integral = True order = [2] def _wilds(self, f, x, order): d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) e = Wild('e', exclude=[f(x).diff(x)]) k = Wild('k', exclude=[f(x).diff(x)]) return d, e, k def _equation(self, fx, x, order): # Liouville ODE in the form # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98 d, e, k = self.wilds() return d*fx.diff(x, 2) + e*fx.diff(x)**2 + k*fx.diff(x) def _verify(self, fx): d, e, k = self.wilds_match() self.y = Dummy('y') x = self.ode_problem.sym self.g = simplify(e/d).subs(fx, self.y) self.h = simplify(k/d).subs(fx, self.y) if self.y in self.h.free_symbols or x in self.g.free_symbols: return False return True def _get_general_solution(self, *, simplify_flag: bool = True): d, e, k = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym C1, C2 = self.ode_problem.get_numbered_constants(num=2) int = Integral(exp(Integral(self.g, self.y)), (self.y, None, fx)) gen_sol = Eq(int + C1*Integral(exp(-Integral(self.h, x)), x) + C2, 0) return [gen_sol] class Separable(SinglePatternODESolver): r""" Solves separable 1st order differential equations. This is any differential equation that can be written as `P(y) \tfrac{dy}{dx} = Q(x)`. The solution can then just be found by rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`. This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back end, so if a separable equation is not caught by this solver, it is most likely the fault of that function. :py:meth:`~sympy.simplify.simplify.separatevars` is smart enough to do most expansion and factoring necessary to convert a separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f']) >>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x))) >>> pprint(genform) d a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x)) dx >>> pprint(dsolve(genform, f(x), hint='separable_Integral')) f(x) / / | | | b(y) | c(x) | ---- dy = C1 + | ---- dx | d(y) | a(x) | | / / Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x), ... hint='separable', simplify=False)) / 2 \ 2 log\3*f (x) - 1/ x ---------------- = C1 + -- 6 2 References ========== - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 52 # indirect doctest """ hint = "separable" has_integral = True order = [1] def _wilds(self, f, x, order): d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) e = Wild('e', exclude=[f(x).diff(x)]) return d, e def _equation(self, fx, x, order): d, e = self.wilds() return d + e*fx.diff(x) def _verify(self, fx): d, e = self.wilds_match() self.y = Dummy('y') x = self.ode_problem.sym d = separatevars(d.subs(fx, self.y)) e = separatevars(e.subs(fx, self.y)) # m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y' self.m1 = separatevars(d, dict=True, symbols=(x, self.y)) self.m2 = separatevars(e, dict=True, symbols=(x, self.y)) if self.m1 and self.m2: return True return False def _get_match_object(self): fx = self.ode_problem.func x = self.ode_problem.sym return self.m1, self.m2, x, fx def _get_general_solution(self, *, simplify_flag: bool = True): m1, m2, x, fx = self._get_match_object() (C1,) = self.ode_problem.get_numbered_constants(num=1) int = Integral(m2['coeff']*m2[self.y]/m1[self.y], (self.y, None, fx)) gen_sol = Eq(int, Integral(-m1['coeff']*m1[x]/ m2[x], x) + C1) return [gen_sol] class SeparableReduced(Separable): r""" Solves a differential equation that can be reduced to the separable form. The general form of this equation is .. math:: y' + (y/x) H(x^n y) = 0\text{}. This can be solved by substituting `u(y) = x^n y`. The equation then reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} - \frac{1}{x} = 0`. The general solution is: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x, n >>> f, g = map(Function, ['f', 'g']) >>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x)) >>> pprint(genform) / n \ d f(x)*g\x *f(x)/ --(f(x)) + --------------- dx x >>> pprint(dsolve(genform, hint='separable_reduced')) n x *f(x) / | | 1 | ------------ dy = C1 + log(x) | y*(n - g(y)) | / See Also ======== :obj:`sympy.solvers.ode.single.Separable` Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = (x - x**2*f(x))*d - f(x) >>> dsolve(eq, hint='separable_reduced') [Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)] >>> pprint(dsolve(eq, hint='separable_reduced')) ___________ ___________ / 2 / 2 1 - \/ C1*x + 1 \/ C1*x + 1 + 1 [f(x) = ------------------, f(x) = ------------------] x x References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ hint = "separable_reduced" has_integral = True order = [1] def _degree(self, expr, x): # Made this function to calculate the degree of # x in an expression. If expr will be of form # x**p*y, (wheare p can be variables/rationals) then it # will return p. for val in expr: if val.has(x): if isinstance(val, Pow) and val.as_base_exp()[0] == x: return (val.as_base_exp()[1]) elif val == x: return (val.as_base_exp()[1]) else: return self._degree(val.args, x) return 0 def _powers(self, expr): # this function will return all the different relative power of x w.r.t f(x). # expr = x**p * f(x)**q then it will return {p/q}. pows = set() fx = self.ode_problem.func x = self.ode_problem.sym self.y = Dummy('y') if isinstance(expr, Add): exprs = expr.atoms(Add) elif isinstance(expr, Mul): exprs = expr.atoms(Mul) elif isinstance(expr, Pow): exprs = expr.atoms(Pow) else: exprs = {expr} for arg in exprs: if arg.has(x): _, u = arg.as_independent(x, fx) pow = self._degree((u.subs(fx, self.y), ), x)/self._degree((u.subs(fx, self.y), ), self.y) pows.add(pow) return pows def _verify(self, fx): num, den = self.wilds_match() x = self.ode_problem.sym factor = simplify(x/fx*num/den) # Try representing factor in terms of x^n*y # where n is lowest power of x in factor; # first remove terms like sqrt(2)*3 from factor.atoms(Mul) num, dem = factor.as_numer_denom() num = expand(num) dem = expand(dem) pows = self._powers(num) pows.update(self._powers(dem)) pows = list(pows) if(len(pows)==1) and pows[0]!=zoo: self.t = Dummy('t') self.r2 = {'t': self.t} num = num.subs(x**pows[0]*fx, self.t) dem = dem.subs(x**pows[0]*fx, self.t) test = num/dem free = test.free_symbols if len(free) == 1 and free.pop() == self.t: self.r2.update({'power' : pows[0], 'u' : test}) return True return False return False def _get_match_object(self): fx = self.ode_problem.func x = self.ode_problem.sym u = self.r2['u'].subs(self.r2['t'], self.y) ycoeff = 1/(self.y*(self.r2['power'] - u)) m1 = {self.y: 1, x: -1/x, 'coeff': 1} m2 = {self.y: ycoeff, x: 1, 'coeff': 1} return m1, m2, x, x**self.r2['power']*fx class HomogeneousCoeffSubsDepDivIndep(SinglePatternODESolver): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_1 = \frac{\text{<dependent variable>}}{\text{<independent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential equation into an equation separable in the variables `x` and `u`. If `h(u_1)` is the function that results from making the substitution `u_1 = f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is:: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x) >>> pprint(genform) /f(x)\ /f(x)\ d g|----| + h|----|*--(f(x)) \ x / \ x / dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral')) f(x) ---- x / | | -h(u1) log(x) = C1 + | ---------------- d(u1) | u1*h(u1) + g(u1) | / Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`. See also the docstrings of :obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`. Examples ======== >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False)) / 3 \ |3*f(x) f (x)| log|------ + -----| | x 3 | \ x / log(x) = log(C1) - ------------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ hint = "1st_homogeneous_coeff_subs_dep_div_indep" has_integral = True order = [1] def _wilds(self, f, x, order): d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) e = Wild('e', exclude=[f(x).diff(x)]) return d, e def _equation(self, fx, x, order): d, e = self.wilds() return d + e*fx.diff(x) def _verify(self, fx): self.d, self.e = self.wilds_match() self.y = Dummy('y') x = self.ode_problem.sym self.d = separatevars(self.d.subs(fx, self.y)) self.e = separatevars(self.e.subs(fx, self.y)) ordera = homogeneous_order(self.d, x, self.y) orderb = homogeneous_order(self.e, x, self.y) if ordera == orderb and ordera is not None: self.u = Dummy('u') if simplify((self.d + self.u*self.e).subs({x: 1, self.y: self.u})) != 0: return True return False return False def _get_match_object(self): fx = self.ode_problem.func x = self.ode_problem.sym self.u1 = Dummy('u1') xarg = 0 yarg = 0 return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg] def _get_general_solution(self, *, simplify_flag: bool = True): d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object() (C1,) = self.ode_problem.get_numbered_constants(num=1) int = Integral( (-e/(d + u1*e)).subs({x: 1, y: u1}), (u1, None, fx/x)) sol = logcombine(Eq(log(x), int + log(C1)), force=True) gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx))) return [gen_sol] class HomogeneousCoeffSubsIndepDivDep(SinglePatternODESolver): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_2 = \frac{\text{<independent variable>}}{\text{<dependent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential equation into an equation separable in the variables `y` and `u_2`. If `h(u_2)` is the function that results from making the substitution `u_2 = x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x) >>> pprint(genform) / x \ / x \ d g|----| + h|----|*--(f(x)) \f(x)/ \f(x)/ dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral')) x ---- f(x) / | | -g(u1) | ---------------- d(u1) | u1*g(u1) + h(u1) | / <BLANKLINE> f(x) = C1*e Where `u_1 g(u_1) + h(u_1) \ne 0` and `f(x) \ne 0`. See also the docstrings of :obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`. Examples ======== >>> from sympy import Function, pprint, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep', ... simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ hint = "1st_homogeneous_coeff_subs_indep_div_dep" has_integral = True order = [1] def _wilds(self, f, x, order): d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) e = Wild('e', exclude=[f(x).diff(x)]) return d, e def _equation(self, fx, x, order): d, e = self.wilds() return d + e*fx.diff(x) def _verify(self, fx): self.d, self.e = self.wilds_match() self.y = Dummy('y') x = self.ode_problem.sym self.d = separatevars(self.d.subs(fx, self.y)) self.e = separatevars(self.e.subs(fx, self.y)) ordera = homogeneous_order(self.d, x, self.y) orderb = homogeneous_order(self.e, x, self.y) if ordera == orderb and ordera is not None: self.u = Dummy('u') if simplify((self.e + self.u*self.d).subs({x: self.u, self.y: 1})) != 0: return True return False return False def _get_match_object(self): fx = self.ode_problem.func x = self.ode_problem.sym self.u1 = Dummy('u1') xarg = 0 yarg = 0 return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg] def _get_general_solution(self, *, simplify_flag: bool = True): d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object() (C1,) = self.ode_problem.get_numbered_constants(num=1) int = Integral(simplify((-d/(e + u1*d)).subs({x: u1, y: 1})), (u1, None, x/fx)) # type: ignore sol = logcombine(Eq(log(fx), int + log(C1)), force=True) gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx))) return [gen_sol] class HomogeneousCoeffBest(HomogeneousCoeffSubsIndepDivDep, HomogeneousCoeffSubsDepDivIndep): r""" Returns the best solution to an ODE from the two hints ``1st_homogeneous_coeff_subs_dep_div_indep`` and ``1st_homogeneous_coeff_subs_indep_div_dep``. This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`. See the :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep` and :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` docstrings for more information on these hints. Note that there is no ``ode_1st_homogeneous_coeff_best_Integral`` hint. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_best', simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ hint = "1st_homogeneous_coeff_best" has_integral = False order = [1] def _verify(self, fx): if HomogeneousCoeffSubsIndepDivDep._verify(self, fx) and HomogeneousCoeffSubsDepDivIndep._verify(self, fx): return True return False def _get_general_solution(self, *, simplify_flag: bool = True): # There are two substitutions that solve the equation, u1=y/x and u2=x/y # # They produce different integrals, so try them both and see which # # one is easier sol1 = HomogeneousCoeffSubsIndepDivDep._get_general_solution(self) sol2 = HomogeneousCoeffSubsDepDivIndep._get_general_solution(self) fx = self.ode_problem.func if simplify_flag: sol1 = odesimp(self.ode_problem.eq, *sol1, fx, "1st_homogeneous_coeff_subs_indep_div_dep") sol2 = odesimp(self.ode_problem.eq, *sol2, fx, "1st_homogeneous_coeff_subs_dep_div_indep") return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, fx, trysolving=not simplify)) class LinearCoefficients(HomogeneousCoeffBest): r""" Solves a differential equation with linear coefficients. The general form of a differential equation with linear coefficients is .. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2}\!\right) = 0\text{,} where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2 - a_2 b_1 \ne 0`. This can be solved by substituting: .. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2} y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 b_2}\text{.} This substitution reduces the equation to a homogeneous differential equation. See Also ======== :obj:`sympy.solvers.ode.single.HomogeneousCoeffBest` :obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep` :obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function('f') >>> df = f(x).diff(x) >>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1) >>> dsolve(eq, hint='linear_coefficients') [Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)] >>> pprint(dsolve(eq, hint='linear_coefficients')) ___________ ___________ / 2 / 2 [f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1] References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ hint = "linear_coefficients" has_integral = True order = [1] def _wilds(self, f, x, order): d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) e = Wild('e', exclude=[f(x).diff(x)]) return d, e def _equation(self, fx, x, order): d, e = self.wilds() return d + e*fx.diff(x) def _verify(self, fx): self.d, self.e = self.wilds_match() a, b = self.wilds() F = self.d/self.e x = self.ode_problem.sym params = self._linear_coeff_match(F, fx) if params: self.xarg, self.yarg = params u = Dummy('u') t = Dummy('t') self.y = Dummy('y') # Dummy substitution for df and f(x). dummy_eq = self.ode_problem.eq.subs(((fx.diff(x), t), (fx, u))) reps = ((x, x + self.xarg), (u, u + self.yarg), (t, fx.diff(x)), (u, fx)) dummy_eq = simplify(dummy_eq.subs(reps)) # get the re-cast values for e and d r2 = collect(expand(dummy_eq), [fx.diff(x), fx]).match(a*fx.diff(x) + b) if r2: self.d, self.e = r2[b], r2[a] orderd = homogeneous_order(self.d, x, fx) ordere = homogeneous_order(self.e, x, fx) if orderd == ordere and orderd is not None: self.d = self.d.subs(fx, self.y) self.e = self.e.subs(fx, self.y) return True return False return False def _linear_coeff_match(self, expr, func): r""" Helper function to match hint ``linear_coefficients``. Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2 f(x) + c_2)` where the following conditions hold: 1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals; 2. `c_1` or `c_2` are not equal to zero; 3. `a_2 b_1 - a_1 b_2` is not equal to zero. Return ``xarg``, ``yarg`` where 1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)` 2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)` Examples ======== >>> from sympy import Function, sin >>> from sympy.abc import x >>> from sympy.solvers.ode.single import LinearCoefficients >>> f = Function('f') >>> eq = (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11) >>> obj = LinearCoefficients(eq) >>> obj._linear_coeff_match(eq, f(x)) (1/9, 22/9) >>> eq = sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)) >>> obj = LinearCoefficients(eq) >>> obj._linear_coeff_match(eq, f(x)) (19/27, 2/27) >>> eq = sin(f(x)/x) >>> obj = LinearCoefficients(eq) >>> obj._linear_coeff_match(eq, f(x)) """ f = func.func x = func.args[0] def abc(eq): r''' Internal function of _linear_coeff_match that returns Rationals a, b, c if eq is a*x + b*f(x) + c, else None. ''' eq = _mexpand(eq) c = eq.as_independent(x, f(x), as_Add=True)[0] if not c.is_Rational: return a = eq.coeff(x) if not a.is_Rational: return b = eq.coeff(f(x)) if not b.is_Rational: return if eq == a*x + b*f(x) + c: return a, b, c def match(arg): r''' Internal function of _linear_coeff_match that returns Rationals a1, b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x) + c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is non-zero, else None. ''' n, d = arg.together().as_numer_denom() m = abc(n) if m is not None: a1, b1, c1 = m m = abc(d) if m is not None: a2, b2, c2 = m d = a2*b1 - a1*b2 if (c1 or c2) and d: return a1, b1, c1, a2, b2, c2, d m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and len(fi.args) == 1 and not fi.args[0].is_Function] or {expr} m1 = match(m.pop()) if m1 and all(match(mi) == m1 for mi in m): a1, b1, c1, a2, b2, c2, denom = m1 return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom def _get_match_object(self): fx = self.ode_problem.func x = self.ode_problem.sym self.u1 = Dummy('u1') u = Dummy('u') return [self.d, self.e, fx, x, u, self.u1, self.y, self.xarg, self.yarg] class NthOrderReducible(SingleODESolver): r""" Solves ODEs that only involve derivatives of the dependent variable using a substitution of the form `f^n(x) = g(x)`. For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and `f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If that gives an explicit solution for `g` then `f` is found simply by integration. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0) >>> dsolve(eq, f(x), hint='nth_order_reducible') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) """ hint = "nth_order_reducible" has_integral = False def _matches(self): # Any ODE that can be solved with a substitution and # repeated integration e.g.: # `d^2/dx^2(y) + x*d/dx(y) = constant #f'(x) must be finite for this to work eq = self.ode_problem.eq_preprocessed func = self.ode_problem.func x = self.ode_problem.sym r""" Matches any differential equation that can be rewritten with a smaller order. Only derivatives of ``func`` alone, wrt a single variable, are considered, and only in them should ``func`` appear. """ # ODE only handles functions of 1 variable so this affirms that state assert len(func.args) == 1 vc = [d.variable_count[0] for d in eq.atoms(Derivative) if d.expr == func and len(d.variable_count) == 1] ords = [c for v, c in vc if v == x] if len(ords) < 2: return False self.smallest = min(ords) # make sure func does not appear outside of derivatives D = Dummy() if eq.subs(func.diff(x, self.smallest), D).has(func): return False return True def _get_general_solution(self, *, simplify_flag: bool = True): eq = self.ode_problem.eq f = self.ode_problem.func.func x = self.ode_problem.sym n = self.smallest # get a unique function name for g names = [a.name for a in eq.atoms(AppliedUndef)] while True: name = Dummy().name if name not in names: g = Function(name) break w = f(x).diff(x, n) geq = eq.subs(w, g(x)) gsol = dsolve(geq, g(x)) if not isinstance(gsol, list): gsol = [gsol] # Might be multiple solutions to the reduced ODE: fsol = [] for gsoli in gsol: fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times fsol.append(fsoli) return fsol class SecondHypergeometric(SingleODESolver): r""" Solves 2nd order linear differential equations. It computes special function solutions which can be expressed using the 2F1, 1F1 or 0F1 hypergeometric functions. .. math:: y'' + A(x) y' + B(x) y = 0\text{,} where `A` and `B` are rational functions. These kinds of differential equations have solution of non-Liouvillian form. Given linear ODE can be obtained from 2F1 given by .. math:: (x^2 - x) y'' + ((a + b + 1) x - c) y' + b a y = 0\text{,} where {a, b, c} are arbitrary constants. Notes ===== The algorithm should find any solution of the form .. math:: y = P(x) _pF_q(..; ..;\frac{\alpha x^k + \beta}{\gamma x^k + \delta})\text{,} where pFq is any of 2F1, 1F1 or 0F1 and `P` is an "arbitrary function". Currently only the 2F1 case is implemented in SymPy but the other cases are described in the paper and could be implemented in future (contributions welcome!). Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = (x*x - x)*f(x).diff(x,2) + (5*x - 1)*f(x).diff(x) + 4*f(x) >>> pprint(dsolve(eq, f(x), '2nd_hypergeometric')) _ / / 4 \\ |_ /-1, -1 | \ |C1 + C2*|log(x) + -----||* | | | x| \ \ x + 1// 2 1 \ 1 | / f(x) = -------------------------------------------- 3 (x - 1) References ========== - "Non-Liouvillian solutions for second order linear ODEs" by L. Chan, E.S. Cheb-Terrab """ hint = "2nd_hypergeometric" has_integral = True def _matches(self): eq = self.ode_problem.eq_preprocessed func = self.ode_problem.func r = match_2nd_hypergeometric(eq, func) self.match_object = None if r: A, B = r d = equivalence_hypergeometric(A, B, func) if d: if d['type'] == "2F1": self.match_object = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func) if self.match_object is not None: self.match_object.update({'A':A, 'B':B}) # We can extend it for 1F1 and 0F1 type also. return self.match_object is not None def _get_general_solution(self, *, simplify_flag: bool = True): eq = self.ode_problem.eq func = self.ode_problem.func if self.match_object['type'] == "2F1": sol = get_sol_2F1_hypergeometric(eq, func, self.match_object) if sol is None: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the hypergeometric method") return [sol] class NthLinearConstantCoeffHomogeneous(SingleODESolver): r""" Solves an `n`\th order linear homogeneous differential equation with constant coefficients. This is an equation of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = 0\text{.} These equations can be solved in a general manner, by taking the roots of the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms, for each where `C_n` is an arbitrary constant, `r` is a root of the characteristic equation and `i` is one of each from 0 to the multiplicity of the root - 1 (for example, a root 3 of multiplicity 2 would create the terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`. Complex roots always come in conjugate pairs in polynomials with real coefficients, so the two roots will be represented (after simplifying the constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`. If SymPy cannot find exact roots to the characteristic equation, a :py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return instead. >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0)) + (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))) + C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1))) + (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))) + C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3)))) Note that because this method does not involve integration, there is no ``nth_linear_constant_coeff_homogeneous_Integral`` hint. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) - ... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous')) x -2*x f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation section: Nonhomogeneous_equation_with_constant_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 211 # indirect doctest """ hint = "nth_linear_constant_coeff_homogeneous" has_integral = False def _matches(self): eq = self.ode_problem.eq_high_order_free func = self.ode_problem.func order = self.ode_problem.order x = self.ode_problem.sym self.r = self.ode_problem.get_linear_coefficients(eq, func, order) if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): if not self.r[-1]: return True else: return False return False def _get_general_solution(self, *, simplify_flag: bool = True): fx = self.ode_problem.func order = self.ode_problem.order roots, collectterms = _get_const_characteristic_eq_sols(self.r, fx, order) # A generator of constants constants = self.ode_problem.get_numbered_constants(num=len(roots)) gsol = Add(*[i*j for (i, j) in zip(constants, roots)]) gsol = Eq(fx, gsol) if simplify_flag: gsol = _get_simplified_sol([gsol], fx, collectterms) return [gsol] class NthLinearConstantCoeffVariationOfParameters(SingleODESolver): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of variation of parameters. This method works on any differential equations of the form .. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{.} This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, P(x)]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation with constant coefficients, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it does not use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + ... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), ... hint='nth_linear_constant_coeff_variation_of_parameters')) / / / x*log(x) 11*x\\\ x f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e \ \ \ 6 36 /// References ========== - https://en.wikipedia.org/wiki/Variation_of_parameters - http://planetmath.org/VariationOfParameters - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 233 # indirect doctest """ hint = "nth_linear_constant_coeff_variation_of_parameters" has_integral = True def _matches(self): eq = self.ode_problem.eq_high_order_free func = self.ode_problem.func order = self.ode_problem.order x = self.ode_problem.sym self.r = self.ode_problem.get_linear_coefficients(eq, func, order) if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): if self.r[-1]: return True else: return False return False def _get_general_solution(self, *, simplify_flag: bool = True): eq = self.ode_problem.eq_high_order_free f = self.ode_problem.func.func x = self.ode_problem.sym order = self.ode_problem.order roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order) # A generator of constants constants = self.ode_problem.get_numbered_constants(num=len(roots)) homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)]) homogen_sol = Eq(f(x), homogen_sol) homogen_sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag) if simplify_flag: homogen_sol = _get_simplified_sol([homogen_sol], f(x), collectterms) return [homogen_sol] class NthLinearConstantCoeffUndeterminedCoefficients(SingleODESolver): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of undetermined coefficients. This method works on differential equations of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{,} where `P(x)` is a function that has a finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. This method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, cos >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) - ... 4*exp(-x)*x**2 + cos(2*x), f(x), ... hint='nth_linear_constant_coeff_undetermined_coefficients')) / / 3\\ | | x || -x 4*sin(2*x) 3*cos(2*x) f(x) = |C1 + x*|C2 + --||*e - ---------- + ---------- \ \ 3 // 25 25 References ========== - https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 221 # indirect doctest """ hint = "nth_linear_constant_coeff_undetermined_coefficients" has_integral = False def _matches(self): eq = self.ode_problem.eq_high_order_free func = self.ode_problem.func order = self.ode_problem.order x = self.ode_problem.sym self.r = self.ode_problem.get_linear_coefficients(eq, func, order) does_match = False if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): if self.r[-1]: eq_homogeneous = Add(eq, -self.r[-1]) undetcoeff = _undetermined_coefficients_match(self.r[-1], x, func, eq_homogeneous) if undetcoeff['test']: self.trialset = undetcoeff['trialset'] does_match = True return does_match def _get_general_solution(self, *, simplify_flag: bool = True): eq = self.ode_problem.eq f = self.ode_problem.func.func x = self.ode_problem.sym order = self.ode_problem.order roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order) # A generator of constants constants = self.ode_problem.get_numbered_constants(num=len(roots)) homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)]) homogen_sol = Eq(f(x), homogen_sol) self.r.update({'list': roots, 'sol': homogen_sol, 'simpliy_flag': simplify_flag}) gsol = _solve_undetermined_coefficients(eq, f(x), order, self.r, self.trialset) if simplify_flag: gsol = _get_simplified_sol([gsol], f(x), collectterms) return [gsol] class NthLinearEulerEqHomogeneous(SingleODESolver): r""" Solves an `n`\th order linear homogeneous variable-coefficient Cauchy-Euler equidimensional ordinary differential equation. This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `f(x) = x^r`, and deriving a characteristic equation for `r`. When there are repeated roots, we include extra terms of the form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration constant, `r` is a root of the characteristic equation, and `k` ranges over the multiplicity of `r`. In the cases where the roots are complex, solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))` are returned, based on expansions with Euler's formula. The general solution is the sum of the terms found. If SymPy cannot find exact roots to the characteristic equation, a :py:obj:`~.ComplexRootOf` instance will be returned instead. >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x), ... hint='nth_linear_euler_eq_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), sqrt(x)*(C1 + C2*log(x))) Note that because this method does not involve integration, there is no ``nth_linear_euler_eq_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, corresponding to the fundamental solution set, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x) >>> pprint(dsolve(eq, f(x), ... hint='nth_linear_euler_eq_homogeneous')) 2 f(x) = x *(C1 + C2*x) References ========== - https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation - C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and Engineers", Springer 1999, pp. 12 # indirect doctest """ hint = "nth_linear_euler_eq_homogeneous" has_integral = False def _matches(self): eq = self.ode_problem.eq_preprocessed f = self.ode_problem.func.func order = self.ode_problem.order x = self.ode_problem.sym match = self.ode_problem.get_linear_coefficients(eq, f(x), order) self.r = None does_match = False if order and match: coeff = match[order] factor = x**order / coeff self.r = {i: factor*match[i] for i in match} if self.r and all(_test_term(self.r[i], f(x), i) for i in self.r if i >= 0): if not self.r[-1]: does_match = True return does_match def _get_general_solution(self, *, simplify_flag: bool = True): fx = self.ode_problem.func eq = self.ode_problem.eq homogen_sol = _get_euler_characteristic_eq_sols(eq, fx, self.r)[0] return [homogen_sol] class NthLinearEulerEqNonhomogeneousVariationOfParameters(SingleODESolver): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using variation of parameters. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{, } where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by multiplying eq given below with `a_n x^{n}` .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \, dx \right) y_i(x) \text{, } where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it does not use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, Derivative >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4 >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand() Eq(f(x), C1*x + C2*x**2 + x**4/6) """ hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters" has_integral = True def _matches(self): eq = self.ode_problem.eq_preprocessed f = self.ode_problem.func.func order = self.ode_problem.order x = self.ode_problem.sym match = self.ode_problem.get_linear_coefficients(eq, f(x), order) self.r = None does_match = False if order and match: coeff = match[order] factor = x**order / coeff self.r = {i: factor*match[i] for i in match} if self.r and all(_test_term(self.r[i], f(x), i) for i in self.r if i >= 0): if self.r[-1]: does_match = True return does_match def _get_general_solution(self, *, simplify_flag: bool = True): eq = self.ode_problem.eq f = self.ode_problem.func.func x = self.ode_problem.sym order = self.ode_problem.order homogen_sol, roots = _get_euler_characteristic_eq_sols(eq, f(x), self.r) self.r[-1] = self.r[-1]/self.r[order] sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag) return [Eq(f(x), homogen_sol.rhs + (sol.rhs - homogen_sol.rhs)*self.r[order])] class NthLinearEulerEqNonhomogeneousUndeterminedCoefficients(SingleODESolver): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using undetermined coefficients. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `x = exp(t)`, and deriving a characteristic equation of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can be then solved by nth_linear_constant_coeff_undetermined_coefficients if g(exp(t)) has finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. After replacement of x by exp(t), this method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import dsolve, Function, Derivative, log >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand() Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4) """ hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients" has_integral = False def _matches(self): eq = self.ode_problem.eq_high_order_free f = self.ode_problem.func.func order = self.ode_problem.order x = self.ode_problem.sym match = self.ode_problem.get_linear_coefficients(eq, f(x), order) self.r = None does_match = False if order and match: coeff = match[order] factor = x**order / coeff self.r = {i: factor*match[i] for i in match} if self.r and all(_test_term(self.r[i], f(x), i) for i in self.r if i >= 0): if self.r[-1]: e, re = posify(self.r[-1].subs(x, exp(x))) undetcoeff = _undetermined_coefficients_match(e.subs(re), x) if undetcoeff['test']: does_match = True return does_match def _get_general_solution(self, *, simplify_flag: bool = True): f = self.ode_problem.func.func x = self.ode_problem.sym chareq, eq, symbol = S.Zero, S.Zero, Dummy('x') for i in self.r.keys(): if i >= 0: chareq += (self.r[i]*diff(x**symbol, x, i)*x**-symbol).expand() for i in range(1, degree(Poly(chareq, symbol))+1): eq += chareq.coeff(symbol**i)*diff(f(x), x, i) if chareq.as_coeff_add(symbol)[0]: eq += chareq.as_coeff_add(symbol)[0]*f(x) e, re = posify(self.r[-1].subs(x, exp(x))) eq += e.subs(re) self.const_undet_instance = NthLinearConstantCoeffUndeterminedCoefficients(SingleODEProblem(eq, f(x), x)) sol = self.const_undet_instance.get_general_solution(simplify = simplify_flag)[0] sol = sol.subs(x, log(x)) sol = sol.subs(f(log(x)), f(x)).expand() return [sol] class SecondLinearBessel(SingleODESolver): r""" Gives solution of the Bessel differential equation .. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x) if `n` is integer then the solution is of the form ``Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x))`` as both the solutions are linearly independent else if `n` is a fraction then the solution is of the form ``Eq(f(x), C0 besselj(n,x) + C1 besselj(-n,x))`` which can also transform into ``Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x))``. Examples ======== >>> from sympy.abc import x >>> from sympy import Symbol >>> v = Symbol('v', positive=True) >>> from sympy import dsolve, Function >>> f = Function('f') >>> y = f(x) >>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y >>> dsolve(genform) Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x)) References ========== https://www.math24.net/bessel-differential-equation/ """ hint = "2nd_linear_bessel" has_integral = False def _matches(self): eq = self.ode_problem.eq_high_order_free f = self.ode_problem.func order = self.ode_problem.order x = self.ode_problem.sym df = f.diff(x) a = Wild('a', exclude=[f,df]) b = Wild('b', exclude=[x, f,df]) a4 = Wild('a4', exclude=[x,f,df]) b4 = Wild('b4', exclude=[x,f,df]) c4 = Wild('c4', exclude=[x,f,df]) d4 = Wild('d4', exclude=[x,f,df]) a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)]) b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)]) c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)]) deq = a3*(f.diff(x, 2)) + b3*df + c3*f r = collect(eq, [f.diff(x, 2), df, f]).match(deq) if order == 2 and r: if not all(r[key].is_polynomial() for key in r): n, d = eq.as_numer_denom() eq = expand(n) r = collect(eq, [f.diff(x, 2), df, f]).match(deq) if r and r[a3] != 0: # leading coeff of f(x).diff(x, 2) coeff = factor(r[a3]).match(a4*(x-b)**b4) if coeff: # if coeff[b4] = 0 means constant coefficient if coeff[b4] == 0: return False point = coeff[b] else: return False if point: r[a3] = simplify(r[a3].subs(x, x+point)) r[b3] = simplify(r[b3].subs(x, x+point)) r[c3] = simplify(r[c3].subs(x, x+point)) # making a3 in the form of x**2 r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4]))) # checking if b3 is of form c*(x-b) coeff1 = factor(r[b3]).match(a4*(x)) if coeff1 is None: return False # c3 maybe of very complex form so I am simply checking (a - b) form # if yes later I will match with the standerd form of bessel in a and b # a, b are wild variable defined above. _coeff2 = r[c3].match(a - b) if _coeff2 is None: return False # matching with standerd form for c3 coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4)) if coeff2 is None: return False if _coeff2[b] == 0: coeff2[d4] = 0 else: coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4] self.rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]} self.rn['c4'] = coeff1[a4] self.rn['b4'] = point return True return False def _get_general_solution(self, *, simplify_flag: bool = True): f = self.ode_problem.func.func x = self.ode_problem.sym n = self.rn['n'] a4 = self.rn['a4'] c4 = self.rn['c4'] d4 = self.rn['d4'] b4 = self.rn['b4'] n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2) (C1, C2) = self.ode_problem.get_numbered_constants(num=2) return [Eq(f(x), ((x**(Rational(1-c4,2)))*(C1*besselj(n/d4,a4*x**d4/d4) + C2*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4))] class SecondLinearAiry(SingleODESolver): r""" Gives solution of the Airy differential equation .. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0 in terms of Airy special functions airyai and airybi. Examples ======== >>> from sympy import dsolve, Function >>> from sympy.abc import x >>> f = Function("f") >>> eq = f(x).diff(x, 2) - x*f(x) >>> dsolve(eq) Eq(f(x), C1*airyai(x) + C2*airybi(x)) """ hint = "2nd_linear_airy" has_integral = False def _matches(self): eq = self.ode_problem.eq_high_order_free f = self.ode_problem.func order = self.ode_problem.order x = self.ode_problem.sym df = f.diff(x) a4 = Wild('a4', exclude=[x,f,df]) b4 = Wild('b4', exclude=[x,f,df]) match = self.ode_problem.get_linear_coefficients(eq, f, order) does_match = False if order == 2 and match and match[2] != 0: if match[1].is_zero: self.rn = cancel(match[0]/match[2]).match(a4+b4*x) if self.rn and self.rn[b4] != 0: self.rn = {'b':self.rn[a4],'m':self.rn[b4]} does_match = True return does_match def _get_general_solution(self, *, simplify_flag: bool = True): f = self.ode_problem.func.func x = self.ode_problem.sym (C1, C2) = self.ode_problem.get_numbered_constants(num=2) b = self.rn['b'] m = self.rn['m'] if m.is_positive: arg = - b/cbrt(m)**2 - cbrt(m)*x elif m.is_negative: arg = - b/cbrt(-m)**2 + cbrt(-m)*x else: arg = - b/cbrt(-m)**2 + cbrt(-m)*x return [Eq(f(x), C1*airyai(arg) + C2*airybi(arg))] class LieGroup(SingleODESolver): r""" This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate system into another coordinate system where it becomes invariant under the one-parameter Lie group of translations. The converted ODE can be easily solved by quadrature. It makes use of the :py:meth:`sympy.solvers.ode.infinitesimals` function which returns the infinitesimals of the transformation. The coordinates `r` and `s` can be found by solving the following Partial Differential Equations. .. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y} = 0 .. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y} = 1 The differential equation becomes separable in the new coordinate system .. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} + h(x, y)\frac{\partial s}{\partial y}}{ \frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}} After finding the solution by integration, it is then converted back to the original coordinate system by substituting `r` and `s` in terms of `x` and `y` again. Examples ======== >>> from sympy import Function, dsolve, exp, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x), ... hint='lie_group')) / 2\ 2 | x | -x f(x) = |C1 + --|*e \ 2 / References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ hint = "lie_group" has_integral = False def _has_additional_params(self): return 'xi' in self.ode_problem.params and 'eta' in self.ode_problem.params def _matches(self): eq = self.ode_problem.eq f = self.ode_problem.func.func order = self.ode_problem.order x = self.ode_problem.sym df = f(x).diff(x) y = Dummy('y') d = Wild('d', exclude=[df, f(x).diff(x, 2)]) e = Wild('e', exclude=[df]) does_match = False if self._has_additional_params() and order == 1: xi = self.ode_problem.params['xi'] eta = self.ode_problem.params['eta'] self.r3 = {'xi': xi, 'eta': eta} r = collect(eq, df, exact=True).match(d + e * df) if r: r['d'] = d r['e'] = e r['y'] = y r[d] = r[d].subs(f(x), y) r[e] = r[e].subs(f(x), y) self.r3.update(r) does_match = True return does_match def _get_general_solution(self, *, simplify_flag: bool = True): eq = self.ode_problem.eq x = self.ode_problem.sym func = self.ode_problem.func order = self.ode_problem.order df = func.diff(x) try: eqsol = solve(eq, df) except NotImplementedError: eqsol = [] desols = [] for s in eqsol: sol = _ode_lie_group(s, func, order, match=self.r3) if sol: desols.extend(sol) if desols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the lie group method") return desols solver_map = { 'factorable': Factorable, 'nth_linear_constant_coeff_homogeneous': NthLinearConstantCoeffHomogeneous, 'nth_linear_euler_eq_homogeneous': NthLinearEulerEqHomogeneous, 'nth_linear_constant_coeff_undetermined_coefficients': NthLinearConstantCoeffUndeterminedCoefficients, 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients': NthLinearEulerEqNonhomogeneousUndeterminedCoefficients, 'separable': Separable, '1st_exact': FirstExact, '1st_linear': FirstLinear, 'Bernoulli': Bernoulli, 'Riccati_special_minus2': RiccatiSpecial, '1st_rational_riccati': RationalRiccati, '1st_homogeneous_coeff_best': HomogeneousCoeffBest, '1st_homogeneous_coeff_subs_indep_div_dep': HomogeneousCoeffSubsIndepDivDep, '1st_homogeneous_coeff_subs_dep_div_indep': HomogeneousCoeffSubsDepDivIndep, 'almost_linear': AlmostLinear, 'linear_coefficients': LinearCoefficients, 'separable_reduced': SeparableReduced, 'nth_linear_constant_coeff_variation_of_parameters': NthLinearConstantCoeffVariationOfParameters, 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters': NthLinearEulerEqNonhomogeneousVariationOfParameters, 'Liouville': Liouville, '2nd_linear_airy': SecondLinearAiry, '2nd_linear_bessel': SecondLinearBessel, '2nd_hypergeometric': SecondHypergeometric, 'nth_order_reducible': NthOrderReducible, '2nd_nonlinear_autonomous_conserved': SecondNonlinearAutonomousConserved, 'nth_algebraic': NthAlgebraic, 'lie_group': LieGroup, } # Avoid circular import: from .ode import dsolve, ode_sol_simplicity, odesimp, homogeneous_order
2631b6967f2aa132650de0b0c641f1336a6c1d9469db5dadbaf39918051478dd
from sympy.assumptions.ask import (Q, ask) from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.function import (Derivative, Function, diff) from sympy.core.mul import Mul from sympy.core import (GoldenRatio, TribonacciConstant) from sympy.core.numbers import (E, Float, I, Rational, oo, pi) from sympy.core.relational import (Eq, Gt, Lt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, Wild, symbols) from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import binomial from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, re) from sympy.functions.elementary.exponential import (LambertW, exp, log) from sympy.functions.elementary.hyperbolic import (atanh, cosh, sinh, tanh) from sympy.functions.elementary.miscellaneous import (cbrt, root, sqrt) from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (acos, asin, atan, atan2, cos, sec, sin, tan) from sympy.functions.special.error_functions import (erf, erfc, erfcinv, erfinv) from sympy.integrals.integrals import Integral from sympy.logic.boolalg import (And, Or) from sympy.matrices.dense import Matrix from sympy.matrices import SparseMatrix from sympy.polys.polytools import Poly from sympy.printing.str import sstr from sympy.simplify.radsimp import denom from sympy.solvers.solvers import (nsolve, solve, solve_linear) from sympy.core.function import nfloat from sympy.solvers import solve_linear_system, solve_linear_system_LU, \ solve_undetermined_coeffs from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \ det_quick, det_perm, det_minor, _simple_dens, denoms from sympy.physics.units import cm from sympy.polys.rootoftools import CRootOf from sympy.testing.pytest import slow, XFAIL, SKIP, raises from sympy.core.random import verify_numerically as tn from sympy.abc import a, b, c, d, e, k, h, p, x, y, z, t, q, m, R def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_swap_back(): f, g = map(Function, 'fg') fx, gx = f(x), g(x) assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \ {fx: gx + 5, y: -gx - 3} assert solve(fx + gx*x - 2, [fx, gx], dict=True) == [{fx: 2, gx: 0}] assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y, gx: 0}] assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}] def guess_solve_strategy(eq, symbol): try: solve(eq, symbol) return True except (TypeError, NotImplementedError): return False def test_guess_poly(): # polynomial equations assert guess_solve_strategy( S(4), x ) # == GS_POLY assert guess_solve_strategy( x, x ) # == GS_POLY assert guess_solve_strategy( x + a, x ) # == GS_POLY assert guess_solve_strategy( 2*x, x ) # == GS_POLY assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY assert guess_solve_strategy( x*y + y, x ) # == GS_POLY assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY assert guess_solve_strategy( (x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY def test_guess_poly_cv(): # polynomial equations via a change of variable assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1 assert guess_solve_strategy( x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1 assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1 # polynomial equation multiplying both sides by x**n assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2 def test_guess_rational_cv(): # rational functions assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL assert guess_solve_strategy( (x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1 # rational functions via the change of variable y -> x**n assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \ #== GS_RATIONAL_CV_1 def test_guess_transcendental(): #transcendental functions assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL assert guess_solve_strategy( exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL def test_solve_args(): # equation container, issue 5113 ans = {x: -3, y: 1} eqs = (x + 5*y - 2, -3*x + 6*y - 15) assert all(solve(container(eqs), x, y) == ans for container in (tuple, list, set, frozenset)) assert solve(Tuple(*eqs), x, y) == ans # implicit symbol to solve for assert set(solve(x**2 - 4)) == {S(2), -S(2)} assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1} assert solve(x - exp(x), x, implicit=True) == [exp(x)] # no symbol to solve for assert solve(42) == solve(42, x) == [] assert solve([1, 2]) == [] assert solve([sqrt(2)],[x]) == [] # duplicate symbols raises raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x)) raises(ValueError, lambda: solve(x, x, x)) # no error in exclude assert solve(x, x, exclude=[y, y]) == [0] # duplicate symbols raises raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x)) raises(ValueError, lambda: solve(x, x, x)) # no error in exclude assert solve(x, x, exclude=[y, y]) == [0] # unordered symbols # only 1 assert solve(y - 3, {y}) == [3] # more than 1 assert solve(y - 3, {x, y}) == [{y: 3}] # multiple symbols: take the first linear solution+ # - return as tuple with values for all requested symbols assert solve(x + y - 3, [x, y]) == [(3 - y, y)] # - unless dict is True assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}] # - or no symbols are given assert solve(x + y - 3) == [{x: 3 - y}] # multiple symbols might represent an undetermined coefficients system assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0} assert solve((a + b)*x + b - c, [a, b]) == {a: -c, b: c} eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p # - check that flags are obeyed sol = solve(eq, [h, p, k], exclude=[a, b, c]) assert sol == {h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)} assert solve(eq, [h, p, k], dict=True) == [sol] assert solve(eq, [h, p, k], set=True) == \ ([h, p, k], {(-b/(2*a), 1/(4*a), (4*a*c - b**2)/(4*a))}) # issue 23889 - polysys not simplified assert solve(eq, [h, p, k], exclude=[a, b, c], simplify=False) == \ {h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)} # but this only happens when system has a single solution args = (a + b)*x - b**2 + 2, a, b assert solve(*args) == [((b**2 - b*x - 2)/x, b)] # and if the system has a solution; the following doesn't so # an algebraic solution is returned assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \ [{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}] # failed single equation assert solve(1/(1/x - y + exp(y))) == [] raises( NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y))) # failed system # -- when no symbols given, 1 fails assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}] # both fail assert solve( (exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}] # -- when symbols given assert solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)] # symbol is a number assert solve(x**2 - pi, pi) == [x**2] # no equations assert solve([], [x]) == [] # nonlinear system assert solve((x**2 - 4, y - 2), x, y) == [(-2, 2), (2, 2)] assert solve((x**2 - 4, y - 2), y, x) == [(2, -2), (2, 2)] assert solve((x**2 - 4 + z, y - 2 - z), a, z, y, x, set=True ) == ([a, z, y, x], { (a, z, z + 2, -sqrt(4 - z)), (a, z, z + 2, sqrt(4 - z))}) # overdetermined system # - nonlinear assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}] # - linear assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2} # When one or more args are Boolean assert solve(Eq(x**2, 0.0)) == [0.0] # issue 19048 assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}] assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == [] assert not solve([Eq(x, x+1), x < 2], x) assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0) assert solve([Eq(x, x), Eq(x, x+1)], x) == [] assert solve(True, x) == [] assert solve([x - 1, False], [x], set=True) == ([], set()) assert solve([-y*(x + y - 1)/2, (y - 1)/x/y + 1/y], set=True, check=False) == ([x, y], {(1 - y, y), (x, 0)}) # ordering should be canonical, fastest to order by keys instead # of by size assert list(solve((y - 1, x - sqrt(3)*z)).keys()) == [x, y] # as set always returns as symbols, set even if no solution assert solve([x - 1, x], (y, x), set=True) == ([y, x], set()) assert solve([x - 1, x], {y, x}, set=True) == ([x, y], set()) def test_solve_polynomial1(): assert solve(3*x - 2, x) == [Rational(2, 3)] assert solve(Eq(3*x, 2), x) == [Rational(2, 3)] assert set(solve(x**2 - 1, x)) == {-S.One, S.One} assert set(solve(Eq(x**2, 1), x)) == {-S.One, S.One} assert solve(x - y**3, x) == [y**3] rx = root(x, 3) assert solve(x - y**3, y) == [ rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2] a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2') assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \ { x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21), y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21), } solution = {x: S.Zero, y: S.Zero} assert solve((x - y, x + y), x, y ) == solution assert solve((x - y, x + y), (x, y)) == solution assert solve((x - y, x + y), [x, y]) == solution assert set(solve(x**3 - 15*x - 4, x)) == { -2 + 3**S.Half, S(4), -2 - 3**S.Half } assert set(solve((x**2 - 1)**2 - a, x)) == \ {sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)), sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))} def test_solve_polynomial2(): assert solve(4, x) == [] def test_solve_polynomial_cv_1a(): """ Test for solving on equations that can be converted to a polynomial equation using the change of variable y -> x**Rational(p, q) """ assert solve( sqrt(x) - 1, x) == [1] assert solve( sqrt(x) - 2, x) == [4] assert solve( x**Rational(1, 4) - 2, x) == [16] assert solve( x**Rational(1, 3) - 3, x) == [27] assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0] def test_solve_polynomial_cv_1b(): assert set(solve(4*x*(1 - a*sqrt(x)), x)) == {S.Zero, 1/a**2} assert set(solve(x*(root(x, 3) - 3), x)) == {S.Zero, S(27)} def test_solve_polynomial_cv_2(): """ Test for solving on equations that can be converted to a polynomial equation multiplying both sides of the equation by x**m """ assert solve(x + 1/x - 1, x) in \ [[ S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2], [ S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]] def test_quintics_1(): f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979 s = solve(f, check=False) for r in s: res = f.subs(x, r.n()).n() assert tn(res, 0) f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = solve(f) for r in s: assert r.func == CRootOf # if one uses solve to get the roots of a polynomial that has a CRootOf # solution, make sure that the use of nfloat during the solve process # doesn't fail. Note: if you want numerical solutions to a polynomial # it is *much* faster to use nroots to get them than to solve the # equation only to get RootOf solutions which are then numerically # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather # than [i.n() for i in solve(eq)] to get the numerical roots of eq. assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \ CRootOf(x**5 + 3*x**3 + 7, 0).n() def test_quintics_2(): f = x**5 + 15*x + 12 s = solve(f, check=False) for r in s: res = f.subs(x, r.n()).n() assert tn(res, 0) f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = solve(f) for r in s: assert r.func == CRootOf assert solve(x**5 - 6*x**3 - 6*x**2 + x - 6) == [ CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 0), CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 1), CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 2), CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 3), CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 4)] def test_quintics_3(): y = x**5 + x**3 - 2**Rational(1, 3) assert solve(y) == solve(-y) == [] def test_highorder_poly(): # just testing that the uniq generator is unpacked sol = solve(x**6 - 2*x + 2) assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6 def test_solve_rational(): """Test solve for rational functions""" assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3] def test_solve_conjugate(): """Test solve for simple conjugate functions""" assert solve(conjugate(x) -3 + I) == [3 + I] def test_solve_nonlinear(): assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}] assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))}, {y: x*sqrt(exp(x))}] def test_issue_8666(): x = symbols('x') assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == [] assert solve(Eq(x + 1/x, 1/x), x) == [] def test_issue_7228(): assert solve(4**(2*(x**2) + 2*x) - 8, x) == [Rational(-3, 2), S.Half] def test_issue_7190(): assert solve(log(x-3) + log(x+3), x) == [sqrt(10)] def test_issue_21004(): x = symbols('x') f = x/sqrt(x**2+1) f_diff = f.diff(x) assert solve(f_diff, x) == [] def test_linear_system(): x, y, z, t, n = symbols('x, y, z, t, n') assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == [] assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == [] assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == [] assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1} M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0], [n + 1, n + 1, -2*n - 1, -(n + 1), 0], [-1, 0, 1, 0, 0]]) assert solve_linear_system(M, x, y, z, t) == \ {x: t*(-n-1)/n, y: 0, z: t*(-n-1)/n} assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t} @XFAIL def test_linear_system_xfail(): # https://github.com/sympy/sympy/issues/6420 M = Matrix([[0, 15.0, 10.0, 700.0], [1, 1, 1, 100.0], [0, 10.0, 5.0, 200.0], [-5.0, 0, 0, 0 ]]) assert solve_linear_system(M, x, y, z) == {x: 0, y: -60.0, z: 160.0} def test_linear_system_function(): a = Function('a') assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)], a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)} def test_linear_system_symbols_doesnt_hang_1(): def _mk_eqs(wy): # Equations for fitting a wy*2 - 1 degree polynomial between two points, # at end points derivatives are known up to order: wy - 1 order = 2*wy - 1 x, x0, x1 = symbols('x, x0, x1', real=True) y0s = symbols('y0_:{}'.format(wy), real=True) y1s = symbols('y1_:{}'.format(wy), real=True) c = symbols('c_:{}'.format(order+1), real=True) expr = sum([coeff*x**o for o, coeff in enumerate(c)]) eqs = [] for i in range(wy): eqs.append(expr.diff(x, i).subs({x: x0}) - y0s[i]) eqs.append(expr.diff(x, i).subs({x: x1}) - y1s[i]) return eqs, c # # The purpose of this test is just to see that these calls don't hang. The # expressions returned are complicated so are not included here. Testing # their correctness takes longer than solving the system. # for n in range(1, 7+1): eqs, c = _mk_eqs(n) solve(eqs, c) def test_linear_system_symbols_doesnt_hang_2(): M = Matrix([ [66, 24, 39, 50, 88, 40, 37, 96, 16, 65, 31, 11, 37, 72, 16, 19, 55, 37, 28, 76], [10, 93, 34, 98, 59, 44, 67, 74, 74, 94, 71, 61, 60, 23, 6, 2, 57, 8, 29, 78], [19, 91, 57, 13, 64, 65, 24, 53, 77, 34, 85, 58, 87, 39, 39, 7, 36, 67, 91, 3], [74, 70, 15, 53, 68, 43, 86, 83, 81, 72, 25, 46, 67, 17, 59, 25, 78, 39, 63, 6], [69, 40, 67, 21, 67, 40, 17, 13, 93, 44, 46, 89, 62, 31, 30, 38, 18, 20, 12, 81], [50, 22, 74, 76, 34, 45, 19, 76, 28, 28, 11, 99, 97, 82, 8, 46, 99, 57, 68, 35], [58, 18, 45, 88, 10, 64, 9, 34, 90, 82, 17, 41, 43, 81, 45, 83, 22, 88, 24, 39], [42, 21, 70, 68, 6, 33, 64, 81, 83, 15, 86, 75, 86, 17, 77, 34, 62, 72, 20, 24], [ 7, 8, 2, 72, 71, 52, 96, 5, 32, 51, 31, 36, 79, 88, 25, 77, 29, 26, 33, 13], [19, 31, 30, 85, 81, 39, 63, 28, 19, 12, 16, 49, 37, 66, 38, 13, 3, 71, 61, 51], [29, 82, 80, 49, 26, 85, 1, 37, 2, 74, 54, 82, 26, 47, 54, 9, 35, 0, 99, 40], [15, 49, 82, 91, 93, 57, 45, 25, 45, 97, 15, 98, 48, 52, 66, 24, 62, 54, 97, 37], [62, 23, 73, 53, 52, 86, 28, 38, 0, 74, 92, 38, 97, 70, 71, 29, 26, 90, 67, 45], [ 2, 32, 23, 24, 71, 37, 25, 71, 5, 41, 97, 65, 93, 13, 65, 45, 25, 88, 69, 50], [40, 56, 1, 29, 79, 98, 79, 62, 37, 28, 45, 47, 3, 1, 32, 74, 98, 35, 84, 32], [33, 15, 87, 79, 65, 9, 14, 63, 24, 19, 46, 28, 74, 20, 29, 96, 84, 91, 93, 1], [97, 18, 12, 52, 1, 2, 50, 14, 52, 76, 19, 82, 41, 73, 51, 79, 13, 3, 82, 96], [40, 28, 52, 10, 10, 71, 56, 78, 82, 5, 29, 48, 1, 26, 16, 18, 50, 76, 86, 52], [38, 89, 83, 43, 29, 52, 90, 77, 57, 0, 67, 20, 81, 88, 48, 96, 88, 58, 14, 3]]) syms = x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 = symbols('x:19') sol = { x0: -S(1967374186044955317099186851240896179)/3166636564687820453598895768302256588, x1: -S(84268280268757263347292368432053826)/791659141171955113399723942075564147, x2: -S(229962957341664730974463872411844965)/1583318282343910226799447884151128294, x3: S(990156781744251750886760432229180537)/6333273129375640907197791536604513176, x4: -S(2169830351210066092046760299593096265)/18999819388126922721593374609813539528, x5: S(4680868883477577389628494526618745355)/9499909694063461360796687304906769764, x6: -S(1590820774344371990683178396480879213)/3166636564687820453598895768302256588, x7: -S(54104723404825537735226491634383072)/339282489073695048599881689460956063, x8: S(3182076494196560075964847771774733847)/6333273129375640907197791536604513176, x9: -S(10870817431029210431989147852497539675)/18999819388126922721593374609813539528, x10: -S(13118019242576506476316318268573312603)/18999819388126922721593374609813539528, x11: -S(5173852969886775824855781403820641259)/4749954847031730680398343652453384882, x12: S(4261112042731942783763341580651820563)/4749954847031730680398343652453384882, x13: -S(821833082694661608993818117038209051)/6333273129375640907197791536604513176, x14: S(906881575107250690508618713632090559)/904753304196520129599684505229216168, x15: -S(732162528717458388995329317371283987)/6333273129375640907197791536604513176, x16: S(4524215476705983545537087360959896817)/9499909694063461360796687304906769764, x17: -S(3898571347562055611881270844646055217)/6333273129375640907197791536604513176, x18: S(7513502486176995632751685137907442269)/18999819388126922721593374609813539528 } eqs = list(M * Matrix(syms + (1,))) assert solve(eqs, syms) == sol y = Symbol('y') eqs = list(y * M * Matrix(syms + (1,))) assert solve(eqs, syms) == sol def test_linear_systemLU(): n = Symbol('n') M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]]) assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n), x: 1 - 12*n/(n**2 + 18*n), y: 6*n/(n**2 + 18*n)} # Note: multiple solutions exist for some of these equations, so the tests # should be expected to break if the implementation of the solver changes # in such a way that a different branch is chosen @slow def test_solve_transcendental(): from sympy.abc import a, b assert solve(exp(x) - 3, x) == [log(3)] assert set(solve((a*x + b)*(exp(x) - 3), x)) == {-b/a, log(3)} assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)] assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)] assert solve(Eq(cos(x), sin(x)), x) == [pi/4] assert set(solve(exp(x) + exp(-x) - y, x)) in [{ log(y/2 - sqrt(y**2 - 4)/2), log(y/2 + sqrt(y**2 - 4)/2), }, { log(y - sqrt(y**2 - 4)) - log(2), log(y + sqrt(y**2 - 4)) - log(2)}, { log(y/2 - sqrt((y - 2)*(y + 2))/2), log(y/2 + sqrt((y - 2)*(y + 2))/2)}] assert solve(exp(x) - 3, x) == [log(3)] assert solve(Eq(exp(x), 3), x) == [log(3)] assert solve(log(x) - 3, x) == [exp(3)] assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)] assert solve(3**(x + 2), x) == [] assert solve(3**(2 - x), x) == [] assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)] assert solve(2*x + 5 + log(3*x - 2), x) == \ [Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2] assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3] assert set(solve((2*x + 8)*(8 + exp(x)), x)) == {S(-4), log(8) + pi*I} eq = 2*exp(3*x + 4) - 3 ans = solve(eq, x) # this generated a failure in flatten assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans) assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3] assert solve(exp(x) + 1, x) == [pi*I] eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9) result = solve(eq, x) x0 = -log(2401) x1 = 3**Rational(1, 5) x2 = log(7**(7*x1/20)) x3 = sqrt(2) x4 = sqrt(5) x5 = x3*sqrt(x4 - 5) x6 = x4 + 1 x7 = 1/(3*log(7)) x8 = -x4 x9 = x3*sqrt(x8 - 5) x10 = x8 + 1 ans = [x7*(x0 - 5*LambertW(x2*(-x5 + x6))), x7*(x0 - 5*LambertW(x2*(x5 + x6))), x7*(x0 - 5*LambertW(x2*(x10 - x9))), x7*(x0 - 5*LambertW(x2*(x10 + x9))), x7*(x0 - 5*LambertW(-log(7**(7*x1/5))))] assert result == ans, result # it works if expanded, too assert solve(eq.expand(), x) == result assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)] assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2] assert solve(z*cos(sin(x)) - y, x) == [ pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi, -asin(acos(y/z) - 2*pi), asin(acos(y/z))] assert solve(z*cos(x), x) == [pi/2, pi*Rational(3, 2)] # issue 4508 assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]] assert solve(y - b*exp(a/x), x) == [a/log(y/b)] # issue 4507 assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]] # issue 4506 assert solve(y - a*x**b, x) == [(y/a)**(1/b)] # issue 4505 assert solve(z**x - y, x) == [log(y)/log(z)] # issue 4504 assert solve(2**x - 10, x) == [1 + log(5)/log(2)] # issue 6744 assert solve(x*y) == [{x: 0}, {y: 0}] assert solve([x*y]) == [{x: 0}, {y: 0}] assert solve(x**y - 1) == [{x: 1}, {y: 0}] assert solve([x**y - 1]) == [{x: 1}, {y: 0}] assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}] assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}] # issue 4739 assert solve(exp(log(5)*x) - 2**x, x) == [0] # issue 14791 assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0] f = Function('f') assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0] assert solve(f(x) - f(0), x) == [0] assert solve(f(x) - f(2 - x), x) == [1] raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x)) raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x)) raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x)) raises(ValueError, lambda: solve(f(x, y) - f(1), x)) # misc # make sure that the right variables is picked up in tsolve # shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated # for eq_down. Actual answers, as determined numerically are approx. +/- 0.83 raises(NotImplementedError, lambda: solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3)) # watch out for recursive loop in tsolve raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x)) # issue 7245 assert solve(sin(sqrt(x))) == [0, pi**2] # issue 7602 a, b = symbols('a, b', real=True, negative=False) assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \ '[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]' # issue 15325 assert solve(y**(1/x) - z, x) == [log(y)/log(z)] def test_solve_for_functions_derivatives(): t = Symbol('t') x = Function('x')(t) y = Function('y')(t) a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2') soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) assert soln == { x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21), y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21), } assert solve(x - 1, x) == [1] assert solve(3*x - 2, x) == [Rational(2, 3)] soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) + a22*y.diff(t) - b2], x.diff(t), y.diff(t)) assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21), x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) } assert solve(x.diff(t) - 1, x.diff(t)) == [1] assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)] eqns = {3*x - 1, 2*y - 4} assert solve(eqns, {x, y}) == { x: Rational(1, 3), y: 2 } x = Symbol('x') f = Function('f') F = x**2 + f(x)**2 - 4*x - 1 assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)] # Mixed cased with a Symbol and a Function x = Symbol('x') y = Function('y')(t) soln = solve([a11*x + a12*y.diff(t) - b1, a21*x + a22*y.diff(t) - b2], x, y.diff(t)) assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21), x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) } # issue 13263 x = Symbol('x') f = Function('f') soln = solve([f(x).diff(x) + f(x).diff(x, 2) - 1, f(x).diff(x) - f(x).diff(x, 2)], f(x).diff(x), f(x).diff(x, 2)) assert soln == { f(x).diff(x, 2): S(1)/2, f(x).diff(x): S(1)/2 } soln = solve([f(x).diff(x, 2) + f(x).diff(x, 3) - 1, 1 - f(x).diff(x, 2) - f(x).diff(x, 3), 1 - f(x).diff(x,3)], f(x).diff(x, 2), f(x).diff(x, 3)) assert soln == { f(x).diff(x, 2): 0, f(x).diff(x, 3): 1 } def test_issue_3725(): f = Function('f') F = x**2 + f(x)**2 - 4*x - 1 e = F.diff(x) assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]] def test_issue_3870(): a, b, c, d = symbols('a b c d') A = Matrix(2, 2, [a, b, c, d]) B = Matrix(2, 2, [0, 2, -3, 0]) C = Matrix(2, 2, [1, 2, 3, 4]) assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c} assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c} assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0} assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c} assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c} assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0} def test_solve_linear(): w = Wild('w') assert solve_linear(x, x) == (0, 1) assert solve_linear(x, exclude=[x]) == (0, 1) assert solve_linear(x, symbols=[w]) == (0, 1) assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)] assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x) assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)] assert solve_linear(3*x - y, 0, [x]) == (x, y/3) assert solve_linear(3*x - y, 0, [y]) == (y, 3*x) assert solve_linear(x**2/y, 1) == (y, x**2) assert solve_linear(w, x) in [(w, x), (x, w)] assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \ (y, -2 - cos(x)**2 - sin(x)**2) assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1) assert solve_linear(Eq(x, 3)) == (x, 3) assert solve_linear(1/(1/x - 2)) == (0, 0) assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1) assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1) assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0) assert solve_linear(0**x - 1) == (0**x - 1, 1) assert solve_linear(1 + 1/(x - 1)) == (x, 0) eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0 assert solve_linear(eq) == (0, 1) eq = cos(x)**2 + sin(x)**2 # = 1 assert solve_linear(eq) == (0, 1) raises(ValueError, lambda: solve_linear(Eq(x, 3), 3)) def test_solve_undetermined_coeffs(): assert solve_undetermined_coeffs( a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x ) == {a: -2, b: 2, c: -1} # Test that rational functions work assert solve_undetermined_coeffs(a/x + b/(x + 1) - (2*x + 1)/(x**2 + x), [a, b], x) == {a: 1, b: 1} # Test cancellation in rational functions assert solve_undetermined_coeffs( ((c + 1)*a*x**2 + (c + 1)*b*x**2 + (c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1), [a, b, c], x) == \ {a: -2, b: 2, c: -1} # multivariate X, Y, Z = y, x**y, y*x**y eq = a*X + b*Y + c*Z - X - 2*Y - 3*Z coeffs = a, b, c syms = x, y assert solve_undetermined_coeffs(eq, coeffs) == { a: 1, b: 2, c: 3} assert solve_undetermined_coeffs(eq, coeffs, syms) == { a: 1, b: 2, c: 3} assert solve_undetermined_coeffs(eq, coeffs, *syms) == { a: 1, b: 2, c: 3} # check output format assert solve_undetermined_coeffs(a*x + a - 2, [a]) == [] assert solve_undetermined_coeffs(a**2*x - 4*x, [a]) == [ {a: -2}, {a: 2}] assert solve_undetermined_coeffs(0, [a]) == [] assert solve_undetermined_coeffs(0, [a], dict=True) == [] assert solve_undetermined_coeffs(0, [a], set=True) == ([], {}) assert solve_undetermined_coeffs(1, [a]) == [] abeq = a*x - 2*x + b - 3 s = {b, a} assert solve_undetermined_coeffs(abeq, s, x) == {a: 2, b: 3} assert solve_undetermined_coeffs(abeq, s, x, set=True) == ([a, b], {(2, 3)}) assert solve_undetermined_coeffs(sin(a*x) - sin(2*x), (a,)) is None assert solve_undetermined_coeffs(a*x + b*x - 2*x, (a, b)) == {a: 2 - b} def test_solve_inequalities(): x = Symbol('x') sol = And(S.Zero < x, x < oo) assert solve(x + 1 > 1) == sol assert solve([x + 1 > 1]) == sol assert solve([x + 1 > 1], x) == sol assert solve([x + 1 > 1], [x]) == sol system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)] assert solve(system) == \ And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0)) x = Symbol('x', real=True) system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)] assert solve(system) == \ Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2)))) # issues 6627, 3448 assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3)) assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1)) assert solve(sin(x) > S.Half) == And(pi/6 < x, x < pi*Rational(5, 6)) assert solve(Eq(False, x < 1)) == (S.One <= x) & (x < oo) assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1) assert solve(Eq(x < 1, False)) == (S.One <= x) & (x < oo) assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1) assert solve(Eq(False, x)) == False assert solve(Eq(0, x)) == [0] assert solve(Eq(True, x)) == True assert solve(Eq(1, x)) == [1] assert solve(Eq(False, ~x)) == True assert solve(Eq(True, ~x)) == False assert solve(Ne(True, x)) == False assert solve(Ne(1, x)) == (x > -oo) & (x < oo) & Ne(x, 1) def test_issue_4793(): assert solve(1/x) == [] assert solve(x*(1 - 5/x)) == [5] assert solve(x + sqrt(x) - 2) == [1] assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == [] assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == [] assert solve((x/(x + 1) + 3)**(-2)) == [] assert solve(x/sqrt(x**2 + 1), x) == [0] assert solve(exp(x) - y, x) == [log(y)] assert solve(exp(x)) == [] assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]] eq = 4*3**(5*x + 2) - 7 ans = solve(eq, x) assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans) assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == ( [x, y], {(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))}) assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}] assert solve((x - 1)/(1 + 1/(x - 1))) == [] assert solve(x**(y*z) - x, x) == [1] raises(NotImplementedError, lambda: solve(log(x) - exp(x), x)) raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3)) def test_PR1964(): # issue 5171 assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0] assert solve(sqrt(x - 1)) == [1] # issue 4462 a = Symbol('a') assert solve(-3*a/sqrt(x), x) == [] # issue 4486 assert solve(2*x/(x + 2) - 1, x) == [2] # issue 4496 assert set(solve((x**2/(7 - x)).diff(x))) == {S.Zero, S(14)} # issue 4695 f = Function('f') assert solve((3 - 5*x/f(x))*f(x), f(x)) == [x*Rational(5, 3)] # issue 4497 assert solve(1/root(5 + x, 5) - 9, x) == [Rational(-295244, 59049)] assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(Rational(-1, 2) + sqrt(17)/2)**4] assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \ [ {log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)}, {2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)}, {log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)}, ] assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \ {log(-sqrt(3) + 2), log(sqrt(3) + 2)} assert set(solve(x**y + x**(2*y) - 1, x)) == \ {(Rational(-1, 2) + sqrt(5)/2)**(1/y), (Rational(-1, 2) - sqrt(5)/2)**(1/y)} assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)] assert solve( x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]] # if you do inversion too soon then multiple roots (as for the following) # will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3 E = S.Exp1 assert solve(exp(3*x) - exp(3), x) in [ [1, log(E*(Rational(-1, 2) - sqrt(3)*I/2)), log(E*(Rational(-1, 2) + sqrt(3)*I/2))], [1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)], ] # coverage test p = Symbol('p', positive=True) assert solve((1/p + 1)**(p + 1)) == [] def test_issue_5197(): x = Symbol('x', real=True) assert solve(x**2 + 1, x) == [] n = Symbol('n', integer=True, positive=True) assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1] x = Symbol('x', positive=True) y = Symbol('y') assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == [] # not {x: -3, y: 1} b/c x is positive # The solution following should not contain (-sqrt(2), sqrt(2)) assert solve([(x + y), 2 - y**2], x, y) == [(sqrt(2), -sqrt(2))] y = Symbol('y', positive=True) # The solution following should not contain {y: -x*exp(x/2)} assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}] x, y, z = symbols('x y z', positive=True) assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}] def test_checking(): assert set( solve(x*(x - y/x), x, check=False)) == {sqrt(y), S.Zero, -sqrt(y)} assert set(solve(x*(x - y/x), x, check=True)) == {sqrt(y), -sqrt(y)} # {x: 0, y: 4} sets denominator to 0 in the following so system should return None assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == [] # 0 sets denominator of 1/x to zero so None is returned assert solve(1/(1/x + 2)) == [] def test_issue_4671_4463_4467(): assert solve(sqrt(x**2 - 1) - 2) in ([sqrt(5), -sqrt(5)], [-sqrt(5), sqrt(5)]) assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [ -sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))] C1, C2 = symbols('C1 C2') f = Function('f') assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))] a = Symbol('a') E = S.Exp1 assert solve(1 - log(a + 4*x**2), x) in ( [-sqrt(-a + E)/2, sqrt(-a + E)/2], [sqrt(-a + E)/2, -sqrt(-a + E)/2] ) assert solve(log(a**(-3) - x**2)/a, x) in ( [-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))], [sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],) assert solve(1 - log(a + 4*x**2), x) in ( [-sqrt(-a + E)/2, sqrt(-a + E)/2], [sqrt(-a + E)/2, -sqrt(-a + E)/2],) assert solve((a**2 + 1)*(sin(a*x) + cos(a*x)), x) == [-pi/(4*a)] assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a] assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \ {log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a, log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a} assert solve(atan(x) - 1) == [tan(1)] def test_issue_5132(): r, t = symbols('r,t') assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \ {( -sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)), (sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))} assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \ [(log(sin(Rational(1, 3))), Rational(1, 3))] assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \ [(log(-sin(log(3))), -log(3))] assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \ {(log(-sin(2)), -S(2)), (log(sin(2)), S(2))} eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] assert solve(eqs, set=True) == \ ([y, z], { (-log(3), sqrt(-exp(2*x) - sin(log(3)))), (-log(3), -sqrt(-exp(2*x) - sin(log(3))))}) assert solve(eqs, x, z, set=True) == ( [x, z], {(x, sqrt(-exp(2*x) + sin(y))), (x, -sqrt(-exp(2*x) + sin(y)))}) assert set(solve(eqs, x, y)) == \ { (log(-sqrt(-z**2 - sin(log(3)))), -log(3)), (log(-z**2 - sin(log(3)))/2, -log(3))} assert set(solve(eqs, y, z)) == \ { (-log(3), -sqrt(-exp(2*x) - sin(log(3)))), (-log(3), sqrt(-exp(2*x) - sin(log(3))))} eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3] assert solve(eqs, set=True) == ([y, z], { (-log(3), -exp(2*x) - sin(log(3)))}) assert solve(eqs, x, z, set=True) == ( [x, z], {(x, -exp(2*x) + sin(y))}) assert set(solve(eqs, x, y)) == { (log(-sqrt(-z - sin(log(3)))), -log(3)), (log(-z - sin(log(3)))/2, -log(3))} assert solve(eqs, z, y) == \ [(-exp(2*x) - sin(log(3)), -log(3))] assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == ( [x, y], {(S.One, S(3)), (S(3), S.One)}) assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \ {(S.One, S(3)), (S(3), S.One)} def test_issue_5335(): lam, a0, conc = symbols('lam a0 conc') a = 0.005 b = 0.743436700916726 eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x, a0*(1 - x/2)*x - 1*y - b*y, x + y - conc] sym = [x, y, a0] # there are 4 solutions obtained manually but only two are valid assert len(solve(eqs, sym, manual=True, minimal=True)) == 2 assert len(solve(eqs, sym)) == 2 # cf below with rational=False @SKIP("Hangs") def _test_issue_5335_float(): # gives ZeroDivisionError: polynomial division lam, a0, conc = symbols('lam a0 conc') a = 0.005 b = 0.743436700916726 eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x, a0*(1 - x/2)*x - 1*y - b*y, x + y - conc] sym = [x, y, a0] assert len(solve(eqs, sym, rational=False)) == 2 def test_issue_5767(): assert set(solve([x**2 + y + 4], [x])) == \ {(-sqrt(-y - 4),), (sqrt(-y - 4),)} def _make_example_24609(): D, R, H, B_g, V, D_c = symbols("D, R, H, B_g, V, D_c", real=True, positive=True) Sigma_f, Sigma_a, nu = symbols("Sigma_f, Sigma_a, nu", real=True, positive=True) x = symbols("x", real=True, positive=True) eq = ( 2**(S(2)/3)*pi**(S(2)/3)*D_c*(S(231361)/10000 + pi**2/x**2) /(6*V**(S(2)/3)*x**(S(1)/3)) - 2**(S(2)/3)*pi**(S(8)/3)*D_c/(2*V**(S(2)/3)*x**(S(7)/3)) ) expected = 100*sqrt(2)*pi/481 return eq, expected, x def test_issue_24609(): # https://github.com/sympy/sympy/issues/24609 eq, expected, x = _make_example_24609() assert solve(eq, x, simplify=True) == [expected] [solapprox] = solve(eq.n(), x) assert abs(solapprox - expected.n()) < 1e-14 @XFAIL def test_issue_24609_xfail(): # # This returns 5 solutions when it should be 1 (with x positive). # Simplification reveals all solutions to be equivalent. It is expected # that solve without simplify=True returns duplicate solutions in some # cases but the core of this equation is a simple quadratic that can easily # be solved without introducing any redundant solutions: # # >>> print(factor_terms(eq.as_numer_denom()[0])) # 2**(2/3)*pi**(2/3)*D_c*V**(2/3)*x**(7/3)*(231361*x**2 - 20000*pi**2) # eq, expected, x = _make_example_24609() assert len(solve(eq, x)) == [expected] # # We do not want to pass this test just by using simplify so if the above # passes then uncomment the additional test below: # # assert len(solve(eq, x, simplify=False)) == 1 def test_polysys(): assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \ {(S.One, S(2)), (1 + sqrt(5), 2 - sqrt(5)), (1 - sqrt(5), 2 + sqrt(5))} assert solve([x**2 + y - 2, x**2 + y]) == [] # the ordering should be whatever the user requested assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 + y - 3, x - y - 4], (y, x)) @slow def test_unrad1(): raises(NotImplementedError, lambda: unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3)) raises(NotImplementedError, lambda: unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y))) s = symbols('s', cls=Dummy) # checkers to deal with possibility of answer coming # back with a sign change (cf issue 5203) def check(rv, ans): assert bool(rv[1]) == bool(ans[1]) if ans[1]: return s_check(rv, ans) e = rv[0].expand() a = ans[0].expand() return e in [a, -a] and rv[1] == ans[1] def s_check(rv, ans): # get the dummy rv = list(rv) d = rv[0].atoms(Dummy) reps = list(zip(d, [s]*len(d))) # replace s with this dummy rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)]) ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)]) return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \ str(rv[1]) == str(ans[1]) assert unrad(1) is None assert check(unrad(sqrt(x)), (x, [])) assert check(unrad(sqrt(x) + 1), (x - 1, [])) assert check(unrad(sqrt(x) + root(x, 3) + 2), (s**3 + s**2 + 2, [s, s**6 - x])) assert check(unrad(sqrt(x)*root(x, 3) + 2), (x**5 - 64, [])) assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)), (x**3 - (x + 1)**2, [])) assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)), (-2*sqrt(2)*x - 2*x + 1, [])) assert check(unrad(sqrt(x) + sqrt(x + 1) + 2), (16*x - 9, [])) assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)), (5*x**2 - 4*x, [])) assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)), ((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, [])) assert check(unrad(sqrt(x) + sqrt(1 - x)), (2*x - 1, [])) assert check(unrad(sqrt(x) + sqrt(1 - x) - 3), (x**2 - x + 16, [])) assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)), (5*x**2 - 2*x + 1, [])) assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [ (25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []), (25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])] assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \ (41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487 assert check(unrad(sqrt(x) + sqrt(x + 1)), (S.One, [])) eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) assert check(unrad(eq), (16*x**2 - 9*x, [])) assert set(solve(eq, check=False)) == {S.Zero, Rational(9, 16)} assert solve(eq) == [] # but this one really does have those solutions assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \ {S.Zero, Rational(9, 16)} assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y), (S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), [])) assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)), (x**5 - x**4 - x**3 + 2*x**2 + x - 1, [])) assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y), (4*x*y + x - 4*y, [])) assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x), (x**2 - x + 4, [])) # http://tutorial.math.lamar.edu/ # Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a assert solve(Eq(x, sqrt(x + 6))) == [3] assert solve(Eq(x + sqrt(x - 4), 4)) == [4] assert solve(Eq(1, x + sqrt(2*x - 3))) == [] assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == {-S.One, S(2)} assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == {S(5), S(13)} assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6] # http://www.purplemath.com/modules/solverad.htm assert solve((2*x - 5)**Rational(1, 3) - 3) == [16] assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \ {Rational(-1, 2), Rational(-1, 3)} assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == {-S(8), S(2)} assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0] assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5] assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16] assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4] assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0] assert solve(sqrt(x) - 2 - 5) == [49] assert solve(sqrt(x - 3) - sqrt(x) - 3) == [] assert solve(sqrt(x - 1) - x + 7) == [10] assert solve(sqrt(x - 2) - 5) == [27] assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3] assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == [] # don't posify the expression in unrad and do use _mexpand z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x) p = posify(z)[0] assert solve(p) == [] assert solve(z) == [] assert solve(z + 6*I) == [Rational(-1, 11)] assert solve(p + 6*I) == [] # issue 8622 assert unrad(root(x + 1, 5) - root(x, 3)) == ( -(x**5 - x**3 - 3*x**2 - 3*x - 1), []) # issue #8679 assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x), (s**3 + s**2 + s + sqrt(y), [s, s**3 - x])) # for coverage assert check(unrad(sqrt(x) + root(x, 3) + y), (s**3 + s**2 + y, [s, s**6 - x])) assert solve(sqrt(x) + root(x, 3) - 2) == [1] raises(NotImplementedError, lambda: solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2)) # fails through a different code path raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x)) # unrad some assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [ x + (x**Rational(1, 3) + x)**Rational(5, 2)] assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2), (s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 - 192*s - 56, [s, s**2 - x])) e = root(x + 1, 3) + root(x, 3) assert unrad(e) == (2*x + 1, []) eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) assert check(unrad(eq), (15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, [])) assert check(unrad(root(x, 4) + root(x, 4)**3 - 1), (s**3 + s - 1, [s, s**4 - x])) assert check(unrad(root(x, 2) + root(x, 2)**3 - 1), (x**3 + 2*x**2 + x - 1, [])) assert unrad(x**0.5) is None assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3), (s**3 + s + t, [s, s**5 - x - y])) assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y), (s**3 + s + x, [s, s**5 - x - y])) assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x), (s**5 + s**3 + s - y, [s, s**5 - x - y])) assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)), (s**5 + 5*2**Rational(1, 5)*s**4 + s**3 + 10*2**Rational(2, 5)*s**3 + 10*2**Rational(3, 5)*s**2 + 5*2**Rational(4, 5)*s + 4, [s, s**3 - x + 1])) raises(NotImplementedError, lambda: unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1))) # the simplify flag should be reset to False for unrad results; # if it's not then this next test will take a long time assert solve(root(x, 3) + root(x, 5) - 2) == [1] eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) assert check(unrad(eq), ((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), [])) ans = S(''' [4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)) + 4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''') assert solve(eq) == ans # duplicate radical handling assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2), (s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1])) # cov post-processing e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2 assert check(unrad(e), (s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30, [s, s**3 - x**2 - 1])) e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2 assert check(unrad(e), (s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25, [s, s**3 - x - 1])) assert check(unrad(e, _reverse=True), (s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89, [s, s**2 - x - sqrt(x + 1)])) # this one needs r0, r1 reversal to work assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2), (s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 + 32*s + 17, [s, s**6 - x])) # why does this pass assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == ( -(x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5 - cosh(x)**5), []) # and this fail? #assert unrad(sqrt(cosh(x)/x) + root(x + 1, 3)*sqrt(x) - 1) == ( # -s**6 + 6*s**5 - 15*s**4 + 20*s**3 - 15*s**2 + 6*s + x**5 + # 2*x**4 + x**3 - 1, [s, s**2 - cosh(x)/x]) # watch for symbols in exponents assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x), (s**(2*y) + s + 1, [s, s**3 - x - y])) # should _Q be so lenient? assert unrad(x**(S.Half/y) + y, x) == (x**(1/y) - y**2, []) # This tests two things: that if full unrad is attempted and fails # the solution should still be found; also it tests that the use of # composite assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3 assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 - 1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3 # watch out for when the cov doesn't involve the symbol of interest eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1') assert solve(eq, y) == [ 2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 + S(512)/343)**(S(1)/3)*(-S(1)/2 - sqrt(3)*I/2), 2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 + S(512)/343)**(S(1)/3)*(-S(1)/2 + sqrt(3)*I/2), 2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 + S(512)/343)**(S(1)/3)] eq = root(x + 1, 3) - (root(x, 3) + root(x, 5)) assert check(unrad(eq), (3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x])) assert check(unrad(eq - 2), (3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 + 12*s**3 + 7, [s, s**15 - x])) assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)), (s*(4096*s**9 + 960*s**8 + 48*s**7 - s**6 - 1728), [s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389 assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2), (343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 - 3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x - 1])) # orig expr has one real root: -0.048 assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)), (729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 - 3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x - 1])) # orig expr has 2 real roots: -0.91, -0.15 assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2), (729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 + 453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3 - 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1])) # orig expr has 1 real root: 19.53 ans = solve(sqrt(x) + sqrt(x + 1) - sqrt(1 - x) - sqrt(2 + x)) assert len(ans) == 1 and NS(ans[0])[:4] == '0.73' # the fence optimization problem # https://github.com/sympy/sympy/issues/4793#issuecomment-36994519 F = Symbol('F') eq = F - (2*x + 2*y + sqrt(x**2 + y**2)) ans = F*Rational(2, 7) - sqrt(2)*F/14 X = solve(eq, x, check=False) for xi in reversed(X): # reverse since currently, ans is the 2nd one Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False) if any((a - ans).expand().is_zero for a in Y): break else: assert None # no answer was found assert solve(sqrt(x + 1) + root(x, 3) - 2) == S(''' [(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 + sqrt(93)/6)**(1/3))**3]''') assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S(''' [(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 + sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 + sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''') assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S(''' [(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) + 2)**2]''') eq = S(''' -x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''') assert check(unrad(eq), (s*-(-s**6 + sqrt(3)*s**6*I - 153*2**Rational(2, 3)*3**Rational(1, 3)*s**4 + 51*12**Rational(1, 3)*s**4 - 102*2**Rational(2, 3)*3**Rational(5, 6)*s**4*I - 1620*s**3 + 1620*sqrt(3)*s**3*I + 13872*18**Rational(1, 3)*s**2 - 471648 + 471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 - 165240*x + 61484) + 810])) assert solve(eq) == [] # not other code errors eq = root(x, 3) - root(y, 3) + root(x, 5) assert check(unrad(eq), (s**15 + 3*s**13 + 3*s**11 + s**9 - y, [s, s**15 - x])) eq = root(x, 3) + root(y, 3) + root(x*y, 4) assert check(unrad(eq), (s*y*(-s**12 - 3*s**11*y - 3*s**10*y**2 - s**9*y**3 - 3*s**8*y**2 + 21*s**7*y**3 - 3*s**6*y**4 - 3*s**4*y**4 - 3*s**3*y**5 - y**6), [s, s**4 - x*y])) raises(NotImplementedError, lambda: unrad(root(x, 3) + root(y, 3) + root(x*y, 5))) # Test unrad with an Equality eq = Eq(-x**(S(1)/5) + x**(S(1)/3), -3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5)) assert check(unrad(eq), (-s**5 + s**3 - 3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5), [s, s**15 - x])) # make sure buried radicals are exposed s = sqrt(x) - 1 assert unrad(s**2 - s**3) == (x**3 - 6*x**2 + 9*x - 4, []) # make sure numerators which are already polynomial are rejected assert unrad((x/(x + 1) + 3)**(-2), x) is None # https://github.com/sympy/sympy/issues/23707 eq = sqrt(x - y)*exp(t*sqrt(x - y)) - exp(t*sqrt(x - y)) assert solve(eq, y) == [x - 1] assert unrad(eq) is None @slow def test_unrad_slow(): # this has roots with multiplicity > 1; there should be no # repeats in roots obtained, however eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*(1 + sqrt(1 + 2*sqrt(1 - 4*x**2)))) assert solve(eq) == [S.Half] @XFAIL def test_unrad_fail(): # this only works if we check real_root(eq.subs(x, Rational(1, 3))) # but checksol doesn't work like that assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [Rational(1, 3)] assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [ -1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3] def test_checksol(): x, y, r, t = symbols('x, y, r, t') eq = r - x**2 - y**2 dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1), x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)} assert checksol(eq, dict_var_soln) == True assert checksol(Eq(x, False), {x: False}) is True assert checksol(Ne(x, False), {x: False}) is False assert checksol(Eq(x < 1, True), {x: 0}) is True assert checksol(Eq(x < 1, True), {x: 1}) is False assert checksol(Eq(x < 1, False), {x: 1}) is True assert checksol(Eq(x < 1, False), {x: 0}) is False assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True assert checksol([x - 1, x**2 - 1], x, 1) is True assert checksol([x - 1, x**2 - 2], x, 1) is False assert checksol(Poly(x**2 - 1), x, 1) is True assert checksol(0, {}) is True assert checksol([1e-10, x - 2], x, 2) is False assert checksol([0.5, 0, x], x, 0) is False assert checksol(y, x, 2) is False assert checksol(x+1e-10, x, 0, numerical=True) is True assert checksol(x+1e-10, x, 0, numerical=False) is False assert checksol(exp(92*x), {x: log(sqrt(2)/2)}) is False assert checksol(exp(92*x), {x: log(sqrt(2)/2) + I*pi}) is False assert checksol(1/x**5, x, 1000) is False raises(ValueError, lambda: checksol(x, 1)) raises(ValueError, lambda: checksol([], x, 1)) def test__invert(): assert _invert(x - 2) == (2, x) assert _invert(2) == (2, 0) assert _invert(exp(1/x) - 3, x) == (1/log(3), x) assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x) assert _invert(a, x) == (a, 0) def test_issue_4463(): assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)] assert solve(x**x) == [] assert solve(x**x - 2) == [exp(LambertW(log(2)))] assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2] @slow def test_issue_5114_solvers(): a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r') # there is no 'a' in the equation set but this is how the # problem was originally posed syms = a, b, c, f, h, k, n eqs = [b + r/d - c/d, c*(1/d + 1/e + 1/g) - f/g - r/d, f*(1/g + 1/i + 1/j) - c/g - h/i, h*(1/i + 1/l + 1/m) - f/i - k/m, k*(1/m + 1/o + 1/p) - h/m - n/p, n*(1/p + 1/q) - k/p] assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1 def test_issue_5849(): # # XXX: This system does not have a solution for most values of the # parameters. Generally solve returns the empty set for systems that are # generically inconsistent. # I1, I2, I3, I4, I5, I6 = symbols('I1:7') dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4') e = ( I1 - I2 - I3, I3 - I4 - I5, I4 + I5 - I6, -I1 + I2 + I6, -2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12, -I4 + dQ4, -I2 + dQ2, 2*I3 + 2*I5 + 3*I6 - Q2, I4 - 2*I5 + 2*Q4 + dI4 ) ans = [{ I1: I2 + I3, dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24, I4: I3 - I5, dQ4: I3 - I5, Q4: -I3/2 + 3*I5/2 - dI4/2, dQ2: I2, Q2: 2*I3 + 2*I5 + 3*I6}] v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4 assert solve(e, *v, manual=True, check=False, dict=True) == ans assert solve(e, *v, manual=True, check=False) == [ tuple([a.get(i, i) for i in v]) for a in ans] assert solve(e, *v, manual=True) == [] assert solve(e, *v) == [] # the matrix solver (tested below) doesn't like this because it produces # a zero row in the matrix. Is this related to issue 4551? assert [ei.subs( ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0] def test_issue_5849_matrix(): '''Same as test_issue_5849 but solved with the matrix solver. A solution only exists if I3 == I6 which is not generically true, but `solve` does not return conditions under which the solution is valid, only a solution that is canonical and consistent with the input. ''' # a simple example with the same issue # assert solve([x+y+z, x+y], [x, y]) == {x: y} # the longer example I1, I2, I3, I4, I5, I6 = symbols('I1:7') dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4') e = ( I1 - I2 - I3, I3 - I4 - I5, I4 + I5 - I6, -I1 + I2 + I6, -2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12, -I4 + dQ4, -I2 + dQ2, 2*I3 + 2*I5 + 3*I6 - Q2, I4 - 2*I5 + 2*Q4 + dI4 ) assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == [] def test_issue_21882(): a, b, c, d, f, g, k = unknowns = symbols('a, b, c, d, f, g, k') equations = [ -k*a + b + 5*f/6 + 2*c/9 + 5*d/6 + 4*a/3, -k*f + 4*f/3 + d/2, -k*d + f/6 + d, 13*b/18 + 13*c/18 + 13*a/18, -k*c + b/2 + 20*c/9 + a, -k*b + b + c/18 + a/6, 5*b/3 + c/3 + a, 2*b/3 + 2*c + 4*a/3, -g, ] answer = [ {a: 0, f: 0, b: 0, d: 0, c: 0, g: 0}, {a: 0, f: -d, b: 0, k: S(5)/6, c: 0, g: 0}, {a: -2*c, f: 0, b: c, d: 0, k: S(13)/18, g: 0}] # but not {a: 0, f: 0, b: 0, k: S(3)/2, c: 0, d: 0, g: 0} # since this is already covered by the first solution got = solve(equations, unknowns, dict=True) assert got == answer, (got,answer) def test_issue_5901(): f, g, h = map(Function, 'fgh') a = Symbol('a') D = Derivative(f(x), x) G = Derivative(g(a), a) assert solve(f(x) + f(x).diff(x), f(x)) == \ [-D] assert solve(f(x) - 3, f(x)) == \ [3] assert solve(f(x) - 3*f(x).diff(x), f(x)) == \ [3*D] assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \ {f(x): 3*D} assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \ [(3*D, 9*D**2 + 4)] assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a), h(a), g(a), set=True) == \ ([h(a), g(a)], { (-sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a)), (sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a))}), solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a), h(a), g(a), set=True) args = [[f(x).diff(x, 2)*(f(x) + g(x)), 2 - g(x)**2], f(x), g(x)] assert solve(*args, set=True)[1] == \ {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))} eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4] assert solve(eqs, f(x), g(x), set=True) == \ ([f(x), g(x)], { (-sqrt(2*D - 2), S(2)), (sqrt(2*D - 2), S(2)), (-sqrt(2*D + 2), -S(2)), (sqrt(2*D + 2), -S(2))}) # the underlying problem was in solve_linear that was not masking off # anything but a Mul or Add; it now raises an error if it gets anything # but a symbol and solve handles the substitutions necessary so solve_linear # won't make this error raises( ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)])) assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \ (f(x) + Derivative(f(x), x), 1) assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \ (f(x) + Integral(x, (x, y)), 1) assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \ (x + f(x) + Integral(x, (x, y)), 1) assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \ (x, -f(y) - Integral(x, (x, y))) assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \ (x, 1/a) assert solve_linear(x + Derivative(2*x, x)) == \ (x, -2) assert solve_linear(x + Integral(x, y), symbols=[x]) == \ (x, 0) assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \ (x, 2/(y + 1)) assert set(solve(x + exp(x)**2, exp(x))) == \ {-sqrt(-x), sqrt(-x)} assert solve(x + exp(x), x, implicit=True) == \ [-exp(x)] assert solve(cos(x) - sin(x), x, implicit=True) == [] assert solve(x - sin(x), x, implicit=True) == \ [sin(x)] assert solve(x**2 + x - 3, x, implicit=True) == \ [-x**2 + 3] assert solve(x**2 + x - 3, x**2, implicit=True) == \ [-x + 3] def test_issue_5912(): assert set(solve(x**2 - x - 0.1, rational=True)) == \ {S.Half + sqrt(35)/10, -sqrt(35)/10 + S.Half} ans = solve(x**2 - x - 0.1, rational=False) assert len(ans) == 2 and all(a.is_Number for a in ans) ans = solve(x**2 - x - 0.1) assert len(ans) == 2 and all(a.is_Number for a in ans) def test_float_handling(): def test(e1, e2): return len(e1.atoms(Float)) == len(e2.atoms(Float)) assert solve(x - 0.5, rational=True)[0].is_Rational assert solve(x - 0.5, rational=False)[0].is_Float assert solve(x - S.Half, rational=False)[0].is_Rational assert solve(x - 0.5, rational=None)[0].is_Float assert solve(x - S.Half, rational=None)[0].is_Rational assert test(nfloat(1 + 2*x), 1.0 + 2.0*x) for contain in [list, tuple, set]: ans = nfloat(contain([1 + 2*x])) assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x) k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0] assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x) assert test(nfloat(cos(2*x)), cos(2.0*x)) assert test(nfloat(3*x**2), 3.0*x**2) assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0) assert test(nfloat(exp(2*x)), exp(2.0*x)) assert test(nfloat(x/3), x/3.0) assert test(nfloat(x**4 + 2*x + cos(Rational(1, 3)) + 1), x**4 + 2.0*x + 1.94495694631474) # don't call nfloat if there is no solution tot = 100 + c + z + t assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == [] def test_check_assumptions(): x = symbols('x', positive=True) assert solve(x**2 - 1) == [1] def test_issue_6056(): assert solve(tanh(x + 3)*tanh(x - 3) - 1) == [] assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \ [I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)] assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \ [I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)] def test_issue_5673(): eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x))) assert checksol(eq, x, 2) is True assert checksol(eq, x, 2, numerical=False) is None def test_exclude(): R, C, Ri, Vout, V1, Vminus, Vplus, s = \ symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s') Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln eqs = [C*V1*s + Vplus*(-2*C*s - 1/R), Vminus*(-1/Ri - 1/Rf) + Vout/Rf, C*Vplus*s + V1*(-C*s - 1/R) + Vout/R, -Vminus + Vplus] assert solve(eqs, exclude=s*C*R) == [ { Rf: Ri*(C*R*s + 1)**2/(C*R*s), Vminus: Vplus, V1: 2*Vplus + Vplus/(C*R*s), Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)}, { Vplus: 0, Vminus: 0, V1: 0, Vout: 0}, ] # TODO: Investigate why currently solution [0] is preferred over [1]. assert solve(eqs, exclude=[Vplus, s, C]) in [[{ Vminus: Vplus, V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2, R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s), Rf: Ri*(Vout - Vplus)/Vplus, }, { Vminus: Vplus, V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2, R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s), Rf: Ri*(Vout - Vplus)/Vplus, }], [{ Vminus: Vplus, Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus), Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)), R: Vplus/(C*s*(V1 - 2*Vplus)), }]] def test_high_order_roots(): s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4) assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots()) def test_minsolve_linear_system(): pqt = dict(quick=True, particular=True) pqf = dict(quick=False, particular=True) assert solve([x + y - 5, 2*x - y - 1], **pqt) == {x: 2, y: 3} assert solve([x + y - 5, 2*x - y - 1], **pqf) == {x: 2, y: 3} def count(dic): return len([x for x in dic.values() if x == 0]) assert count(solve([x + y + z, y + z + a + t], **pqt)) == 3 assert count(solve([x + y + z, y + z + a + t], **pqf)) == 3 assert count(solve([x + y + z, y + z + a], **pqt)) == 1 assert count(solve([x + y + z, y + z + a], **pqf)) == 2 # issue 22718 A = Matrix([ [ 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0], [ 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, -1, -1, 0, 0], [-1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 1], [ 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, -1, 0, -1, 0], [-1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 1], [-1, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1], [ 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, -1, -1, 0], [ 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 1, 1], [ 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1], [ 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1], [ 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [ 0, 0, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0]]) v = Matrix(symbols("v:14", integer=True)) B = Matrix([[2], [-2], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]]) eqs = A@v-B assert solve(eqs) == [] assert solve(eqs, particular=True) == [] # assumption violated assert all(v for v in solve([x + y + z, y + z + a]).values()) for _q in (True, False): assert not all(v for v in solve( [x + y + z, y + z + a], quick=_q, particular=True).values()) # raise error if quick used w/o particular=True raises(ValueError, lambda: solve([x + 1], quick=_q)) raises(ValueError, lambda: solve([x + 1], quick=_q, particular=False)) # and give a good error message if someone tries to use # particular with a single equation raises(ValueError, lambda: solve(x + 1, particular=True)) def test_real_roots(): # cf. issue 6650 x = Symbol('x', real=True) assert len(solve(x**5 + x**3 + 1)) == 1 def test_issue_6528(): eqs = [ 327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626, 895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000] # two expressions encountered are > 1400 ops long so if this hangs # it is likely because simplification is being done assert len(solve(eqs, y, x, check=False)) == 4 def test_overdetermined(): x = symbols('x', real=True) eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1] assert solve(eqs, x) == [(S.Half,)] assert solve(eqs, x, manual=True) == [(S.Half,)] assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)] def test_issue_6605(): x = symbols('x') assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)] # while the first one passed, this one failed x = symbols('x', real=True) assert solve(5**(x/2) - 2**(x/3)) == [0] b = sqrt(6)*sqrt(log(2))/sqrt(log(5)) assert solve(5**(x/2) - 2**(3/x)) == [-b, b] def test__ispow(): assert _ispow(x**2) assert not _ispow(x) assert not _ispow(True) def test_issue_6644(): eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2) sol = solve(eq, q, simplify=False, check=False) assert len(sol) == 5 def test_issue_6752(): assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)] assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)] def test_issue_6792(): assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [ -1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1), CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3), CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)] def test_issues_6819_6820_6821_6248_8692(): # issue 6821 x, y = symbols('x y', real=True) assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9] assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,)] assert set(solve(abs(x - 7) - 8)) == {-S.One, S(15)} # issue 8692 assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [ Rational(-1, 2) + sqrt(61)/2, -sqrt(69)/2 + S.Half] # issue 7145 assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)] x = symbols('x') assert solve([re(x) - 1, im(x) - 2], x) == [ {re(x): 1, x: 1 + 2*I, im(x): 2}] # check for 'dict' handling of solution eq = sqrt(re(x)**2 + im(x)**2) - 3 assert solve(eq) == solve(eq, x) i = symbols('i', imaginary=True) assert solve(abs(i) - 3) == [-3*I, 3*I] raises(NotImplementedError, lambda: solve(abs(x) - 3)) w = symbols('w', integer=True) assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w) x, y = symbols('x y', real=True) assert solve(x + y*I + 3) == {y: 0, x: -3} # issue 2642 assert solve(x*(1 + I)) == [0] x, y = symbols('x y', imaginary=True) assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I} x = symbols('x', real=True) assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I} # issue 6248 f = Function('f') assert solve(f(x + 1) - f(2*x - 1)) == [2] assert solve(log(x + 1) - log(2*x - 1)) == [2] x = symbols('x') assert solve(2**x + 4**x) == [I*pi/log(2)] def test_issue_17638(): assert solve(((2-exp(2*x))*exp(x))/(exp(2*x)+2)**2 > 0, x) == (-oo < x) & (x < log(2)/2) assert solve(((2-exp(2*x)+2)*exp(x+2))/(exp(x)+2)**2 > 0, x) == (-oo < x) & (x < log(4)/2) assert solve((exp(x)+2+x**2)*exp(2*x+2)/(exp(x)+2)**2 > 0, x) == (-oo < x) & (x < oo) def test_issue_14607(): # issue 14607 s, tau_c, tau_1, tau_2, phi, K = symbols( 's, tau_c, tau_1, tau_2, phi, K') target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c)) K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D', positive=True, nonzero=True) PID = K_C*(1 + 1/(tau_I*s) + tau_D*s) eq = (target - PID).together() eq *= denom(eq).simplify() eq = Poly(eq, s) c = eq.coeffs() vars = [K_C, tau_I, tau_D] s = solve(c, vars, dict=True) assert len(s) == 1 knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)), tau_I: tau_1 + tau_2, tau_D: tau_1*tau_2/(tau_1 + tau_2)} for var in vars: assert s[0][var].simplify() == knownsolution[var].simplify() def test_lambert_multivariate(): from sympy.abc import x, y assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == {x, exp(x)} assert _lambert(x, x) == [] assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3] assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \ [LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3] assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \ [LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3] eq = (x*exp(x) - 3).subs(x, x*exp(x)) assert solve(eq) == [LambertW(3*exp(-LambertW(3)))] # coverage test raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x)) ans = [3, -3*LambertW(-log(3)/3)/log(3)] # 3 and 2.478... assert solve(x**3 - 3**x, x) == ans assert set(solve(3*log(x) - x*log(3))) == set(ans) assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2] @XFAIL def test_other_lambert(): assert solve(3*sin(x) - x*sin(3), x) == [3] assert set(solve(x**a - a**x), x) == { a, -a*LambertW(-log(a)/a)/log(a)} @slow def test_lambert_bivariate(): # tests passing current implementation assert solve((x**2 + x)*exp(x**2 + x) - 1) == [ Rational(-1, 2) + sqrt(1 + 4*LambertW(1))/2, Rational(-1, 2) - sqrt(1 + 4*LambertW(1))/2] assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [ Rational(-1, 2) + sqrt(1 + 2*LambertW(2))/2, Rational(-1, 2) - sqrt(1 + 2*LambertW(2))/2] assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)] assert solve((a/x + exp(x/2)).diff(x), x) == \ [4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)] assert solve((1/x + exp(x/2)).diff(x), x) == \ [4*LambertW(-sqrt(2)/4), 4*LambertW(sqrt(2)/4), # nsimplifies as 2*2**(141/299)*3**(206/299)*5**(205/299)*7**(37/299)/21 4*LambertW(-sqrt(2)/4, -1)] assert solve(x*log(x) + 3*x + 1, x) == \ [exp(-3 + LambertW(-exp(3)))] assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)] assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)] ans = solve(3*x + 5 + 2**(-5*x + 3), x) assert len(ans) == 1 and ans[0].expand() == \ Rational(-5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2)) assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \ [Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7] assert solve((log(x) + x).subs(x, x**2 + 1)) == [ -I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))] # check collection ax = a**(3*x + 5) ans = solve(3*log(ax) + b*log(ax) + ax, x) x0 = 1/log(a) x1 = sqrt(3)*I x2 = b + 3 x3 = x2*LambertW(1/x2)/a**5 x4 = x3**Rational(1, 3)/2 assert ans == [ x0*log(x4*(-x1 - 1)), x0*log(x4*(x1 - 1)), x0*log(x3)/3] x1 = LambertW(Rational(1, 3)) x2 = a**(-5) x3 = -3**Rational(1, 3) x4 = 3**Rational(5, 6)*I x5 = x1**Rational(1, 3)*x2**Rational(1, 3)/2 ans = solve(3*log(ax) + ax, x) assert ans == [ x0*log(3*x1*x2)/3, x0*log(x5*(x3 - x4)), x0*log(x5*(x3 + x4))] # coverage p = symbols('p', positive=True) eq = 4*2**(2*p + 3) - 2*p - 3 assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [ Rational(-3, 2) - LambertW(-4*log(2))/(2*log(2))] assert set(solve(3**cos(x) - cos(x)**3)) == { acos(3), acos(-3*LambertW(-log(3)/3)/log(3))} # should give only one solution after using `uniq` assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [ exp(-z + LambertW(2*z**4*exp(2*z))/2)/z] # cases when p != S.One # issue 4271 ans = solve((a/x + exp(x/2)).diff(x, 2), x) x0 = (-a)**Rational(1, 3) x1 = sqrt(3)*I x2 = x0/6 assert ans == [ 6*LambertW(x0/3), 6*LambertW(x2*(-x1 - 1)), 6*LambertW(x2*(x1 - 1))] assert solve((1/x + exp(x/2)).diff(x, 2), x) == \ [6*LambertW(Rational(-1, 3)), 6*LambertW(Rational(1, 6) - sqrt(3)*I/6), \ 6*LambertW(Rational(1, 6) + sqrt(3)*I/6), 6*LambertW(Rational(-1, 3), -1)] assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \ [{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}] # this is slow but not exceedingly slow assert solve((x**3)**(x/2) + pi/2, x) == [ exp(LambertW(-2*log(2)/3 + 2*log(pi)/3 + I*pi*Rational(2, 3)))] # issue 23253 assert solve((1/log(sqrt(x) + 2)**2 - 1/x)) == [ (LambertW(-exp(-2), -1) + 2)**2] assert solve((1/log(1/sqrt(x) + 2)**2 - x)) == [ (LambertW(-exp(-2), -1) + 2)**-2] assert solve((1/log(x**2 + 2)**2 - x**-4)) == [ -I*sqrt(2 - LambertW(exp(2))), -I*sqrt(LambertW(-exp(-2)) + 2), sqrt(-2 - LambertW(-exp(-2))), sqrt(-2 + LambertW(exp(2))), -sqrt(-2 - LambertW(-exp(-2), -1)), sqrt(-2 - LambertW(-exp(-2), -1))] def test_rewrite_trig(): assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi] assert solve(sin(x) + sec(x)) == [ -2*atan(Rational(-1, 2) + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half + sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half - sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)] assert solve(sinh(x) + tanh(x)) == [0, I*pi] # issue 6157 assert solve(2*sin(x) - cos(x), x) == [atan(S.Half)] @XFAIL def test_rewrite_trigh(): # if this import passes then the test below should also pass from sympy.functions.elementary.hyperbolic import sech assert solve(sinh(x) + sech(x)) == [ 2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2), 2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2), 2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2), 2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)] def test_uselogcombine(): eq = z - log(x) + log(y/(x*(-1 + y**2/x**2))) assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))] assert solve(log(x + 3) + log(1 + 3/x) - 3) in [ [-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2, -sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2], [-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2, -3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2], ] assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == [] def test_atan2(): assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)] def test_errorinverses(): assert solve(erf(x) - y, x) == [erfinv(y)] assert solve(erfinv(x) - y, x) == [erf(y)] assert solve(erfc(x) - y, x) == [erfcinv(y)] assert solve(erfcinv(x) - y, x) == [erfc(y)] def test_issue_2725(): R = Symbol('R') eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1) sol = solve(eq, R, set=True)[1] assert sol == {(Rational(5, 3) + (Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3) + 40/(9*((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3))),), (Rational(5, 3) + 40/(9*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)) + (Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3),)} def test_issue_5114_6611(): # See that it doesn't hang; this solves in about 2 seconds. # Also check that the solution is relatively small. # Note: the system in issue 6611 solves in about 5 seconds and has # an op-count of 138336 (with simplify=False). b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r') eqs = Matrix([ [b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d], [-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m], [-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]]) v = Matrix([f, h, k, n, b, c]) ans = solve(list(eqs), list(v), simplify=False) # If time is taken to simplify then then 2617 below becomes # 1168 and the time is about 50 seconds instead of 2. assert sum([s.count_ops() for s in ans.values()]) <= 3270 def test_det_quick(): m = Matrix(3, 3, symbols('a:9')) assert m.det() == det_quick(m) # calls det_perm m[0, 0] = 1 assert m.det() == det_quick(m) # calls det_minor m = Matrix(3, 3, list(range(9))) assert m.det() == det_quick(m) # defaults to .det() # make sure they work with Sparse s = SparseMatrix(2, 2, (1, 2, 1, 4)) assert det_perm(s) == det_minor(s) == s.det() def test_real_imag_splitting(): a, b = symbols('a b', real=True) assert solve(sqrt(a**2 + b**2) - 3, a) == \ [-sqrt(-b**2 + 9), sqrt(-b**2 + 9)] a, b = symbols('a b', imaginary=True) assert solve(sqrt(a**2 + b**2) - 3, a) == [] def test_issue_7110(): y = -2*x**3 + 4*x**2 - 2*x + 5 assert any(ask(Q.real(i)) for i in solve(y)) def test_units(): assert solve(1/x - 1/(2*cm)) == [2*cm] def test_issue_7547(): A, B, V = symbols('A,B,V') eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0) eq2 = Eq(B, 1.36*10**8*(V - 39)) eq3 = Eq(A, 5.75*10**5*V*(V + 39.0)) sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0))) assert str(sol) == str(Matrix( [['4442890172.68209'], ['4289299466.1432'], ['70.5389666628177']])) def test_issue_7895(): r = symbols('r', real=True) assert solve(sqrt(r) - 2) == [4] def test_issue_2777(): # the equations represent two circles x, y = symbols('x y', real=True) e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3 a, b = Rational(191, 20), 3*sqrt(391)/20 ans = [(a, -b), (a, b)] assert solve((e1, e2), (x, y)) == ans assert solve((e1, e2/(x - a)), (x, y)) == [] # make the 2nd circle's radius be -3 e2 += 6 assert solve((e1, e2), (x, y)) == [] assert solve((e1, e2), (x, y), check=False) == ans def test_issue_7322(): number = 5.62527e-35 assert solve(x - number, x)[0] == number def test_nsolve(): raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect')) raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50))) raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1))) @slow def test_high_order_multivariate(): assert len(solve(a*x**3 - x + 1, x)) == 3 assert len(solve(a*x**4 - x + 1, x)) == 4 assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed raises(NotImplementedError, lambda: solve(a*x**5 - x + 1, x, incomplete=False)) # result checking must always consider the denominator and CRootOf # must be checked, too d = x**5 - x + 1 assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)] d = x - 1 assert solve(d*(2 + 1/d)) == [S.Half] def test_base_0_exp_0(): assert solve(0**x - 1) == [0] assert solve(0**(x - 2) - 1) == [2] assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \ [0, 1] def test__simple_dens(): assert _simple_dens(1/x**0, [x]) == set() assert _simple_dens(1/x**y, [x]) == {x**y} assert _simple_dens(1/root(x, 3), [x]) == {x} def test_issue_8755(): # This tests two things: that if full unrad is attempted and fails # the solution should still be found; also it tests the use of # keyword `composite`. assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3 assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 - 1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3 @slow def test_issue_8828(): x1 = 0 y1 = -620 r1 = 920 x2 = 126 y2 = 276 x3 = 51 y3 = 205 r3 = 104 v = x, y, z f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2 f2 = (x - x2)**2 + (y - y2)**2 - z**2 f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2 F = f1,f2,f3 g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1 g2 = f2 g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3 G = g1,g2,g3 A = solve(F, v) B = solve(G, v) C = solve(G, v, manual=True) p, q, r = [{tuple(i.evalf(2) for i in j) for j in R} for R in [A, B, C]] assert p == q == r @slow def test_issue_2840_8155(): assert solve(sin(3*x) + sin(6*x)) == [ 0, pi*Rational(-5, 3), pi*Rational(-4, 3), -pi, pi*Rational(-2, 3), pi*Rational(-4, 9), -pi/3, pi*Rational(-2, 9), pi*Rational(2, 9), pi/3, pi*Rational(4, 9), pi*Rational(2, 3), pi, pi*Rational(4, 3), pi*Rational(14, 9), pi*Rational(5, 3), pi*Rational(16, 9), 2*pi, -2*I*log(-(-1)**Rational(1, 9)), -2*I*log(-(-1)**Rational(2, 9)), -2*I*log(-sin(pi/18) - I*cos(pi/18)), -2*I*log(-sin(pi/18) + I*cos(pi/18)), -2*I*log(sin(pi/18) - I*cos(pi/18)), -2*I*log(sin(pi/18) + I*cos(pi/18))] assert solve(2*sin(x) - 2*sin(2*x)) == [ 0, pi*Rational(-5, 3), -pi, -pi/3, pi/3, pi, pi*Rational(5, 3)] def test_issue_9567(): assert solve(1 + 1/(x - 1)) == [0] def test_issue_11538(): assert solve(x + E) == [-E] assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)] assert solve(x**3 + 2*E) == [ -cbrt(2 * E), cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2, cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2] assert solve([x + 4, y + E], x, y) == {x: -4, y: -E} assert solve([x**2 + 4, y + E], x, y) == [ (-2*I, -E), (2*I, -E)] e1 = x - y**3 + 4 e2 = x + y + 4 + 4 * E assert len(solve([e1, e2], x, y)) == 3 @slow def test_issue_12114(): a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g') terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f, g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2] sol = solve(terms, [a, b, c, d, e, f, g], dict=True) s = sqrt(-f**2 - 1) s2 = sqrt(2 - f**2) s3 = sqrt(6 - 3*f**2) s4 = sqrt(3)*f s5 = sqrt(3)*s2 assert sol == [ {a: -s, b: -s, c: -s, d: f, e: f, g: -1}, {a: s, b: s, c: s, d: f, e: f, g: -1}, {a: -s4/2 - s2/2, b: s4/2 - s2/2, c: s2, d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2}, {a: -s4/2 + s2/2, b: s4/2 + s2/2, c: -s2, d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2}, {a: s4/2 - s2/2, b: -s4/2 - s2/2, c: s2, d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2}, {a: s4/2 + s2/2, b: -s4/2 + s2/2, c: -s2, d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2}] def test_inf(): assert solve(1 - oo*x) == [] assert solve(oo*x, x) == [] assert solve(oo*x - oo, x) == [] def test_issue_12448(): f = Function('f') fun = [f(i) for i in range(15)] sym = symbols('x:15') reps = dict(zip(fun, sym)) (x, y, z), c = sym[:3], sym[3:] ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3] for i in range(3)], (x, y, z)) (x, y, z), c = fun[:3], fun[3:] sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3] for i in range(3)], (x, y, z)) assert sfun[fun[0]].xreplace(reps).count_ops() == \ ssym[sym[0]].count_ops() def test_denoms(): assert denoms(x/2 + 1/y) == {2, y} assert denoms(x/2 + 1/y, y) == {y} assert denoms(x/2 + 1/y, [y]) == {y} assert denoms(1/x + 1/y + 1/z, [x, y]) == {x, y} assert denoms(1/x + 1/y + 1/z, x, y) == {x, y} assert denoms(1/x + 1/y + 1/z, {x, y}) == {x, y} def test_issue_12476(): x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5') eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5, x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3, x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2, x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6, -x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3, x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3, -x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, -x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3, -x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3, -x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5, x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1] sols = [{x0: 1, x3: Rational(1, 6), x2: Rational(1, 6), x4: Rational(-2, 3), x1: Rational(-2, 3), x5: 1}, {x0: 1, x3: S.Half, x2: Rational(-1, 2), x4: 0, x1: 0, x5: -1}, {x0: 1, x3: Rational(-1, 3), x2: Rational(-1, 3), x4: Rational(1, 3), x1: Rational(1, 3), x5: 1}, {x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1}, {x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1}, {x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}] assert solve(eqns) == sols def test_issue_13849(): t = symbols('t') assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == [] def test_issue_14860(): from sympy.physics.units import newton, kilo assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y] def test_issue_14721(): k, h, a, b = symbols(':4') assert solve([ -1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2, -1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2, h, k + 2], h, k, a, b) == [ (0, -2, -b*sqrt(1/(b**2 - 9)), b), (0, -2, b*sqrt(1/(b**2 - 9)), b)] assert solve([ h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [ (a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)] assert solve((a + b**2 - 1, a + b**2 - 2)) == [] def test_issue_14779(): x = symbols('x', real=True) assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2 + 3969) - 96*Abs(x)/x,x) == [sqrt(130)] def test_issue_15307(): assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \ [{x: -3, y: 2}, {x: 2, y: 2}] assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \ {x: 2, y: 2} assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \ {x: -1, y: 2} eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y) eq2 = Eq(-2*x + 8, 2*x - 40) assert solve([eq1, eq2]) == {x:12, y:75} def test_issue_15415(): assert solve(x - 3, x) == [3] assert solve([x - 3], x) == {x:3} assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == [] assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == [] assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == [] @slow def test_issue_15731(): # f(x)**g(x)=c assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7] assert solve((x)**(x + 4) - 4) == [-2] assert solve((-x)**(-x + 4) - 4) == [2] assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2] assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)] assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)] assert solve((x**2 + 1)**x - 25) == [2] assert solve(x**(2/x) - 2) == [2, 4] assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8] assert solve(x**(x + S.Half) - Rational(9, 4)) == [Rational(3, 2)] # a**g(x)=c assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**Rational(1, 4)) + I*pi)] assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S.Half] assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3, (3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)] assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3] assert solve(I**x + 1) == [2] assert solve((1 + I)**x - 2*I) == [2] assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**Rational(1, 3)) == [Rational(2, 3)] # bases of both sides are equal b = Symbol('b') assert solve(b**x - b**2, x) == [2] assert solve(b**x - 1/b, x) == [-1] assert solve(b**x - b, x) == [1] b = Symbol('b', positive=True) assert solve(b**x - b**2, x) == [2] assert solve(b**x - 1/b, x) == [-1] def test_issue_10933(): assert solve(x**4 + y*(x + 0.1), x) # doesn't fail assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail def test_Abs_handling(): x = symbols('x', real=True) assert solve(abs(x/y), x) == [0] def test_issue_7982(): x = Symbol('x') # Test that no exception happens assert solve([2*x**2 + 5*x + 20 <= 0, x >= 1.5], x) is S.false # From #8040 assert solve([x**3 - 8.08*x**2 - 56.48*x/5 - 106 >= 0, x - 1 <= 0], [x]) is S.false def test_issue_14645(): x, y = symbols('x y') assert solve([x*y - x - y, x*y - x - y], [x, y]) == [(y/(y - 1), y)] def test_issue_12024(): x, y = symbols('x y') assert solve(Piecewise((0.0, x < 0.1), (x, x >= 0.1)) - y) == \ [{y: Piecewise((0.0, x < 0.1), (x, True))}] def test_issue_17452(): assert solve((7**x)**x + pi, x) == [-sqrt(log(pi) + I*pi)/sqrt(log(7)), sqrt(log(pi) + I*pi)/sqrt(log(7))] assert solve(x**(x/11) + pi/11, x) == [exp(LambertW(-11*log(11) + 11*log(pi) + 11*I*pi))] def test_issue_17799(): assert solve(-erf(x**(S(1)/3))**pi + I, x) == [] def test_issue_17650(): x = Symbol('x', real=True) assert solve(abs(abs(x**2 - 1) - x) - x) == [1, -1 + sqrt(2), 1 + sqrt(2)] def test_issue_17882(): eq = -8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)) assert unrad(eq) is None def test_issue_17949(): assert solve(exp(+x+x**2), x) == [] assert solve(exp(-x+x**2), x) == [] assert solve(exp(+x-x**2), x) == [] assert solve(exp(-x-x**2), x) == [] def test_issue_10993(): assert solve(Eq(binomial(x, 2), 3)) == [-2, 3] assert solve(Eq(pow(x, 2) + binomial(x, 3), x)) == [-4, 0, 1] assert solve(Eq(binomial(x, 2), 0)) == [0, 1] assert solve(a+binomial(x, 3), a) == [-binomial(x, 3)] assert solve(x-binomial(a, 3) + binomial(y, 2) + sin(a), x) == [-sin(a) + binomial(a, 3) - binomial(y, 2)] assert solve((x+1)-binomial(x+1, 3), x) == [-2, -1, 3] def test_issue_11553(): eq1 = x + y + 1 eq2 = x + GoldenRatio assert solve([eq1, eq2], x, y) == {x: -GoldenRatio, y: -1 + GoldenRatio} eq3 = x + 2 + TribonacciConstant assert solve([eq1, eq3], x, y) == {x: -2 - TribonacciConstant, y: 1 + TribonacciConstant} def test_issue_19113_19102(): t = S(1)/3 solve(cos(x)**5-sin(x)**5) assert solve(4*cos(x)**3 - 2*sin(x)**3) == [ atan(2**(t)), -atan(2**(t)*(1 - sqrt(3)*I)/2), -atan(2**(t)*(1 + sqrt(3)*I)/2)] h = S.Half assert solve(cos(x)**2 + sin(x)) == [ 2*atan(-h + sqrt(5)/2 + sqrt(2)*sqrt(1 - sqrt(5))/2), -2*atan(h + sqrt(5)/2 + sqrt(2)*sqrt(1 + sqrt(5))/2), -2*atan(-sqrt(5)/2 + h + sqrt(2)*sqrt(1 - sqrt(5))/2), -2*atan(-sqrt(2)*sqrt(1 + sqrt(5))/2 + h + sqrt(5)/2)] assert solve(3*cos(x) - sin(x)) == [atan(3)] def test_issue_19509(): a = S(3)/4 b = S(5)/8 c = sqrt(5)/8 d = sqrt(5)/4 assert solve(1/(x -1)**5 - 1) == [2, -d + a - sqrt(-b + c), -d + a + sqrt(-b + c), d + a - sqrt(-b - c), d + a + sqrt(-b - c)] def test_issue_20747(): THT, HT, DBH, dib, c0, c1, c2, c3, c4 = symbols('THT HT DBH dib c0 c1 c2 c3 c4') f = DBH*c3 + THT*c4 + c2 rhs = 1 - ((HT - 1)/(THT - 1))**c1*(1 - exp(c0/f)) eq = dib - DBH*(c0 - f*log(rhs)) term = ((1 - exp((DBH*c0 - dib)/(DBH*(DBH*c3 + THT*c4 + c2)))) / (1 - exp(c0/(DBH*c3 + THT*c4 + c2)))) sol = [THT*term**(1/c1) - term**(1/c1) + 1] assert solve(eq, HT) == sol def test_issue_20902(): f = (t / ((1 + t) ** 2)) assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3) assert solve(f.subs({t: 3 * x + 3}).diff(x) > 0, x) == (S(-4)/3 < x) & (x < S(-2)/3) assert solve(f.subs({t: 3 * x + 4}).diff(x) > 0, x) == (S(-5)/3 < x) & (x < S(-1)) assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3) def test_issue_21034(): a = symbols('a', real=True) system = [x - cosh(cos(4)), y - sinh(cos(a)), z - tanh(x)] # constants inside hyperbolic functions should not be rewritten in terms of exp assert solve(system, x, y, z) == [(cosh(cos(4)), sinh(cos(a)), tanh(cosh(cos(4))))] # but if the variable of interest is present in a hyperbolic function, # then it should be rewritten in terms of exp and solved further newsystem = [(exp(x) - exp(-x)) - tanh(x)*(exp(x) + exp(-x)) + x - 5] assert solve(newsystem, x) == {x: 5} def test_issue_4886(): z = a*sqrt(R**2*a**2 + R**2*b**2 - c**2)/(a**2 + b**2) t = b*c/(a**2 + b**2) sol = [((b*(t - z) - c)/(-a), t - z), ((b*(t + z) - c)/(-a), t + z)] assert solve([x**2 + y**2 - R**2, a*x + b*y - c], x, y) == sol def test_issue_6819(): a, b, c, d = symbols('a b c d', positive=True) assert solve(a*b**x - c*d**x, x) == [log(c/a)/log(b/d)] def test_issue_17454(): x = Symbol('x') assert solve((1 - x - I)**4, x) == [1 - I] def test_issue_21852(): solution = [21 - 21*sqrt(2)/2] assert solve(2*x + sqrt(2*x**2) - 21) == solution def test_issue_21942(): eq = -d + (a*c**(1 - e) + b**(1 - e)*(1 - a))**(1/(1 - e)) sol = solve(eq, c, simplify=False, check=False) assert sol == [((a*b**(1 - e) - b**(1 - e) + d**(1 - e))/a)**(1/(1 - e))] def test_solver_flags(): root = solve(x**5 + x**2 - x - 1, cubics=False) rad = solve(x**5 + x**2 - x - 1, cubics=True) assert root != rad def test_issue_22768(): eq = 2*x**3 - 16*(y - 1)**6*z**3 assert solve(eq.expand(), x, simplify=False ) == [2*z*(y - 1)**2, z*(-1 + sqrt(3)*I)*(y - 1)**2, -z*(1 + sqrt(3)*I)*(y - 1)**2] def test_issue_22717(): assert solve((-y**2 + log(y**2/x) + 2, -2*x*y + 2*x/y)) == [ {y: -1, x: E}, {y: 1, x: E}] def test_issue_10169(): eq = S(-8*a - x**5*(a + b + c + e) - x**4*(4*a - 2**Rational(3,4)*c + 4*c + d + 2**Rational(3,4)*e + 4*e + k) - x**3*(-4*2**Rational(3,4)*c + sqrt(2)*c - 2**Rational(3,4)*d + 4*d + sqrt(2)*e + 4*2**Rational(3,4)*e + 2**Rational(3,4)*k + 4*k) - x**2*(4*sqrt(2)*c - 4*2**Rational(3,4)*d + sqrt(2)*d + 4*sqrt(2)*e + sqrt(2)*k + 4*2**Rational(3,4)*k) - x*(2*a + 2*b + 4*sqrt(2)*d + 4*sqrt(2)*k) + 5) assert solve_undetermined_coeffs(eq, [a, b, c, d, e, k], x) == { a: Rational(5,8), b: Rational(-5,1032), c: Rational(-40,129) - 5*2**Rational(3,4)/129 + 5*2**Rational(1,4)/1032, d: -20*2**Rational(3,4)/129 - 10*sqrt(2)/129 - 5*2**Rational(1,4)/258, e: Rational(-40,129) - 5*2**Rational(1,4)/1032 + 5*2**Rational(3,4)/129, k: -10*sqrt(2)/129 + 5*2**Rational(1,4)/258 + 20*2**Rational(3,4)/129 } def test_solve_undetermined_coeffs_issue_23927(): A, B, r, phi = symbols('A, B, r, phi') eq = Eq(A*sin(t) + B*cos(t), r*sin(t - phi)).rewrite(Add).expand(trig=True) soln = solve_undetermined_coeffs(eq, (r, phi), t) assert soln == [{ phi: 2*atan((A - sqrt(A**2 + B**2))/B), r: (-A**2 + A*sqrt(A**2 + B**2) - B**2)/(A - sqrt(A**2 + B**2)) }, { phi: 2*atan((A + sqrt(A**2 + B**2))/B), r: (A**2 + A*sqrt(A**2 + B**2) + B**2)/(A + sqrt(A**2 + B**2))/-1 }]
11ea86102a40b07a1a5ee942b0e109eb30059f98bc883cb9d94a3aedac050082
from sympy.core.function import nfloat from sympy.core.numbers import (Float, I, Rational, pi) from sympy.core.relational import Eq from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import sin from sympy.integrals.integrals import Integral from sympy.matrices.dense import Matrix from mpmath import mnorm, mpf from sympy.solvers import nsolve from sympy.utilities.lambdify import lambdify from sympy.testing.pytest import raises, XFAIL from sympy.utilities.decorator import conserve_mpmath_dps @XFAIL def test_nsolve_fail(): x = symbols('x') # Sometimes it is better to use the numerator (issue 4829) # but sometimes it is not (issue 11768) so leave this to # the discretion of the user ans = nsolve(x**2/(1 - x)/(1 - 2*x)**2 - 100, x, 0) assert ans > 0.46 and ans < 0.47 def test_nsolve_denominator(): x = symbols('x') # Test that nsolve uses the full expression (numerator and denominator). ans = nsolve((x**2 + 3*x + 2)/(x + 2), -2.1) # The root -2 was divided out, so make sure we don't find it. assert ans == -1.0 def test_nsolve(): # onedimensional x = Symbol('x') assert nsolve(sin(x), 2) - pi.evalf() < 1e-15 assert nsolve(Eq(2*x, 2), x, -10) == nsolve(2*x - 2, -10) # Testing checks on number of inputs raises(TypeError, lambda: nsolve(Eq(2*x, 2))) raises(TypeError, lambda: nsolve(Eq(2*x, 2), x, 1, 2)) # multidimensional x1 = Symbol('x1') x2 = Symbol('x2') f1 = 3 * x1**2 - 2 * x2**2 - 1 f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8 f = Matrix((f1, f2)).T F = lambdify((x1, x2), f.T, modules='mpmath') for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]: x = nsolve(f, (x1, x2), x0, tol=1.e-8) assert mnorm(F(*x), 1) <= 1.e-10 # The Chinese mathematician Zhu Shijie was the very first to solve this # nonlinear system 700 years ago (z was added to make it 3-dimensional) x = Symbol('x') y = Symbol('y') z = Symbol('z') f1 = -x + 2*y f2 = (x**2 + x*(y**2 - 2) - 4*y) / (x + 4) f3 = sqrt(x**2 + y**2)*z f = Matrix((f1, f2, f3)).T F = lambdify((x, y, z), f.T, modules='mpmath') def getroot(x0): root = nsolve(f, (x, y, z), x0) assert mnorm(F(*root), 1) <= 1.e-8 return root assert list(map(round, getroot((1, 1, 1)))) == [2, 1, 0] assert nsolve([Eq( f1, 0), Eq(f2, 0), Eq(f3, 0)], [x, y, z], (1, 1, 1)) # just see that it works a = Symbol('a') assert abs(nsolve(1/(0.001 + a)**3 - 6/(0.9 - a)**3, a, 0.3) - mpf('0.31883011387318591')) < 1e-15 def test_issue_6408(): x = Symbol('x') assert nsolve(Piecewise((x, x < 1), (x**2, True)), x, 2) == 0.0 def test_issue_6408_integral(): x, y = symbols('x y') assert nsolve(Integral(x*y, (x, 0, 5)), y, 2) == 0.0 @conserve_mpmath_dps def test_increased_dps(): # Issue 8564 import mpmath mpmath.mp.dps = 128 x = Symbol('x') e1 = x**2 - pi q = nsolve(e1, x, 3.0) assert abs(sqrt(pi).evalf(128) - q) < 1e-128 def test_nsolve_precision(): x, y = symbols('x y') sol = nsolve(x**2 - pi, x, 3, prec=128) assert abs(sqrt(pi).evalf(128) - sol) < 1e-128 assert isinstance(sol, Float) sols = nsolve((y**2 - x, x**2 - pi), (x, y), (3, 3), prec=128) assert isinstance(sols, Matrix) assert sols.shape == (2, 1) assert abs(sqrt(pi).evalf(128) - sols[0]) < 1e-128 assert abs(sqrt(sqrt(pi)).evalf(128) - sols[1]) < 1e-128 assert all(isinstance(i, Float) for i in sols) def test_nsolve_complex(): x, y = symbols('x y') assert nsolve(x**2 + 2, 1j) == sqrt(2.)*I assert nsolve(x**2 + 2, I) == sqrt(2.)*I assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I]) assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I]) def test_nsolve_dict_kwarg(): x, y = symbols('x y') # one variable assert nsolve(x**2 - 2, 1, dict = True) == \ [{x: sqrt(2.)}] # one variable with complex solution assert nsolve(x**2 + 2, I, dict = True) == \ [{x: sqrt(2.)*I}] # two variables assert nsolve([x**2 + y**2 - 5, x**2 - y**2 + 1], [x, y], [1, 1], dict = True) == \ [{x: sqrt(2.), y: sqrt(3.)}] def test_nsolve_rational(): x = symbols('x') assert nsolve(x - Rational(1, 3), 0, prec=100) == Rational(1, 3).evalf(100) def test_issue_14950(): x = Matrix(symbols('t s')) x0 = Matrix([17, 23]) eqn = x + x0 assert nsolve(eqn, x, x0) == nfloat(-x0) assert nsolve(eqn.T, x.T, x0.T) == nfloat(-x0)
cd50872728d5170f71a50fc4142b00df7cc11b0090f2049e2ed6cb180f6dd2e4
from sympy.core.numbers import (I, Rational, oo) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.calculus.singularities import ( singularities, is_increasing, is_strictly_increasing, is_decreasing, is_strictly_decreasing, is_monotonic ) from sympy.sets import Interval, FiniteSet from sympy.testing.pytest import raises from sympy.abc import x, y def test_singularities(): x = Symbol('x') assert singularities(x**2, x) == S.EmptySet assert singularities(x/(x**2 + 3*x + 2), x) == FiniteSet(-2, -1) assert singularities(1/(x**2 + 1), x) == FiniteSet(I, -I) assert singularities(x/(x**3 + 1), x) == \ FiniteSet(-1, (1 - sqrt(3) * I) / 2, (1 + sqrt(3) * I) / 2) assert singularities(1/(y**2 + 2*I*y + 1), y) == \ FiniteSet(-I + sqrt(2)*I, -I - sqrt(2)*I) x = Symbol('x', real=True) assert singularities(1/(x**2 + 1), x) == S.EmptySet assert singularities(exp(1/x), x, S.Reals) == FiniteSet(0) assert singularities(exp(1/x), x, Interval(1, 2)) == S.EmptySet assert singularities(log((x - 2)**2), x, Interval(1, 3)) == FiniteSet(2) raises(NotImplementedError, lambda: singularities(x**-oo, x)) def test_is_increasing(): """Test whether is_increasing returns correct value.""" a = Symbol('a', negative=True) assert is_increasing(x**3 - 3*x**2 + 4*x, S.Reals) assert is_increasing(-x**2, Interval(-oo, 0)) assert not is_increasing(-x**2, Interval(0, oo)) assert not is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) assert is_increasing(x**2 + y, Interval(1, oo), x) assert is_increasing(-x**2*a, Interval(1, oo), x) assert is_increasing(1) assert is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) is False def test_is_strictly_increasing(): """Test whether is_strictly_increasing returns correct value.""" assert is_strictly_increasing( 4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2)) assert is_strictly_increasing( 4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo)) assert not is_strictly_increasing( 4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) assert not is_strictly_increasing(-x**2, Interval(0, oo)) assert not is_strictly_decreasing(1) assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) is False def test_is_decreasing(): """Test whether is_decreasing returns correct value.""" b = Symbol('b', positive=True) assert is_decreasing(1/(x**2 - 3*x), Interval.open(Rational(3,2), 3)) assert is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3)) assert is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert not is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2))) assert not is_decreasing(-x**2, Interval(-oo, 0)) assert not is_decreasing(-x**2*b, Interval(-oo, 0), x) def test_is_strictly_decreasing(): """Test whether is_strictly_decreasing returns correct value.""" assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert not is_strictly_decreasing( 1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2))) assert not is_strictly_decreasing(-x**2, Interval(-oo, 0)) assert not is_strictly_decreasing(1) assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(Rational(3,2), 3)) assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3)) def test_is_monotonic(): """Test whether is_monotonic returns correct value.""" assert is_monotonic(1/(x**2 - 3*x), Interval.open(Rational(3,2), 3)) assert is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3)) assert is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals) assert not is_monotonic(-x**2, S.Reals) assert is_monotonic(x**2 + y + 1, Interval(1, 2), x) raises(NotImplementedError, lambda: is_monotonic(x**2 + y + 1)) def test_issue_23401(): x = Symbol('x') expr = (x + 1)/(-1.0e-3*x**2 + 0.1*x + 0.1) assert is_increasing(expr, Interval(1,2), x)
9797da9a87102c77fd0a26740a343509fde07951b2d234f8294654482bd6b73b
import inspect import copy import pickle from sympy.physics.units import meter from sympy.testing.pytest import XFAIL, raises from sympy.core.basic import Atom, Basic from sympy.core.core import BasicMeta from sympy.core.singleton import SingletonRegistry from sympy.core.symbol import Str, Dummy, Symbol, Wild from sympy.core.numbers import (E, I, pi, oo, zoo, nan, Integer, Rational, Float, AlgebraicNumber) from sympy.core.relational import (Equality, GreaterThan, LessThan, Relational, StrictGreaterThan, StrictLessThan, Unequality) from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.function import Derivative, Function, FunctionClass, Lambda, \ WildFunction from sympy.sets.sets import Interval from sympy.core.multidimensional import vectorize from sympy.external.gmpy import HAS_GMPY from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.external import import_module cloudpickle = import_module('cloudpickle') excluded_attrs = { '_assumptions', # This is a local cache that isn't automatically filled on creation '_mhash', # Cached after __hash__ is called but set to None after creation 'is_EmptySet', # Deprecated from SymPy 1.5. This can be removed when is_EmptySet is removed. 'expr_free_symbols', # Deprecated from SymPy 1.9. This can be removed when exr_free_symbols is removed. '_mat', # Deprecated from SymPy 1.9. This can be removed when Matrix._mat is removed '_smat', # Deprecated from SymPy 1.9. This can be removed when SparseMatrix._smat is removed } def check(a, exclude=[], check_attr=True): """ Check that pickling and copying round-trips. """ # Pickling with protocols 0 and 1 is disabled for Basic instances: if isinstance(a, Basic): for protocol in [0, 1]: raises(NotImplementedError, lambda: pickle.dumps(a, protocol)) protocols = [2, copy.copy, copy.deepcopy, 3, 4] if cloudpickle: protocols.extend([cloudpickle]) for protocol in protocols: if protocol in exclude: continue if callable(protocol): if isinstance(a, BasicMeta): # Classes can't be copied, but that's okay. continue b = protocol(a) elif inspect.ismodule(protocol): b = protocol.loads(protocol.dumps(a)) else: b = pickle.loads(pickle.dumps(a, protocol)) d1 = dir(a) d2 = dir(b) assert set(d1) == set(d2) if not check_attr: continue def c(a, b, d): for i in d: if i in excluded_attrs: continue if not hasattr(a, i): continue attr = getattr(a, i) if not hasattr(attr, "__call__"): assert hasattr(b, i), i assert getattr(b, i) == attr, "%s != %s, protocol: %s" % (getattr(b, i), attr, protocol) c(a, b, d1) c(b, a, d2) #================== core ========================= def test_core_basic(): for c in (Atom, Atom(), Basic, Basic(), # XXX: dynamically created types are not picklable # BasicMeta, BasicMeta("test", (), {}), SingletonRegistry, S): check(c) def test_core_Str(): check(Str('x')) def test_core_symbol(): # make the Symbol a unique name that doesn't class with any other # testing variable in this file since after this test the symbol # having the same name will be cached as noncommutative for c in (Dummy, Dummy("x", commutative=False), Symbol, Symbol("_issue_3130", commutative=False), Wild, Wild("x")): check(c) def test_core_numbers(): for c in (Integer(2), Rational(2, 3), Float("1.2")): check(c) for c in (AlgebraicNumber, AlgebraicNumber(sqrt(3))): check(c, check_attr=False) def test_core_float_copy(): # See gh-7457 y = Symbol("x") + 1.0 check(y) # does not raise TypeError ("argument is not an mpz") def test_core_relational(): x = Symbol("x") y = Symbol("y") for c in (Equality, Equality(x, y), GreaterThan, GreaterThan(x, y), LessThan, LessThan(x, y), Relational, Relational(x, y), StrictGreaterThan, StrictGreaterThan(x, y), StrictLessThan, StrictLessThan(x, y), Unequality, Unequality(x, y)): check(c) def test_core_add(): x = Symbol("x") for c in (Add, Add(x, 4)): check(c) def test_core_mul(): x = Symbol("x") for c in (Mul, Mul(x, 4)): check(c) def test_core_power(): x = Symbol("x") for c in (Pow, Pow(x, 4)): check(c) def test_core_function(): x = Symbol("x") for f in (Derivative, Derivative(x), Function, FunctionClass, Lambda, WildFunction): check(f) def test_core_undefinedfunctions(): f = Function("f") # Full XFAILed test below exclude = list(range(5)) # https://github.com/cloudpipe/cloudpickle/issues/65 # https://github.com/cloudpipe/cloudpickle/issues/190 exclude.append(cloudpickle) check(f, exclude=exclude) @XFAIL def test_core_undefinedfunctions_fail(): # This fails because f is assumed to be a class at sympy.basic.function.f f = Function("f") check(f) def test_core_interval(): for c in (Interval, Interval(0, 2)): check(c) def test_core_multidimensional(): for c in (vectorize, vectorize(0)): check(c) def test_Singletons(): protocols = [0, 1, 2, 3, 4] copiers = [copy.copy, copy.deepcopy] copiers += [lambda x: pickle.loads(pickle.dumps(x, proto)) for proto in protocols] if cloudpickle: copiers += [lambda x: cloudpickle.loads(cloudpickle.dumps(x))] for obj in (Integer(-1), Integer(0), Integer(1), Rational(1, 2), pi, E, I, oo, -oo, zoo, nan, S.GoldenRatio, S.TribonacciConstant, S.EulerGamma, S.Catalan, S.EmptySet, S.IdentityFunction): for func in copiers: assert func(obj) is obj #================== functions =================== from sympy.functions import (Piecewise, lowergamma, acosh, chebyshevu, chebyshevt, ln, chebyshevt_root, legendre, Heaviside, bernoulli, coth, tanh, assoc_legendre, sign, arg, asin, DiracDelta, re, rf, Abs, uppergamma, binomial, sinh, cos, cot, acos, acot, gamma, bell, hermite, harmonic, LambertW, zeta, log, factorial, asinh, acoth, cosh, dirichlet_eta, Eijk, loggamma, erf, ceiling, im, fibonacci, tribonacci, conjugate, tan, chebyshevu_root, floor, atanh, sqrt, sin, atan, ff, lucas, atan2, polygamma, exp) def test_functions(): one_var = (acosh, ln, Heaviside, factorial, bernoulli, coth, tanh, sign, arg, asin, DiracDelta, re, Abs, sinh, cos, cot, acos, acot, gamma, bell, harmonic, LambertW, zeta, log, factorial, asinh, acoth, cosh, dirichlet_eta, loggamma, erf, ceiling, im, fibonacci, tribonacci, conjugate, tan, floor, atanh, sin, atan, lucas, exp) two_var = (rf, ff, lowergamma, chebyshevu, chebyshevt, binomial, atan2, polygamma, hermite, legendre, uppergamma) x, y, z = symbols("x,y,z") others = (chebyshevt_root, chebyshevu_root, Eijk(x, y, z), Piecewise( (0, x < -1), (x**2, x <= 1), (x**3, True)), assoc_legendre) for cls in one_var: check(cls) c = cls(x) check(c) for cls in two_var: check(cls) c = cls(x, y) check(c) for cls in others: check(cls) #================== geometry ==================== from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point from sympy.geometry.ellipse import Circle, Ellipse from sympy.geometry.line import Line, LinearEntity, Ray, Segment from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle def test_geometry(): p1 = Point(1, 2) p2 = Point(2, 3) p3 = Point(0, 0) p4 = Point(0, 1) for c in ( GeometryEntity, GeometryEntity(), Point, p1, Circle, Circle(p1, 2), Ellipse, Ellipse(p1, 3, 4), Line, Line(p1, p2), LinearEntity, LinearEntity(p1, p2), Ray, Ray(p1, p2), Segment, Segment(p1, p2), Polygon, Polygon(p1, p2, p3, p4), RegularPolygon, RegularPolygon(p1, 4, 5), Triangle, Triangle(p1, p2, p3)): check(c, check_attr=False) #================== integrals ==================== from sympy.integrals.integrals import Integral def test_integrals(): x = Symbol("x") for c in (Integral, Integral(x)): check(c) #==================== logic ===================== from sympy.core.logic import Logic def test_logic(): for c in (Logic, Logic(1)): check(c) #================== matrices ==================== from sympy.matrices import Matrix, SparseMatrix def test_matrices(): for c in (Matrix, Matrix([1, 2, 3]), SparseMatrix, SparseMatrix([[1, 2], [3, 4]])): check(c) #================== ntheory ===================== from sympy.ntheory.generate import Sieve def test_ntheory(): for c in (Sieve, Sieve()): check(c) #================== physics ===================== from sympy.physics.paulialgebra import Pauli from sympy.physics.units import Unit def test_physics(): for c in (Unit, meter, Pauli, Pauli(1)): check(c) #================== plotting ==================== # XXX: These tests are not complete, so XFAIL them @XFAIL def test_plotting(): from sympy.plotting.pygletplot.color_scheme import ColorGradient, ColorScheme from sympy.plotting.pygletplot.managed_window import ManagedWindow from sympy.plotting.plot import Plot, ScreenShot from sympy.plotting.pygletplot.plot_axes import PlotAxes, PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate from sympy.plotting.pygletplot.plot_camera import PlotCamera from sympy.plotting.pygletplot.plot_controller import PlotController from sympy.plotting.pygletplot.plot_curve import PlotCurve from sympy.plotting.pygletplot.plot_interval import PlotInterval from sympy.plotting.pygletplot.plot_mode import PlotMode from sympy.plotting.pygletplot.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \ ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical from sympy.plotting.pygletplot.plot_object import PlotObject from sympy.plotting.pygletplot.plot_surface import PlotSurface from sympy.plotting.pygletplot.plot_window import PlotWindow for c in ( ColorGradient, ColorGradient(0.2, 0.4), ColorScheme, ManagedWindow, ManagedWindow, Plot, ScreenShot, PlotAxes, PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate, PlotCamera, PlotController, PlotCurve, PlotInterval, PlotMode, Cartesian2D, Cartesian3D, Cylindrical, ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical, PlotObject, PlotSurface, PlotWindow): check(c) @XFAIL def test_plotting2(): #from sympy.plotting.color_scheme import ColorGradient from sympy.plotting.pygletplot.color_scheme import ColorScheme #from sympy.plotting.managed_window import ManagedWindow from sympy.plotting.plot import Plot #from sympy.plotting.plot import ScreenShot from sympy.plotting.pygletplot.plot_axes import PlotAxes #from sympy.plotting.plot_axes import PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate #from sympy.plotting.plot_camera import PlotCamera #from sympy.plotting.plot_controller import PlotController #from sympy.plotting.plot_curve import PlotCurve #from sympy.plotting.plot_interval import PlotInterval #from sympy.plotting.plot_mode import PlotMode #from sympy.plotting.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \ # ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical #from sympy.plotting.plot_object import PlotObject #from sympy.plotting.plot_surface import PlotSurface # from sympy.plotting.plot_window import PlotWindow check(ColorScheme("rainbow")) check(Plot(1, visible=False)) check(PlotAxes()) #================== polys ======================= from sympy.polys.domains.integerring import ZZ from sympy.polys.domains.rationalfield import QQ from sympy.polys.orderings import lex from sympy.polys.polytools import Poly def test_pickling_polys_polytools(): from sympy.polys.polytools import PurePoly # from sympy.polys.polytools import GroebnerBasis x = Symbol('x') for c in (Poly, Poly(x, x)): check(c) for c in (PurePoly, PurePoly(x)): check(c) # TODO: fix pickling of Options class (see GroebnerBasis._options) # for c in (GroebnerBasis, GroebnerBasis([x**2 - 1], x, order=lex)): # check(c) def test_pickling_polys_polyclasses(): from sympy.polys.polyclasses import DMP, DMF, ANP for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)): check(c) for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)): check(c) for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)): check(c) @XFAIL def test_pickling_polys_rings(): # NOTE: can't use protocols < 2 because we have to execute __new__ to # make sure caching of rings works properly. from sympy.polys.rings import PolyRing ring = PolyRing("x,y,z", ZZ, lex) for c in (PolyRing, ring): check(c, exclude=[0, 1]) for c in (ring.dtype, ring.one): check(c, exclude=[0, 1], check_attr=False) # TODO: Py3k def test_pickling_polys_fields(): pass # NOTE: can't use protocols < 2 because we have to execute __new__ to # make sure caching of fields works properly. # from sympy.polys.fields import FracField # field = FracField("x,y,z", ZZ, lex) # TODO: AssertionError: assert id(obj) not in self.memo # for c in (FracField, field): # check(c, exclude=[0, 1]) # TODO: AssertionError: assert id(obj) not in self.memo # for c in (field.dtype, field.one): # check(c, exclude=[0, 1]) def test_pickling_polys_elements(): from sympy.polys.domains.pythonrational import PythonRational #from sympy.polys.domains.pythonfinitefield import PythonFiniteField #from sympy.polys.domains.mpelements import MPContext for c in (PythonRational, PythonRational(1, 7)): check(c) #gf = PythonFiniteField(17) # TODO: fix pickling of ModularInteger # for c in (gf.dtype, gf(5)): # check(c) #mp = MPContext() # TODO: fix pickling of RealElement # for c in (mp.mpf, mp.mpf(1.0)): # check(c) # TODO: fix pickling of ComplexElement # for c in (mp.mpc, mp.mpc(1.0, -1.5)): # check(c) def test_pickling_polys_domains(): # from sympy.polys.domains.pythonfinitefield import PythonFiniteField from sympy.polys.domains.pythonintegerring import PythonIntegerRing from sympy.polys.domains.pythonrationalfield import PythonRationalField # TODO: fix pickling of ModularInteger # for c in (PythonFiniteField, PythonFiniteField(17)): # check(c) for c in (PythonIntegerRing, PythonIntegerRing()): check(c, check_attr=False) for c in (PythonRationalField, PythonRationalField()): check(c, check_attr=False) if HAS_GMPY: # from sympy.polys.domains.gmpyfinitefield import GMPYFiniteField from sympy.polys.domains.gmpyintegerring import GMPYIntegerRing from sympy.polys.domains.gmpyrationalfield import GMPYRationalField # TODO: fix pickling of ModularInteger # for c in (GMPYFiniteField, GMPYFiniteField(17)): # check(c) for c in (GMPYIntegerRing, GMPYIntegerRing()): check(c, check_attr=False) for c in (GMPYRationalField, GMPYRationalField()): check(c, check_attr=False) #from sympy.polys.domains.realfield import RealField #from sympy.polys.domains.complexfield import ComplexField from sympy.polys.domains.algebraicfield import AlgebraicField #from sympy.polys.domains.polynomialring import PolynomialRing #from sympy.polys.domains.fractionfield import FractionField from sympy.polys.domains.expressiondomain import ExpressionDomain # TODO: fix pickling of RealElement # for c in (RealField, RealField(100)): # check(c) # TODO: fix pickling of ComplexElement # for c in (ComplexField, ComplexField(100)): # check(c) for c in (AlgebraicField, AlgebraicField(QQ, sqrt(3))): check(c, check_attr=False) # TODO: AssertionError # for c in (PolynomialRing, PolynomialRing(ZZ, "x,y,z")): # check(c) # TODO: AttributeError: 'PolyElement' object has no attribute 'ring' # for c in (FractionField, FractionField(ZZ, "x,y,z")): # check(c) for c in (ExpressionDomain, ExpressionDomain()): check(c, check_attr=False) def test_pickling_polys_orderings(): from sympy.polys.orderings import (LexOrder, GradedLexOrder, ReversedGradedLexOrder, InverseOrder) # from sympy.polys.orderings import ProductOrder for c in (LexOrder, LexOrder()): check(c) for c in (GradedLexOrder, GradedLexOrder()): check(c) for c in (ReversedGradedLexOrder, ReversedGradedLexOrder()): check(c) # TODO: Argh, Python is so naive. No lambdas nor inner function support in # pickling module. Maybe someone could figure out what to do with this. # # for c in (ProductOrder, ProductOrder((LexOrder(), lambda m: m[:2]), # (GradedLexOrder(), lambda m: m[2:]))): # check(c) for c in (InverseOrder, InverseOrder(LexOrder())): check(c) def test_pickling_polys_monomials(): from sympy.polys.monomials import MonomialOps, Monomial x, y, z = symbols("x,y,z") for c in (MonomialOps, MonomialOps(3)): check(c) for c in (Monomial, Monomial((1, 2, 3), (x, y, z))): check(c) def test_pickling_polys_errors(): from sympy.polys.polyerrors import (HeuristicGCDFailed, HomomorphismFailed, IsomorphismFailed, ExtraneousFactors, EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible, NotReversible, NotAlgebraic, DomainError, PolynomialError, UnificationFailed, GeneratorsError, GeneratorsNeeded, UnivariatePolynomialError, MultivariatePolynomialError, OptionError, FlagError) # from sympy.polys.polyerrors import (ExactQuotientFailed, # OperationNotSupported, ComputationFailed, PolificationFailed) # x = Symbol('x') # TODO: TypeError: __init__() takes at least 3 arguments (1 given) # for c in (ExactQuotientFailed, ExactQuotientFailed(x, 3*x, ZZ)): # check(c) # TODO: TypeError: can't pickle instancemethod objects # for c in (OperationNotSupported, OperationNotSupported(Poly(x), Poly.gcd)): # check(c) for c in (HeuristicGCDFailed, HeuristicGCDFailed()): check(c) for c in (HomomorphismFailed, HomomorphismFailed()): check(c) for c in (IsomorphismFailed, IsomorphismFailed()): check(c) for c in (ExtraneousFactors, ExtraneousFactors()): check(c) for c in (EvaluationFailed, EvaluationFailed()): check(c) for c in (RefinementFailed, RefinementFailed()): check(c) for c in (CoercionFailed, CoercionFailed()): check(c) for c in (NotInvertible, NotInvertible()): check(c) for c in (NotReversible, NotReversible()): check(c) for c in (NotAlgebraic, NotAlgebraic()): check(c) for c in (DomainError, DomainError()): check(c) for c in (PolynomialError, PolynomialError()): check(c) for c in (UnificationFailed, UnificationFailed()): check(c) for c in (GeneratorsError, GeneratorsError()): check(c) for c in (GeneratorsNeeded, GeneratorsNeeded()): check(c) # TODO: PicklingError: Can't pickle <function <lambda> at 0x38578c0>: it's not found as __main__.<lambda> # for c in (ComputationFailed, ComputationFailed(lambda t: t, 3, None)): # check(c) for c in (UnivariatePolynomialError, UnivariatePolynomialError()): check(c) for c in (MultivariatePolynomialError, MultivariatePolynomialError()): check(c) # TODO: TypeError: __init__() takes at least 3 arguments (1 given) # for c in (PolificationFailed, PolificationFailed({}, x, x, False)): # check(c) for c in (OptionError, OptionError()): check(c) for c in (FlagError, FlagError()): check(c) #def test_pickling_polys_options(): #from sympy.polys.polyoptions import Options # TODO: fix pickling of `symbols' flag # for c in (Options, Options((), dict(domain='ZZ', polys=False))): # check(c) # TODO: def test_pickling_polys_rootisolation(): # RealInterval # ComplexInterval def test_pickling_polys_rootoftools(): from sympy.polys.rootoftools import CRootOf, RootSum x = Symbol('x') f = x**3 + x + 3 for c in (CRootOf, CRootOf(f, 0)): check(c) for c in (RootSum, RootSum(f, exp)): check(c) #================== printing ==================== from sympy.printing.latex import LatexPrinter from sympy.printing.mathml import MathMLContentPrinter, MathMLPresentationPrinter from sympy.printing.pretty.pretty import PrettyPrinter from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.printer import Printer from sympy.printing.python import PythonPrinter def test_printing(): for c in (LatexPrinter, LatexPrinter(), MathMLContentPrinter, MathMLPresentationPrinter, PrettyPrinter, prettyForm, stringPict, stringPict("a"), Printer, Printer(), PythonPrinter, PythonPrinter()): check(c) @XFAIL def test_printing1(): check(MathMLContentPrinter()) @XFAIL def test_printing2(): check(MathMLPresentationPrinter()) @XFAIL def test_printing3(): check(PrettyPrinter()) #================== series ====================== from sympy.series.limits import Limit from sympy.series.order import Order def test_series(): e = Symbol("e") x = Symbol("x") for c in (Limit, Limit(e, x, 1), Order, Order(e)): check(c) #================== concrete ================== from sympy.concrete.products import Product from sympy.concrete.summations import Sum def test_concrete(): x = Symbol("x") for c in (Product, Product(x, (x, 2, 4)), Sum, Sum(x, (x, 2, 4))): check(c) def test_deprecation_warning(): w = SymPyDeprecationWarning("message", deprecated_since_version='1.0', active_deprecations_target="active-deprecations") check(w) def test_issue_18438(): assert pickle.loads(pickle.dumps(S.Half)) == S.Half #================= old pickles ================= def test_unpickle_from_older_versions(): data = ( b'\x80\x04\x95^\x00\x00\x00\x00\x00\x00\x00\x8c\x10sympy.core.power' b'\x94\x8c\x03Pow\x94\x93\x94\x8c\x12sympy.core.numbers\x94\x8c' b'\x07Integer\x94\x93\x94K\x02\x85\x94R\x94}\x94bh\x03\x8c\x04Half' b'\x94\x93\x94)R\x94}\x94b\x86\x94R\x94}\x94b.' ) assert pickle.loads(data) == sqrt(2)
5097b982974bb01883963143ce4456e363ed13adb167ab5d25ada7014ce263b7
from itertools import product import math import inspect import mpmath from sympy.testing.pytest import raises, warns_deprecated_sympy from sympy.concrete.summations import Sum from sympy.core.function import (Function, Lambda, diff) from sympy.core.numbers import (E, Float, I, Rational, oo, pi) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial) from sympy.functions.combinatorial.numbers import bernoulli, harmonic from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.hyperbolic import acosh from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt) from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (acos, cos, cot, sin, sinc, tan) from sympy.functions.special.bessel import (besseli, besselj, besselk, bessely) from sympy.functions.special.beta_functions import (beta, betainc, betainc_regularized) from sympy.functions.special.delta_functions import (Heaviside) from sympy.functions.special.error_functions import (Ei, erf, erfc, fresnelc, fresnels, Si, Ci) from sympy.functions.special.gamma_functions import (digamma, gamma, loggamma, polygamma) from sympy.integrals.integrals import Integral from sympy.logic.boolalg import (And, false, ITE, Not, Or, true) from sympy.matrices.expressions.dotproduct import DotProduct from sympy.tensor.array import derive_by_array, Array from sympy.tensor.indexed import IndexedBase from sympy.utilities.lambdify import lambdify from sympy.core.expr import UnevaluatedExpr from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, log10, hypot from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 from sympy.codegen.scipy_nodes import cosm1, powm1 from sympy.functions.elementary.complexes import re, im, arg from sympy.functions.special.polynomials import \ chebyshevt, chebyshevu, legendre, hermite, laguerre, gegenbauer, \ assoc_legendre, assoc_laguerre, jacobi from sympy.matrices import Matrix, MatrixSymbol, SparseMatrix from sympy.printing.lambdarepr import LambdaPrinter from sympy.printing.numpy import NumPyPrinter from sympy.utilities.lambdify import implemented_function, lambdastr from sympy.testing.pytest import skip from sympy.utilities.decorator import conserve_mpmath_dps from sympy.utilities.exceptions import ignore_warnings from sympy.external import import_module from sympy.functions.special.gamma_functions import uppergamma, lowergamma import sympy MutableDenseMatrix = Matrix numpy = import_module('numpy') scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) numexpr = import_module('numexpr') tensorflow = import_module('tensorflow') cupy = import_module('cupy') jax = import_module('jax') numba = import_module('numba') if tensorflow: # Hide Tensorflow warnings import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' w, x, y, z = symbols('w,x,y,z') #================== Test different arguments ======================= def test_no_args(): f = lambdify([], 1) raises(TypeError, lambda: f(-1)) assert f() == 1 def test_single_arg(): f = lambdify(x, 2*x) assert f(1) == 2 def test_list_args(): f = lambdify([x, y], x + y) assert f(1, 2) == 3 def test_nested_args(): f1 = lambdify([[w, x]], [w, x]) assert f1([91, 2]) == [91, 2] raises(TypeError, lambda: f1(1, 2)) f2 = lambdify([(w, x), (y, z)], [w, x, y, z]) assert f2((18, 12), (73, 4)) == [18, 12, 73, 4] raises(TypeError, lambda: f2(3, 4)) f3 = lambdify([w, [[[x]], y], z], [w, x, y, z]) assert f3(10, [[[52]], 31], 44) == [10, 52, 31, 44] def test_str_args(): f = lambdify('x,y,z', 'z,y,x') assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_own_namespace_1(): myfunc = lambda x: 1 f = lambdify(x, sin(x), {"sin": myfunc}) assert f(0.1) == 1 assert f(100) == 1 def test_own_namespace_2(): def myfunc(x): return 1 f = lambdify(x, sin(x), {'sin': myfunc}) assert f(0.1) == 1 assert f(100) == 1 def test_own_module(): f = lambdify(x, sin(x), math) assert f(0) == 0.0 p, q, r = symbols("p q r", real=True) ae = abs(exp(p+UnevaluatedExpr(q+r))) f = lambdify([p, q, r], [ae, ae], modules=math) results = f(1.0, 1e18, -1e18) refvals = [math.exp(1.0)]*2 for res, ref in zip(results, refvals): assert abs((res-ref)/ref) < 1e-15 def test_bad_args(): # no vargs given raises(TypeError, lambda: lambdify(1)) # same with vector exprs raises(TypeError, lambda: lambdify([1, 2])) def test_atoms(): # Non-Symbol atoms should not be pulled out from the expression namespace f = lambdify(x, pi + x, {"pi": 3.14}) assert f(0) == 3.14 f = lambdify(x, I + x, {"I": 1j}) assert f(1) == 1 + 1j #================== Test different modules ========================= # high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted @conserve_mpmath_dps def test_sympy_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "sympy") assert f(x) == sin(x) prec = 1e-15 assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec # arctan is in numpy module and should not be available # The arctan below gives NameError. What is this supposed to test? # raises(NameError, lambda: lambdify(x, arctan(x), "sympy")) @conserve_mpmath_dps def test_math_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "math") prec = 1e-15 assert -prec < f(0.2) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a Python math function @conserve_mpmath_dps def test_mpmath_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a mpmath function ref2 = (mpmath.mpf("1e-30") - mpmath.mpf("1e-45")/2 + 5*mpmath.mpf("1e-60")/6 - 3*mpmath.mpf("1e-75")/4 + 33*mpmath.mpf("1e-90")/40 ) f2a = lambdify((x, y), x**y - 1, "mpmath") f2b = lambdify((x, y), powm1(x, y), "mpmath") f2c = lambdify((x,), expm1(x*log1p(x)), "mpmath") ans2a = f2a(mpmath.mpf("1")+mpmath.mpf("1e-15"), mpmath.mpf("1e-15")) ans2b = f2b(mpmath.mpf("1")+mpmath.mpf("1e-15"), mpmath.mpf("1e-15")) ans2c = f2c(mpmath.mpf("1e-15")) assert abs(ans2a - ref2) < 1e-51 assert abs(ans2b - ref2) < 1e-67 assert abs(ans2c - ref2) < 1e-80 @conserve_mpmath_dps def test_number_precision(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin02, "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(0) - sin02 < prec @conserve_mpmath_dps def test_mpmath_precision(): mpmath.mp.dps = 100 assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100)) #================== Test Translations ============================== # We can only check if all translated functions are valid. It has to be checked # by hand if they are complete. def test_math_transl(): from sympy.utilities.lambdify import MATH_TRANSLATIONS for sym, mat in MATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert mat in math.__dict__ def test_mpmath_transl(): from sympy.utilities.lambdify import MPMATH_TRANSLATIONS for sym, mat in MPMATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ or sym == 'Matrix' assert mat in mpmath.__dict__ def test_numpy_transl(): if not numpy: skip("numpy not installed.") from sympy.utilities.lambdify import NUMPY_TRANSLATIONS for sym, nump in NUMPY_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert nump in numpy.__dict__ def test_scipy_transl(): if not scipy: skip("scipy not installed.") from sympy.utilities.lambdify import SCIPY_TRANSLATIONS for sym, scip in SCIPY_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert scip in scipy.__dict__ or scip in scipy.special.__dict__ def test_numpy_translation_abs(): if not numpy: skip("numpy not installed.") f = lambdify(x, Abs(x), "numpy") assert f(-1) == 1 assert f(1) == 1 def test_numexpr_printer(): if not numexpr: skip("numexpr not installed.") # if translation/printing is done incorrectly then evaluating # a lambdified numexpr expression will throw an exception from sympy.printing.lambdarepr import NumExprPrinter blacklist = ('where', 'complex', 'contains') arg_tuple = (x, y, z) # some functions take more than one argument for sym in NumExprPrinter._numexpr_functions.keys(): if sym in blacklist: continue ssym = S(sym) if hasattr(ssym, '_nargs'): nargs = ssym._nargs[0] else: nargs = 1 args = arg_tuple[:nargs] f = lambdify(args, ssym(*args), modules='numexpr') assert f(*(1, )*nargs) is not None def test_issue_9334(): if not numexpr: skip("numexpr not installed.") if not numpy: skip("numpy not installed.") expr = S('b*a - sqrt(a**2)') a, b = sorted(expr.free_symbols, key=lambda s: s.name) func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False) foo, bar = numpy.random.random((2, 4)) func_numexpr(foo, bar) def test_issue_12984(): if not numexpr: skip("numexpr not installed.") func_numexpr = lambdify((x,y,z), Piecewise((y, x >= 0), (z, x > -1)), numexpr) with ignore_warnings(RuntimeWarning): assert func_numexpr(1, 24, 42) == 24 assert str(func_numexpr(-1, 24, 42)) == 'nan' def test_empty_modules(): x, y = symbols('x y') expr = -(x % y) no_modules = lambdify([x, y], expr) empty_modules = lambdify([x, y], expr, modules=[]) assert no_modules(3, 7) == empty_modules(3, 7) assert no_modules(3, 7) == -3 def test_exponentiation(): f = lambdify(x, x**2) assert f(-1) == 1 assert f(0) == 0 assert f(1) == 1 assert f(-2) == 4 assert f(2) == 4 assert f(2.5) == 6.25 def test_sqrt(): f = lambdify(x, sqrt(x)) assert f(0) == 0.0 assert f(1) == 1.0 assert f(4) == 2.0 assert abs(f(2) - 1.414) < 0.001 assert f(6.25) == 2.5 def test_trig(): f = lambdify([x], [cos(x), sin(x)], 'math') d = f(pi) prec = 1e-11 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec d = f(3.14159) prec = 1e-5 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec def test_integral(): if numpy and not scipy: skip("scipy not installed.") f = Lambda(x, exp(-x**2)) l = lambdify(y, Integral(f(x), (x, y, oo))) d = l(-oo) assert 1.77245385 < d < 1.772453851 def test_double_integral(): if numpy and not scipy: skip("scipy not installed.") # example from http://mpmath.org/doc/current/calculus/integration.html i = Integral(1/(1 - x**2*y**2), (x, 0, 1), (y, 0, z)) l = lambdify([z], i) d = l(1) assert 1.23370055 < d < 1.233700551 #================== Test vectors =================================== def test_vector_simple(): f = lambdify((x, y, z), (z, y, x)) assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_vector_discontinuous(): f = lambdify(x, (-1/x, 1/x)) raises(ZeroDivisionError, lambda: f(0)) assert f(1) == (-1.0, 1.0) assert f(2) == (-0.5, 0.5) assert f(-2) == (0.5, -0.5) def test_trig_symbolic(): f = lambdify([x], [cos(x), sin(x)], 'math') d = f(pi) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_trig_float(): f = lambdify([x], [cos(x), sin(x)]) d = f(3.14159) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_docs(): f = lambdify(x, x**2) assert f(2) == 4 f = lambdify([x, y, z], [z, y, x]) assert f(1, 2, 3) == [3, 2, 1] f = lambdify(x, sqrt(x)) assert f(4) == 2.0 f = lambdify((x, y), sin(x*y)**2) assert f(0, 5) == 0 def test_math(): f = lambdify((x, y), sin(x), modules="math") assert f(0, 5) == 0 def test_sin(): f = lambdify(x, sin(x)**2) assert isinstance(f(2), float) f = lambdify(x, sin(x)**2, modules="math") assert isinstance(f(2), float) def test_matrix(): A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol = Matrix([[1, 2], [sin(3) + 4, 1]]) f = lambdify((x, y, z), A, modules="sympy") assert f(1, 2, 3) == sol f = lambdify((x, y, z), (A, [A]), modules="sympy") assert f(1, 2, 3) == (sol, [sol]) J = Matrix((x, x + y)).jacobian((x, y)) v = Matrix((x, y)) sol = Matrix([[1, 0], [1, 1]]) assert lambdify(v, J, modules='sympy')(1, 2) == sol assert lambdify(v.T, J, modules='sympy')(1, 2) == sol def test_numpy_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) #Lambdify array first, to ensure return to array as default f = lambdify((x, y, z), A, ['numpy']) numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) #Check that the types are arrays and matrices assert isinstance(f(1, 2, 3), numpy.ndarray) # gh-15071 class dot(Function): pass x_dot_mtx = dot(x, Matrix([[2], [1], [0]])) f_dot1 = lambdify(x, x_dot_mtx) inp = numpy.zeros((17, 3)) assert numpy.all(f_dot1(inp) == 0) strict_kw = dict(allow_unknown_functions=False, inline=True, fully_qualified_modules=False) p2 = NumPyPrinter(dict(user_functions={'dot': 'dot'}, **strict_kw)) f_dot2 = lambdify(x, x_dot_mtx, printer=p2) assert numpy.all(f_dot2(inp) == 0) p3 = NumPyPrinter(strict_kw) # The line below should probably fail upon construction (before calling with "(inp)"): raises(Exception, lambda: lambdify(x, x_dot_mtx, printer=p3)(inp)) def test_numpy_transpose(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A.T, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]])) def test_numpy_dotproduct(): if not numpy: skip("numpy not installed") A = Matrix([x, y, z]) f1 = lambdify([x, y, z], DotProduct(A, A), modules='numpy') f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy') f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='numpy') f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy') assert f1(1, 2, 3) == \ f2(1, 2, 3) == \ f3(1, 2, 3) == \ f4(1, 2, 3) == \ numpy.array([14]) def test_numpy_inverse(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A**-1, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]])) def test_numpy_old_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) f = lambdify((x, y, z), A, [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']) with ignore_warnings(PendingDeprecationWarning): numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) assert isinstance(f(1, 2, 3), numpy.matrix) def test_scipy_sparse_matrix(): if not scipy: skip("scipy not installed.") A = SparseMatrix([[x, 0], [0, y]]) f = lambdify((x, y), A, modules="scipy") B = f(1, 2) assert isinstance(B, scipy.sparse.coo_matrix) def test_python_div_zero_issue_11306(): if not numpy: skip("numpy not installed.") p = Piecewise((1 / x, y < -1), (x, y < 1), (1 / x, True)) f = lambdify([x, y], p, modules='numpy') numpy.seterr(divide='ignore') assert float(f(numpy.array([0]),numpy.array([0.5]))) == 0 assert str(float(f(numpy.array([0]),numpy.array([1])))) == 'inf' numpy.seterr(divide='warn') def test_issue9474(): mods = [None, 'math'] if numpy: mods.append('numpy') if mpmath: mods.append('mpmath') for mod in mods: f = lambdify(x, S.One/x, modules=mod) assert f(2) == 0.5 f = lambdify(x, floor(S.One/x), modules=mod) assert f(2) == 0 for absfunc, modules in product([Abs, abs], mods): f = lambdify(x, absfunc(x), modules=modules) assert f(-1) == 1 assert f(1) == 1 assert f(3+4j) == 5 def test_issue_9871(): if not numexpr: skip("numexpr not installed.") if not numpy: skip("numpy not installed.") r = sqrt(x**2 + y**2) expr = diff(1/r, x) xn = yn = numpy.linspace(1, 10, 16) # expr(xn, xn) = -xn/(sqrt(2)*xn)^3 fv_exact = -numpy.sqrt(2.)**-3 * xn**-2 fv_numpy = lambdify((x, y), expr, modules='numpy')(xn, yn) fv_numexpr = lambdify((x, y), expr, modules='numexpr')(xn, yn) numpy.testing.assert_allclose(fv_numpy, fv_exact, rtol=1e-10) numpy.testing.assert_allclose(fv_numexpr, fv_exact, rtol=1e-10) def test_numpy_piecewise(): if not numpy: skip("numpy not installed.") pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True)) f = lambdify(x, pieces, modules="numpy") numpy.testing.assert_array_equal(f(numpy.arange(10)), numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81])) # If we evaluate somewhere all conditions are False, we should get back NaN nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0))) numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])), numpy.array([1, numpy.nan, 1])) def test_numpy_logical_ops(): if not numpy: skip("numpy not installed.") and_func = lambdify((x, y), And(x, y), modules="numpy") and_func_3 = lambdify((x, y, z), And(x, y, z), modules="numpy") or_func = lambdify((x, y), Or(x, y), modules="numpy") or_func_3 = lambdify((x, y, z), Or(x, y, z), modules="numpy") not_func = lambdify((x), Not(x), modules="numpy") arr1 = numpy.array([True, True]) arr2 = numpy.array([False, True]) arr3 = numpy.array([True, False]) numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True])) numpy.testing.assert_array_equal(and_func_3(arr1, arr2, arr3), numpy.array([False, False])) numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True])) numpy.testing.assert_array_equal(or_func_3(arr1, arr2, arr3), numpy.array([True, True])) numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False])) def test_numpy_matmul(): if not numpy: skip("numpy not installed.") xmat = Matrix([[x, y], [z, 1+z]]) ymat = Matrix([[x**2], [Abs(x)]]) mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy") numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]])) numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]])) # Multiple matrices chained together in multiplication f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy") numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25], [159, 251]])) def test_numpy_numexpr(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b, c = numpy.random.randn(3, 128, 128) # ensure that numpy and numexpr return same value for complicated expression expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \ Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2) npfunc = lambdify((x, y, z), expr, modules='numpy') nefunc = lambdify((x, y, z), expr, modules='numexpr') assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c)) def test_numexpr_userfunctions(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b = numpy.random.randn(2, 10) uf = type('uf', (Function, ), {'eval' : classmethod(lambda x, y : y**2+1)}) func = lambdify(x, 1-uf(x), modules='numexpr') assert numpy.allclose(func(a), -(a**2)) uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1) func = lambdify((x, y), uf(x, y), modules='numexpr') assert numpy.allclose(func(a, b), 2*a*b+1) def test_tensorflow_basic_math(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.constant(0, dtype=tensorflow.float32) assert func(a).eval(session=s) == 0.5 def test_tensorflow_placeholders(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.compat.v1.placeholder(dtype=tensorflow.float32) assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5 def test_tensorflow_variables(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.Variable(0, dtype=tensorflow.float32) s.run(a.initializer) assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5 def test_tensorflow_logical_operations(): if not tensorflow: skip("tensorflow not installed.") expr = Not(And(Or(x, y), y)) func = lambdify([x, y], expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(False, True).eval(session=s) == False def test_tensorflow_piecewise(): if not tensorflow: skip("tensorflow not installed.") expr = Piecewise((0, Eq(x,0)), (-1, x < 0), (1, x > 0)) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-1).eval(session=s) == -1 assert func(0).eval(session=s) == 0 assert func(1).eval(session=s) == 1 def test_tensorflow_multi_max(): if not tensorflow: skip("tensorflow not installed.") expr = Max(x, -x, x**2) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-2).eval(session=s) == 4 def test_tensorflow_multi_min(): if not tensorflow: skip("tensorflow not installed.") expr = Min(x, -x, x**2) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-2).eval(session=s) == -2 def test_tensorflow_relational(): if not tensorflow: skip("tensorflow not installed.") expr = x >= 0 func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(1).eval(session=s) == True def test_tensorflow_complexes(): if not tensorflow: skip("tensorflow not installed") func1 = lambdify(x, re(x), modules="tensorflow") func2 = lambdify(x, im(x), modules="tensorflow") func3 = lambdify(x, Abs(x), modules="tensorflow") func4 = lambdify(x, arg(x), modules="tensorflow") with tensorflow.compat.v1.Session() as s: # For versions before # https://github.com/tensorflow/tensorflow/issues/30029 # resolved, using Python numeric types may not work a = tensorflow.constant(1+2j) assert func1(a).eval(session=s) == 1 assert func2(a).eval(session=s) == 2 tensorflow_result = func3(a).eval(session=s) sympy_result = Abs(1 + 2j).evalf() assert abs(tensorflow_result-sympy_result) < 10**-6 tensorflow_result = func4(a).eval(session=s) sympy_result = arg(1 + 2j).evalf() assert abs(tensorflow_result-sympy_result) < 10**-6 def test_tensorflow_array_arg(): # Test for issue 14655 (tensorflow part) if not tensorflow: skip("tensorflow not installed.") f = lambdify([[x, y]], x*x + y, 'tensorflow') with tensorflow.compat.v1.Session() as s: fcall = f(tensorflow.constant([2.0, 1.0])) assert fcall.eval(session=s) == 5.0 #================== Test symbolic ================================== def test_sym_single_arg(): f = lambdify(x, x * y) assert f(z) == z * y def test_sym_list_args(): f = lambdify([x, y], x + y + z) assert f(1, 2) == 3 + z def test_sym_integral(): f = Lambda(x, exp(-x**2)) l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy") assert l(y) == Integral(exp(-y**2), (y, -oo, oo)) assert l(y).doit() == sqrt(pi) def test_namespace_order(): # lambdify had a bug, such that module dictionaries or cached module # dictionaries would pull earlier namespaces into themselves. # Because the module dictionaries form the namespace of the # generated lambda, this meant that the behavior of a previously # generated lambda function could change as a result of later calls # to lambdify. n1 = {'f': lambda x: 'first f'} n2 = {'f': lambda x: 'second f', 'g': lambda x: 'function g'} f = sympy.Function('f') g = sympy.Function('g') if1 = lambdify(x, f(x), modules=(n1, "sympy")) assert if1(1) == 'first f' if2 = lambdify(x, g(x), modules=(n2, "sympy")) # previously gave 'second f' assert if1(1) == 'first f' assert if2(1) == 'function g' def test_imps(): # Here we check if the default returned functions are anonymous - in # the sense that we can have more than one function with the same name f = implemented_function('f', lambda x: 2*x) g = implemented_function('f', lambda x: math.sqrt(x)) l1 = lambdify(x, f(x)) l2 = lambdify(x, g(x)) assert str(f(x)) == str(g(x)) assert l1(3) == 6 assert l2(3) == math.sqrt(3) # check that we can pass in a Function as input func = sympy.Function('myfunc') assert not hasattr(func, '_imp_') my_f = implemented_function(func, lambda x: 2*x) assert hasattr(my_f, '_imp_') # Error for functions with same name and different implementation f2 = implemented_function("f", lambda x: x + 101) raises(ValueError, lambda: lambdify(x, f(f2(x)))) def test_imps_errors(): # Test errors that implemented functions can return, and still be able to # form expressions. # See: https://github.com/sympy/sympy/issues/10810 # # XXX: Removed AttributeError here. This test was added due to issue 10810 # but that issue was about ValueError. It doesn't seem reasonable to # "support" catching AttributeError in the same context... for val, error_class in product((0, 0., 2, 2.0), (TypeError, ValueError)): def myfunc(a): if a == 0: raise error_class return 1 f = implemented_function('f', myfunc) expr = f(val) assert expr == f(val) def test_imps_wrong_args(): raises(ValueError, lambda: implemented_function(sin, lambda x: x)) def test_lambdify_imps(): # Test lambdify with implemented functions # first test basic (sympy) lambdify f = sympy.cos assert lambdify(x, f(x))(0) == 1 assert lambdify(x, 1 + f(x))(0) == 2 assert lambdify((x, y), y + f(x))(0, 1) == 2 # make an implemented function and test f = implemented_function("f", lambda x: x + 100) assert lambdify(x, f(x))(0) == 100 assert lambdify(x, 1 + f(x))(0) == 101 assert lambdify((x, y), y + f(x))(0, 1) == 101 # Can also handle tuples, lists, dicts as expressions lam = lambdify(x, (f(x), x)) assert lam(3) == (103, 3) lam = lambdify(x, [f(x), x]) assert lam(3) == [103, 3] lam = lambdify(x, [f(x), (f(x), x)]) assert lam(3) == [103, (103, 3)] lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {x: f(x)}) assert lam(3) == {3: 103} # Check that imp preferred to other namespaces by default d = {'f': lambda x: x + 99} lam = lambdify(x, f(x), d) assert lam(3) == 103 # Unless flag passed lam = lambdify(x, f(x), d, use_imps=False) assert lam(3) == 102 def test_dummification(): t = symbols('t') F = Function('F') G = Function('G') #"\alpha" is not a valid Python variable name #lambdify should sub in a dummy for it, and return #without a syntax error alpha = symbols(r'\alpha') some_expr = 2 * F(t)**2 / G(t) lam = lambdify((F(t), G(t)), some_expr) assert lam(3, 9) == 2 lam = lambdify(sin(t), 2 * sin(t)**2) assert lam(F(t)) == 2 * F(t)**2 #Test that \alpha was properly dummified lam = lambdify((alpha, t), 2*alpha + t) assert lam(2, 1) == 5 raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5)) def test_curly_matrix_symbol(): # Issue #15009 curlyv = sympy.MatrixSymbol("{v}", 2, 1) lam = lambdify(curlyv, curlyv) assert lam(1)==1 lam = lambdify(curlyv, curlyv, dummify=True) assert lam(1)==1 def test_python_keywords(): # Test for issue 7452. The automatic dummification should ensure use of # Python reserved keywords as symbol names will create valid lambda # functions. This is an additional regression test. python_if = symbols('if') expr = python_if / 2 f = lambdify(python_if, expr) assert f(4.0) == 2.0 def test_lambdify_docstring(): func = lambdify((w, x, y, z), w + x + y + z) ref = ( "Created with lambdify. Signature:\n\n" "func(w, x, y, z)\n\n" "Expression:\n\n" "w + x + y + z" ).splitlines() assert func.__doc__.splitlines()[:len(ref)] == ref syms = symbols('a1:26') func = lambdify(syms, sum(syms)) ref = ( "Created with lambdify. Signature:\n\n" "func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n" " a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n" "Expression:\n\n" "a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +..." ).splitlines() assert func.__doc__.splitlines()[:len(ref)] == ref #================== Test special printers ========================== def test_special_printers(): from sympy.printing.lambdarepr import IntervalPrinter def intervalrepr(expr): return IntervalPrinter().doprint(expr) expr = sqrt(sqrt(2) + sqrt(3)) + S.Half func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr) func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter) func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter()) mpi = type(mpmath.mpi(1, 2)) assert isinstance(func0(), mpi) assert isinstance(func1(), mpi) assert isinstance(func2(), mpi) # To check Is lambdify loggamma works for mpmath or not exp1 = lambdify(x, loggamma(x), 'mpmath')(5) exp2 = lambdify(x, loggamma(x), 'mpmath')(1.8) exp3 = lambdify(x, loggamma(x), 'mpmath')(15) exp_ls = [exp1, exp2, exp3] sol1 = mpmath.loggamma(5) sol2 = mpmath.loggamma(1.8) sol3 = mpmath.loggamma(15) sol_ls = [sol1, sol2, sol3] assert exp_ls == sol_ls def test_true_false(): # We want exact is comparison here, not just == assert lambdify([], true)() is True assert lambdify([], false)() is False def test_issue_2790(): assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3 assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10 assert lambdify(x, x + 1, dummify=False)(1) == 2 def test_issue_12092(): f = implemented_function('f', lambda x: x**2) assert f(f(2)).evalf() == Float(16) def test_issue_14911(): class Variable(sympy.Symbol): def _sympystr(self, printer): return printer.doprint(self.name) _lambdacode = _sympystr _numpycode = _sympystr x = Variable('x') y = 2 * x code = LambdaPrinter().doprint(y) assert code.replace(' ', '') == '2*x' def test_ITE(): assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5 assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3 def test_Min_Max(): # see gh-10375 assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1 assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3 def test_Indexed(): # Issue #10934 if not numpy: skip("numpy not installed") a = IndexedBase('a') i, j = symbols('i j') b = numpy.array([[1, 2], [3, 4]]) assert lambdify(a, Sum(a[x, y], (x, 0, 1), (y, 0, 1)))(b) == 10 def test_issue_12173(): #test for issue 12173 expr1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2) expr2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2) assert expr1 == uppergamma(1, 2).evalf() assert expr2 == lowergamma(1, 2).evalf() def test_issue_13642(): if not numpy: skip("numpy not installed") f = lambdify(x, sinc(x)) assert Abs(f(1) - sinc(1)).n() < 1e-15 def test_sinc_mpmath(): f = lambdify(x, sinc(x), "mpmath") assert Abs(f(1) - sinc(1)).n() < 1e-15 def test_lambdify_dummy_arg(): d1 = Dummy() f1 = lambdify(d1, d1 + 1, dummify=False) assert f1(2) == 3 f1b = lambdify(d1, d1 + 1) assert f1b(2) == 3 d2 = Dummy('x') f2 = lambdify(d2, d2 + 1) assert f2(2) == 3 f3 = lambdify([[d2]], d2 + 1) assert f3([2]) == 3 def test_lambdify_mixed_symbol_dummy_args(): d = Dummy() # Contrived example of name clash dsym = symbols(str(d)) f = lambdify([d, dsym], d - dsym) assert f(4, 1) == 3 def test_numpy_array_arg(): # Test for issue 14655 (numpy part) if not numpy: skip("numpy not installed") f = lambdify([[x, y]], x*x + y, 'numpy') assert f(numpy.array([2.0, 1.0])) == 5 def test_scipy_fns(): if not scipy: skip("scipy not installed") single_arg_sympy_fns = [Ei, erf, erfc, factorial, gamma, loggamma, digamma, Si, Ci] single_arg_scipy_fns = [scipy.special.expi, scipy.special.erf, scipy.special.erfc, scipy.special.factorial, scipy.special.gamma, scipy.special.gammaln, scipy.special.psi, scipy.special.sici, scipy.special.sici] numpy.random.seed(0) for (sympy_fn, scipy_fn) in zip(single_arg_sympy_fns, single_arg_scipy_fns): f = lambdify(x, sympy_fn(x), modules="scipy") for i in range(20): tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy thinks that factorial(z) is 0 when re(z) < 0 and # does not support complex numbers. # SymPy does not think so. if sympy_fn == factorial: tv = numpy.abs(tv) # SciPy supports gammaln for real arguments only, # and there is also a branch cut along the negative real axis if sympy_fn == loggamma: tv = numpy.abs(tv) # SymPy's digamma evaluates as polygamma(0, z) # which SciPy supports for real arguments only if sympy_fn == digamma: tv = numpy.real(tv) sympy_result = sympy_fn(tv).evalf() scipy_result = scipy_fn(tv) # SciPy's sici returns a tuple with both Si and Ci present in it # which needs to be unpacked if sympy_fn == Si: scipy_result = scipy_fn(tv)[0] if sympy_fn == Ci: scipy_result = scipy_fn(tv)[1] assert abs(f(tv) - sympy_result) < 1e-13*(1 + abs(sympy_result)) assert abs(f(tv) - scipy_result) < 1e-13*(1 + abs(sympy_result)) double_arg_sympy_fns = [RisingFactorial, besselj, bessely, besseli, besselk, polygamma] double_arg_scipy_fns = [scipy.special.poch, scipy.special.jv, scipy.special.yv, scipy.special.iv, scipy.special.kv, scipy.special.polygamma] for (sympy_fn, scipy_fn) in zip(double_arg_sympy_fns, double_arg_scipy_fns): f = lambdify((x, y), sympy_fn(x, y), modules="scipy") for i in range(20): # SciPy supports only real orders of Bessel functions tv1 = numpy.random.uniform(-10, 10) tv2 = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy requires a real valued 2nd argument for: poch, polygamma if sympy_fn in (RisingFactorial, polygamma): tv2 = numpy.real(tv2) if sympy_fn == polygamma: tv1 = abs(int(tv1)) # first argument to polygamma must be a non-negative integral. sympy_result = sympy_fn(tv1, tv2).evalf() assert abs(f(tv1, tv2) - sympy_result) < 1e-13*(1 + abs(sympy_result)) assert abs(f(tv1, tv2) - scipy_fn(tv1, tv2)) < 1e-13*(1 + abs(sympy_result)) def test_scipy_polys(): if not scipy: skip("scipy not installed") numpy.random.seed(0) params = symbols('n k a b') # list polynomials with the number of parameters polys = [ (chebyshevt, 1), (chebyshevu, 1), (legendre, 1), (hermite, 1), (laguerre, 1), (gegenbauer, 2), (assoc_legendre, 2), (assoc_laguerre, 2), (jacobi, 3) ] msg = \ "The random test of the function {func} with the arguments " \ "{args} had failed because the SymPy result {sympy_result} " \ "and SciPy result {scipy_result} had failed to converge " \ "within the tolerance {tol} " \ "(Actual absolute difference : {diff})" for sympy_fn, num_params in polys: args = params[:num_params] + (x,) f = lambdify(args, sympy_fn(*args)) for _ in range(10): tn = numpy.random.randint(3, 10) tparams = tuple(numpy.random.uniform(0, 5, size=num_params-1)) tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy supports hermite for real arguments only if sympy_fn == hermite: tv = numpy.real(tv) # assoc_legendre needs x in (-1, 1) and integer param at most n if sympy_fn == assoc_legendre: tv = numpy.random.uniform(-1, 1) tparams = tuple(numpy.random.randint(1, tn, size=1)) vals = (tn,) + tparams + (tv,) scipy_result = f(*vals) sympy_result = sympy_fn(*vals).evalf() atol = 1e-9*(1 + abs(sympy_result)) diff = abs(scipy_result - sympy_result) try: assert diff < atol except TypeError: raise AssertionError( msg.format( func=repr(sympy_fn), args=repr(vals), sympy_result=repr(sympy_result), scipy_result=repr(scipy_result), diff=diff, tol=atol) ) def test_lambdify_inspect(): f = lambdify(x, x**2) # Test that inspect.getsource works but don't hard-code implementation # details assert 'x**2' in inspect.getsource(f) def test_issue_14941(): x, y = Dummy(), Dummy() # test dict f1 = lambdify([x, y], {x: 3, y: 3}, 'sympy') assert f1(2, 3) == {2: 3, 3: 3} # test tuple f2 = lambdify([x, y], (y, x), 'sympy') assert f2(2, 3) == (3, 2) f2b = lambdify([], (1,)) # gh-23224 assert f2b() == (1,) # test list f3 = lambdify([x, y], [y, x], 'sympy') assert f3(2, 3) == [3, 2] def test_lambdify_Derivative_arg_issue_16468(): f = Function('f')(x) fx = f.diff() assert lambdify((f, fx), f + fx)(10, 5) == 15 assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2 raises(SyntaxError, lambda: eval(lambdastr((f, fx), f/fx, dummify=False))) assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2 assert eval(lambdastr((fx, f), f/fx, dummify=True))(S(10), 5) == S.Half assert lambdify(fx, 1 + fx)(41) == 42 assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42 def test_imag_real(): f_re = lambdify([z], sympy.re(z)) val = 3+2j assert f_re(val) == val.real f_im = lambdify([z], sympy.im(z)) # see #15400 assert f_im(val) == val.imag def test_MatrixSymbol_issue_15578(): if not numpy: skip("numpy not installed") A = MatrixSymbol('A', 2, 2) A0 = numpy.array([[1, 2], [3, 4]]) f = lambdify(A, A**(-1)) assert numpy.allclose(f(A0), numpy.array([[-2., 1.], [1.5, -0.5]])) g = lambdify(A, A**3) assert numpy.allclose(g(A0), numpy.array([[37, 54], [81, 118]])) def test_issue_15654(): if not scipy: skip("scipy not installed") from sympy.abc import n, l, r, Z from sympy.physics import hydrogen nv, lv, rv, Zv = 1, 0, 3, 1 sympy_value = hydrogen.R_nl(nv, lv, rv, Zv).evalf() f = lambdify((n, l, r, Z), hydrogen.R_nl(n, l, r, Z)) scipy_value = f(nv, lv, rv, Zv) assert abs(sympy_value - scipy_value) < 1e-15 def test_issue_15827(): if not numpy: skip("numpy not installed") A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 2, 3) C = MatrixSymbol("C", 3, 4) D = MatrixSymbol("D", 4, 5) k=symbols("k") f = lambdify(A, (2*k)*A) g = lambdify(A, (2+k)*A) h = lambdify(A, 2*A) i = lambdify((B, C, D), 2*B*C*D) assert numpy.array_equal(f(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[2*k, 4*k, 6*k], [2*k, 4*k, 6*k], [2*k, 4*k, 6*k]], dtype=object)) assert numpy.array_equal(g(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[k + 2, 2*k + 4, 3*k + 6], [k + 2, 2*k + 4, 3*k + 6], \ [k + 2, 2*k + 4, 3*k + 6]], dtype=object)) assert numpy.array_equal(h(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[2, 4, 6], [2, 4, 6], [2, 4, 6]])) assert numpy.array_equal(i(numpy.array([[1, 2, 3], [1, 2, 3]]), numpy.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]), \ numpy.array([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]])), numpy.array([[ 120, 240, 360, 480, 600], \ [ 120, 240, 360, 480, 600]])) def test_issue_16930(): if not scipy: skip("scipy not installed") x = symbols("x") f = lambda x: S.GoldenRatio * x**2 f_ = lambdify(x, f(x), modules='scipy') assert f_(1) == scipy.constants.golden_ratio def test_issue_17898(): if not scipy: skip("scipy not installed") x = symbols("x") f_ = lambdify([x], sympy.LambertW(x,-1), modules='scipy') assert f_(0.1) == mpmath.lambertw(0.1, -1) def test_issue_13167_21411(): if not numpy: skip("numpy not installed") f1 = lambdify(x, sympy.Heaviside(x)) f2 = lambdify(x, sympy.Heaviside(x, 1)) res1 = f1([-1, 0, 1]) res2 = f2([-1, 0, 1]) assert Abs(res1[0]).n() < 1e-15 # First functionality: only one argument passed assert Abs(res1[1] - 1/2).n() < 1e-15 assert Abs(res1[2] - 1).n() < 1e-15 assert Abs(res2[0]).n() < 1e-15 # Second functionality: two arguments passed assert Abs(res2[1] - 1).n() < 1e-15 assert Abs(res2[2] - 1).n() < 1e-15 def test_single_e(): f = lambdify(x, E) assert f(23) == exp(1.0) def test_issue_16536(): if not scipy: skip("scipy not installed") a = symbols('a') f1 = lowergamma(a, x) F = lambdify((a, x), f1, modules='scipy') assert abs(lowergamma(1, 3) - F(1, 3)) <= 1e-10 f2 = uppergamma(a, x) F = lambdify((a, x), f2, modules='scipy') assert abs(uppergamma(1, 3) - F(1, 3)) <= 1e-10 def test_issue_22726(): if not numpy: skip("numpy not installed") x1, x2 = symbols('x1 x2') f = Max(S.Zero, Min(x1, x2)) g = derive_by_array(f, (x1, x2)) G = lambdify((x1, x2), g, modules='numpy') point = {x1: 1, x2: 2} assert (abs(g.subs(point) - G(*point.values())) <= 1e-10).all() def test_issue_22739(): if not numpy: skip("numpy not installed") x1, x2 = symbols('x1 x2') f = Heaviside(Min(x1, x2)) F = lambdify((x1, x2), f, modules='numpy') point = {x1: 1, x2: 2} assert abs(f.subs(point) - F(*point.values())) <= 1e-10 def test_issue_22992(): if not numpy: skip("numpy not installed") a, t = symbols('a t') expr = a*(log(cot(t/2)) - cos(t)) F = lambdify([a, t], expr, 'numpy') point = {a: 10, t: 2} assert abs(expr.subs(point) - F(*point.values())) <= 1e-10 # Standard math F = lambdify([a, t], expr) assert abs(expr.subs(point) - F(*point.values())) <= 1e-10 def test_issue_19764(): if not numpy: skip("numpy not installed") expr = Array([x, x**2]) f = lambdify(x, expr, 'numpy') assert f(1).__class__ == numpy.ndarray def test_issue_20070(): if not numba: skip("numba not installed") f = lambdify(x, sin(x), 'numpy') assert numba.jit(f)(1)==0.8414709848078965 def test_fresnel_integrals_scipy(): if not scipy: skip("scipy not installed") f1 = fresnelc(x) f2 = fresnels(x) F1 = lambdify(x, f1, modules='scipy') F2 = lambdify(x, f2, modules='scipy') assert abs(fresnelc(1.3) - F1(1.3)) <= 1e-10 assert abs(fresnels(1.3) - F2(1.3)) <= 1e-10 def test_beta_scipy(): if not scipy: skip("scipy not installed") f = beta(x, y) F = lambdify((x, y), f, modules='scipy') assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10 def test_beta_math(): f = beta(x, y) F = lambdify((x, y), f, modules='math') assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10 def test_betainc_scipy(): if not scipy: skip("scipy not installed") f = betainc(w, x, y, z) F = lambdify((w, x, y, z), f, modules='scipy') assert abs(betainc(1.4, 3.1, 0.1, 0.5) - F(1.4, 3.1, 0.1, 0.5)) <= 1e-10 def test_betainc_regularized_scipy(): if not scipy: skip("scipy not installed") f = betainc_regularized(w, x, y, z) F = lambdify((w, x, y, z), f, modules='scipy') assert abs(betainc_regularized(0.2, 3.5, 0.1, 1) - F(0.2, 3.5, 0.1, 1)) <= 1e-10 def test_numpy_special_math(): if not numpy: skip("numpy not installed") funcs = [expm1, log1p, exp2, log2, log10, hypot, logaddexp, logaddexp2] for func in funcs: if 2 in func.nargs: expr = func(x, y) args = (x, y) num_args = (0.3, 0.4) elif 1 in func.nargs: expr = func(x) args = (x,) num_args = (0.3,) else: raise NotImplementedError("Need to handle other than unary & binary functions in test") f = lambdify(args, expr) result = f(*num_args) reference = expr.subs(dict(zip(args, num_args))).evalf() assert numpy.allclose(result, float(reference)) lae2 = lambdify((x, y), logaddexp2(log2(x), log2(y))) assert abs(2.0**lae2(1e-50, 2.5e-50) - 3.5e-50) < 1e-62 # from NumPy's docstring def test_scipy_special_math(): if not scipy: skip("scipy not installed") cm1 = lambdify((x,), cosm1(x), modules='scipy') assert abs(cm1(1e-20) + 5e-41) < 1e-200 have_scipy_1_10plus = tuple(map(int, scipy.version.version.split('.')[:2])) >= (1, 10) if have_scipy_1_10plus: cm2 = lambdify((x, y), powm1(x, y), modules='scipy') assert abs(cm2(1.2, 1e-9) - 1.82321557e-10) < 1e-17 def test_scipy_bernoulli(): if not scipy: skip("scipy not installed") bern = lambdify((x,), bernoulli(x), modules='scipy') assert bern(1) == 0.5 def test_scipy_harmonic(): if not scipy: skip("scipy not installed") hn = lambdify((x,), harmonic(x), modules='scipy') assert hn(2) == 1.5 hnm = lambdify((x, y), harmonic(x, y), modules='scipy') assert hnm(2, 2) == 1.25 def test_cupy_array_arg(): if not cupy: skip("CuPy not installed") f = lambdify([[x, y]], x*x + y, 'cupy') result = f(cupy.array([2.0, 1.0])) assert result == 5 assert "cupy" in str(type(result)) def test_cupy_array_arg_using_numpy(): # numpy functions can be run on cupy arrays # unclear if we can "officially" support this, # depends on numpy __array_function__ support if not cupy: skip("CuPy not installed") f = lambdify([[x, y]], x*x + y, 'numpy') result = f(cupy.array([2.0, 1.0])) assert result == 5 assert "cupy" in str(type(result)) def test_cupy_dotproduct(): if not cupy: skip("CuPy not installed") A = Matrix([x, y, z]) f1 = lambdify([x, y, z], DotProduct(A, A), modules='cupy') f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='cupy') f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='cupy') f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='cupy') assert f1(1, 2, 3) == \ f2(1, 2, 3) == \ f3(1, 2, 3) == \ f4(1, 2, 3) == \ cupy.array([14]) def test_jax_array_arg(): if not jax: skip("JAX not installed") f = lambdify([[x, y]], x*x + y, 'jax') result = f(jax.numpy.array([2.0, 1.0])) assert result == 5 assert "jax" in str(type(result)) def test_jax_array_arg_using_numpy(): if not jax: skip("JAX not installed") f = lambdify([[x, y]], x*x + y, 'numpy') result = f(jax.numpy.array([2.0, 1.0])) assert result == 5 assert "jax" in str(type(result)) def test_jax_dotproduct(): if not jax: skip("JAX not installed") A = Matrix([x, y, z]) f1 = lambdify([x, y, z], DotProduct(A, A), modules='jax') f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='jax') f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='jax') f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='jax') assert f1(1, 2, 3) == \ f2(1, 2, 3) == \ f3(1, 2, 3) == \ f4(1, 2, 3) == \ jax.numpy.array([14]) def test_lambdify_cse(): def dummy_cse(exprs): return (), exprs def minmem(exprs): from sympy.simplify.cse_main import cse_release_variables, cse return cse(exprs, postprocess=cse_release_variables) class Case: def __init__(self, *, args, exprs, num_args, requires_numpy=False): self.args = args self.exprs = exprs self.num_args = num_args subs_dict = dict(zip(self.args, self.num_args)) self.ref = [e.subs(subs_dict).evalf() for e in exprs] self.requires_numpy = requires_numpy def lambdify(self, *, cse): return lambdify(self.args, self.exprs, cse=cse) def assertAllClose(self, result, *, abstol=1e-15, reltol=1e-15): if self.requires_numpy: assert all(numpy.allclose(result[i], numpy.asarray(r, dtype=float), rtol=reltol, atol=abstol) for i, r in enumerate(self.ref)) return for i, r in enumerate(self.ref): abs_err = abs(result[i] - r) if r == 0: assert abs_err < abstol else: assert abs_err/abs(r) < reltol cases = [ Case( args=(x, y, z), exprs=[ x + y + z, x + y - z, 2*x + 2*y - z, (x+y)**2 + (y+z)**2, ], num_args=(2., 3., 4.) ), Case( args=(x, y, z), exprs=[ x + sympy.Heaviside(x), y + sympy.Heaviside(x), z + sympy.Heaviside(x, 1), z/sympy.Heaviside(x, 1) ], num_args=(0., 3., 4.) ), Case( args=(x, y, z), exprs=[ x + sinc(y), y + sinc(y), z - sinc(y) ], num_args=(0.1, 0.2, 0.3) ), Case( args=(x, y, z), exprs=[ Matrix([[x, x*y], [sin(z) + 4, x**z]]), x*y+sin(z)-x**z, Matrix([x*x, sin(z), x**z]) ], num_args=(1.,2.,3.), requires_numpy=True ), Case( args=(x, y), exprs=[(x + y - 1)**2, x, x + y, (x + y)/(2*x + 1) + (x + y - 1)**2, (2*x + 1)**(x + y)], num_args=(1,2) ) ] for case in cases: if not numpy and case.requires_numpy: continue for cse in [False, True, minmem, dummy_cse]: f = case.lambdify(cse=cse) result = f(*case.num_args) case.assertAllClose(result) def test_deprecated_set(): with warns_deprecated_sympy(): lambdify({x, y}, x + y) def test_issue_13881(): if not numpy: skip("numpy not installed.") X = MatrixSymbol('X', 3, 1) f = lambdify(X, X.T*X, 'numpy') assert f(numpy.array([1, 2, 3])) == 14 assert f(numpy.array([3, 2, 1])) == 14 f = lambdify(X, X*X.T, 'numpy') assert f(numpy.array([1, 2, 3])) == 14 assert f(numpy.array([3, 2, 1])) == 14 f = lambdify(X, (X*X.T)*X, 'numpy') arr1 = numpy.array([[1], [2], [3]]) arr2 = numpy.array([[14],[28],[42]]) assert numpy.array_equal(f(arr1), arr2) def test_23536_lambdify_cse_dummy(): f = Function('x')(y) g = Function('w')(y) expr = z + (f**4 + g**5)*(f**3 + (g*f)**3) expr = expr.expand() eval_expr = lambdify(((f, g), z), expr, cse=True) ans = eval_expr((1.0, 2.0), 3.0) # shouldn't raise NameError assert ans == 300.0 # not a list and value is 300
6289b7f58ab1a9bee63b4171491aac3a6c5252faf009a391744e1effbf181889
import itertools from sympy.core import S from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.function import Function from sympy.core.mul import Mul from sympy.core.numbers import Number, Rational from sympy.core.power import Pow from sympy.core.sorting import default_sort_key from sympy.core.symbol import Symbol from sympy.core.sympify import SympifyError from sympy.printing.conventions import requires_partial from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional from sympy.printing.printer import Printer, print_function from sympy.printing.str import sstr from sympy.utilities.iterables import has_variety from sympy.utilities.exceptions import sympy_deprecation_warning from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \ xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \ pretty_try_use_unicode, annotated # rename for usage from outside pprint_use_unicode = pretty_use_unicode pprint_try_use_unicode = pretty_try_use_unicode class PrettyPrinter(Printer): """Printer, which converts an expression into 2D ASCII-art figure.""" printmethod = "_pretty" _default_settings = { "order": None, "full_prec": "auto", "use_unicode": None, "wrap_line": True, "num_columns": None, "use_unicode_sqrt_char": True, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "perm_cyclic": True } def __init__(self, settings=None): Printer.__init__(self, settings) if not isinstance(self._settings['imaginary_unit'], str): raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit'])) elif self._settings['imaginary_unit'] not in ("i", "j"): raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit'])) def emptyPrinter(self, expr): return prettyForm(str(expr)) @property def _use_unicode(self): if self._settings['use_unicode']: return True else: return pretty_use_unicode() def doprint(self, expr): return self._print(expr).render(**self._settings) # empty op so _print(stringPict) returns the same def _print_stringPict(self, e): return e def _print_basestring(self, e): return prettyForm(e) def _print_atan2(self, e): pform = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm(*pform.left('atan2')) return pform def _print_Symbol(self, e, bold_name=False): symb = pretty_symbol(e.name, bold_name) return prettyForm(symb) _print_RandomSymbol = _print_Symbol def _print_MatrixSymbol(self, e): return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold") def _print_Float(self, e): # we will use StrPrinter's Float printer, but we need to handle the # full_prec ourselves, according to the self._print_level full_prec = self._settings["full_prec"] if full_prec == "auto": full_prec = self._print_level == 1 return prettyForm(sstr(e, full_prec=full_prec)) def _print_Cross(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Curl(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Divergence(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Dot(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Gradient(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Laplacian(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('INCREMENT')))) return pform def _print_Atom(self, e): try: # print atoms like Exp1 or Pi return prettyForm(pretty_atom(e.__class__.__name__, printer=self)) except KeyError: return self.emptyPrinter(e) # Infinity inherits from Number, so we have to override _print_XXX order _print_Infinity = _print_Atom _print_NegativeInfinity = _print_Atom _print_EmptySet = _print_Atom _print_Naturals = _print_Atom _print_Naturals0 = _print_Atom _print_Integers = _print_Atom _print_Rationals = _print_Atom _print_Complexes = _print_Atom _print_EmptySequence = _print_Atom def _print_Reals(self, e): if self._use_unicode: return self._print_Atom(e) else: inf_list = ['-oo', 'oo'] return self._print_seq(inf_list, '(', ')') def _print_subfactorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('!')) return pform def _print_factorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!')) return pform def _print_factorial2(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!!')) return pform def _print_binomial(self, e): n, k = e.args n_pform = self._print(n) k_pform = self._print(k) bar = ' '*max(n_pform.width(), k_pform.width()) pform = prettyForm(*k_pform.above(bar)) pform = prettyForm(*pform.above(n_pform)) pform = prettyForm(*pform.parens('(', ')')) pform.baseline = (pform.baseline + 1)//2 return pform def _print_Relational(self, e): op = prettyForm(' ' + xsym(e.rel_op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r), binding=prettyForm.OPEN) return pform def _print_Not(self, e): from sympy.logic.boolalg import (Equivalent, Implies) if self._use_unicode: arg = e.args[0] pform = self._print(arg) if isinstance(arg, Equivalent): return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}") if isinstance(arg, Implies): return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}") if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) return prettyForm(*pform.left("\N{NOT SIGN}")) else: return self._print_Function(e) def __print_Boolean(self, e, char, sort=True): args = e.args if sort: args = sorted(e.args, key=default_sort_key) arg = args[0] pform = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) for arg in args[1:]: pform_arg = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform_arg = prettyForm(*pform_arg.parens()) pform = prettyForm(*pform.right(' %s ' % char)) pform = prettyForm(*pform.right(pform_arg)) return pform def _print_And(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{LOGICAL AND}") else: return self._print_Function(e, sort=True) def _print_Or(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{LOGICAL OR}") else: return self._print_Function(e, sort=True) def _print_Xor(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{XOR}") else: return self._print_Function(e, sort=True) def _print_Nand(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{NAND}") else: return self._print_Function(e, sort=True) def _print_Nor(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{NOR}") else: return self._print_Function(e, sort=True) def _print_Implies(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False) else: return self._print_Function(e) def _print_Equivalent(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}") else: return self._print_Function(e, sort=True) def _print_conjugate(self, e): pform = self._print(e.args[0]) return prettyForm( *pform.above( hobj('_', pform.width())) ) def _print_Abs(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('|', '|')) return pform def _print_floor(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lfloor', 'rfloor')) return pform else: return self._print_Function(e) def _print_ceiling(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lceil', 'rceil')) return pform else: return self._print_Function(e) def _print_Derivative(self, deriv): if requires_partial(deriv.expr) and self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None count_total_deriv = 0 for sym, num in reversed(deriv.variable_count): s = self._print(sym) ds = prettyForm(*s.left(deriv_symbol)) count_total_deriv += num if (not num.is_Integer) or (num > 1): ds = ds**prettyForm(str(num)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if (count_total_deriv > 1) != False: pform = pform**prettyForm(str(count_total_deriv)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Cycle(self, dc): from sympy.combinatorics.permutations import Permutation, Cycle # for Empty Cycle if dc == Cycle(): cyc = stringPict('') return prettyForm(*cyc.parens()) dc_list = Permutation(dc.list()).cyclic_form # for Identity Cycle if dc_list == []: cyc = self._print(dc.size - 1) return prettyForm(*cyc.parens()) cyc = stringPict('') for i in dc_list: l = self._print(str(tuple(i)).replace(',', '')) cyc = prettyForm(*cyc.right(l)) return cyc def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: sympy_deprecation_warning( f""" Setting Permutation.print_cyclic is deprecated. Instead use init_printing(perm_cyclic={perm_cyclic}). """, deprecated_since_version="1.6", active_deprecations_target="deprecated-permutation-print_cyclic", stacklevel=7, ) else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: return self._print_Cycle(Cycle(expr)) lower = expr.array_form upper = list(range(len(lower))) result = stringPict('') first = True for u, l in zip(upper, lower): s1 = self._print(u) s2 = self._print(l) col = prettyForm(*s1.below(s2)) if first: first = False else: col = prettyForm(*col.left(" ")) result = prettyForm(*result.right(col)) return prettyForm(*result.parens()) def _print_Integral(self, integral): f = integral.function # Add parentheses if arg involves addition of terms and # create a pretty form for the argument prettyF = self._print(f) # XXX generalize parens if f.is_Add: prettyF = prettyForm(*prettyF.parens()) # dx dy dz ... arg = prettyF for x in integral.limits: prettyArg = self._print(x[0]) # XXX qparens (parens if needs-parens) if prettyArg.width() > 1: prettyArg = prettyForm(*prettyArg.parens()) arg = prettyForm(*arg.right(' d', prettyArg)) # \int \int \int ... firstterm = True s = None for lim in integral.limits: # Create bar based on the height of the argument h = arg.height() H = h + 2 # XXX hack! ascii_mode = not self._use_unicode if ascii_mode: H += 2 vint = vobj('int', H) # Construct the pretty form with the integral sign and the argument pform = prettyForm(vint) pform.baseline = arg.baseline + ( H - h)//2 # covering the whole argument if len(lim) > 1: # Create pretty forms for endpoints, if definite integral. # Do not print empty endpoints. if len(lim) == 2: prettyA = prettyForm("") prettyB = self._print(lim[1]) if len(lim) == 3: prettyA = self._print(lim[1]) prettyB = self._print(lim[2]) if ascii_mode: # XXX hack # Add spacing so that endpoint can more easily be # identified with the correct integral sign spc = max(1, 3 - prettyB.width()) prettyB = prettyForm(*prettyB.left(' ' * spc)) spc = max(1, 4 - prettyA.width()) prettyA = prettyForm(*prettyA.right(' ' * spc)) pform = prettyForm(*pform.above(prettyB)) pform = prettyForm(*pform.below(prettyA)) if not ascii_mode: # XXX hack pform = prettyForm(*pform.right(' ')) if firstterm: s = pform # first term firstterm = False else: s = prettyForm(*s.left(pform)) pform = prettyForm(*arg.left(s)) pform.binding = prettyForm.MUL return pform def _print_Product(self, expr): func = expr.term pretty_func = self._print(func) horizontal_chr = xobj('_', 1) corner_chr = xobj('_', 1) vertical_chr = xobj('|', 1) if self._use_unicode: # use unicode corners horizontal_chr = xobj('-', 1) corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}' func_height = pretty_func.height() first = True max_upper = 0 sign_height = 0 for lim in expr.limits: pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim) width = (func_height + 2) * 5 // 3 - 2 sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr] for _ in range(func_height + 1): sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ') pretty_sign = stringPict('') pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines)) max_upper = max(max_upper, pretty_upper.height()) if first: sign_height = pretty_sign.height() pretty_sign = prettyForm(*pretty_sign.above(pretty_upper)) pretty_sign = prettyForm(*pretty_sign.below(pretty_lower)) if first: pretty_func.baseline = 0 first = False height = pretty_sign.height() padding = stringPict('') padding = prettyForm(*padding.stack(*[' ']*(height - 1))) pretty_sign = prettyForm(*pretty_sign.right(padding)) pretty_func = prettyForm(*pretty_sign.right(pretty_func)) pretty_func.baseline = max_upper + sign_height//2 pretty_func.binding = prettyForm.MUL return pretty_func def __print_SumProduct_Limits(self, lim): def print_start(lhs, rhs): op = prettyForm(' ' + xsym("==") + ' ') l = self._print(lhs) r = self._print(rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform prettyUpper = self._print(lim[2]) prettyLower = print_start(lim[0], lim[1]) return prettyLower, prettyUpper def _print_Sum(self, expr): ascii_mode = not self._use_unicode def asum(hrequired, lower, upper, use_ascii): def adjust(s, wid=None, how='<^>'): if not wid or len(s) > wid: return s need = wid - len(s) if how in ('<^>', "<") or how not in list('<^>'): return s + ' '*need half = need//2 lead = ' '*half if how == ">": return " "*need + s return lead + s + ' '*(need - len(lead)) h = max(hrequired, 2) d = h//2 w = d + 1 more = hrequired % 2 lines = [] if use_ascii: lines.append("_"*(w) + ' ') lines.append(r"\%s`" % (' '*(w - 1))) for i in range(1, d): lines.append('%s\\%s' % (' '*i, ' '*(w - i))) if more: lines.append('%s)%s' % (' '*(d), ' '*(w - d))) for i in reversed(range(1, d)): lines.append('%s/%s' % (' '*i, ' '*(w - i))) lines.append("/" + "_"*(w - 1) + ',') return d, h + more, lines, more else: w = w + more d = d + more vsum = vobj('sum', 4) lines.append("_"*(w)) for i in range(0, d): lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1))) for i in reversed(range(0, d)): lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1))) lines.append(vsum[8]*(w)) return d, h + 2*more, lines, more f = expr.function prettyF = self._print(f) if f.is_Add: # add parens prettyF = prettyForm(*prettyF.parens()) H = prettyF.height() + 2 # \sum \sum \sum ... first = True max_upper = 0 sign_height = 0 for lim in expr.limits: prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim) max_upper = max(max_upper, prettyUpper.height()) # Create sum sign based on the height of the argument d, h, slines, adjustment = asum( H, prettyLower.width(), prettyUpper.width(), ascii_mode) prettySign = stringPict('') prettySign = prettyForm(*prettySign.stack(*slines)) if first: sign_height = prettySign.height() prettySign = prettyForm(*prettySign.above(prettyUpper)) prettySign = prettyForm(*prettySign.below(prettyLower)) if first: # change F baseline so it centers on the sign prettyF.baseline -= d - (prettyF.height()//2 - prettyF.baseline) first = False # put padding to the right pad = stringPict('') pad = prettyForm(*pad.stack(*[' ']*h)) prettySign = prettyForm(*prettySign.right(pad)) # put the present prettyF to the right prettyF = prettyForm(*prettySign.right(prettyF)) # adjust baseline of ascii mode sigma with an odd height so that it is # exactly through the center ascii_adjustment = ascii_mode if not adjustment else 0 prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment prettyF.binding = prettyForm.MUL return prettyF def _print_Limit(self, l): e, z, z0, dir = l.args E = self._print(e) if precedence(e) <= PRECEDENCE["Mul"]: E = prettyForm(*E.parens('(', ')')) Lim = prettyForm('lim') LimArg = self._print(z) if self._use_unicode: LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}')) else: LimArg = prettyForm(*LimArg.right('->')) LimArg = prettyForm(*LimArg.right(self._print(z0))) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): dir = "" else: if self._use_unicode: dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}' LimArg = prettyForm(*LimArg.right(self._print(dir))) Lim = prettyForm(*Lim.below(LimArg)) Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL) return Lim def _print_matrix_contents(self, e): """ This method factors out what is essentially grid printing. """ M = e # matrix Ms = {} # i,j -> pretty(M[i,j]) for i in range(M.rows): for j in range(M.cols): Ms[i, j] = self._print(M[i, j]) # h- and v- spacers hsep = 2 vsep = 1 # max width for columns maxw = [-1] * M.cols for j in range(M.cols): maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0]) # drawing result D = None for i in range(M.rows): D_row = None for j in range(M.cols): s = Ms[i, j] # reshape s to maxw # XXX this should be generalized, and go to stringPict.reshape ? assert s.width() <= maxw[j] # hcenter it, +0.5 to the right 2 # ( it's better to align formula starts for say 0 and r ) # XXX this is not good in all cases -- maybe introduce vbaseline? wdelta = maxw[j] - s.width() wleft = wdelta // 2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) # we don't need vcenter cells -- this is automatically done in # a pretty way because when their baselines are taking into # account in .right() if D_row is None: D_row = s # first box in a row continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) if D is None: D = prettyForm('') # Empty Matrix return D def _print_MatrixBase(self, e, lparens='[', rparens=']'): D = self._print_matrix_contents(e) D.baseline = D.height()//2 D = prettyForm(*D.parens(lparens, rparens)) return D def _print_Determinant(self, e): mat = e.arg if mat.is_MatrixExpr: from sympy.matrices.expressions.blockmatrix import BlockMatrix if isinstance(mat, BlockMatrix): return self._print_MatrixBase(mat.blocks, lparens='|', rparens='|') D = self._print(mat) D.baseline = D.height()//2 return prettyForm(*D.parens('|', '|')) else: return self._print_MatrixBase(mat, lparens='|', rparens='|') def _print_TensorProduct(self, expr): # This should somehow share the code with _print_WedgeProduct: if self._use_unicode: circled_times = "\u2297" else: circled_times = ".*" return self._print_seq(expr.args, None, None, circled_times, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_WedgeProduct(self, expr): # This should somehow share the code with _print_TensorProduct: if self._use_unicode: wedge_symbol = "\u2227" else: wedge_symbol = '/\\' return self._print_seq(expr.args, None, None, wedge_symbol, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_Trace(self, e): D = self._print(e.arg) D = prettyForm(*D.parens('(',')')) D.baseline = D.height()//2 D = prettyForm(*D.left('\n'*(0) + 'tr')) return D def _print_MatrixElement(self, expr): from sympy.matrices import MatrixSymbol if (isinstance(expr.parent, MatrixSymbol) and expr.i.is_number and expr.j.is_number): return self._print( Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j))) else: prettyFunc = self._print(expr.parent) prettyFunc = prettyForm(*prettyFunc.parens()) prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', ' ).parens(left='[', right=']')[0] pform = prettyForm(binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyIndices)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyIndices return pform def _print_MatrixSlice(self, m): # XXX works only for applied functions from sympy.matrices import MatrixSymbol prettyFunc = self._print(m.parent) if not isinstance(m.parent, MatrixSymbol): prettyFunc = prettyForm(*prettyFunc.parens()) def ppslice(x, dim): x = list(x) if x[2] == 1: del x[2] if x[0] == 0: x[0] = '' if x[1] == dim: x[1] = '' return prettyForm(*self._print_seq(x, delimiter=':')) prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows), ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0] pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_Transpose(self, expr): mat = expr.arg pform = self._print(mat) from sympy.matrices import MatrixSymbol, BlockMatrix if (not isinstance(mat, MatrixSymbol) and not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr): pform = prettyForm(*pform.parens()) pform = pform**(prettyForm('T')) return pform def _print_Adjoint(self, expr): mat = expr.arg pform = self._print(mat) if self._use_unicode: dag = prettyForm('\N{DAGGER}') else: dag = prettyForm('+') from sympy.matrices import MatrixSymbol, BlockMatrix if (not isinstance(mat, MatrixSymbol) and not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr): pform = prettyForm(*pform.parens()) pform = pform**dag return pform def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): return self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_MatAdd(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: coeff = item.as_coeff_mmul()[0] if S(coeff).could_extract_minus_sign(): s = prettyForm(*stringPict.next(s, ' ')) pform = self._print(item) else: s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_MatMul(self, expr): args = list(expr.args) from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions.kronecker import KroneckerProduct from sympy.matrices.expressions.matadd import MatAdd for i, a in enumerate(args): if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct)) and len(expr.args) > 1): args[i] = prettyForm(*self._print(a).parens()) else: args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_Identity(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}') else: return prettyForm('I') def _print_ZeroMatrix(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}') else: return prettyForm('0') def _print_OneMatrix(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}') else: return prettyForm('1') def _print_DotProduct(self, expr): args = list(expr.args) for i, a in enumerate(args): args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_MatPow(self, expr): pform = self._print(expr.base) from sympy.matrices import MatrixSymbol if not isinstance(expr.base, MatrixSymbol) and expr.base.is_MatrixExpr: pform = prettyForm(*pform.parens()) pform = pform**(self._print(expr.exp)) return pform def _print_HadamardProduct(self, expr): from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions.matmul import MatMul if self._use_unicode: delim = pretty_atom('Ring') else: delim = '.*' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct))) def _print_HadamardPower(self, expr): # from sympy import MatAdd, MatMul if self._use_unicode: circ = pretty_atom('Ring') else: circ = self._print('.') pretty_base = self._print(expr.base) pretty_exp = self._print(expr.exp) if precedence(expr.exp) < PRECEDENCE["Mul"]: pretty_exp = prettyForm(*pretty_exp.parens()) pretty_circ_exp = prettyForm( binding=prettyForm.LINE, *stringPict.next(circ, pretty_exp) ) return pretty_base**pretty_circ_exp def _print_KroneckerProduct(self, expr): from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions.matmul import MatMul if self._use_unicode: delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} ' else: delim = ' x ' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul))) def _print_FunctionMatrix(self, X): D = self._print(X.lamda.expr) D = prettyForm(*D.parens('[', ']')) return D def _print_TransferFunction(self, expr): if not expr.num == 1: num, den = expr.num, expr.den res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False) return self._print_Mul(res) else: return self._print(1)/self._print(expr.den) def _print_Series(self, expr): args = list(expr.args) for i, a in enumerate(expr.args): args[i] = prettyForm(*self._print(a).parens()) return prettyForm.__mul__(*args) def _print_MIMOSeries(self, expr): from sympy.physics.control.lti import MIMOParallel args = list(expr.args) pretty_args = [] for i, a in enumerate(reversed(args)): if (isinstance(a, MIMOParallel) and len(expr.args) > 1): expression = self._print(a) expression.baseline = expression.height()//2 pretty_args.append(prettyForm(*expression.parens())) else: expression = self._print(a) expression.baseline = expression.height()//2 pretty_args.append(expression) return prettyForm.__mul__(*pretty_args) def _print_Parallel(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: s = prettyForm(*stringPict.next(s)) s.baseline = s.height()//2 s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_MIMOParallel(self, expr): from sympy.physics.control.lti import TransferFunctionMatrix s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: s = prettyForm(*stringPict.next(s)) s.baseline = s.height()//2 s = prettyForm(*stringPict.next(s, ' + ')) if isinstance(item, TransferFunctionMatrix): s.baseline = s.height() - 1 s = prettyForm(*stringPict.next(s, pform)) # s.baseline = s.height()//2 return s def _print_Feedback(self, expr): from sympy.physics.control import TransferFunction, Series num, tf = expr.sys1, TransferFunction(1, 1, expr.var) num_arg_list = list(num.args) if isinstance(num, Series) else [num] den_arg_list = list(expr.sys2.args) if \ isinstance(expr.sys2, Series) else [expr.sys2] if isinstance(num, Series) and isinstance(expr.sys2, Series): den = Series(*num_arg_list, *den_arg_list) elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction): if expr.sys2 == tf: den = Series(*num_arg_list) else: den = Series(*num_arg_list, expr.sys2) elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series): if num == tf: den = Series(*den_arg_list) else: den = Series(num, *den_arg_list) else: if num == tf: den = Series(*den_arg_list) elif expr.sys2 == tf: den = Series(*num_arg_list) else: den = Series(*num_arg_list, *den_arg_list) denom = prettyForm(*stringPict.next(self._print(tf))) denom.baseline = denom.height()//2 denom = prettyForm(*stringPict.next(denom, ' + ')) if expr.sign == -1 \ else prettyForm(*stringPict.next(denom, ' - ')) denom = prettyForm(*stringPict.next(denom, self._print(den))) return self._print(num)/denom def _print_MIMOFeedback(self, expr): from sympy.physics.control import MIMOSeries, TransferFunctionMatrix inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1)) plant = self._print(expr.sys1) _feedback = prettyForm(*stringPict.next(inv_mat)) _feedback = prettyForm(*stringPict.right("I + ", _feedback)) if expr.sign == -1 \ else prettyForm(*stringPict.right("I - ", _feedback)) _feedback = prettyForm(*stringPict.parens(_feedback)) _feedback.baseline = 0 _feedback = prettyForm(*stringPict.right(_feedback, '-1 ')) _feedback.baseline = _feedback.height()//2 _feedback = prettyForm.__mul__(_feedback, prettyForm(" ")) if isinstance(expr.sys1, TransferFunctionMatrix): _feedback.baseline = _feedback.height() - 1 _feedback = prettyForm(*stringPict.next(_feedback, plant)) return _feedback def _print_TransferFunctionMatrix(self, expr): mat = self._print(expr._expr_mat) mat.baseline = mat.height() - 1 subscript = greek_unicode['tau'] if self._use_unicode else r'{t}' mat = prettyForm(*mat.right(subscript)) return mat def _print_BasisDependent(self, expr): from sympy.vector import Vector if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented") if expr == expr.zero: return prettyForm(expr.zero._pretty_form) o1 = [] vectstrs = [] if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x: x[0].__str__()) for k, v in inneritems: #if the coef of the basis vector is 1 #we skip the 1 if v == 1: o1.append("" + k._pretty_form) #Same for -1 elif v == -1: o1.append("(-1) " + k._pretty_form) #For a general expr else: #We always wrap the measure numbers in #parentheses arg_str = self._print( v).parens()[0] o1.append(arg_str + ' ' + k._pretty_form) vectstrs.append(k._pretty_form) #outstr = u("").join(o1) if o1[0].startswith(" + "): o1[0] = o1[0][3:] elif o1[0].startswith(" "): o1[0] = o1[0][1:] #Fixing the newlines lengths = [] strs = [''] flag = [] for i, partstr in enumerate(o1): flag.append(0) # XXX: What is this hack? if '\n' in partstr: tempstr = partstr tempstr = tempstr.replace(vectstrs[i], '') if '\N{RIGHT PARENTHESIS EXTENSION}' in tempstr: # If scalar is a fraction for paren in range(len(tempstr)): flag[i] = 1 if tempstr[paren] == '\N{RIGHT PARENTHESIS EXTENSION}' and tempstr[paren + 1] == '\n': # We want to place the vector string after all the right parentheses, because # otherwise, the vector will be in the middle of the string tempstr = tempstr[:paren] + '\N{RIGHT PARENTHESIS EXTENSION}'\ + ' ' + vectstrs[i] + tempstr[paren + 1:] break elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr: # We want to place the vector string after all the right parentheses, because # otherwise, the vector will be in the middle of the string. For this reason, # we insert the vector string at the rightmost index. index = tempstr.rfind('\N{RIGHT PARENTHESIS LOWER HOOK}') if index != -1: # then this character was found in this string flag[i] = 1 tempstr = tempstr[:index] + '\N{RIGHT PARENTHESIS LOWER HOOK}'\ + ' ' + vectstrs[i] + tempstr[index + 1:] o1[i] = tempstr o1 = [x.split('\n') for x in o1] n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form if 1 in flag: # If there was a fractional scalar for i, parts in enumerate(o1): if len(parts) == 1: # If part has no newline parts.insert(0, ' ' * (len(parts[0]))) flag[i] = 1 for i, parts in enumerate(o1): lengths.append(len(parts[flag[i]])) for j in range(n_newlines): if j+1 <= len(parts): if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) if j == flag[i]: strs[flag[i]] += parts[flag[i]] + ' + ' else: strs[j] += parts[j] + ' '*(lengths[-1] - len(parts[j])+ 3) else: if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) strs[j] += ' '*(lengths[-1]+3) return prettyForm('\n'.join([s[:-3] for s in strs])) def _print_NDimArray(self, expr): from sympy.matrices.immutable import ImmutableMatrix if expr.rank() == 0: return self._print(expr[()]) level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] # leave eventual matrix elements unflattened mat = lambda x: ImmutableMatrix(x, evaluate=False) for outer_i in itertools.product(*shape_ranges): level_str[-1].append(expr[outer_i]) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append(level_str[back_outer_i+1]) else: level_str[back_outer_i].append(mat( level_str[back_outer_i+1])) if len(level_str[back_outer_i + 1]) == 1: level_str[back_outer_i][-1] = mat( [[level_str[back_outer_i][-1]]]) even = not even level_str[back_outer_i+1] = [] out_expr = level_str[0][0] if expr.rank() % 2 == 1: out_expr = mat([out_expr]) return self._print(out_expr) def _printer_tensor_indices(self, name, indices, index_map={}): center = stringPict(name) top = stringPict(" "*center.width()) bot = stringPict(" "*center.width()) last_valence = None prev_map = None for i, index in enumerate(indices): indpic = self._print(index.args[0]) if ((index in index_map) or prev_map) and last_valence == index.is_up: if index.is_up: top = prettyForm(*stringPict.next(top, ",")) else: bot = prettyForm(*stringPict.next(bot, ",")) if index in index_map: indpic = prettyForm(*stringPict.next(indpic, "=")) indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index]))) prev_map = True else: prev_map = False if index.is_up: top = stringPict(*top.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) bot = stringPict(*bot.right(" "*indpic.width())) else: bot = stringPict(*bot.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) top = stringPict(*top.right(" "*indpic.width())) last_valence = index.is_up pict = prettyForm(*center.above(top)) pict = prettyForm(*pict.below(bot)) return pict def _print_Tensor(self, expr): name = expr.args[0].name indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].name indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): sign, args = expr._get_args_for_traditional_printer() args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in args ] pform = prettyForm.__mul__(*args) if sign: return prettyForm(*pform.left(sign)) else: return pform def _print_TensAdd(self, expr): args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in expr.args ] return prettyForm.__add__(*args) def _print_TensorIndex(self, expr): sym = expr.args[0] if not expr.is_up: sym = -sym return self._print(sym) def _print_PartialDerivative(self, deriv): if self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None for variable in reversed(deriv.variables): s = self._print(variable) ds = prettyForm(*s.left(deriv_symbol)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if len(deriv.variables) > 1: pform = pform**self._print(len(deriv.variables)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Piecewise(self, pexpr): P = {} for n, ec in enumerate(pexpr.args): P[n, 0] = self._print(ec.expr) if ec.cond == True: P[n, 1] = prettyForm('otherwise') else: P[n, 1] = prettyForm( *prettyForm('for ').right(self._print(ec.cond))) hsep = 2 vsep = 1 len_args = len(pexpr.args) # max widths maxw = [max([P[i, j].width() for i in range(len_args)]) for j in range(2)] # FIXME: Refactor this code and matrix into some tabular environment. # drawing result D = None for i in range(len_args): D_row = None for j in range(2): p = P[i, j] assert p.width() <= maxw[j] wdelta = maxw[j] - p.width() wleft = wdelta // 2 wright = wdelta - wleft p = prettyForm(*p.right(' '*wright)) p = prettyForm(*p.left(' '*wleft)) if D_row is None: D_row = p continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(p)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens('{', '')) D.baseline = D.height()//2 D.binding = prettyForm.OPEN return D def _print_ITE(self, ite): from sympy.functions.elementary.piecewise import Piecewise return self._print(ite.rewrite(Piecewise)) def _hprint_vec(self, v): D = None for a in v: p = a if D is None: D = p else: D = prettyForm(*D.right(', ')) D = prettyForm(*D.right(p)) if D is None: D = stringPict(' ') return D def _hprint_vseparator(self, p1, p2, left=None, right=None, delimiter='', ifascii_nougly=False): if ifascii_nougly and not self._use_unicode: return self._print_seq((p1, '|', p2), left=left, right=right, delimiter=delimiter, ifascii_nougly=True) tmp = self._print_seq((p1, p2,), left=left, right=right, delimiter=delimiter) sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline) return self._print_seq((p1, sep, p2), left=left, right=right, delimiter=delimiter) def _print_hyper(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment ap = [self._print(a) for a in e.ap] bq = [self._print(b) for b in e.bq] P = self._print(e.argument) P.baseline = P.height()//2 # Drawing result - first create the ap, bq vectors D = None for v in [ap, bq]: D_row = self._hprint_vec(v) if D is None: D = D_row # first row in a picture else: D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the F symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('F') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) add = (sz + 1)//2 F = prettyForm(*F.left(self._print(len(e.ap)))) F = prettyForm(*F.right(self._print(len(e.bq)))) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_meijerg(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment v = {} v[(0, 0)] = [self._print(a) for a in e.an] v[(0, 1)] = [self._print(a) for a in e.aother] v[(1, 0)] = [self._print(b) for b in e.bm] v[(1, 1)] = [self._print(b) for b in e.bother] P = self._print(e.argument) P.baseline = P.height()//2 vp = {} for idx in v: vp[idx] = self._hprint_vec(v[idx]) for i in range(2): maxw = max(vp[(0, i)].width(), vp[(1, i)].width()) for j in range(2): s = vp[(j, i)] left = (maxw - s.width()) // 2 right = maxw - left - s.width() s = prettyForm(*s.left(' ' * left)) s = prettyForm(*s.right(' ' * right)) vp[(j, i)] = s D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)])) D1 = prettyForm(*D1.below(' ')) D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)])) D = prettyForm(*D1.below(D2)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the G symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('G') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) pp = self._print(len(e.ap)) pq = self._print(len(e.bq)) pm = self._print(len(e.bm)) pn = self._print(len(e.an)) def adjust(p1, p2): diff = p1.width() - p2.width() if diff == 0: return p1, p2 elif diff > 0: return p1, prettyForm(*p2.left(' '*diff)) else: return prettyForm(*p1.left(' '*-diff)), p2 pp, pm = adjust(pp, pm) pq, pn = adjust(pq, pn) pu = prettyForm(*pm.right(', ', pn)) pl = prettyForm(*pp.right(', ', pq)) ht = F.baseline - above - 2 if ht > 0: pu = prettyForm(*pu.below('\n'*ht)) p = prettyForm(*pu.below(pl)) F.baseline = above F = prettyForm(*F.right(p)) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_ExpBase(self, e): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? base = prettyForm(pretty_atom('Exp1', 'e')) return base ** self._print(e.args[0]) def _print_Exp1(self, e): return prettyForm(pretty_atom('Exp1', 'e')) def _print_Function(self, e, sort=False, func_name=None, left='(', right=')'): # optional argument func_name for supplying custom names # XXX works only for applied functions return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name, left=left, right=right) def _print_mathieuc(self, e): return self._print_Function(e, func_name='C') def _print_mathieus(self, e): return self._print_Function(e, func_name='S') def _print_mathieucprime(self, e): return self._print_Function(e, func_name="C'") def _print_mathieusprime(self, e): return self._print_Function(e, func_name="S'") def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False, left='(', right=')'): if sort: args = sorted(args, key=default_sort_key) if not func_name and hasattr(func, "__name__"): func_name = func.__name__ if func_name: prettyFunc = self._print(Symbol(func_name)) else: prettyFunc = prettyForm(*self._print(func).parens()) if elementwise: if self._use_unicode: circ = pretty_atom('Modifier Letter Low Ring') else: circ = '.' circ = self._print(circ) prettyFunc = prettyForm( binding=prettyForm.LINE, *stringPict.next(prettyFunc, circ) ) prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens( left=left, right=right)) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_ElementwiseApplyFunction(self, e): func = e.function arg = e.expr args = [arg] return self._helper_print_function(func, args, delimiter="", elementwise=True) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.zeta_functions import lerchphi from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: [greek_unicode['delta'], 'delta'], gamma: [greek_unicode['Gamma'], 'Gamma'], lerchphi: [greek_unicode['Phi'], 'lerchphi'], lowergamma: [greek_unicode['gamma'], 'gamma'], beta: [greek_unicode['Beta'], 'B'], DiracDelta: [greek_unicode['delta'], 'delta'], Chi: ['Chi', 'Chi']} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: if self._use_unicode: return prettyForm(self._special_function_classes[cls][0]) else: return prettyForm(self._special_function_classes[cls][1]) func_name = expr.__name__ return prettyForm(pretty_symbol(func_name)) def _print_GeometryEntity(self, expr): # GeometryEntity is based on Tuple but should not print like a Tuple return self.emptyPrinter(expr) def _print_lerchphi(self, e): func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi' return self._print_Function(e, func_name=func_name) def _print_dirichlet_eta(self, e): func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta' return self._print_Function(e, func_name=func_name) def _print_Heaviside(self, e): func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside' if e.args[1] is S.Half: pform = prettyForm(*self._print(e.args[0]).parens()) pform = prettyForm(*pform.left(func_name)) return pform else: return self._print_Function(e, func_name=func_name) def _print_fresnels(self, e): return self._print_Function(e, func_name="S") def _print_fresnelc(self, e): return self._print_Function(e, func_name="C") def _print_airyai(self, e): return self._print_Function(e, func_name="Ai") def _print_airybi(self, e): return self._print_Function(e, func_name="Bi") def _print_airyaiprime(self, e): return self._print_Function(e, func_name="Ai'") def _print_airybiprime(self, e): return self._print_Function(e, func_name="Bi'") def _print_LambertW(self, e): return self._print_Function(e, func_name="W") def _print_Covariance(self, e): return self._print_Function(e, func_name="Cov") def _print_Variance(self, e): return self._print_Function(e, func_name="Var") def _print_Probability(self, e): return self._print_Function(e, func_name="P") def _print_Expectation(self, e): return self._print_Function(e, func_name="E", left='[', right=']') def _print_Lambda(self, e): expr = e.expr sig = e.signature if self._use_unicode: arrow = " \N{RIGHTWARDS ARROW FROM BAR} " else: arrow = " -> " if len(sig) == 1 and sig[0].is_symbol: sig = sig[0] var_form = self._print(sig) return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8) def _print_Order(self, expr): pform = self._print(expr.expr) if (expr.point and any(p != S.Zero for p in expr.point)) or \ len(expr.variables) > 1: pform = prettyForm(*pform.right("; ")) if len(expr.variables) > 1: pform = prettyForm(*pform.right(self._print(expr.variables))) elif len(expr.variables): pform = prettyForm(*pform.right(self._print(expr.variables[0]))) if self._use_unicode: pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} ")) else: pform = prettyForm(*pform.right(" -> ")) if len(expr.point) > 1: pform = prettyForm(*pform.right(self._print(expr.point))) else: pform = prettyForm(*pform.right(self._print(expr.point[0]))) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left("O")) return pform def _print_SingularityFunction(self, e): if self._use_unicode: shift = self._print(e.args[0]-e.args[1]) n = self._print(e.args[2]) base = prettyForm("<") base = prettyForm(*base.right(shift)) base = prettyForm(*base.right(">")) pform = base**n return pform else: n = self._print(e.args[2]) shift = self._print(e.args[0]-e.args[1]) base = self._print_seq(shift, "<", ">", ' ') return base**n def _print_beta(self, e): func_name = greek_unicode['Beta'] if self._use_unicode else 'B' return self._print_Function(e, func_name=func_name) def _print_betainc(self, e): func_name = "B'" return self._print_Function(e, func_name=func_name) def _print_betainc_regularized(self, e): func_name = 'I' return self._print_Function(e, func_name=func_name) def _print_gamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_uppergamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_lowergamma(self, e): func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma' return self._print_Function(e, func_name=func_name) def _print_DiracDelta(self, e): if self._use_unicode: if len(e.args) == 2: a = prettyForm(greek_unicode['delta']) b = self._print(e.args[1]) b = prettyForm(*b.parens()) c = self._print(e.args[0]) c = prettyForm(*c.parens()) pform = a**b pform = prettyForm(*pform.right(' ')) pform = prettyForm(*pform.right(c)) return pform pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(greek_unicode['delta'])) return pform else: return self._print_Function(e) def _print_expint(self, e): if e.args[0].is_Integer and self._use_unicode: return self._print_Function(Function('E_%s' % e.args[0])(e.args[1])) return self._print_Function(e) def _print_Chi(self, e): # This needs a special case since otherwise it comes out as greek # letter chi... prettyFunc = prettyForm("Chi") prettyArgs = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_elliptic_e(self, e): pforma0 = self._print(e.args[0]) if len(e.args) == 1: pform = pforma0 else: pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('E')) return pform def _print_elliptic_k(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('K')) return pform def _print_elliptic_f(self, e): pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('F')) return pform def _print_elliptic_pi(self, e): name = greek_unicode['Pi'] if self._use_unicode else 'Pi' pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) if len(e.args) == 2: pform = self._hprint_vseparator(pforma0, pforma1) else: pforma2 = self._print(e.args[2]) pforma = self._hprint_vseparator(pforma1, pforma2, ifascii_nougly=False) pforma = prettyForm(*pforma.left('; ')) pform = prettyForm(*pforma.left(pforma0)) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(name)) return pform def _print_GoldenRatio(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('phi')) return self._print(Symbol("GoldenRatio")) def _print_EulerGamma(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('gamma')) return self._print(Symbol("EulerGamma")) def _print_Catalan(self, expr): return self._print(Symbol("G")) def _print_Mod(self, expr): pform = self._print(expr.args[0]) if pform.binding > prettyForm.MUL: pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right(' mod ')) pform = prettyForm(*pform.right(self._print(expr.args[1]))) pform.binding = prettyForm.OPEN return pform def _print_Add(self, expr, order=None): terms = self._as_ordered_terms(expr, order=order) pforms, indices = [], [] def pretty_negative(pform, index): """Prepend a minus sign to a pretty form. """ #TODO: Move this code to prettyForm if index == 0: if pform.height() > 1: pform_neg = '- ' else: pform_neg = '-' else: pform_neg = ' - ' if (pform.binding > prettyForm.NEG or pform.binding == prettyForm.ADD): p = stringPict(*pform.parens()) else: p = pform p = stringPict.next(pform_neg, p) # Lower the binding to NEG, even if it was higher. Otherwise, it # will print as a + ( - (b)), instead of a - (b). return prettyForm(binding=prettyForm.NEG, *p) for i, term in enumerate(terms): if term.is_Mul and term.could_extract_minus_sign(): coeff, other = term.as_coeff_mul(rational=False) if coeff == -1: negterm = Mul(*other, evaluate=False) else: negterm = Mul(-coeff, *other, evaluate=False) pform = self._print(negterm) pforms.append(pretty_negative(pform, i)) elif term.is_Rational and term.q > 1: pforms.append(None) indices.append(i) elif term.is_Number and term < 0: pform = self._print(-term) pforms.append(pretty_negative(pform, i)) elif term.is_Relational: pforms.append(prettyForm(*self._print(term).parens())) else: pforms.append(self._print(term)) if indices: large = True for pform in pforms: if pform is not None and pform.height() > 1: break else: large = False for i in indices: term, negative = terms[i], False if term < 0: term, negative = -term, True if large: pform = prettyForm(str(term.p))/prettyForm(str(term.q)) else: pform = self._print(term) if negative: pform = pretty_negative(pform, i) pforms[i] = pform return prettyForm.__add__(*pforms) def _print_Mul(self, product): from sympy.physics.units import Quantity # Check for unevaluated Mul. In this case we need to make sure the # identities are visible, multiple Rational factors are not combined # etc so we display in a straight-forward form that fully preserves all # args and their order. args = product.args if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]): strargs = list(map(self._print, args)) # XXX: This is a hack to work around the fact that # prettyForm.__mul__ absorbs a leading -1 in the args. Probably it # would be better to fix this in prettyForm.__mul__ instead. negone = strargs[0] == '-1' if negone: strargs[0] = prettyForm('1', 0, 0) obj = prettyForm.__mul__(*strargs) if negone: obj = prettyForm('-' + obj.s, obj.baseline, obj.binding) return obj a = [] # items in the numerator b = [] # items that are in the denominator (if any) if self.order not in ('old', 'none'): args = product.as_ordered_factors() else: args = list(product.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) # Gather terms for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append( Rational(item.p) ) if item.q != 1: b.append( Rational(item.q) ) else: a.append(item) # Convert to pretty forms. Parentheses are added by `__mul__`. a = [self._print(ai) for ai in a] b = [self._print(bi) for bi in b] # Construct a pretty form if len(b) == 0: return prettyForm.__mul__(*a) else: if len(a) == 0: a.append( self._print(S.One) ) return prettyForm.__mul__(*a)/prettyForm.__mul__(*b) # A helper function for _print_Pow to print x**(1/n) def _print_nth_root(self, base, root): bpretty = self._print(base) # In very simple cases, use a single-char root sign if (self._settings['use_unicode_sqrt_char'] and self._use_unicode and root == 2 and bpretty.height() == 1 and (bpretty.width() == 1 or (base.is_Integer and base.is_nonnegative))): return prettyForm(*bpretty.left('\N{SQUARE ROOT}')) # Construct root sign, start with the \/ shape _zZ = xobj('/', 1) rootsign = xobj('\\', 1) + _zZ # Constructing the number to put on root rpretty = self._print(root) # roots look bad if they are not a single line if rpretty.height() != 1: return self._print(base)**self._print(1/root) # If power is half, no number should appear on top of root sign exp = '' if root == 2 else str(rpretty).ljust(2) if len(exp) > 2: rootsign = ' '*(len(exp) - 2) + rootsign # Stack the exponent rootsign = stringPict(exp + '\n' + rootsign) rootsign.baseline = 0 # Diagonal: length is one less than height of base linelength = bpretty.height() - 1 diagonal = stringPict('\n'.join( ' '*(linelength - i - 1) + _zZ + ' '*i for i in range(linelength) )) # Put baseline just below lowest line: next to exp diagonal.baseline = linelength - 1 # Make the root symbol rootsign = prettyForm(*rootsign.right(diagonal)) # Det the baseline to match contents to fix the height # but if the height of bpretty is one, the rootsign must be one higher rootsign.baseline = max(1, bpretty.baseline) #build result s = prettyForm(hobj('_', 2 + bpretty.width())) s = prettyForm(*bpretty.above(s)) s = prettyForm(*s.left(rootsign)) return s def _print_Pow(self, power): from sympy.simplify.simplify import fraction b, e = power.as_base_exp() if power.is_commutative: if e is S.NegativeOne: return prettyForm("1")/self._print(b) n, d = fraction(e) if n is S.One and d.is_Atom and not e.is_Integer and (e.is_Rational or d.is_Symbol) \ and self._settings['root_notation']: return self._print_nth_root(b, d) if e.is_Rational and e < 0: return prettyForm("1")/self._print(Pow(b, -e, evaluate=False)) if b.is_Relational: return prettyForm(*self._print(b).parens()).__pow__(self._print(e)) return self._print(b)**self._print(e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def __print_numer_denom(self, p, q): if q == 1: if p < 0: return prettyForm(str(p), binding=prettyForm.NEG) else: return prettyForm(str(p)) elif abs(p) >= 10 and abs(q) >= 10: # If more than one digit in numer and denom, print larger fraction if p < 0: return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q)) # Old printing method: #pform = prettyForm(str(-p))/prettyForm(str(q)) #return prettyForm(binding=prettyForm.NEG, *pform.left('- ')) else: return prettyForm(str(p))/prettyForm(str(q)) else: return None def _print_Rational(self, expr): result = self.__print_numer_denom(expr.p, expr.q) if result is not None: return result else: return self.emptyPrinter(expr) def _print_Fraction(self, expr): result = self.__print_numer_denom(expr.numerator, expr.denominator) if result is not None: return result else: return self.emptyPrinter(expr) def _print_ProductSet(self, p): if len(p.sets) >= 1 and not has_variety(p.sets): return self._print(p.sets[0]) ** self._print(len(p.sets)) else: prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x' return self._print_seq(p.sets, None, None, ' %s ' % prod_char, parenthesize=lambda set: set.is_Union or set.is_Intersection or set.is_ProductSet) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_seq(items, '{', '}', ', ' ) def _print_Range(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return self._print_seq(printset, '{', '}', ', ' ) def _print_Interval(self, i): if i.start == i.end: return self._print_seq(i.args[:1], '{', '}') else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return self._print_seq(i.args[:2], left, right) def _print_AccumulationBounds(self, i): left = '<' right = '>' return self._print_seq(i.args[:2], left, right) def _print_Intersection(self, u): delimiter = ' %s ' % pretty_atom('Intersection', 'n') return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Union or set.is_Complement) def _print_Union(self, u): union_delimiter = ' %s ' % pretty_atom('Union', 'U') return self._print_seq(u.args, None, None, union_delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Complement) def _print_SymmetricDifference(self, u): if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented") sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference') return self._print_seq(u.args, None, None, sym_delimeter) def _print_Complement(self, u): delimiter = r' \ ' return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Union) def _print_ImageSet(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" else: inn = 'in' fun = ts.lamda sets = ts.base_sets signature = fun.signature expr = self._print(fun.expr) # TODO: the stuff to the left of the | and the stuff to the right of # the | should have independent baselines, that way something like # ImageSet(Lambda(x, 1/x**2), S.Naturals) prints the "x in N" part # centered on the right instead of aligned with the fraction bar on # the left. The same also applies to ConditionSet and ComplexRegion if len(signature) == 1: S = self._print_seq((signature[0], inn, sets[0]), delimiter=' ') return self._hprint_vseparator(expr, S, left='{', right='}', ifascii_nougly=True, delimiter=' ') else: pargs = tuple(j for var, setv in zip(signature, sets) for j in (var, ' ', inn, ' ', setv, ", ")) S = self._print_seq(pargs[:-1], delimiter='') return self._hprint_vseparator(expr, S, left='{', right='}', ifascii_nougly=True, delimiter=' ') def _print_ConditionSet(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" # using _and because and is a keyword and it is bad practice to # overwrite them _and = "\N{LOGICAL AND}" else: inn = 'in' _and = 'and' variables = self._print_seq(Tuple(ts.sym)) as_expr = getattr(ts.condition, 'as_expr', None) if as_expr is not None: cond = self._print(ts.condition.as_expr()) else: cond = self._print(ts.condition) if self._use_unicode: cond = self._print(cond) cond = prettyForm(*cond.parens()) if ts.base_set is S.UniversalSet: return self._hprint_vseparator(variables, cond, left="{", right="}", ifascii_nougly=True, delimiter=' ') base = self._print(ts.base_set) C = self._print_seq((variables, inn, base, _and, cond), delimiter=' ') return self._hprint_vseparator(variables, C, left="{", right="}", ifascii_nougly=True, delimiter=' ') def _print_ComplexRegion(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" else: inn = 'in' variables = self._print_seq(ts.variables) expr = self._print(ts.expr) prodsets = self._print(ts.sets) C = self._print_seq((variables, inn, prodsets), delimiter=' ') return self._hprint_vseparator(expr, C, left="{", right="}", ifascii_nougly=True, delimiter=' ') def _print_Contains(self, e): var, set = e.args if self._use_unicode: el = " \N{ELEMENT OF} " return prettyForm(*stringPict.next(self._print(var), el, self._print(set)), binding=8) else: return prettyForm(sstr(e)) def _print_FourierSeries(self, s): if s.an.formula is S.Zero and s.bn.formula is S.Zero: return self._print(s.a0) if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' return self._print_Add(s.truncate()) + self._print(dots) def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_SetExpr(self, se): pretty_set = prettyForm(*self._print(se.set).parens()) pretty_name = self._print(Symbol("SetExpr")) return prettyForm(*pretty_name.right(pretty_set)) def _print_SeqFormula(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented") if s.start is S.NegativeInfinity: stop = s.stop printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(dots) printset = tuple(printset) else: printset = tuple(s) return self._print_list(printset) _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_seq(self, seq, left=None, right=None, delimiter=', ', parenthesize=lambda x: False, ifascii_nougly=True): try: pforms = [] for item in seq: pform = self._print(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if pforms: pforms.append(delimiter) pforms.append(pform) if not pforms: s = stringPict('') else: s = prettyForm(*stringPict.next(*pforms)) # XXX: Under the tests from #15686 the above raises: # AttributeError: 'Fake' object has no attribute 'baseline' # This is caught below but that is not the right way to # fix it. except AttributeError: s = None for item in seq: pform = self.doprint(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else : s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') s = prettyForm(*s.parens(left, right, ifascii_nougly=ifascii_nougly)) return s def join(self, delimiter, args): pform = None for arg in args: if pform is None: pform = arg else: pform = prettyForm(*pform.right(delimiter)) pform = prettyForm(*pform.right(arg)) if pform is None: return prettyForm("") else: return pform def _print_list(self, l): return self._print_seq(l, '[', ']') def _print_tuple(self, t): if len(t) == 1: ptuple = prettyForm(*stringPict.next(self._print(t[0]), ',')) return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True)) else: return self._print_seq(t, '(', ')') def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for k in keys: K = self._print(k) V = self._print(d[k]) s = prettyForm(*stringPict.next(K, ': ', V)) items.append(s) return self._print_seq(items, '{', '}') def _print_Dict(self, d): return self._print_dict(d) def _print_set(self, s): if not s: return prettyForm('set()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) return pretty def _print_frozenset(self, s): if not s: return prettyForm('frozenset()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True)) pretty = prettyForm(*stringPict.next(type(s).__name__, pretty)) return pretty def _print_UniversalSet(self, s): if self._use_unicode: return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}") else: return prettyForm('UniversalSet') def _print_PolyRing(self, ring): return prettyForm(sstr(ring)) def _print_FracField(self, field): return prettyForm(sstr(field)) def _print_FreeGroupElement(self, elm): return prettyForm(str(elm)) def _print_PolyElement(self, poly): return prettyForm(sstr(poly)) def _print_FracElement(self, frac): return prettyForm(sstr(frac)) def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_ComplexRootOf(self, expr): args = [self._print_Add(expr.expr, order='lex'), expr.index] pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('CRootOf')) return pform def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('RootSum')) return pform def _print_FiniteField(self, expr): if self._use_unicode: form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d' else: form = 'GF(%d)' return prettyForm(pretty_symbol(form % expr.mod)) def _print_IntegerRing(self, expr): if self._use_unicode: return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}') else: return prettyForm('ZZ') def _print_RationalField(self, expr): if self._use_unicode: return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}') else: return prettyForm('QQ') def _print_RealField(self, domain): if self._use_unicode: prefix = '\N{DOUBLE-STRUCK CAPITAL R}' else: prefix = 'RR' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_ComplexField(self, domain): if self._use_unicode: prefix = '\N{DOUBLE-STRUCK CAPITAL C}' else: prefix = 'CC' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_PolynomialRing(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_FractionField(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '(', ')') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_PolynomialRingBase(self, expr): g = expr.symbols if str(expr.order) != str(expr.default_order): g = g + ("order=" + str(expr.order),) pform = self._print_seq(g, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_GroebnerBasis(self, basis): exprs = [ self._print_Add(arg, order=basis.order) for arg in basis.exprs ] exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]")) gens = [ self._print(gen) for gen in basis.gens ] domain = prettyForm( *prettyForm("domain=").right(self._print(basis.domain))) order = prettyForm( *prettyForm("order=").right(self._print(basis.order))) pform = self.join(", ", [exprs] + gens + [domain, order]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(basis.__class__.__name__)) return pform def _print_Subs(self, e): pform = self._print(e.expr) pform = prettyForm(*pform.parens()) h = pform.height() if pform.height() > 1 else 2 rvert = stringPict(vobj('|', h), baseline=pform.baseline) pform = prettyForm(*pform.right(rvert)) b = pform.baseline pform.baseline = pform.height() - 1 pform = prettyForm(*pform.right(self._print_seq([ self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])), delimiter='') for v in zip(e.variables, e.point) ]))) pform.baseline = b return pform def _print_number_function(self, e, name): # Print name_arg[0] for one argument or name_arg[0](arg[1]) # for more than one argument pform = prettyForm(name) arg = self._print(e.args[0]) pform_arg = prettyForm(" "*arg.width()) pform_arg = prettyForm(*pform_arg.below(arg)) pform = prettyForm(*pform.right(pform_arg)) if len(e.args) == 1: return pform m, x = e.args # TODO: copy-pasted from _print_Function: can we do better? prettyFunc = pform prettyArgs = prettyForm(*self._print_seq([x]).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_euler(self, e): return self._print_number_function(e, "E") def _print_catalan(self, e): return self._print_number_function(e, "C") def _print_bernoulli(self, e): return self._print_number_function(e, "B") _print_bell = _print_bernoulli def _print_lucas(self, e): return self._print_number_function(e, "L") def _print_fibonacci(self, e): return self._print_number_function(e, "F") def _print_tribonacci(self, e): return self._print_number_function(e, "T") def _print_stieltjes(self, e): if self._use_unicode: return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}') else: return self._print_number_function(e, "stieltjes") def _print_KroneckerDelta(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.right(prettyForm(','))) pform = prettyForm(*pform.right(self._print(e.args[1]))) if self._use_unicode: a = stringPict(pretty_symbol('delta')) else: a = stringPict('d') b = pform top = stringPict(*b.left(' '*a.width())) bot = stringPict(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.below(top)) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.as_boolean()))) return pform elif hasattr(d, 'set'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.symbols))) pform = prettyForm(*pform.right(self._print(' in '))) pform = prettyForm(*pform.right(self._print(d.set))) return pform elif hasattr(d, 'symbols'): pform = self._print('Domain on ') pform = prettyForm(*pform.right(self._print(d.symbols))) return pform else: return self._print(None) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(pretty_symbol(object.name)) def _print_Morphism(self, morphism): arrow = xsym("-->") domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) tail = domain.right(arrow, codomain)[0] return prettyForm(tail) def _print_NamedMorphism(self, morphism): pretty_name = self._print(pretty_symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(":", pretty_morphism)[0]) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism( NamedMorphism(morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): circle = xsym(".") # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [pretty_symbol(component.name) for component in morphism.components] component_names_list.reverse() component_names = circle.join(component_names_list) + ":" pretty_name = self._print(component_names) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(pretty_morphism)[0]) def _print_Category(self, category): return self._print(pretty_symbol(category.name)) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) pretty_result = self._print(diagram.premises) if diagram.conclusions: results_arrow = " %s " % xsym("==>") pretty_conclusions = self._print(diagram.conclusions)[0] pretty_result = pretty_result.right( results_arrow, pretty_conclusions) return prettyForm(pretty_result[0]) def _print_DiagramGrid(self, grid): from sympy.matrices import Matrix matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ") for j in range(grid.width)] for i in range(grid.height)]) return self._print_matrix_contents(matrix) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return self._print_seq(m, '[', ']') def _print_SubModule(self, M): return self._print_seq(M.gens, '<', '>') def _print_FreeModule(self, M): return self._print(M.ring)**self._print(M.rank) def _print_ModuleImplementedIdeal(self, M): return self._print_seq([x for [x] in M._module.gens], '<', '>') def _print_QuotientRing(self, R): return self._print(R.ring) / self._print(R.base_ideal) def _print_QuotientRingElement(self, R): return self._print(R.data) + self._print(R.ring.base_ideal) def _print_QuotientModuleElement(self, m): return self._print(m.data) + self._print(m.module.killed_module) def _print_QuotientModule(self, M): return self._print(M.base) / self._print(M.killed_module) def _print_MatrixHomomorphism(self, h): matrix = self._print(h._sympy_matrix()) matrix.baseline = matrix.height() // 2 pform = prettyForm(*matrix.right(' : ', self._print(h.domain), ' %s> ' % hobj('-', 2), self._print(h.codomain))) return pform def _print_Manifold(self, manifold): return self._print(manifold.name) def _print_Patch(self, patch): return self._print(patch.name) def _print_CoordSystem(self, coords): return self._print(coords.name) def _print_BaseScalarField(self, field): string = field._coord_sys.symbols[field._index].name return self._print(pretty_symbol(string)) def _print_BaseVectorField(self, field): s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name return self._print(pretty_symbol(s)) def _print_Differential(self, diff): if self._use_unicode: d = '\N{DOUBLE-STRUCK ITALIC SMALL D}' else: d = 'd' field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys.symbols[field._index].name return self._print(d + ' ' + pretty_symbol(string)) else: pform = self._print(field) pform = prettyForm(*pform.parens()) return prettyForm(*pform.left(d)) def _print_Tr(self, p): #TODO: Handle indices pform = self._print(p.args[0]) pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__))) pform = prettyForm(*pform.right(')')) return pform def _print_primenu(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['nu'])) else: pform = prettyForm(*pform.left('nu')) return pform def _print_primeomega(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['Omega'])) else: pform = prettyForm(*pform.left('Omega')) return pform def _print_Quantity(self, e): if e.name.name == 'degree': pform = self._print("\N{DEGREE SIGN}") return pform else: return self.emptyPrinter(e) def _print_AssignmentBase(self, e): op = prettyForm(' ' + xsym(e.op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def _print_Str(self, s): return self._print(s.name) @print_function(PrettyPrinter) def pretty(expr, **settings): """Returns a string containing the prettified form of expr. For information on keyword arguments see pretty_print function. """ pp = PrettyPrinter(settings) # XXX: this is an ugly hack, but at least it works use_unicode = pp._settings['use_unicode'] uflag = pretty_use_unicode(use_unicode) try: return pp.doprint(expr) finally: pretty_use_unicode(uflag) def pretty_print(expr, **kwargs): """Prints expr in pretty form. pprint is just a shortcut for this function. Parameters ========== expr : expression The expression to print. wrap_line : bool, optional (default=True) Line wrapping enabled/disabled. num_columns : int or None, optional (default=None) Number of columns before line breaking (default to None which reads the terminal width), useful when using SymPy without terminal. use_unicode : bool or None, optional (default=None) Use unicode characters, such as the Greek letter pi instead of the string pi. full_prec : bool or string, optional (default="auto") Use full precision. order : bool or string, optional (default=None) Set to 'none' for long expressions if slow; default is None. use_unicode_sqrt_char : bool, optional (default=True) Use compact single-character square root symbol (when unambiguous). root_notation : bool, optional (default=True) Set to 'False' for printing exponents of the form 1/n in fractional form. By default exponent is printed in root form. mat_symbol_style : string, optional (default="plain") Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face. By default the standard face is used. imaginary_unit : string, optional (default="i") Letter to use for imaginary unit when use_unicode is True. Can be "i" (default) or "j". """ print(pretty(expr, **kwargs)) pprint = pretty_print def pager_print(expr, **settings): """Prints expr using the pager, in pretty form. This invokes a pager command using pydoc. Lines are not wrapped automatically. This routine is meant to be used with a pager that allows sideways scrolling, like ``less -S``. Parameters are the same as for ``pretty_print``. If you wish to wrap lines, pass ``num_columns=None`` to auto-detect the width of the terminal. """ from pydoc import pager from locale import getpreferredencoding if 'num_columns' not in settings: settings['num_columns'] = 500000 # disable line wrap pager(pretty(expr, **settings).encode(getpreferredencoding()))
edf1a77203f3bd46d28ed96db2efa4c220853eff6d265bf6ccf2d1168dd990dc
from sympy.concrete.summations import Sum from sympy.core.mod import Mod from sympy.core.relational import (Equality, Unequality) from sympy.core.symbol import Symbol from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.gamma_functions import polygamma from sympy.functions.special.error_functions import (Si, Ci) from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.special import Identity from sympy.utilities.lambdify import lambdify from sympy.abc import x, i, j, a, b, c, d from sympy.core import Pow from sympy.codegen.matrix_nodes import MatrixSolve from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt from sympy.tensor.array import Array from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \ PermuteDims, ArrayDiagonal from sympy.printing.numpy import NumPyPrinter, SciPyPrinter, _numpy_known_constants, \ _numpy_known_functions, _scipy_known_constants, _scipy_known_functions from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array from sympy.testing.pytest import skip, raises from sympy.external import import_module np = import_module('numpy') if np: deafult_float_info = np.finfo(np.array([]).dtype) NUMPY_DEFAULT_EPSILON = deafult_float_info.eps def test_numpy_piecewise_regression(): """ NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+. See gh-9747 and gh-9749 for details. """ printer = NumPyPrinter() p = Piecewise((1, x < 0), (0, True)) assert printer.doprint(p) == \ 'numpy.select([numpy.less(x, 0),True], [1,0], default=numpy.nan)' assert printer.module_imports == {'numpy': {'select', 'less', 'nan'}} def test_numpy_logaddexp(): lae = logaddexp(a, b) assert NumPyPrinter().doprint(lae) == 'numpy.logaddexp(a, b)' lae2 = logaddexp2(a, b) assert NumPyPrinter().doprint(lae2) == 'numpy.logaddexp2(a, b)' def test_sum(): if not np: skip("NumPy not installed") s = Sum(x ** i, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1))) s = Sum(i * x, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1))) def test_multiple_sums(): if not np: skip("NumPy not installed") s = Sum((x + j) * i, (i, a, b), (j, c, d)) f = lambdify((a, b, c, d, x), s, 'numpy') a_, b_ = 0, 10 c_, d_ = 11, 21 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, c_, d_, x_), sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1))) def test_codegen_einsum(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = convert_matrix_to_array(M * N) f = lambdify((M, N), cg, 'numpy') ma = np.array([[1, 2], [3, 4]]) mb = np.array([[1,-2], [-1, 3]]) assert (f(ma, mb) == np.matmul(ma, mb)).all() def test_codegen_extra(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) ma = np.array([[1, 2], [3, 4]]) mb = np.array([[1,-2], [-1, 3]]) mc = np.array([[2, 0], [1, 2]]) md = np.array([[1,-1], [4, 7]]) cg = ArrayTensorProduct(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all() cg = ArrayAdd(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == ma+mb).all() cg = ArrayAdd(M, N, P) f = lambdify((M, N, P), cg, 'numpy') assert (f(ma, mb, mc) == ma+mb+mc).all() cg = ArrayAdd(M, N, P, Q) f = lambdify((M, N, P, Q), cg, 'numpy') assert (f(ma, mb, mc, md) == ma+mb+mc+md).all() cg = PermuteDims(M, [1, 0]) f = lambdify((M,), cg, 'numpy') assert (f(ma) == ma.T).all() cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0]) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all() cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all() def test_relational(): if not np: skip("NumPy not installed") e = Equality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, False]) e = Unequality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, True]) e = (x < 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, False]) e = (x <= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, True, False]) e = (x > 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, False, True]) e = (x >= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, True]) def test_mod(): if not np: skip("NumPy not installed") e = Mod(a, b) f = lambdify((a, b), e) a_ = np.array([0, 1, 2, 3]) b_ = 2 assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([0, 1, 2, 3]) b_ = np.array([2, 2, 2, 2]) assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([2, 3, 4, 5]) b_ = np.array([2, 3, 4, 5]) assert np.array_equal(f(a_, b_), [0, 0, 0, 0]) def test_pow(): if not np: skip('NumPy not installed') expr = Pow(2, -1, evaluate=False) f = lambdify([], expr, 'numpy') assert f() == 0.5 def test_expm1(): if not np: skip("NumPy not installed") f = lambdify((a,), expm1(a), 'numpy') assert abs(f(1e-10) - 1e-10 - 5e-21) <= 1e-10 * NUMPY_DEFAULT_EPSILON def test_log1p(): if not np: skip("NumPy not installed") f = lambdify((a,), log1p(a), 'numpy') assert abs(f(1e-99) - 1e-99) <= 1e-99 * NUMPY_DEFAULT_EPSILON def test_hypot(): if not np: skip("NumPy not installed") assert abs(lambdify((a, b), hypot(a, b), 'numpy')(3, 4) - 5) <= NUMPY_DEFAULT_EPSILON def test_log10(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log10(a), 'numpy')(100) - 2) <= NUMPY_DEFAULT_EPSILON def test_exp2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), exp2(a), 'numpy')(5) - 32) <= NUMPY_DEFAULT_EPSILON def test_log2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log2(a), 'numpy')(256) - 8) <= NUMPY_DEFAULT_EPSILON def test_Sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), Sqrt(a), 'numpy')(4) - 2) <= NUMPY_DEFAULT_EPSILON def test_sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), sqrt(a), 'numpy')(4) - 2) <= NUMPY_DEFAULT_EPSILON def test_matsolve(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 3, 3) x = MatrixSymbol("x", 3, 1) expr = M**(-1) * x + x matsolve_expr = MatrixSolve(M, x) + x f = lambdify((M, x), expr) f_matsolve = lambdify((M, x), matsolve_expr) m0 = np.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]]) assert np.linalg.matrix_rank(m0) == 3 x0 = np.array([3, 4, 5]) assert np.allclose(f_matsolve(m0, x0), f(m0, x0)) def test_16857(): if not np: skip("NumPy not installed") a_1 = MatrixSymbol('a_1', 10, 3) a_2 = MatrixSymbol('a_2', 10, 3) a_3 = MatrixSymbol('a_3', 10, 3) a_4 = MatrixSymbol('a_4', 10, 3) A = BlockMatrix([[a_1, a_2], [a_3, a_4]]) assert A.shape == (20, 6) printer = NumPyPrinter() assert printer.doprint(A) == 'numpy.block([[a_1, a_2], [a_3, a_4]])' def test_issue_17006(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) f = lambdify(M, M + Identity(2)) ma = np.array([[1, 2], [3, 4]]) mr = np.array([[2, 2], [3, 5]]) assert (f(ma) == mr).all() from sympy.core.symbol import symbols n = symbols('n', integer=True) N = MatrixSymbol("M", n, n) raises(NotImplementedError, lambda: lambdify(N, N + Identity(n))) def test_numpy_array(): assert NumPyPrinter().doprint(Array(((1, 2), (3, 5)))) == 'numpy.array([[1, 2], [3, 5]])' assert NumPyPrinter().doprint(Array((1, 2))) == 'numpy.array((1, 2))' def test_numpy_known_funcs_consts(): assert _numpy_known_constants['NaN'] == 'numpy.nan' assert _numpy_known_constants['EulerGamma'] == 'numpy.euler_gamma' assert _numpy_known_functions['acos'] == 'numpy.arccos' assert _numpy_known_functions['log'] == 'numpy.log' def test_scipy_known_funcs_consts(): assert _scipy_known_constants['GoldenRatio'] == 'scipy.constants.golden_ratio' assert _scipy_known_constants['Pi'] == 'scipy.constants.pi' assert _scipy_known_functions['erf'] == 'scipy.special.erf' assert _scipy_known_functions['factorial'] == 'scipy.special.factorial' def test_numpy_print_methods(): prntr = NumPyPrinter() assert hasattr(prntr, '_print_acos') assert hasattr(prntr, '_print_log') def test_scipy_print_methods(): prntr = SciPyPrinter() assert hasattr(prntr, '_print_acos') assert hasattr(prntr, '_print_log') assert hasattr(prntr, '_print_erf') assert hasattr(prntr, '_print_factorial') assert hasattr(prntr, '_print_chebyshevt') k = Symbol('k', integer=True, nonnegative=True) x = Symbol('x', real=True) assert prntr.doprint(polygamma(k, x)) == "scipy.special.polygamma(k, x)" assert prntr.doprint(Si(x)) == "scipy.special.sici(x)[0]" assert prntr.doprint(Ci(x)) == "scipy.special.sici(x)[1]"
3731a1911da950c7ddf25214d9c151f5b15ad09f3d473a47b37cc3820016b57a
from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import sqrt from sympy.core import S, Rational from sympy.integrals.intpoly import (decompose, best_origin, distance_to_side, polytope_integrate, point_sort, hyperplane_parameters, main_integrate3d, main_integrate, polygon_integrate, lineseg_integrate, integration_reduction, integration_reduction_dynamic, is_vertex) from sympy.geometry.line import Segment2D from sympy.geometry.polygon import Polygon from sympy.geometry.point import Point, Point2D from sympy.abc import x, y, z from sympy.testing.pytest import slow def test_decompose(): assert decompose(x) == {1: x} assert decompose(x**2) == {2: x**2} assert decompose(x*y) == {2: x*y} assert decompose(x + y) == {1: x + y} assert decompose(x**2 + y) == {1: y, 2: x**2} assert decompose(8*x**2 + 4*y + 7) == {0: 7, 1: 4*y, 2: 8*x**2} assert decompose(x**2 + 3*y*x) == {2: x**2 + 3*x*y} assert decompose(9*x**2 + y + 4*x + x**3 + y**2*x + 3) ==\ {0: 3, 1: 4*x + y, 2: 9*x**2, 3: x**3 + x*y**2} assert decompose(x, True) == {x} assert decompose(x ** 2, True) == {x**2} assert decompose(x * y, True) == {x * y} assert decompose(x + y, True) == {x, y} assert decompose(x ** 2 + y, True) == {y, x ** 2} assert decompose(8 * x ** 2 + 4 * y + 7, True) == {7, 4*y, 8*x**2} assert decompose(x ** 2 + 3 * y * x, True) == {x ** 2, 3 * x * y} assert decompose(9 * x ** 2 + y + 4 * x + x ** 3 + y ** 2 * x + 3, True) == \ {3, y, 4*x, 9*x**2, x*y**2, x**3} def test_best_origin(): expr1 = y ** 2 * x ** 5 + y ** 5 * x ** 7 + 7 * x + x ** 12 + y ** 7 * x l1 = Segment2D(Point(0, 3), Point(1, 1)) l2 = Segment2D(Point(S(3) / 2, 0), Point(S(3) / 2, 3)) l3 = Segment2D(Point(0, S(3) / 2), Point(3, S(3) / 2)) l4 = Segment2D(Point(0, 2), Point(2, 0)) l5 = Segment2D(Point(0, 2), Point(1, 1)) l6 = Segment2D(Point(2, 0), Point(1, 1)) assert best_origin((2, 1), 3, l1, expr1) == (0, 3) # XXX: Should these return exact Rational output? Maybe best_origin should # sympify its arguments... assert best_origin((2, 0), 3, l2, x ** 7) == (1.5, 0) assert best_origin((0, 2), 3, l3, x ** 7) == (0, 1.5) assert best_origin((1, 1), 2, l4, x ** 7 * y ** 3) == (0, 2) assert best_origin((1, 1), 2, l4, x ** 3 * y ** 7) == (2, 0) assert best_origin((1, 1), 2, l5, x ** 2 * y ** 9) == (0, 2) assert best_origin((1, 1), 2, l6, x ** 9 * y ** 2) == (2, 0) @slow def test_polytope_integrate(): # Convex 2-Polytopes # Vertex representation assert polytope_integrate(Polygon(Point(0, 0), Point(0, 2), Point(4, 0)), 1) == 4 assert polytope_integrate(Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)), x * y) ==\ Rational(1, 4) assert polytope_integrate(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)), 6*x**2 - 40*y) == Rational(-935, 3) assert polytope_integrate(Polygon(Point(0, 0), Point(0, sqrt(3)), Point(sqrt(3), sqrt(3)), Point(sqrt(3), 0)), 1) == 3 hexagon = Polygon(Point(0, 0), Point(-sqrt(3) / 2, S.Half), Point(-sqrt(3) / 2, S(3) / 2), Point(0, 2), Point(sqrt(3) / 2, S(3) / 2), Point(sqrt(3) / 2, S.Half)) assert polytope_integrate(hexagon, 1) == S(3*sqrt(3)) / 2 # Hyperplane representation assert polytope_integrate([((-1, 0), 0), ((1, 2), 4), ((0, -1), 0)], 1) == 4 assert polytope_integrate([((-1, 0), 0), ((0, 1), 1), ((1, 0), 1), ((0, -1), 0)], x * y) == Rational(1, 4) assert polytope_integrate([((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)], 6*x**2 - 40*y) == Rational(-935, 3) assert polytope_integrate([((-1, 0), 0), ((0, sqrt(3)), 3), ((sqrt(3), 0), 3), ((0, -1), 0)], 1) == 3 hexagon = [((Rational(-1, 2), -sqrt(3) / 2), 0), ((-1, 0), sqrt(3) / 2), ((Rational(-1, 2), sqrt(3) / 2), sqrt(3)), ((S.Half, sqrt(3) / 2), sqrt(3)), ((1, 0), sqrt(3) / 2), ((S.Half, -sqrt(3) / 2), 0)] assert polytope_integrate(hexagon, 1) == S(3*sqrt(3)) / 2 # Non-convex polytopes # Vertex representation assert polytope_integrate(Polygon(Point(-1, -1), Point(-1, 1), Point(1, 1), Point(0, 0), Point(1, -1)), 1) == 3 assert polytope_integrate(Polygon(Point(-1, -1), Point(-1, 1), Point(0, 0), Point(1, 1), Point(1, -1), Point(0, 0)), 1) == 2 # Hyperplane representation assert polytope_integrate([((-1, 0), 1), ((0, 1), 1), ((1, -1), 0), ((1, 1), 0), ((0, -1), 1)], 1) == 3 assert polytope_integrate([((-1, 0), 1), ((1, 1), 0), ((-1, 1), 0), ((1, 0), 1), ((-1, -1), 0), ((1, -1), 0)], 1) == 2 # Tests for 2D polytopes mentioned in Chin et al(Page 10): # http://dilbert.engr.ucdavis.edu/~suku/quadrature/cls-integration.pdf fig1 = Polygon(Point(1.220, -0.827), Point(-1.490, -4.503), Point(-3.766, -1.622), Point(-4.240, -0.091), Point(-3.160, 4), Point(-0.981, 4.447), Point(0.132, 4.027)) assert polytope_integrate(fig1, x**2 + x*y + y**2) ==\ S(2031627344735367)/(8*10**12) fig2 = Polygon(Point(4.561, 2.317), Point(1.491, -1.315), Point(-3.310, -3.164), Point(-4.845, -3.110), Point(-4.569, 1.867)) assert polytope_integrate(fig2, x**2 + x*y + y**2) ==\ S(517091313866043)/(16*10**11) fig3 = Polygon(Point(-2.740, -1.888), Point(-3.292, 4.233), Point(-2.723, -0.697), Point(-0.643, -3.151)) assert polytope_integrate(fig3, x**2 + x*y + y**2) ==\ S(147449361647041)/(8*10**12) fig4 = Polygon(Point(0.211, -4.622), Point(-2.684, 3.851), Point(0.468, 4.879), Point(4.630, -1.325), Point(-0.411, -1.044)) assert polytope_integrate(fig4, x**2 + x*y + y**2) ==\ S(180742845225803)/(10**12) # Tests for many polynomials with maximum degree given(2D case). tri = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) polys = [] expr1 = x**9*y + x**7*y**3 + 2*x**2*y**8 expr2 = x**6*y**4 + x**5*y**5 + 2*y**10 expr3 = x**10 + x**9*y + x**8*y**2 + x**5*y**5 polys.extend((expr1, expr2, expr3)) result_dict = polytope_integrate(tri, polys, max_degree=10) assert result_dict[expr1] == Rational(615780107, 594) assert result_dict[expr2] == Rational(13062161, 27) assert result_dict[expr3] == Rational(1946257153, 924) tri = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) expr1 = x**7*y**1 + 2*x**2*y**6 expr2 = x**6*y**4 + x**5*y**5 + 2*y**10 expr3 = x**10 + x**9*y + x**8*y**2 + x**5*y**5 polys.extend((expr1, expr2, expr3)) assert polytope_integrate(tri, polys, max_degree=9) == \ {x**7*y + 2*x**2*y**6: Rational(489262, 9)} # Tests when all integral of all monomials up to a max_degree is to be # calculated. assert polytope_integrate(Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)), max_degree=4) == {0: 0, 1: 1, x: S.Half, x ** 2 * y ** 2: S.One / 9, x ** 4: S.One / 5, y ** 4: S.One / 5, y: S.Half, x * y ** 2: S.One / 6, y ** 2: S.One / 3, x ** 3: S.One / 4, x ** 2 * y: S.One / 6, x ** 3 * y: S.One / 8, x * y: S.One / 4, y ** 3: S.One / 4, x ** 2: S.One / 3, x * y ** 3: S.One / 8} # Tests for 3D polytopes cube1 = [[(0, 0, 0), (0, 6, 6), (6, 6, 6), (3, 6, 0), (0, 6, 0), (6, 0, 6), (3, 0, 0), (0, 0, 6)], [1, 2, 3, 4], [3, 2, 5, 6], [1, 7, 5, 2], [0, 6, 5, 7], [1, 4, 0, 7], [0, 4, 3, 6]] assert polytope_integrate(cube1, 1) == S(162) # 3D Test cases in Chin et al(2015) cube2 = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0), (5, 0, 5), (5, 5, 0), (5, 5, 5)], [3, 7, 6, 2], [1, 5, 7, 3], [5, 4, 6, 7], [0, 4, 5, 1], [2, 0, 1, 3], [2, 6, 4, 0]] cube3 = [[(0, 0, 0), (5, 0, 0), (5, 4, 0), (3, 2, 0), (3, 5, 0), (0, 5, 0), (0, 0, 5), (5, 0, 5), (5, 4, 5), (3, 2, 5), (3, 5, 5), (0, 5, 5)], [6, 11, 5, 0], [1, 7, 6, 0], [5, 4, 3, 2, 1, 0], [11, 10, 4, 5], [10, 9, 3, 4], [9, 8, 2, 3], [8, 7, 1, 2], [7, 8, 9, 10, 11, 6]] cube4 = [[(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (S.One / 4, S.One / 4, S.One / 4)], [0, 2, 1], [1, 3, 0], [4, 2, 3], [4, 3, 1], [0, 1, 2], [2, 4, 1], [0, 3, 2]] assert polytope_integrate(cube2, x ** 2 + y ** 2 + x * y + z ** 2) ==\ Rational(15625, 4) assert polytope_integrate(cube3, x ** 2 + y ** 2 + x * y + z ** 2) ==\ S(33835) / 12 assert polytope_integrate(cube4, x ** 2 + y ** 2 + x * y + z ** 2) ==\ S(37) / 960 # Test cases from Mathematica's PolyhedronData library octahedron = [[(S.NegativeOne / sqrt(2), 0, 0), (0, S.One / sqrt(2), 0), (0, 0, S.NegativeOne / sqrt(2)), (0, 0, S.One / sqrt(2)), (0, S.NegativeOne / sqrt(2), 0), (S.One / sqrt(2), 0, 0)], [3, 4, 5], [3, 5, 1], [3, 1, 0], [3, 0, 4], [4, 0, 2], [4, 2, 5], [2, 0, 1], [5, 2, 1]] assert polytope_integrate(octahedron, 1) == sqrt(2) / 3 great_stellated_dodecahedron =\ [[(-0.32491969623290634095, 0, 0.42532540417601993887), (0.32491969623290634095, 0, -0.42532540417601993887), (-0.52573111211913359231, 0, 0.10040570794311363956), (0.52573111211913359231, 0, -0.10040570794311363956), (-0.10040570794311363956, -0.3090169943749474241, 0.42532540417601993887), (-0.10040570794311363956, 0.30901699437494742410, 0.42532540417601993887), (0.10040570794311363956, -0.3090169943749474241, -0.42532540417601993887), (0.10040570794311363956, 0.30901699437494742410, -0.42532540417601993887), (-0.16245984811645317047, -0.5, 0.10040570794311363956), (-0.16245984811645317047, 0.5, 0.10040570794311363956), (0.16245984811645317047, -0.5, -0.10040570794311363956), (0.16245984811645317047, 0.5, -0.10040570794311363956), (-0.42532540417601993887, -0.3090169943749474241, -0.10040570794311363956), (-0.42532540417601993887, 0.30901699437494742410, -0.10040570794311363956), (-0.26286555605956679615, 0.1909830056250525759, -0.42532540417601993887), (-0.26286555605956679615, -0.1909830056250525759, -0.42532540417601993887), (0.26286555605956679615, 0.1909830056250525759, 0.42532540417601993887), (0.26286555605956679615, -0.1909830056250525759, 0.42532540417601993887), (0.42532540417601993887, -0.3090169943749474241, 0.10040570794311363956), (0.42532540417601993887, 0.30901699437494742410, 0.10040570794311363956)], [12, 3, 0, 6, 16], [17, 7, 0, 3, 13], [9, 6, 0, 7, 8], [18, 2, 1, 4, 14], [15, 5, 1, 2, 19], [11, 4, 1, 5, 10], [8, 19, 2, 18, 9], [10, 13, 3, 12, 11], [16, 14, 4, 11, 12], [13, 10, 5, 15, 17], [14, 16, 6, 9, 18], [19, 8, 7, 17, 15]] # Actual volume is : 0.163118960624632 assert Abs(polytope_integrate(great_stellated_dodecahedron, 1) -\ 0.163118960624632) < 1e-12 expr = x **2 + y ** 2 + z ** 2 octahedron_five_compound = [[(0, -0.7071067811865475244, 0), (0, 0.70710678118654752440, 0), (0.1148764602736805918, -0.35355339059327376220, -0.60150095500754567366), (0.1148764602736805918, 0.35355339059327376220, -0.60150095500754567366), (0.18587401723009224507, -0.57206140281768429760, 0.37174803446018449013), (0.18587401723009224507, 0.57206140281768429760, 0.37174803446018449013), (0.30075047750377283683, -0.21850801222441053540, 0.60150095500754567366), (0.30075047750377283683, 0.21850801222441053540, 0.60150095500754567366), (0.48662449473386508189, -0.35355339059327376220, -0.37174803446018449013), (0.48662449473386508189, 0.35355339059327376220, -0.37174803446018449013), (-0.60150095500754567366, 0, -0.37174803446018449013), (-0.30075047750377283683, -0.21850801222441053540, -0.60150095500754567366), (-0.30075047750377283683, 0.21850801222441053540, -0.60150095500754567366), (0.60150095500754567366, 0, 0.37174803446018449013), (0.4156269377774534286, -0.57206140281768429760, 0), (0.4156269377774534286, 0.57206140281768429760, 0), (0.37174803446018449013, 0, -0.60150095500754567366), (-0.4156269377774534286, -0.57206140281768429760, 0), (-0.4156269377774534286, 0.57206140281768429760, 0), (-0.67249851196395732696, -0.21850801222441053540, 0), (-0.67249851196395732696, 0.21850801222441053540, 0), (0.67249851196395732696, -0.21850801222441053540, 0), (0.67249851196395732696, 0.21850801222441053540, 0), (-0.37174803446018449013, 0, 0.60150095500754567366), (-0.48662449473386508189, -0.35355339059327376220, 0.37174803446018449013), (-0.48662449473386508189, 0.35355339059327376220, 0.37174803446018449013), (-0.18587401723009224507, -0.57206140281768429760, -0.37174803446018449013), (-0.18587401723009224507, 0.57206140281768429760, -0.37174803446018449013), (-0.11487646027368059176, -0.35355339059327376220, 0.60150095500754567366), (-0.11487646027368059176, 0.35355339059327376220, 0.60150095500754567366)], [0, 10, 16], [23, 10, 0], [16, 13, 0], [0, 13, 23], [16, 10, 1], [1, 10, 23], [1, 13, 16], [23, 13, 1], [2, 4, 19], [22, 4, 2], [2, 19, 27], [27, 22, 2], [20, 5, 3], [3, 5, 21], [26, 20, 3], [3, 21, 26], [29, 19, 4], [4, 22, 29], [5, 20, 28], [28, 21, 5], [6, 8, 15], [17, 8, 6], [6, 15, 25], [25, 17, 6], [14, 9, 7], [7, 9, 18], [24, 14, 7], [7, 18, 24], [8, 12, 15], [17, 12, 8], [14, 11, 9], [9, 11, 18], [11, 14, 24], [24, 18, 11], [25, 15, 12], [12, 17, 25], [29, 27, 19], [20, 26, 28], [28, 26, 21], [22, 27, 29]] assert Abs(polytope_integrate(octahedron_five_compound, expr)) - 0.353553\ < 1e-6 cube_five_compound = [[(-0.1624598481164531631, -0.5, -0.6881909602355867691), (-0.1624598481164531631, 0.5, -0.6881909602355867691), (0.1624598481164531631, -0.5, 0.68819096023558676910), (0.1624598481164531631, 0.5, 0.68819096023558676910), (-0.52573111211913359231, 0, -0.6881909602355867691), (0.52573111211913359231, 0, 0.68819096023558676910), (-0.26286555605956679615, -0.8090169943749474241, -0.1624598481164531631), (-0.26286555605956679615, 0.8090169943749474241, -0.1624598481164531631), (0.26286555605956680301, -0.8090169943749474241, 0.1624598481164531631), (0.26286555605956680301, 0.8090169943749474241, 0.1624598481164531631), (-0.42532540417601993887, -0.3090169943749474241, 0.68819096023558676910), (-0.42532540417601993887, 0.30901699437494742410, 0.68819096023558676910), (0.42532540417601996609, -0.3090169943749474241, -0.6881909602355867691), (0.42532540417601996609, 0.30901699437494742410, -0.6881909602355867691), (-0.6881909602355867691, -0.5, 0.1624598481164531631), (-0.6881909602355867691, 0.5, 0.1624598481164531631), (0.68819096023558676910, -0.5, -0.1624598481164531631), (0.68819096023558676910, 0.5, -0.1624598481164531631), (-0.85065080835203998877, 0, -0.1624598481164531631), (0.85065080835203993218, 0, 0.1624598481164531631)], [18, 10, 3, 7], [13, 19, 8, 0], [18, 0, 8, 10], [3, 19, 13, 7], [18, 7, 13, 0], [8, 19, 3, 10], [6, 2, 11, 18], [1, 9, 19, 12], [11, 9, 1, 18], [6, 12, 19, 2], [1, 12, 6, 18], [11, 2, 19, 9], [4, 14, 11, 7], [17, 5, 8, 12], [4, 12, 8, 14], [11, 5, 17, 7], [4, 7, 17, 12], [8, 5, 11, 14], [6, 10, 15, 4], [13, 9, 5, 16], [15, 9, 13, 4], [6, 16, 5, 10], [13, 16, 6, 4], [15, 10, 5, 9], [14, 15, 1, 0], [16, 17, 3, 2], [14, 2, 3, 15], [1, 17, 16, 0], [14, 0, 16, 2], [3, 17, 1, 15]] assert Abs(polytope_integrate(cube_five_compound, expr) - 1.25) < 1e-12 echidnahedron = [[(0, 0, -2.4898982848827801995), (0, 0, 2.4898982848827802734), (0, -4.2360679774997896964, -2.4898982848827801995), (0, -4.2360679774997896964, 2.4898982848827802734), (0, 4.2360679774997896964, -2.4898982848827801995), (0, 4.2360679774997896964, 2.4898982848827802734), (-4.0287400534704067567, -1.3090169943749474241, -2.4898982848827801995), (-4.0287400534704067567, -1.3090169943749474241, 2.4898982848827802734), (-4.0287400534704067567, 1.3090169943749474241, -2.4898982848827801995), (-4.0287400534704067567, 1.3090169943749474241, 2.4898982848827802734), (4.0287400534704069747, -1.3090169943749474241, -2.4898982848827801995), (4.0287400534704069747, -1.3090169943749474241, 2.4898982848827802734), (4.0287400534704069747, 1.3090169943749474241, -2.4898982848827801995), (4.0287400534704069747, 1.3090169943749474241, 2.4898982848827802734), (-2.4898982848827801995, -3.4270509831248422723, -2.4898982848827801995), (-2.4898982848827801995, -3.4270509831248422723, 2.4898982848827802734), (-2.4898982848827801995, 3.4270509831248422723, -2.4898982848827801995), (-2.4898982848827801995, 3.4270509831248422723, 2.4898982848827802734), (2.4898982848827802734, -3.4270509831248422723, -2.4898982848827801995), (2.4898982848827802734, -3.4270509831248422723, 2.4898982848827802734), (2.4898982848827802734, 3.4270509831248422723, -2.4898982848827801995), (2.4898982848827802734, 3.4270509831248422723, 2.4898982848827802734), (-4.7169310137059934362, -0.8090169943749474241, -1.1135163644116066184), (-4.7169310137059934362, 0.8090169943749474241, -1.1135163644116066184), (4.7169310137059937438, -0.8090169943749474241, 1.11351636441160673519), (4.7169310137059937438, 0.8090169943749474241, 1.11351636441160673519), (-4.2916056095299737777, -2.1180339887498948482, 1.11351636441160673519), (-4.2916056095299737777, 2.1180339887498948482, 1.11351636441160673519), (4.2916056095299737777, -2.1180339887498948482, -1.1135163644116066184), (4.2916056095299737777, 2.1180339887498948482, -1.1135163644116066184), (-3.6034146492943870399, 0, -3.3405490932348205213), (3.6034146492943870399, 0, 3.3405490932348202056), (-3.3405490932348205213, -3.4270509831248422723, 1.11351636441160673519), (-3.3405490932348205213, 3.4270509831248422723, 1.11351636441160673519), (3.3405490932348202056, -3.4270509831248422723, -1.1135163644116066184), (3.3405490932348202056, 3.4270509831248422723, -1.1135163644116066184), (-2.9152236890588002395, -2.1180339887498948482, 3.3405490932348202056), (-2.9152236890588002395, 2.1180339887498948482, 3.3405490932348202056), (2.9152236890588002395, -2.1180339887498948482, -3.3405490932348205213), (2.9152236890588002395, 2.1180339887498948482, -3.3405490932348205213), (-2.2270327288232132368, 0, -1.1135163644116066184), (-2.2270327288232132368, -4.2360679774997896964, -1.1135163644116066184), (-2.2270327288232132368, 4.2360679774997896964, -1.1135163644116066184), (2.2270327288232134704, 0, 1.11351636441160673519), (2.2270327288232134704, -4.2360679774997896964, 1.11351636441160673519), (2.2270327288232134704, 4.2360679774997896964, 1.11351636441160673519), (-1.8017073246471935200, -1.3090169943749474241, 1.11351636441160673519), (-1.8017073246471935200, 1.3090169943749474241, 1.11351636441160673519), (1.8017073246471935043, -1.3090169943749474241, -1.1135163644116066184), (1.8017073246471935043, 1.3090169943749474241, -1.1135163644116066184), (-1.3763819204711735382, 0, -4.7169310137059934362), (-1.3763819204711735382, 0, 0.26286555605956679615), (1.37638192047117353821, 0, 4.7169310137059937438), (1.37638192047117353821, 0, -0.26286555605956679615), (-1.1135163644116066184, -3.4270509831248422723, -3.3405490932348205213), (-1.1135163644116066184, -0.8090169943749474241, 4.7169310137059937438), (-1.1135163644116066184, -0.8090169943749474241, -0.26286555605956679615), (-1.1135163644116066184, 0.8090169943749474241, 4.7169310137059937438), (-1.1135163644116066184, 0.8090169943749474241, -0.26286555605956679615), (-1.1135163644116066184, 3.4270509831248422723, -3.3405490932348205213), (1.11351636441160673519, -3.4270509831248422723, 3.3405490932348202056), (1.11351636441160673519, -0.8090169943749474241, -4.7169310137059934362), (1.11351636441160673519, -0.8090169943749474241, 0.26286555605956679615), (1.11351636441160673519, 0.8090169943749474241, -4.7169310137059934362), (1.11351636441160673519, 0.8090169943749474241, 0.26286555605956679615), (1.11351636441160673519, 3.4270509831248422723, 3.3405490932348202056), (-0.85065080835203998877, 0, 1.11351636441160673519), (0.85065080835203993218, 0, -1.1135163644116066184), (-0.6881909602355867691, -0.5, -1.1135163644116066184), (-0.6881909602355867691, 0.5, -1.1135163644116066184), (-0.6881909602355867691, -4.7360679774997896964, -1.1135163644116066184), (-0.6881909602355867691, -2.1180339887498948482, -1.1135163644116066184), (-0.6881909602355867691, 2.1180339887498948482, -1.1135163644116066184), (-0.6881909602355867691, 4.7360679774997896964, -1.1135163644116066184), (0.68819096023558676910, -0.5, 1.11351636441160673519), (0.68819096023558676910, 0.5, 1.11351636441160673519), (0.68819096023558676910, -4.7360679774997896964, 1.11351636441160673519), (0.68819096023558676910, -2.1180339887498948482, 1.11351636441160673519), (0.68819096023558676910, 2.1180339887498948482, 1.11351636441160673519), (0.68819096023558676910, 4.7360679774997896964, 1.11351636441160673519), (-0.42532540417601993887, -1.3090169943749474241, -4.7169310137059934362), (-0.42532540417601993887, -1.3090169943749474241, 0.26286555605956679615), (-0.42532540417601993887, 1.3090169943749474241, -4.7169310137059934362), (-0.42532540417601993887, 1.3090169943749474241, 0.26286555605956679615), (-0.26286555605956679615, -0.8090169943749474241, 1.11351636441160673519), (-0.26286555605956679615, 0.8090169943749474241, 1.11351636441160673519), (0.26286555605956679615, -0.8090169943749474241, -1.1135163644116066184), (0.26286555605956679615, 0.8090169943749474241, -1.1135163644116066184), (0.42532540417601996609, -1.3090169943749474241, 4.7169310137059937438), (0.42532540417601996609, -1.3090169943749474241, -0.26286555605956679615), (0.42532540417601996609, 1.3090169943749474241, 4.7169310137059937438), (0.42532540417601996609, 1.3090169943749474241, -0.26286555605956679615)], [9, 66, 47], [44, 62, 77], [20, 91, 49], [33, 47, 83], [3, 77, 84], [12, 49, 53], [36, 84, 66], [28, 53, 62], [73, 83, 91], [15, 84, 46], [25, 64, 43], [16, 58, 72], [26, 46, 51], [11, 43, 74], [4, 72, 91], [60, 74, 84], [35, 91, 64], [23, 51, 58], [19, 74, 77], [79, 83, 78], [6, 56, 40], [76, 77, 81], [21, 78, 75], [8, 40, 58], [31, 75, 74], [42, 58, 83], [41, 81, 56], [13, 75, 43], [27, 51, 47], [2, 89, 71], [24, 43, 62], [17, 47, 85], [14, 71, 56], [65, 85, 75], [22, 56, 51], [34, 62, 89], [5, 85, 78], [32, 81, 46], [10, 53, 48], [45, 78, 64], [7, 46, 66], [18, 48, 89], [37, 66, 85], [70, 89, 81], [29, 64, 53], [88, 74, 1], [38, 67, 48], [42, 83, 72], [57, 1, 85], [34, 48, 62], [59, 72, 87], [19, 62, 74], [63, 87, 67], [17, 85, 83], [52, 75, 1], [39, 87, 49], [22, 51, 40], [55, 1, 66], [29, 49, 64], [30, 40, 69], [13, 64, 75], [82, 69, 87], [7, 66, 51], [90, 85, 1], [59, 69, 72], [70, 81, 71], [88, 1, 84], [73, 72, 83], [54, 71, 68], [5, 83, 85], [50, 68, 69], [3, 84, 81], [57, 66, 1], [30, 68, 40], [28, 62, 48], [52, 1, 74], [23, 40, 51], [38, 48, 86], [9, 51, 66], [80, 86, 68], [11, 74, 62], [55, 84, 1], [54, 86, 71], [35, 64, 49], [90, 1, 75], [41, 71, 81], [39, 49, 67], [15, 81, 84], [61, 67, 86], [21, 75, 64], [24, 53, 43], [50, 69, 0], [37, 85, 47], [31, 43, 75], [61, 0, 67], [27, 47, 58], [10, 67, 53], [8, 58, 69], [90, 75, 85], [45, 91, 78], [80, 68, 0], [36, 66, 46], [65, 78, 85], [63, 0, 87], [32, 46, 56], [20, 87, 91], [14, 56, 68], [57, 85, 66], [33, 58, 47], [61, 86, 0], [60, 84, 77], [37, 47, 66], [82, 0, 69], [44, 77, 89], [16, 69, 58], [18, 89, 86], [55, 66, 84], [26, 56, 46], [63, 67, 0], [31, 74, 43], [36, 46, 84], [50, 0, 68], [25, 43, 53], [6, 68, 56], [12, 53, 67], [88, 84, 74], [76, 89, 77], [82, 87, 0], [65, 75, 78], [60, 77, 74], [80, 0, 86], [79, 78, 91], [2, 86, 89], [4, 91, 87], [52, 74, 75], [21, 64, 78], [18, 86, 48], [23, 58, 40], [5, 78, 83], [28, 48, 53], [6, 40, 68], [25, 53, 64], [54, 68, 86], [33, 83, 58], [17, 83, 47], [12, 67, 49], [41, 56, 71], [9, 47, 51], [35, 49, 91], [2, 71, 86], [79, 91, 83], [38, 86, 67], [26, 51, 56], [7, 51, 46], [4, 87, 72], [34, 89, 48], [15, 46, 81], [42, 72, 58], [10, 48, 67], [27, 58, 51], [39, 67, 87], [76, 81, 89], [3, 81, 77], [8, 69, 40], [29, 53, 49], [19, 77, 62], [22, 40, 56], [20, 49, 87], [32, 56, 81], [59, 87, 69], [24, 62, 53], [11, 62, 43], [14, 68, 71], [73, 91, 72], [13, 43, 64], [70, 71, 89], [16, 72, 69], [44, 89, 62], [30, 69, 68], [45, 64, 91]] # Actual volume is : 51.405764746872634 assert Abs(polytope_integrate(echidnahedron, 1) - 51.4057647468726) < 1e-12 assert Abs(polytope_integrate(echidnahedron, expr) - 253.569603474519) <\ 1e-12 # Tests for many polynomials with maximum degree given(2D case). assert polytope_integrate(cube2, [x**2, y*z], max_degree=2) == \ {y * z: 3125 / S(4), x ** 2: 3125 / S(3)} assert polytope_integrate(cube2, max_degree=2) == \ {1: 125, x: 625 / S(2), x * z: 3125 / S(4), y: 625 / S(2), y * z: 3125 / S(4), z ** 2: 3125 / S(3), y ** 2: 3125 / S(3), z: 625 / S(2), x * y: 3125 / S(4), x ** 2: 3125 / S(3)} def test_point_sort(): assert point_sort([Point(0, 0), Point(1, 0), Point(1, 1)]) == \ [Point2D(1, 1), Point2D(1, 0), Point2D(0, 0)] fig6 = Polygon((0, 0), (1, 0), (1, 1)) assert polytope_integrate(fig6, x*y) == Rational(-1, 8) assert polytope_integrate(fig6, x*y, clockwise = True) == Rational(1, 8) def test_polytopes_intersecting_sides(): fig5 = Polygon(Point(-4.165, -0.832), Point(-3.668, 1.568), Point(-3.266, 1.279), Point(-1.090, -2.080), Point(3.313, -0.683), Point(3.033, -4.845), Point(-4.395, 4.840), Point(-1.007, -3.328)) assert polytope_integrate(fig5, x**2 + x*y + y**2) ==\ S(1633405224899363)/(24*10**12) fig6 = Polygon(Point(-3.018, -4.473), Point(-0.103, 2.378), Point(-1.605, -2.308), Point(4.516, -0.771), Point(4.203, 0.478)) assert polytope_integrate(fig6, x**2 + x*y + y**2) ==\ S(88161333955921)/(3*10**12) def test_max_degree(): polygon = Polygon((0, 0), (0, 1), (1, 1), (1, 0)) polys = [1, x, y, x*y, x**2*y, x*y**2] assert polytope_integrate(polygon, polys, max_degree=3) == \ {1: 1, x: S.Half, y: S.Half, x*y: Rational(1, 4), x**2*y: Rational(1, 6), x*y**2: Rational(1, 6)} assert polytope_integrate(polygon, polys, max_degree=2) == \ {1: 1, x: S.Half, y: S.Half, x*y: Rational(1, 4)} assert polytope_integrate(polygon, polys, max_degree=1) == \ {1: 1, x: S.Half, y: S.Half} def test_main_integrate3d(): cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] vertices = cube[0] faces = cube[1:] hp_params = hyperplane_parameters(faces, vertices) assert main_integrate3d(1, faces, vertices, hp_params) == -125 assert main_integrate3d(1, faces, vertices, hp_params, max_degree=1) == \ {1: -125, y: Rational(-625, 2), z: Rational(-625, 2), x: Rational(-625, 2)} def test_main_integrate(): triangle = Polygon((0, 3), (5, 3), (1, 1)) facets = triangle.sides hp_params = hyperplane_parameters(triangle) assert main_integrate(x**2 + y**2, facets, hp_params) == Rational(325, 6) assert main_integrate(x**2 + y**2, facets, hp_params, max_degree=1) == \ {0: 0, 1: 5, y: Rational(35, 3), x: 10} def test_polygon_integrate(): cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] facet = cube[1] facets = cube[1:] vertices = cube[0] assert polygon_integrate(facet, [(0, 1, 0), 5], 0, facets, vertices, 1, 0) == -25 def test_distance_to_side(): point = (0, 0, 0) assert distance_to_side(point, [(0, 0, 1), (0, 1, 0)], (1, 0, 0)) == -sqrt(2)/2 def test_lineseg_integrate(): polygon = [(0, 5, 0), (5, 5, 0), (5, 5, 5), (0, 5, 5)] line_seg = [(0, 5, 0), (5, 5, 0)] assert lineseg_integrate(polygon, 0, line_seg, 1, 0) == 5 assert lineseg_integrate(polygon, 0, line_seg, 0, 0) == 0 def test_integration_reduction(): triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) facets = triangle.sides a, b = hyperplane_parameters(triangle)[0] assert integration_reduction(facets, 0, a, b, 1, (x, y), 0) == 5 assert integration_reduction(facets, 0, a, b, 0, (x, y), 0) == 0 def test_integration_reduction_dynamic(): triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) facets = triangle.sides a, b = hyperplane_parameters(triangle)[0] x0 = facets[0].points[0] monomial_values = [[0, 0, 0, 0], [1, 0, 0, 5],\ [y, 0, 1, 15], [x, 1, 0, None]] assert integration_reduction_dynamic(facets, 0, a, b, x, 1, (x, y), 1,\ 0, 1, x0, monomial_values, 3) == Rational(25, 2) assert integration_reduction_dynamic(facets, 0, a, b, 0, 1, (x, y), 1,\ 0, 1, x0, monomial_values, 3) == 0 def test_is_vertex(): assert is_vertex(2) is False assert is_vertex((2, 3)) is True assert is_vertex(Point(2, 3)) is True assert is_vertex((2, 3, 4)) is True assert is_vertex((2, 3, 4, 5)) is False def test_issue_19234(): polygon = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)) polys = [ 1, x, y, x*y, x**2*y, x*y**2] assert polytope_integrate(polygon, polys) == \ {1: 1, x: S.Half, y: S.Half, x*y: Rational(1, 4), x**2*y: Rational(1, 6), x*y**2: Rational(1, 6)} polys = [ 1, x, y, x*y, 3 + x**2*y, x + x*y**2] assert polytope_integrate(polygon, polys) == \ {1: 1, x: S.Half, y: S.Half, x*y: Rational(1, 4), x**2*y + 3: Rational(19, 6), x*y**2 + x: Rational(2, 3)}
8f0682bd62685bfe7f0939030c125e443b4b0941dd633cb3b3e7fb1b22436957
import math from sympy.concrete.summations import (Sum, summation) from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import (Derivative, Function, Lambda, diff) from sympy.core import EulerGamma from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo) from sympy.core.relational import (Eq, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import sympify from sympy.functions.elementary.complexes import (Abs, im, polar_lift, re, sign) from sympy.functions.elementary.exponential import (LambertW, exp, exp_polar, log) from sympy.functions.elementary.hyperbolic import (acosh, asinh, cosh, coth, csch, sinh, tanh, sech) from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt) from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (acos, asin, atan, cos, sin, sinc, tan, sec) from sympy.functions.special.delta_functions import DiracDelta, Heaviside from sympy.functions.special.error_functions import (Ci, Ei, Si, erf, erfc, erfi, fresnelc, li) from sympy.functions.special.gamma_functions import (gamma, polygamma) from sympy.functions.special.hyper import (hyper, meijerg) from sympy.functions.special.singularity_functions import SingularityFunction from sympy.functions.special.zeta_functions import lerchphi from sympy.integrals.integrals import integrate from sympy.logic.boolalg import And from sympy.matrices.dense import Matrix from sympy.polys.polytools import (Poly, factor) from sympy.printing.str import sstr from sympy.series.order import O from sympy.sets.sets import Interval from sympy.simplify.gammasimp import gammasimp from sympy.simplify.simplify import simplify from sympy.simplify.trigsimp import trigsimp from sympy.tensor.indexed import (Idx, IndexedBase) from sympy.core.expr import unchanged from sympy.functions.elementary.integers import floor from sympy.integrals.integrals import Integral from sympy.integrals.risch import NonElementaryIntegral from sympy.physics import units from sympy.testing.pytest import (raises, slow, skip, ON_CI, warns_deprecated_sympy, warns) from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.core.random import verify_numerically x, y, z, a, b, c, d, e, s, t, x_1, x_2 = symbols('x y z a b c d e s t x_1 x_2') n = Symbol('n', integer=True) f = Function('f') def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_poly_deprecated(): p = Poly(2*x, x) assert p.integrate(x) == Poly(x**2, x, domain='QQ') # The stacklevel is based on Integral(Poly) with warns(SymPyDeprecationWarning, test_stacklevel=False): integrate(p, x) with warns(SymPyDeprecationWarning, test_stacklevel=False): Integral(p, (x,)) @slow def test_principal_value(): g = 1 / x assert Integral(g, (x, -oo, oo)).principal_value() == 0 assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x) raises(ValueError, lambda: Integral(g, (x)).principal_value()) raises(ValueError, lambda: Integral(g).principal_value()) l = 1 / ((x ** 3) - 1) assert Integral(l, (x, -oo, oo)).principal_value().together() == -sqrt(3)*pi/3 raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value()) d = 1 / (x ** 2 - 1) assert Integral(d, (x, -oo, oo)).principal_value() == 0 assert Integral(d, (x, -2, 2)).principal_value() == -log(3) v = x / (x ** 2 - 1) assert Integral(v, (x, -oo, oo)).principal_value() == 0 assert Integral(v, (x, -2, 2)).principal_value() == 0 s = x ** 2 / (x ** 2 - 1) assert Integral(s, (x, -oo, oo)).principal_value() is oo assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4 f = 1 / ((x ** 2 - 1) * (1 + x ** 2)) assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2 assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2 def diff_test(i): """Return the set of symbols, s, which were used in testing that i.diff(s) agrees with i.doit().diff(s). If there is an error then the assertion will fail, causing the test to fail.""" syms = i.free_symbols for s in syms: assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0 return syms def test_improper_integral(): assert integrate(log(x), (x, 0, 1)) == -1 assert integrate(x**(-2), (x, 1, oo)) == 1 assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2) def test_constructor(): # this is shared by Sum, so testing Integral's constructor # is equivalent to testing Sum's s1 = Integral(n, n) assert s1.limits == (Tuple(n),) s2 = Integral(n, (n,)) assert s2.limits == (Tuple(n),) s3 = Integral(Sum(x, (x, 1, y))) assert s3.limits == (Tuple(y),) s4 = Integral(n, Tuple(n,)) assert s4.limits == (Tuple(n),) s5 = Integral(n, (n, Interval(1, 2))) assert s5.limits == (Tuple(n, 1, 2),) # Testing constructor with inequalities: s6 = Integral(n, n > 10) assert s6.limits == (Tuple(n, 10, oo),) s7 = Integral(n, (n > 2) & (n < 5)) assert s7.limits == (Tuple(n, 2, 5),) def test_basics(): assert Integral(0, x) != 0 assert Integral(x, (x, 1, 1)) != 0 assert Integral(oo, x) != oo assert Integral(S.NaN, x) is S.NaN assert diff(Integral(y, y), x) == 0 assert diff(Integral(x, (x, 0, 1)), x) == 0 assert diff(Integral(x, x), x) == x assert diff(Integral(t, (t, 0, x)), x) == x e = (t + 1)**2 assert diff(integrate(e, (t, 0, x)), x) == \ diff(Integral(e, (t, 0, x)), x).doit().expand() == \ ((1 + x)**2).expand() assert diff(integrate(e, (t, 0, x)), t) == \ diff(Integral(e, (t, 0, x)), t) == 0 assert diff(integrate(e, (t, 0, x)), a) == \ diff(Integral(e, (t, 0, x)), a) == 0 assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0 assert integrate(e, (t, a, x)).diff(x) == \ Integral(e, (t, a, x)).diff(x).doit().expand() assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2) assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand() assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2 assert Integral(x, x).atoms() == {x} assert Integral(f(x), (x, 0, 1)).atoms() == {S.Zero, S.One, x} assert diff_test(Integral(x, (x, 3*y))) == {y} assert diff_test(Integral(x, (a, 3*y))) == {x, y} assert integrate(x, (x, oo, oo)) == 0 #issue 8171 assert integrate(x, (x, -oo, -oo)) == 0 # sum integral of terms assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x) assert Integral(x).is_commutative n = Symbol('n', commutative=False) assert Integral(n + x, x).is_commutative is False def test_diff_wrt(): class Test(Expr): _diff_wrt = True is_commutative = True t = Test() assert integrate(t + 1, t) == t**2/2 + t assert integrate(t + 1, (t, 0, 1)) == Rational(3, 2) raises(ValueError, lambda: integrate(x + 1, x + 1)) raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1))) def test_basics_multiple(): assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x} assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x} assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y} assert diff_test(Integral(y, y, x)) == {x, y} assert diff_test(Integral(y*x, x, y)) == {x, y} assert diff_test(Integral(x + y, y, (y, 1, x))) == {x} assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y} def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) x = Symbol("x", complex=True) p = Integral(A*B, (x,)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() x = Symbol("x", real=True) p = Integral(A*B, (x,)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() def test_integration(): assert integrate(0, (t, 0, x)) == 0 assert integrate(3, (t, 0, x)) == 3*x assert integrate(t, (t, 0, x)) == x**2/2 assert integrate(3*t, (t, 0, x)) == 3*x**2/2 assert integrate(3*t**2, (t, 0, x)) == x**3 assert integrate(1/t, (t, 1, x)) == log(x) assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1 assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x assert integrate(x**2, x) == x**3/3 assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6 b = Symbol("b") c = Symbol("c") assert integrate(a*t, (t, 0, x)) == a*x**2/2 assert integrate(a*t**4, (t, 0, x)) == a*x**5/5 assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x def test_multiple_integration(): assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1) assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3) assert integrate(1/(x + 3)/(1 + x)**3, x) == \ log(3 + x)*Rational(-1, 8) + log(1 + x)*Rational(1, 8) + x/(4 + 8*x + 4*x**2) assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1 def test_issue_3532(): assert integrate(exp(-x), (x, 0, oo)) == 1 def test_issue_3560(): assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5 assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3 assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x) def test_issue_18038(): raises(AttributeError, lambda: integrate((x, x))) def test_integrate_poly(): p = Poly(x + x**2*y + y**3, x, y) # The stacklevel is based on Integral(Poly) with warns_deprecated_sympy(): qx = Integral(p, x) with warns(SymPyDeprecationWarning, test_stacklevel=False): qx = integrate(p, x) with warns(SymPyDeprecationWarning, test_stacklevel=False): qy = integrate(p, y) assert isinstance(qx, Poly) is True assert isinstance(qy, Poly) is True assert qx.gens == (x, y) assert qy.gens == (x, y) assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3 assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4 def test_integrate_poly_definite(): p = Poly(x + x**2*y + y**3, x, y) with warns_deprecated_sympy(): Qx = Integral(p, (x, 0, 1)) with warns(SymPyDeprecationWarning, test_stacklevel=False): Qx = integrate(p, (x, 0, 1)) with warns(SymPyDeprecationWarning, test_stacklevel=False): Qy = integrate(p, (y, 0, pi)) assert isinstance(Qx, Poly) is True assert isinstance(Qy, Poly) is True assert Qx.gens == (y,) assert Qy.gens == (x,) assert Qx.as_expr() == S.Half + y/3 + y**3 assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2 def test_integrate_omit_var(): y = Symbol('y') assert integrate(x) == x**2/2 raises(ValueError, lambda: integrate(2)) raises(ValueError, lambda: integrate(x*y)) def test_integrate_poly_accurately(): y = Symbol('y') assert integrate(x*sin(y), x) == x**2*sin(y)/2 # when passed to risch_norman, this will be a CPU hog, so this really # checks, that integrated function is recognized as polynomial assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001 def test_issue_3635(): y = Symbol('y') assert integrate(x**2, y) == x**2*y assert integrate(x**2, (y, -1, 1)) == 2*x**2 # works in SymPy and py.test but hangs in `setup.py test` def test_integrate_linearterm_pow(): # check integrate((a*x+b)^c, x) -- issue 3499 y = Symbol('y', positive=True) # TODO: Remove conds='none' below, let the assumption take care of it. assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1) assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \ exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y)) def test_issue_3618(): assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3 assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \ 2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5 def test_issue_3623(): assert integrate(cos((n + 1)*x), x) == Piecewise( (sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True)) assert integrate(cos((n - 1)*x), x) == Piecewise( (sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \ Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \ Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True)) def test_issue_3664(): n = Symbol('n', integer=True, nonzero=True) assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \ 2.0*cos(pi*n)/(pi*n) assert integrate(x * sin(n * pi * x/2) * Rational(-1, 2), [x, -2, 0]) == \ 2*cos(pi*n)/(pi*n) def test_issue_3679(): # definite integration of rational functions gives wrong answers assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409' def test_issue_3686(): # remove this when fresnel integrals are implemented from sympy.core.function import expand_func from sympy.functions.special.error_functions import fresnels assert expand_func(integrate(sin(x**2), x)) == \ sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2 def test_integrate_units(): m = units.m s = units.s assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s def test_transcendental_functions(): assert integrate(LambertW(2*x), x) == \ -x + x*LambertW(2*x) + x/LambertW(2*x) def test_log_polylog(): assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6 assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6 def test_issue_3740(): f = 4*log(x) - 2*log(x)**2 fid = diff(integrate(f, x), x) assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10 def test_issue_3788(): assert integrate(1/(1 + x**2), x) == atan(x) def test_issue_3952(): f = sin(x) assert integrate(f, x) == -cos(x) raises(ValueError, lambda: integrate(f, 2*x)) def test_issue_4516(): assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2 def test_issue_7450(): ans = integrate(exp(-(1 + I)*x), (x, 0, oo)) assert re(ans) == S.Half and im(ans) == Rational(-1, 2) def test_issue_8623(): assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2 assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \ pi*floor((x - pi/2)/pi))/2 def test_issue_9569(): assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3) assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3 def test_issue_13733(): s = Symbol('s', positive=True) pz = exp(-(z - y)**2/(2*s*s))/sqrt(2*pi*s*s) pzgx = integrate(pz, (z, x, oo)) assert integrate(pzgx, (x, 0, oo)) == sqrt(2)*s*exp(-y**2/(2*s**2))/(2*sqrt(pi)) + \ y*erf(sqrt(2)*y/(2*s))/2 + y/2 def test_issue_13749(): assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3) assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3 def test_issue_18133(): assert integrate(exp(x)/(1 + x)**2, x) == NonElementaryIntegral(exp(x)/(x + 1)**2, x) def test_issue_21741(): a = Float('3999999.9999999995', precision=53) b = Float('2.5000000000000004e-7', precision=53) r = Piecewise((b*I*exp(-a*I*pi*t*y)*exp(-a*I*pi*x*z)/(pi*x), Ne(1.0*pi*x*exp(a*I*pi*t*y), 0)), (z*exp(-a*I*pi*t*y), True)) fun = E**((-2*I*pi*(z*x+t*y))/(500*10**(-9))) assert integrate(fun, z) == r def test_matrices(): M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x)) assert integrate(M, x) == Matrix([ [-cos(x), -cos(2*x)], [-cos(2*x), -cos(3*x)], ]) def test_integrate_functions(): # issue 4111 assert integrate(f(x), x) == Integral(f(x), x) assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1)) assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2 assert integrate(diff(f(x), x) / f(x), x) == log(f(x)) def test_integrate_derivatives(): assert integrate(Derivative(f(x), x), x) == f(x) assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y) assert integrate(Derivative(f(x), x)**2, x) == \ Integral(Derivative(f(x), x)**2, x) def test_transform(): a = Integral(x**2 + 1, (x, -1, 2)) fx = x fy = 3*y + 1 assert a.doit() == a.transform(fx, fy).doit() assert a.transform(fx, fy).transform(fy, fx) == a fx = 3*x + 1 fy = y assert a.transform(fx, fy).transform(fy, fx) == a a = Integral(sin(1/x), (x, 0, 1)) assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo)) assert a.transform(x, 1/y).transform(y, 1/x) == a a = Integral(exp(-x**2), (x, -oo, oo)) assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo)) # < 3 arg limit handled properly assert Integral(x, x).transform(x, a*y).doit() == \ Integral(y*a**2, y).doit() _3 = S(3) assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \ Integral(-1/x**3, (x, -oo, -1/_3)).doit() assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \ Integral(y**(-3), (y, 1/_3, oo)) # issue 8400 i = Integral(x + y, (x, 1, 2), (y, 1, 2)) assert i.transform(x, (x + 2*y, x)).doit() == \ i.transform(x, (x + 2*z, x)).doit() == 3 i = Integral(x, (x, a, b)) assert i.transform(x, 2*s) == Integral(4*s, (s, a/2, b/2)) raises(ValueError, lambda: i.transform(x, 1)) raises(ValueError, lambda: i.transform(x, s*t)) raises(ValueError, lambda: i.transform(x, -s)) raises(ValueError, lambda: i.transform(x, (s, t))) raises(ValueError, lambda: i.transform(2*x, 2*s)) i = Integral(x**2, (x, 1, 2)) raises(ValueError, lambda: i.transform(x**2, s)) am = Symbol('a', negative=True) bp = Symbol('b', positive=True) i = Integral(x, (x, bp, am)) i.transform(x, 2*s) assert i.transform(x, 2*s) == Integral(-4*s, (s, am/2, bp/2)) i = Integral(x, (x, a)) assert i.transform(x, 2*s) == Integral(4*s, (s, a/2)) def test_issue_4052(): f = S.Half*asin(x) + x*sqrt(1 - x**2)/2 assert integrate(cos(asin(x)), x) == f assert integrate(sin(acos(x)), x) == f @slow def test_evalf_integrals(): assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000' gauss = Integral(exp(-x**2), (x, -oo, oo)) assert NS(gauss, 15) == '1.77245385090552' assert NS(gauss**2 - pi + E*Rational( 1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20') # A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html t = Symbol('t') a = 8*sqrt(3)/(1 + 3*t**2) b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3 c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2 d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2 f = a - b/c - d assert NS(Integral(f, (t, 0, 1)), 50) == \ NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50) # http://mathworld.wolfram.com/VardisIntegral.html assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \ NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15) # http://mathworld.wolfram.com/AhmedsIntegral.html assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x, 0, 1)), 15) == NS(5*pi**2/96, 15) # http://mathworld.wolfram.com/AbelsIntegral.html assert NS(Integral(x/((exp(pi*x) - exp( -pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15) # Complex part trimming # http://mathworld.wolfram.com/VardisIntegral.html assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \ NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15) # # Endpoints causing trouble (rounding error in integration points -> complex log) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22) # Needs zero handling assert NS(pi - 4*Integral( 'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0') # Oscillatory quadrature a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15) assert 0.49 < a < 0.51 assert NS( Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928' assert NS(Integral( cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365' # indefinite integrals aren't evaluated assert NS(Integral(x, x)) == 'Integral(x, x)' assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))' def test_evalf_issue_939(): # https://github.com/sympy/sympy/issues/4038 # The output form of an integral may differ by a step function between # revisions, making this test a bit useless. This can't be said about # other two tests. For now, all values of this evaluation are used here, # but in future this should be reconsidered. assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \ ['-0.000976138910649103', '0.965906660135753', '1.93278945918216'] assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740' assert NS( integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740' def test_double_previously_failing_integrals(): # Double integrals not implemented <- Sure it is! res = integrate(sqrt(x) + x*y, (x, 1, 2), (y, -1, 1)) # Old numerical test assert NS(res, 15) == '2.43790283299492' # Symbolic test assert res == Rational(-4, 3) + 8*sqrt(2)/3 # double integral + zero detection assert integrate(sin(x + x*y), (x, -1, 1), (y, -1, 1)) is S.Zero def test_integrate_SingularityFunction(): in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1) out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0) assert integrate(in_1, x) == out_1 in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2) out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1) assert integrate(in_2, x) == out_2 in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2) out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4 out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1) assert integrate(in_3, x) == out_3_1 assert integrate(in_3, y) == out_3_2 assert unchanged(Integral, in_3, (x,)) assert Integral(in_3, x) == Integral(in_3, (x,)) assert Integral(in_3, x).doit() == out_3_1 in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2) out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1) assert integrate(in_4, (x, -oo, x)) == out_4 assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0) assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1 assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5 assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5) def test_integrate_DiracDelta(): # This is here to check that deltaintegrate is being called, but also # to test definite integrals. More tests are in test_deltafunctions.py assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0) assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0) # issue 4522 assert integrate(integrate((4 - 4*x + x*y - 4*y) * \ DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0 # issue 5729 p = exp(-(x**2 + y**2))/pi assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \ integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \ integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \ integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \ 1/sqrt(101*pi) def test_integrate_returns_piecewise(): assert integrate(x**y, x) == Piecewise( (x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True)) assert integrate(x**y, y) == Piecewise( (x**y/log(x), Ne(log(x), 0)), (y, True)) assert integrate(exp(n*x), x) == Piecewise( (exp(n*x)/n, Ne(n, 0)), (x, True)) assert integrate(x*exp(n*x), x) == Piecewise( ((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True)) assert integrate(x**(n*y), x) == Piecewise( (x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True)) assert integrate(x**(n*y), y) == Piecewise( (x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True)) assert integrate(cos(n*x), x) == Piecewise( (sin(n*x)/n, Ne(n, 0)), (x, True)) assert integrate(cos(n*x)**2, x) == Piecewise( ((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True)) assert integrate(x*cos(n*x), x) == Piecewise( (x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True)) assert integrate(sin(n*x), x) == Piecewise( (-cos(n*x)/n, Ne(n, 0)), (0, True)) assert integrate(sin(n*x)**2, x) == Piecewise( ((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True)) assert integrate(x*sin(n*x), x) == Piecewise( (-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True)) assert integrate(exp(x*y), (x, 0, z)) == Piecewise( (exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True)) # https://github.com/sympy/sympy/issues/23707 assert integrate(exp(t)*exp(-t*sqrt(x - y)), t) == Piecewise( (-exp(t)/(sqrt(x - y)*exp(t*sqrt(x - y)) - exp(t*sqrt(x - y))), Ne(x, y + 1)), (t, True)) def test_integrate_max_min(): x = symbols('x', real=True) assert integrate(Min(x, 2), (x, 0, 3)) == 4 assert integrate(Max(x**2, x**3), (x, 0, 2)) == Rational(49, 12) assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \ (exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True)) # issue 7907 c = symbols('c', extended_real=True) int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo)) int2 = integrate(c*exp(-x**2), (x, -oo, c)) int3 = integrate(x*exp(-x**2), (x, c, oo)) assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \ sqrt(pi)*c/2 + exp(-c**2)/2 def test_integrate_Abs_sign(): assert integrate(Abs(x), (x, -2, 1)) == Rational(5, 2) assert integrate(Abs(x), (x, 0, 1)) == S.Half assert integrate(Abs(x + 1), (x, 0, 1)) == Rational(3, 2) assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4 assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259 assert integrate(sign(x), (x, -1, 2)) == 1 assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4 assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == Rational(11, 3) t, s = symbols('t s', real=True) assert integrate(Abs(t), t) == Piecewise( (-t**2/2, t <= 0), (t**2/2, True)) assert integrate(Abs(2*t - 6), t) == Piecewise( (-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True)) assert (integrate(abs(t - s**2), (t, 0, 2)) == 2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2) assert integrate(exp(-Abs(t)), t) == Piecewise( (exp(t), t <= 0), (2 - exp(-t), True)) assert integrate(sign(2*t - 6), t) == Piecewise( (-t, t < 3), (t - 6, True)) assert integrate(2*t*sign(t**2 - 1), t) == Piecewise( (t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True)) assert integrate(sign(t), (t, s + 1)) == Piecewise( (s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True)) def test_subs1(): e = Integral(exp(x - y), x) assert e.subs(y, 3) == Integral(exp(x - 3), x) e = Integral(exp(x - y), (x, 0, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo)) def test_subs2(): e = Integral(exp(x - y), x, t) assert e.subs(y, 3) == Integral(exp(x - 3), x, t) e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs3(): e = Integral(exp(x - y), (x, 0, y), (t, y, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs4(): e = Integral(exp(x), (x, 0, y), (t, y, 1)) assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs5(): e = Integral(exp(-x**2), (x, -oo, oo)) assert e.subs(x, 5) == e e = Integral(exp(-x**2 + y), x) assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x) e = Integral(exp(-x**2 + y), (x, x)) assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5)) assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x) e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo)) assert e.subs(x, 5) == e assert e.subs(y, 5) == e # Test evaluation of antiderivatives e = Integral(exp(-x**2), (x, x)) assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5)) e = Integral(exp(x), x) assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1)) ).doit().is_zero def test_subs6(): a, b = symbols('a b') e = Integral(x*y, (x, f(x), f(y))) assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y))) assert e.subs(y, 1) == Integral(x, (x, f(x), f(1))) e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y))) assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y))) assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1))) e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a))) assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1))) def test_subs7(): e = Integral(x, (x, 1, y), (y, 1, 2)) assert e.subs({x: 1, y: 2}) == e e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)), (y, 1, 2)) assert e.subs(sin(y), 1) == e assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)), (y, 1, 2)) def test_expand(): e = Integral(f(x)+f(x**2), (x, 1, y)) assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y)) e = Integral(f(x)+f(x**2), (x, 1, oo)) assert e.expand() == e assert e.expand(force=True) == Integral(f(x), (x, 1, oo)) + \ Integral(f(x**2), (x, 1, oo)) def test_integration_variable(): raises(ValueError, lambda: Integral(exp(-x**2), 3)) raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo))) def test_expand_integral(): assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \ Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \ Integral(cos(x**2), (x, 0, 1)) assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \ Integral(cos(x**2)*sin(x**2), x) + \ Integral(cos(x**2), x) def test_as_sum_midpoint1(): e = Integral(sqrt(x**3 + 1), (x, 2, 10)) assert e.as_sum(1, method="midpoint") == 8*sqrt(217) assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57) assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \ 8*sqrt(3081)/27 + 8*sqrt(52809)/27 assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \ 4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14) assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5 e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10)) raises(NotImplementedError, lambda: e.as_sum(4)) def test_as_sum_midpoint2(): e = Integral((x + y)**2, (x, 0, 1)) n = Symbol('n', positive=True, integer=True) assert e.as_sum(1, method="midpoint").expand() == Rational(1, 4) + y + y**2 assert e.as_sum(2, method="midpoint").expand() == Rational(5, 16) + y + y**2 assert e.as_sum(3, method="midpoint").expand() == Rational(35, 108) + y + y**2 assert e.as_sum(4, method="midpoint").expand() == Rational(21, 64) + y + y**2 assert e.as_sum(n, method="midpoint").expand() == \ y**2 + y + Rational(1, 3) - 1/(12*n**2) def test_as_sum_left(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="left").expand() == y**2 assert e.as_sum(2, method="left").expand() == Rational(1, 8) + y/2 + y**2 assert e.as_sum(3, method="left").expand() == Rational(5, 27) + y*Rational(2, 3) + y**2 assert e.as_sum(4, method="left").expand() == Rational(7, 32) + y*Rational(3, 4) + y**2 assert e.as_sum(n, method="left").expand() == \ y**2 + y + Rational(1, 3) - y/n - 1/(2*n) + 1/(6*n**2) assert e.as_sum(10, method="left", evaluate=False).has(Sum) def test_as_sum_right(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2 assert e.as_sum(2, method="right").expand() == Rational(5, 8) + y*Rational(3, 2) + y**2 assert e.as_sum(3, method="right").expand() == Rational(14, 27) + y*Rational(4, 3) + y**2 assert e.as_sum(4, method="right").expand() == Rational(15, 32) + y*Rational(5, 4) + y**2 assert e.as_sum(n, method="right").expand() == \ y**2 + y + Rational(1, 3) + y/n + 1/(2*n) + 1/(6*n**2) def test_as_sum_trapezoid(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S.Half assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + Rational(3, 8) assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + Rational(19, 54) assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + Rational(11, 32) assert e.as_sum(n, method="trapezoid").expand() == \ y**2 + y + Rational(1, 3) + 1/(6*n**2) assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S.Half def test_as_sum_raises(): e = Integral((x + y)**2, (x, 0, 1)) raises(ValueError, lambda: e.as_sum(-1)) raises(ValueError, lambda: e.as_sum(0)) raises(ValueError, lambda: Integral(x).as_sum(3)) raises(ValueError, lambda: e.as_sum(oo)) raises(ValueError, lambda: e.as_sum(3, method='xxxx2')) def test_nested_doit(): e = Integral(Integral(x, x), x) f = Integral(x, x, x) assert e.doit() == f.doit() def test_issue_4665(): # Allow only upper or lower limit evaluation e = Integral(x**2, (x, None, 1)) f = Integral(x**2, (x, 1, None)) assert e.doit() == Rational(1, 3) assert f.doit() == Rational(-1, 3) assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t)) assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None)) assert integrate(x**2, (x, None, 1)) == Rational(1, 3) assert integrate(x**2, (x, 1, None)) == Rational(-1, 3) assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3) def test_integral_reconstruct(): e = Integral(x**2, (x, -1, 1)) assert e == Integral(*e.args) def test_doit_integrals(): e = Integral(Integral(2*x), (x, 0, 1)) assert e.doit() == Rational(1, 3) assert e.doit(deep=False) == Rational(1, 3) f = Function('f') # doesn't matter if the integral can't be performed assert Integral(f(x), (x, 1, 1)).doit() == 0 # doesn't matter if the limits can't be evaluated assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0 assert Integral(x, (a, 0)).doit() == 0 limits = ((a, 1, exp(x)), (x, 0)) assert Integral(a, *limits).doit() == Rational(1, 4) assert Integral(a, *list(reversed(limits))).doit() == 0 def test_issue_4884(): assert integrate(sqrt(x)*(1 + x)) == \ Piecewise( (2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15, Abs(x + 1) > 1), (2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 - 4*I*sqrt(-x)/15, True)) assert integrate(x**x*(1 + log(x))) == x**x def test_issue_18153(): assert integrate(x**n*log(x),x) == \ Piecewise( (n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - x*x**n/(n**2 + 2*n + 1) , Ne(n, -1)), (log(x)**2/2, True) ) def test_is_number(): from sympy.abc import x, y, z assert Integral(x).is_number is False assert Integral(1, x).is_number is False assert Integral(1, (x, 1)).is_number is True assert Integral(1, (x, 1, 2)).is_number is True assert Integral(1, (x, 1, y)).is_number is False assert Integral(1, (x, y)).is_number is False assert Integral(x, y).is_number is False assert Integral(x, (y, 1, x)).is_number is False assert Integral(x, (y, 1, 2)).is_number is False assert Integral(x, (x, 1, 2)).is_number is True # `foo.is_number` should always be equivalent to `not foo.free_symbols` # in each of these cases, there are pseudo-free symbols i = Integral(x, (y, 1, 1)) assert i.is_number is False and i.n() == 0 i = Integral(x, (y, z, z)) assert i.is_number is False and i.n() == 0 i = Integral(1, (y, z, z + 2)) assert i.is_number is False and i.n() == 2.0 assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False assert Integral(x, (x, 1)).is_number is True assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True # it is possible to get a false negative if the integrand is # actually an unsimplified zero, but this is true of is_number in general. assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False assert Integral(f(x), (x, 0, 1)).is_number is True def test_free_symbols(): from sympy.abc import x, y, z assert Integral(0, x).free_symbols == {x} assert Integral(x).free_symbols == {x} assert Integral(x, (x, None, y)).free_symbols == {y} assert Integral(x, (x, y, None)).free_symbols == {y} assert Integral(x, (x, 1, y)).free_symbols == {y} assert Integral(x, (x, y, 1)).free_symbols == {y} assert Integral(x, (x, x, y)).free_symbols == {x, y} assert Integral(x, x, y).free_symbols == {x, y} assert Integral(x, (x, 1, 2)).free_symbols == set() assert Integral(x, (y, 1, 2)).free_symbols == {x} # pseudo-free in this case assert Integral(x, (y, z, z)).free_symbols == {x, z} assert Integral(x, (y, 1, 2), (y, None, None) ).free_symbols == {x, y} assert Integral(x, (y, 1, 2), (x, 1, y) ).free_symbols == {y} assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2) ).free_symbols == set() assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2) ).free_symbols == set() assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2) ).free_symbols == {x} assert Integral(f(x), (f(x), 1, y)).free_symbols == {y} assert Integral(f(x), (f(x), 1, x)).free_symbols == {x} def test_is_zero(): from sympy.abc import x, m assert Integral(0, (x, 1, x)).is_zero assert Integral(1, (x, 1, 1)).is_zero assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False assert Integral(x, (m, 0)).is_zero assert Integral(x + m, (m, 0)).is_zero is None i = Integral(m, (m, 1, exp(x)), (x, 0)) assert i.is_zero is None assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True assert Integral(x, (x, oo, oo)).is_zero # issue 8171 assert Integral(x, (x, -oo, -oo)).is_zero # this is zero but is beyond the scope of what is_zero # should be doing assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None def test_series(): from sympy.abc import x i = Integral(cos(x), (x, x)) e = i.lseries(x) assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)]) def test_trig_nonelementary_integrals(): x = Symbol('x') assert integrate((1 + sin(x))/x, x) == log(x) + Si(x) # next one comes out as log(x) + log(x**2)/2 + Ci(x) # so not hardcoding this log ugliness assert integrate((cos(x) + 2)/x, x).has(Ci) def test_issue_4403(): x = Symbol('x') y = Symbol('y') z = Symbol('z', positive=True) assert integrate(sqrt(x**2 + z**2), x) == \ z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2 assert integrate(sqrt(x**2 - z**2), x) == \ x*sqrt(x**2 - z**2)/2 - z**2*log(x + sqrt(x**2 - z**2))/2 x = Symbol('x', real=True) y = Symbol('y', positive=True) assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \ x/(y**2*sqrt(x**2 + y**2)) # If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)), # which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|. def test_issue_4403_2(): assert integrate(sqrt(-x**2 - 4), x) == \ -2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2 def test_issue_4100(): R = Symbol('R', positive=True) assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4 def test_issue_5167(): from sympy.abc import w, x, y, z f = Function('f') assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x) assert Integral(f(x)).args == (f(x), Tuple(x)) assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x)) assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y)) assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y)) assert Integral(Integral(Integral(f(x), x), y), z).args == \ (f(x), Tuple(x), Tuple(y), Tuple(z)) assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x) assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x) assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)] assert integrate(Integral(2, x), x) == x**2 assert integrate(Integral(2, x), y) == 2*x*y # don't re-order given limits assert Integral(1, x, y).args != Integral(1, y, x).args # do as many as possible assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2 assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \ y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2)) def test_issue_4890(): z = Symbol('z', positive=True) assert integrate(exp(-log(x)**2), x) == \ sqrt(pi)*exp(Rational(1, 4))*erf(log(x) - S.Half)/2 assert integrate(exp(log(x)**2), x) == \ sqrt(pi)*exp(Rational(-1, 4))*erfi(log(x)+S.Half)/2 assert integrate(exp(-z*log(x)**2), x) == \ sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z)) def test_issue_4551(): assert not integrate(1/(x*sqrt(1 - x**2)), x).has(Integral) def test_issue_4376(): n = Symbol('n', integer=True, positive=True) assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) - (n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0 def test_issue_4517(): assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \ 6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11 def test_issue_4527(): k, m = symbols('k m', integer=True) assert integrate(sin(k*x)*sin(m*x), (x, 0, pi)).simplify() == \ Piecewise((0, Eq(k, 0) | Eq(m, 0)), (-pi/2, Eq(k, -m) | (Eq(k, 0) & Eq(m, 0))), (pi/2, Eq(k, m) | (Eq(k, 0) & Eq(m, 0))), (0, True)) # Should be possible to further simplify to: # Piecewise( # (0, Eq(k, 0) | Eq(m, 0)), # (-pi/2, Eq(k, -m)), # (pi/2, Eq(k, m)), # (0, True)) assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise( (0, And(Eq(k, 0), Eq(m, 0))), (-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)), (x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)), (m*sin(k*x)*cos(m*x)/(k**2 - m**2) - k*sin(m*x)*cos(k*x)/(k**2 - m**2), True)) def test_issue_4199(): ypos = Symbol('y', positive=True) # TODO: Remove conds='none' below, let the assumption take care of it. assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \ Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo)) def test_issue_3940(): a, b, c, d = symbols('a:d', positive=True) assert integrate(exp(-x**2 + I*c*x), x) == \ -sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2 assert integrate(exp(a*x**2 + b*x + c), x) == \ sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a)) from sympy.core.function import expand_mul from sympy.abc import k assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \ sqrt(pi)*exp(-k**2/4) a, d = symbols('a d', positive=True) assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \ sqrt(pi)*exp(d**2/a)/sqrt(a) def test_issue_5413(): # Note that this is not the same as testing ratint() because integrate() # pulls out the coefficient. assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2 def test_issue_4892a(): A, z = symbols('A z') c = Symbol('c', nonzero=True) P1 = -A*exp(-z) P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2) h1 = -sin(x)**2 - cos(y)**2 h2 = -sin(x)**2 + sin(y)**2 - 1 # there is still some non-deterministic behavior in integrate # or trigsimp which permits one of the following assert integrate(c*(P2 - P1), t) in [ c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)), c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)), c*( A* h1 *log(c*t)/c + A*t*exp(-z)), c*( A* h2 *log(c*t)/c + A*t*exp(-z)), (A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z), (A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z), ] def test_issue_4892b(): # Issues relating to issue 4596 are making the actual result of this hard # to test. The answer should be something like # # (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 + # 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 + # 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) - # 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y) expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2) assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0 def test_issue_5178(): assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \ 2*Integral(f(y, z), (y, 0, pi), (z, 0, pi)) def test_integrate_series(): f = sin(x).series(x, 0, 10) g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11) assert integrate(f, x) == g assert diff(integrate(f, x), x) == f assert integrate(O(x**5), x) == O(x**6) def test_atom_bug(): from sympy.integrals.heurisch import heurisch assert heurisch(meijerg([], [], [1], [], x), x) is None def test_limit_bug(): z = Symbol('z', zero=False) assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)).together() == \ (log(z) - Ci(pi**2*z) + EulerGamma + 2*log(pi))/z def test_issue_4703(): g = Function('g') assert integrate(exp(x)*g(x), x).has(Integral) def test_issue_1888(): f = Function('f') assert integrate(f(x).diff(x)**2, x).has(Integral) # The following tests work using meijerint. def test_issue_3558(): assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2) def test_issue_4422(): assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2 def test_issue_4493(): assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \ sqrt(2*x + 1)*(6*x**2 + x - 1)/15 def test_issue_4737(): assert integrate(sin(x)/x, (x, -oo, oo)) == pi assert integrate(sin(x)/x, (x, 0, oo)) == pi/2 assert integrate(sin(x)/x, x) == Si(x) def test_issue_4992(): # Note: psi in _check_antecedents becomes NaN. from sympy.core.function import expand_func a = Symbol('a', positive=True) assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \ (a*polygamma(0, a) + 1)*gamma(a) def test_issue_4487(): from sympy.functions.special.gamma_functions import lowergamma assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x) def test_issue_4215(): x = Symbol("x") assert integrate(1/(x**2), (x, -1, 1)) is oo def test_issue_4400(): n = Symbol('n', integer=True, positive=True) assert integrate((x**n)*log(x), x) == \ n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \ x*x**n/(n**2 + 2*n + 1) def test_issue_6253(): # Note: this used to raise NotImplementedError # Note: psi in _check_antecedents becomes NaN. assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \ Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x) def test_issue_4153(): assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [ -12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4), 6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2, -12*log(3) - 3*log(6)/2 + 47*log(2)/2] def test_issue_4326(): R, b, h = symbols('R b h') # It doesn't matter if we can do the integral. Just make sure the result # doesn't contain nan. This is really a test against _eval_interval. e = integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R)) assert not e.has(nan) # See that it evaluates assert not e.has(Integral) def test_powers(): assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3) def test_manual_option(): raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True)) # an example of a function that manual integration cannot handle assert integrate(log(1+x)/x, (x, 0, 1), manual=True).has(Integral) def test_meijerg_option(): raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True)) # an example of a function that meijerg integration cannot handle assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x) def test_risch_option(): # risch=True only allowed on indefinite integrals raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True)) assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x) assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2) assert integrate(erf(x), x, risch=True) == Integral(erf(x), x) # TODO: How to test risch=False? @slow def test_heurisch_option(): raises(ValueError, lambda: integrate(1/x, x, risch=True, heurisch=True)) # an integral that heurisch can handle assert integrate(exp(x**2), x, heurisch=True) == sqrt(pi)*erfi(x)/2 # an integral that heurisch currently cannot handle assert integrate(exp(x)/x, x, heurisch=True) == Integral(exp(x)/x, x) # an integral where heurisch currently hangs, issue 15471 assert integrate(log(x)*cos(log(x))/x**Rational(3, 4), x, heurisch=False) == ( -128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 + (16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x)) def test_issue_6828(): f = 1/(1.08*x**2 - 4.3) g = integrate(f, x).diff(x) assert verify_numerically(f, g, tol=1e-12) def test_issue_4803(): x_max = Symbol("x_max") assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \ y*exp((x - x_max)/cos(a))*cos(a)/pi def test_issue_4234(): assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2) def test_issue_4492(): assert simplify(integrate(x**2 * sqrt(5 - x**2), x)).factor( deep=True) == Piecewise( (I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) / (8*sqrt(x**2 - 5)), (x > sqrt(5)) | (x < -sqrt(5))), ((2*x**5 - 15*x**3 + 25*x - 25*sqrt(5 - x**2)*asin(sqrt(5)*x/5)) / (-8*sqrt(-x**2 + 5)), True)) def test_issue_2708(): # This test needs to use an integration function that can # not be evaluated in closed form. Update as needed. f = 1/(a + z + log(z)) integral_f = NonElementaryIntegral(f, (z, 2, 3)) assert Integral(f, (z, 2, 3)).doit() == integral_f assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3) assert integrate(2*f + exp(z), (z, 2, 3)) == \ 2*integral_f - exp(2) + exp(3) assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \ NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t), (z, 0, x)) def test_issue_2884(): f = (4.000002016020*x + 4.000002016020*y + 4.000006024032)*exp(10.0*x) e = integrate(f, (x, 0.1, 0.2)) assert str(e) == '1.86831064982608*y + 2.16387491480008' def test_issue_8368i(): from sympy.functions.elementary.complexes import arg, Abs assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \ Piecewise( ( pi*Piecewise( ( -s/(pi*(-s**2 + 1)), Abs(s**2) < 1), ( 1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), ( meijerg( ((S.Half,), (0, 0)), ((0, S.Half), (0,)), polar_lift(s)**2), True) ), s**2 > 1 ), ( Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True)) assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \ Piecewise( ( -1/(s + 1)/2 - 1/(-s + 1)/2, And( Abs(s) > 1, Abs(arg(s)) < pi/2, Abs(arg(s)) <= pi/2 )), ( Integral(exp(-s*x)*sinh(x), (x, 0, oo)), True)) def test_issue_8901(): assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x) assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1) assert integrate(tanh(x)) == x - log(tanh(x) + 1) @slow def test_issue_8945(): assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4 assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4 assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x) @slow def test_issue_7130(): if ON_CI: skip("Too slow for CI.") i, L, a, b = symbols('i L a b') integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp) assert x not in integrate(integrand, (x, 0, L)).free_symbols def test_issue_10567(): a, b, c, t = symbols('a b c t') vt = Matrix([a*t, b, c]) assert integrate(vt, t) == Integral(vt, t).doit() assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]]) def test_issue_11742(): assert integrate(sqrt(-x**2 + 8*x + 48), (x, 4, 12)) == 16*pi def test_issue_11856(): t = symbols('t') assert integrate(sinc(pi*t), t) == Si(pi*t)/pi @slow def test_issue_11876(): assert integrate(sqrt(log(1/x)), (x, 0, 1)) == sqrt(pi)/2 def test_issue_4950(): assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\ -2.4*exp(8*x) - 12.0*exp(5*x) def test_issue_4968(): assert integrate(sin(log(x**2))) == x*sin(log(x**2))/5 - 2*x*cos(log(x**2))/5 def test_singularities(): assert integrate(1/x**2, (x, -oo, oo)) is oo assert integrate(1/x**2, (x, -1, 1)) is oo assert integrate(1/(x - 1)**2, (x, -2, 2)) is oo assert integrate(1/x**2, (x, 1, -1)) is -oo assert integrate(1/(x - 1)**2, (x, 2, -2)) is -oo def test_issue_12645(): x, y = symbols('x y', real=True) assert (integrate(sin(x*x*x + y*y), (x, -sqrt(pi - y*y), sqrt(pi - y*y)), (y, -sqrt(pi), sqrt(pi))) == Integral(sin(x**3 + y**2), (x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)), (y, -sqrt(pi), sqrt(pi)))) def test_issue_12677(): assert integrate(sin(x) / (cos(x)**3), (x, 0, pi/6)) == Rational(1, 6) def test_issue_14078(): assert integrate((cos(3*x)-cos(x))/x, (x, 0, oo)) == -log(3) def test_issue_14064(): assert integrate(1/cosh(x), (x, 0, oo)) == pi/2 def test_issue_14027(): assert integrate(1/(1 + exp(x - S.Half)/(1 + exp(x))), x) == \ x - exp(S.Half)*log(exp(x) + exp(S.Half)/(1 + exp(S.Half)))/(exp(S.Half) + E) def test_issue_8170(): assert integrate(tan(x), (x, 0, pi/2)) is S.Infinity def test_issue_8440_14040(): assert integrate(1/x, (x, -1, 1)) is S.NaN assert integrate(1/(x + 1), (x, -2, 3)) is S.NaN def test_issue_14096(): assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \ -4*log(4) - 6*log(2) + 9*log(3) def test_issue_14144(): assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6 assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6 def test_issue_14375(): # This raised a TypeError. The antiderivative has exp_polar, which # may be possible to unpolarify, so the exact output is not asserted here. assert integrate(exp(I*x)*log(x), x).has(Ei) def test_issue_14437(): f = Function('f')(x, y, z) assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \ Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) def test_issue_14470(): assert integrate(1/sqrt(exp(x) + 1), x) == log(sqrt(exp(x) + 1) - 1) - log(sqrt(exp(x) + 1) + 1) def test_issue_14877(): f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2 assert integrate(f, x) == \ -exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2)) def test_issue_14782(): f = sqrt(-x**2 + 1)*(-x**2 + x) assert integrate(f, [x, -1, 1]) == - pi / 8 @slow def test_issue_14782_slow(): f = sqrt(-x**2 + 1)*(-x**2 + x) assert integrate(f, [x, 0, 1]) == S.One / 3 - pi / 16 def test_issue_12081(): f = x**(Rational(-3, 2))*exp(-x) assert integrate(f, [x, 0, oo]) is oo def test_issue_15285(): y = 1/x - 1 f = 4*y*exp(-2*y)/x**2 assert integrate(f, [x, 0, 1]) == 1 def test_issue_15432(): assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise( (gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0), (Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True)) def test_issue_15124(): omega = IndexedBase('omega') m, p = symbols('m p', cls=Idx) assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \ -I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p]) def test_issue_15218(): with warns_deprecated_sympy(): Integral(Eq(x, y)) with warns_deprecated_sympy(): assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x)) with warns_deprecated_sympy(): assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y) with warns(SymPyDeprecationWarning, test_stacklevel=False): # The warning is made in the ExprWithLimits superclass. The stacklevel # is correct for integrate(Eq) but not Eq.integrate assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y) # These are not deprecated because they are definite integrals assert integrate(Eq(x, y), (x, 0, 1)) == Eq(S.Half, y) assert Eq(x, y).integrate((x, 0, 1)) == Eq(S.Half, y) def test_issue_15292(): res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo)) assert isinstance(res, Piecewise) assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0 def test_issue_4514(): assert integrate(sin(2*x)/sin(x), x) == 2*sin(x) def test_issue_15457(): x, a, b = symbols('x a b', real=True) definite = integrate(exp(Abs(x-2)), (x, a, b)) indefinite = integrate(exp(Abs(x-2)), x) assert definite.subs({a: 1, b: 3}) == -2 + 2*E assert indefinite.subs(x, 3) - indefinite.subs(x, 1) == -2 + 2*E assert definite.subs({a: -3, b: -1}) == -exp(3) + exp(5) assert indefinite.subs(x, -1) - indefinite.subs(x, -3) == -exp(3) + exp(5) def test_issue_15431(): assert integrate(x*exp(x)*log(x), x) == \ (x*exp(x) - exp(x))*log(x) - exp(x) + Ei(x) def test_issue_15640_log_substitutions(): f = x/log(x) F = Ei(2*log(x)) assert integrate(f, x) == F and F.diff(x) == f f = x**3/log(x)**2 F = -x**4/log(x) + 4*Ei(4*log(x)) assert integrate(f, x) == F and F.diff(x) == f f = sqrt(log(x))/x**2 F = -sqrt(pi)*erfc(sqrt(log(x)))/2 - sqrt(log(x))/x assert integrate(f, x) == F and F.diff(x) == f def test_issue_15509(): from sympy.vector import CoordSys3D N = CoordSys3D('N') x = N.x assert integrate(cos(a*x + b), (x, x_1, x_2), heurisch=True) == Piecewise( (-sin(a*x_1 + b)/a + sin(a*x_2 + b)/a, (a > -oo) & (a < oo) & Ne(a, 0)), \ (-x_1*cos(b) + x_2*cos(b), True)) def test_issue_4311_fast(): x = symbols('x', real=True) assert integrate(x*abs(9-x**2), x) == Piecewise( (x**4/4 - 9*x**2/2, x <= -3), (-x**4/4 + 9*x**2/2 - Rational(81, 2), x <= 3), (x**4/4 - 9*x**2/2, True)) def test_integrate_with_complex_constants(): K = Symbol('K', positive=True) x = Symbol('x', real=True) m = Symbol('m', real=True) t = Symbol('t', real=True) assert integrate(exp(-I*K*x**2+m*x), x) == sqrt(I)*sqrt(pi)*exp(-I*m**2 /(4*K))*erfi((-2*I*K*x + m)/(2*sqrt(K)*sqrt(-I)))/(2*sqrt(K)) assert integrate(1/(1 + I*x**2), x) == (-I*(sqrt(-I)*log(x - I*sqrt(-I))/2 - sqrt(-I)*log(x + I*sqrt(-I))/2)) assert integrate(exp(-I*x**2), x) == sqrt(pi)*erf(sqrt(I)*x)/(2*sqrt(I)) assert integrate((1/(exp(I*t)-2)), t) == -t/2 - I*log(exp(I*t) - 2)/2 assert integrate((1/(exp(I*t)-2)), (t, 0, 2*pi)) == -pi def test_issue_14241(): x = Symbol('x') n = Symbol('n', positive=True, integer=True) assert integrate(n * x ** (n - 1) / (x + 1), x) == \ n**2*x**n*lerchphi(x*exp_polar(I*pi), 1, n)*gamma(n)/gamma(n + 1) def test_issue_13112(): assert integrate(sin(t)**2 / (5 - 4*cos(t)), [t, 0, 2*pi]) == pi / 4 def test_issue_14709b(): h = Symbol('h', positive=True) i = integrate(x*acos(1 - 2*x/h), (x, 0, h)) assert i == 5*h**2*pi/16 def test_issue_8614(): x = Symbol('x') t = Symbol('t') assert integrate(exp(t)/t, (t, -oo, x)) == Ei(x) assert integrate((exp(-x) - exp(-2*x))/x, (x, 0, oo)) == log(2) @slow def test_issue_15494(): s = symbols('s', positive=True) integrand = (exp(s/2) - 2*exp(1.6*s) + exp(s))*exp(s) solution = integrate(integrand, s) assert solution != S.NaN # Not sure how to test this properly as it is a symbolic expression with floats # assert str(solution) == '0.666666666666667*exp(1.5*s) + 0.5*exp(2.0*s) - 0.769230769230769*exp(2.6*s)' # Maybe assert abs(solution.subs(s, 1) - (-3.67440080236188)) <= 1e-8 integrand = (exp(s/2) - 2*exp(S(8)/5*s) + exp(s))*exp(s) assert integrate(integrand, s) == -10*exp(13*s/5)/13 + 2*exp(3*s/2)/3 + exp(2*s)/2 def test_li_integral(): y = Symbol('y') assert Integral(li(y*x**2), x).doit() == Piecewise((x*li(x**2*y) - \ x*Ei(3*log(x**2*y)/2)/sqrt(x**2*y), Ne(y, 0)), (0, True)) def test_issue_17473(): x = Symbol('x') n = Symbol('n') h = S.Half ans = x**(n + 1)*gamma(h + h/n)*hyper((h + h/n,), (3*h, 3*h + h/n), -x**(2*n)/4)/(2*n*gamma(3*h + h/n)) got = integrate(sin(x**n), x) assert got == ans _x = Symbol('x', zero=False) reps = {x: _x} assert integrate(sin(_x**n), _x) == ans.xreplace(reps).expand() def test_issue_17671(): assert integrate(log(log(x)) / x**2, [x, 1, oo]) == -EulerGamma assert integrate(log(log(x)) / x**3, [x, 1, oo]) == -log(2)/2 - EulerGamma/2 assert integrate(log(log(x)) / x**10, [x, 1, oo]) == -log(9)/9 - EulerGamma/9 def test_issue_2975(): w = Symbol('w') C = Symbol('C') y = Symbol('y') assert integrate(1/(y**2+C)**(S(3)/2), (y, -w/2, w/2)) == w/(C**(S(3)/2)*sqrt(1 + w**2/(4*C))) def test_issue_7827(): x, n, M = symbols('x n M') N = Symbol('N', integer=True) assert integrate(summation(x*n, (n, 1, N)), x) == x**2*(N**2/4 + N/4) assert integrate(summation(x*sin(n), (n,1,N)), x) == \ Sum(x**2*sin(n)/2, (n, 1, N)) assert integrate(summation(sin(n*x), (n,1,N)), x) == \ Sum(Piecewise((-cos(n*x)/n, Ne(n, 0)), (0, True)), (n, 1, N)) assert integrate(integrate(summation(sin(n*x), (n,1,N)), x), x) == \ Piecewise((Sum(Piecewise((-sin(n*x)/n**2, Ne(n, 0)), (-x/n, True)), (n, 1, N)), (n > -oo) & (n < oo) & Ne(n, 0)), (0, True)) assert integrate(Sum(x, (n, 1, M)), x) == M*x**2/2 raises(ValueError, lambda: integrate(Sum(x, (x, y, n)), y)) raises(ValueError, lambda: integrate(Sum(x, (x, 1, n)), n)) raises(ValueError, lambda: integrate(Sum(x, (x, 1, y)), x)) def test_issue_4231(): f = (1 + 2*x + sqrt(x + log(x))*(1 + 3*x) + x**2)/(x*(x + sqrt(x + log(x)))*sqrt(x + log(x))) assert integrate(f, x) == 2*sqrt(x + log(x)) + 2*log(x + sqrt(x + log(x))) def test_issue_17841(): f = diff(1/(x**2+x+I), x) assert integrate(f, x) == 1/(x**2 + x + I) def test_issue_21034(): x = Symbol('x', real=True, nonzero=True) f1 = x*(-x**4/asin(5)**4 - x*sinh(x + log(asin(5))) + 5) f2 = (x + cosh(cos(4)))/(x*(x + 1/(12*x))) assert integrate(f1, x) == \ -x**6/(6*asin(5)**4) - x**2*cosh(x + log(asin(5))) + 5*x**2/2 + 2*x*sinh(x + log(asin(5))) - 2*cosh(x + log(asin(5))) assert integrate(f2, x) == \ log(x**2 + S(1)/12)/2 + 2*sqrt(3)*cosh(cos(4))*atan(2*sqrt(3)*x) def test_issue_4187(): assert integrate(log(x)*exp(-x), x) == Ei(-x) - exp(-x)*log(x) assert integrate(log(x)*exp(-x), (x, 0, oo)) == -EulerGamma def test_issue_5547(): L = Symbol('L') z = Symbol('z') r0 = Symbol('r0') R0 = Symbol('R0') assert integrate(r0**2*cos(z)**2, (z, -L/2, L/2)) == -r0**2*(-L/4 - sin(L/2)*cos(L/2)/2) + r0**2*(L/4 + sin(L/2)*cos(L/2)/2) assert integrate(r0**2*cos(R0*z)**2, (z, -L/2, L/2)) == Piecewise( (-r0**2*(-L*R0/4 - sin(L*R0/2)*cos(L*R0/2)/2)/R0 + r0**2*(L*R0/4 + sin(L*R0/2)*cos(L*R0/2)/2)/R0, (R0 > -oo) & (R0 < oo) & Ne(R0, 0)), (L*r0**2, True)) w = 2*pi*z/L sol = sqrt(2)*sqrt(L)*r0**2*fresnelc(sqrt(2)*sqrt(L))*gamma(S.One/4)/(16*gamma(S(5)/4)) + L*r0**2/2 assert integrate(r0**2*cos(w*z)**2, (z, -L/2, L/2)) == sol def test_issue_15810(): assert integrate(1/(2**(2*x/3) + 1), (x, 0, oo)) == Rational(3, 2) def test_issue_21024(): x = Symbol('x', real=True, nonzero=True) f = log(x)*log(4*x) + log(3*x + exp(2)) F = x*log(x)**2 + x*(1 - 2*log(2)) + (-2*x + 2*x*log(2))*log(x) + \ (x + exp(2)/6)*log(3*x + exp(2)) + exp(2)*log(3*x + exp(2))/6 assert F == integrate(f, x) f = (x + exp(3))/x**2 F = log(x) - exp(3)/x assert F == integrate(f, x) f = (x**2 + exp(5))/x F = x**2/2 + exp(5)*log(x) assert F == integrate(f, x) f = x/(2*x + tanh(1)) F = x/2 - log(2*x + tanh(1))*tanh(1)/4 assert F == integrate(f, x) f = x - sinh(4)/x F = x**2/2 - log(x)*sinh(4) assert F == integrate(f, x) f = log(x + exp(5)/x) F = x*log(x + exp(5)/x) - x + 2*exp(Rational(5, 2))*atan(x*exp(Rational(-5, 2))) assert F == integrate(f, x) f = x**5/(x + E) F = x**5/5 - E*x**4/4 + x**3*exp(2)/3 - x**2*exp(3)/2 + x*exp(4) - exp(5)*log(x + E) assert F == integrate(f, x) f = 4*x/(x + sinh(5)) F = 4*x - 4*log(x + sinh(5))*sinh(5) assert F == integrate(f, x) f = x**2/(2*x + sinh(2)) F = x**2/4 - x*sinh(2)/4 + log(2*x + sinh(2))*sinh(2)**2/8 assert F == integrate(f, x) f = -x**2/(x + E) F = -x**2/2 + E*x - exp(2)*log(x + E) assert F == integrate(f, x) f = (2*x + 3)*exp(5)/x F = 2*x*exp(5) + 3*exp(5)*log(x) assert F == integrate(f, x) f = x + 2 + cosh(3)/x F = x**2/2 + 2*x + log(x)*cosh(3) assert F == integrate(f, x) f = x - tanh(1)/x**3 F = x**2/2 + tanh(1)/(2*x**2) assert F == integrate(f, x) f = (3*x - exp(6))/x F = 3*x - exp(6)*log(x) assert F == integrate(f, x) f = x**4/(x + exp(5))**2 + x F = x**3/3 + x**2*(Rational(1, 2) - exp(5)) + 3*x*exp(10) - 4*exp(15)*log(x + exp(5)) - exp(20)/(x + exp(5)) assert F == integrate(f, x) f = x*(x + exp(10)/x**2) + x F = x**3/3 + x**2/2 + exp(10)*log(x) assert F == integrate(f, x) f = x + x/(5*x + sinh(3)) F = x**2/2 + x/5 - log(5*x + sinh(3))*sinh(3)/25 assert F == integrate(f, x) f = (x + exp(3))/(2*x**2 + 2*x) F = exp(3)*log(x)/2 - exp(3)*log(x + 1)/2 + log(x + 1)/2 assert F == integrate(f, x).expand() f = log(x + 4*sinh(4)) F = x*log(x + 4*sinh(4)) - x + 4*log(x + 4*sinh(4))*sinh(4) assert F == integrate(f, x) f = -x + 20*(exp(-5) - atan(4)/x)**3*sin(4)/x F = (-x**2*exp(15)/2 + 20*log(x)*sin(4) - (-180*x**2*exp(5)*sin(4)*atan(4) + 90*x*exp(10)*sin(4)*atan(4)**2 - \ 20*exp(15)*sin(4)*atan(4)**3)/(3*x**3))*exp(-15) assert F == integrate(f, x) f = 2*x**2*exp(-4) + 6/x F_true = (2*x**3/3 + 6*exp(4)*log(x))*exp(-4) assert F_true == integrate(f, x) def test_issue_21721(): a = Symbol('a') assert integrate(1/(pi*(1+(x-a)**2)),(x,-oo,oo)).expand() == \ -Heaviside(im(a) - 1, 0) + Heaviside(im(a) + 1, 0) def test_issue_21831(): theta = symbols('theta') assert integrate(cos(3*theta)/(5-4*cos(theta)), (theta, 0, 2*pi)) == pi/12 integrand = cos(2*theta)/(5 - 4*cos(theta)) assert integrate(integrand, (theta, 0, 2*pi)) == pi/6 @slow def test_issue_22033_integral(): assert integrate((x**2 - Rational(1, 4))**2 * sqrt(1 - x**2), (x, -1, 1)) == pi/32 @slow def test_issue_21671(): assert integrate(1,(z,x**2+y**2,2-x**2-y**2),(y,-sqrt(1-x**2),sqrt(1-x**2)),(x,-1,1)) == pi assert integrate(-4*(1 - x**2)**(S(3)/2)/3 + 2*sqrt(1 - x**2)*(2 - 2*x**2), (x, -1, 1)) == pi def test_issue_18527(): # The manual integrator can not currently solve this. Assert that it does # not give an incorrect result involving Abs when x has real assumptions. xr = symbols('xr', real=True) expr = (cos(x)/(4+(sin(x))**2)) res_real = integrate(expr.subs(x, xr), xr, manual=True).subs(xr, x) assert integrate(expr, x, manual=True) == res_real == Integral(expr, x) def test_issue_23718(): f = 1/(b*cos(x) + a*sin(x)) Fpos = (-log(-a/b + tan(x/2) - sqrt(a**2 + b**2)/b)/sqrt(a**2 + b**2) +log(-a/b + tan(x/2) + sqrt(a**2 + b**2)/b)/sqrt(a**2 + b**2)) F = Piecewise( # XXX: The zoo case here is for a=b=0 so it should just be zoo or maybe # it doesn't really need to be included at all given that the original # integrand is really undefined in that case anyway. (zoo*(-log(tan(x/2) - 1) + log(tan(x/2) + 1)), Eq(a, 0) & Eq(b, 0)), (log(tan(x/2))/a, Eq(b, 0)), (-I/(-I*b*sin(x) + b*cos(x)), Eq(a, -I*b)), (I/(I*b*sin(x) + b*cos(x)), Eq(a, I*b)), (Fpos, True), ) assert integrate(f, x) == F ap, bp = symbols('a, b', positive=True) rep = {a: ap, b: bp} assert integrate(f.subs(rep), x) == Fpos.subs(rep) def test_issue_23566(): i = integrate(1/sqrt(x**2-1), (x, -2, -1)) assert i == -log(2 - sqrt(3)) assert math.isclose(i.n(), 1.31695789692482) def test_pr_23583(): # This result from meijerg is wrong. Check whether new result is correct when this test fail. assert integrate(1/sqrt((x - I)**2-1)) == Piecewise((acosh(x - I), Abs((x - I)**2) > 1), (-I*asin(x - I), True)) def test_issue_7264(): assert integrate(exp(x)*sqrt(1 + exp(2*x))) == sqrt(exp(2*x) + 1)*exp(x)/2 + asinh(exp(x))/2 def test_issue_11254a(): assert integrate(sech(x), (x, 0, 1)) == 2*atan(tanh(S.Half)) def test_issue_11254b(): assert integrate(csch(x), x) == log(tanh(x/2)) assert integrate(csch(x), (x, 0, 1)) == oo def test_issue_11254d(): assert integrate((sech(x)**2).rewrite(sinh), x) == 2*tanh(x/2)/(tanh(x/2)**2 + 1) def test_issue_22863(): i = integrate((3*x**3-x**2+2*x-4)/sqrt(x**2-3*x+2), (x, 0, 1)) assert i == -101*sqrt(2)/8 - 135*log(3 - 2*sqrt(2))/16 assert math.isclose(i.n(), -2.98126694400554) def test_issue_9723(): assert integrate(sqrt(x + sqrt(x))) == \ 2*sqrt(sqrt(x) + x)*(sqrt(x)/12 + x/3 - S(1)/8) + log(2*sqrt(x) + 2*sqrt(sqrt(x) + x) + 1)/8 assert integrate(sqrt(2*x+3+sqrt(4*x+5))**3) == \ sqrt(2*x + sqrt(4*x + 5) + 3) * \ (9*x/10 + 11*(4*x + 5)**(S(3)/2)/40 + sqrt(4*x + 5)/40 + (4*x + 5)**2/10 + S(11)/10)/2 def test_issue_23704(): # XXX: This is testing that an exception is not raised in risch Ideally # manualintegrate (manual=True) would be able to compute this but # manualintegrate is very slow for this example so we don't test that here. assert (integrate(log(x)/x**2/(c*x**2+b*x+a),x, risch=True) == NonElementaryIntegral(log(x)/(a*x**2 + b*x**3 + c*x**4), x)) def test_exp_substitution(): assert integrate(1/sqrt(1-exp(2*x))) == log(sqrt(1 - exp(2*x)) - 1)/2 - log(sqrt(1 - exp(2*x)) + 1)/2 def test_hyperbolic(): assert integrate(coth(x)) == x - log(tanh(x) + 1) + log(tanh(x)) assert integrate(sech(x)) == 2*atan(tanh(x/2)) assert integrate(csch(x)) == log(tanh(x/2)) def test_nested_pow(): assert integrate(sqrt(x**2)) == x*sqrt(x**2)/2 assert integrate(sqrt(x**(S(5)/3))) == 6*x*sqrt(x**(S(5)/3))/11 assert integrate(1/sqrt(x**2)) == x*log(x)/sqrt(x**2) assert integrate(x*sqrt(x**(-4))) == x**2*sqrt(x**-4)*log(x) def test_sqrt_quadratic(): assert integrate(1/sqrt(3*x**2+4*x+5)) == sqrt(3)*asinh(3*sqrt(11)*(x + S(2)/3)/11)/3 assert integrate(1/sqrt(-3*x**2+4*x+5)) == sqrt(3)*asin(3*sqrt(19)*(x - S(2)/3)/19)/3 assert integrate(1/sqrt(3*x**2+4*x-5)) == sqrt(3)*log(6*x + 2*sqrt(3)*sqrt(3*x**2 + 4*x - 5) + 4)/3 assert integrate(1/sqrt(4*x**2-4*x+1)) == (x - S.Half)*log(x - S.Half)/(2*sqrt((x - S.Half)**2)) assert integrate(1/sqrt(a+b*x+c*x**2), x) == \ Piecewise((log(b + 2*sqrt(c)*sqrt(a + b*x + c*x**2) + 2*c*x)/sqrt(c), Ne(c, 0) & Ne(a - b**2/(4*c), 0)), ((b/(2*c) + x)*log(b/(2*c) + x)/sqrt(c*(b/(2*c) + x)**2), Ne(c, 0)), (2*sqrt(a + b*x)/b, Ne(b, 0)), (x/sqrt(a), True)) assert integrate((7*x+6)/sqrt(3*x**2+4*x+5)) == \ 7*sqrt(3*x**2 + 4*x + 5)/3 + 4*sqrt(3)*asinh(3*sqrt(11)*(x + S(2)/3)/11)/9 assert integrate((7*x+6)/sqrt(-3*x**2+4*x+5)) == \ -7*sqrt(-3*x**2 + 4*x + 5)/3 + 32*sqrt(3)*asin(3*sqrt(19)*(x - S(2)/3)/19)/9 assert integrate((7*x+6)/sqrt(3*x**2+4*x-5)) == \ 7*sqrt(3*x**2 + 4*x - 5)/3 + 4*sqrt(3)*log(6*x + 2*sqrt(3)*sqrt(3*x**2 + 4*x - 5) + 4)/9 assert integrate((d+e*x)/sqrt(a+b*x+c*x**2), x) == \ Piecewise(((-b*e/(2*c) + d) * Piecewise((log(b + 2*sqrt(c)*sqrt(a + b*x + c*x**2) + 2*c*x)/sqrt(c), Ne(a - b**2/(4*c), 0)), ((b/(2*c) + x)*log(b/(2*c) + x)/sqrt(c*(b/(2*c) + x)**2), True)) + e*sqrt(a + b*x + c*x**2)/c, Ne(c, 0)), ((2*d*sqrt(a + b*x) + 2*e*(-a*sqrt(a + b*x) + (a + b*x)**(S(3)/2)/3)/b)/b, Ne(b, 0)), ((d*x + e*x**2/2)/sqrt(a), True)) assert integrate((3*x**3-x**2+2*x-4)/sqrt(x**2-3*x+2)) == \ sqrt(x**2 - 3*x + 2)*(x**2 + 13*x/4 + S(101)/8) + 135*log(2*x + 2*sqrt(x**2 - 3*x + 2) - 3)/16 assert integrate(sqrt(53225*x**2-66732*x+23013)) == \ (x/2 - S(16683)/53225)*sqrt(53225*x**2 - 66732*x + 23013) + \ 111576969*sqrt(2129)*asinh(53225*x/10563 - S(11122)/3521)/1133160250 assert integrate(sqrt(a+b*x+c*x**2), x) == \ Piecewise(((a/2 - b**2/(8*c)) * Piecewise((log(b + 2*sqrt(c)*sqrt(a + b*x + c*x**2) + 2*c*x)/sqrt(c), Ne(a - b**2/(4*c), 0)), ((b/(2*c) + x)*log(b/(2*c) + x)/sqrt(c*(b/(2*c) + x)**2), True)) + (b/(4*c) + x/2)*sqrt(a + b*x + c*x**2), Ne(c, 0)), (2*(a + b*x)**(S(3)/2)/(3*b), Ne(b, 0)), (sqrt(a)*x, True)) assert integrate(x*sqrt(x**2+2*x+4)) == \ (x**2/3 + x/6 + S(5)/6)*sqrt(x**2 + 2*x + 4) - 3*asinh(sqrt(3)*(x + 1)/3)/2 def test_mul_pow_derivative(): assert integrate(x*sec(x)*tan(x)) == x*sec(x) - log(tan(x) + sec(x)) assert integrate(x*sec(x)**2, x) == x*tan(x) + log(cos(x)) assert integrate(x**3*Derivative(f(x), (x, 4))) == \ x**3*Derivative(f(x), (x, 3)) - 3*x**2*Derivative(f(x), (x, 2)) + 6*x*Derivative(f(x), x) - 6*f(x)
def845b94ed581c4c1d78104e00450dc194ae612e666445d01da7cd5c6b8dd3b
from sympy.integrals.laplace import ( laplace_transform, inverse_laplace_transform, LaplaceTransform, InverseLaplaceTransform) from sympy.core.function import Function, expand_mul from sympy.core import EulerGamma, Subs, Derivative, diff from sympy.core.exprtools import factor_terms from sympy.core.numbers import I, oo, pi from sympy.core.singleton import S from sympy.core.symbol import Symbol, symbols from sympy.simplify.simplify import simplify from sympy.functions.elementary.complexes import Abs, re from sympy.functions.elementary.exponential import exp, log, exp_polar from sympy.functions.elementary.hyperbolic import cosh, sinh, coth, asinh from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import atan, cos, sin from sympy.functions.special.gamma_functions import lowergamma, gamma from sympy.functions.special.delta_functions import DiracDelta, Heaviside from sympy.functions.special.zeta_functions import lerchphi from sympy.functions.special.error_functions import ( fresnelc, fresnels, erf, erfc, Ei, Ci, expint, E1) from sympy.functions.special.bessel import besseli, besselj, besselk, bessely from sympy.testing.pytest import slow, warns_deprecated_sympy from sympy.matrices import Matrix, eye from sympy.abc import s @slow def test_laplace_transform(): LT = laplace_transform a, b, c, = symbols('a, b, c', positive=True) t, w, x = symbols('t, w, x') f = Function("f") g = Function("g") # Test whether `noconds=True` in `doit`: assert (2*LaplaceTransform(exp(t), t, s) - 1).doit() == -1 + 2/(s - 1) assert LT(a*t+t**2+t**(S(5)/2), t, s) ==\ (a/s**2 + 2/s**3 + 15*sqrt(pi)/(8*s**(S(7)/2)), 0, True) assert LT(b/(t+a), t, s) == (-b*exp(-a*s)*Ei(-a*s), 0, True) assert LT(1/sqrt(t+a), t, s) ==\ (sqrt(pi)*sqrt(1/s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True) assert LT(sqrt(t)/(t+a), t, s) ==\ (-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s), 0, True) assert LT((t+a)**(-S(3)/2), t, s) ==\ (-2*sqrt(pi)*sqrt(s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + 2/sqrt(a), 0, True) assert LT(t**(S(1)/2)*(t+a)**(-1), t, s) ==\ (-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s), 0, True) assert LT(1/(a*sqrt(t) + t**(3/2)), t, s) ==\ (pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True) assert LT((t+a)**b, t, s) ==\ (s**(-b - 1)*exp(-a*s)*lowergamma(b + 1, a*s), 0, True) assert LT(t**5/(t+a), t, s) == (120*a**5*lowergamma(-5, a*s), 0, True) assert LT(exp(t), t, s) == (1/(s - 1), 1, True) assert LT(exp(2*t), t, s) == (1/(s - 2), 2, True) assert LT(exp(a*t), t, s) == (1/(s - a), a, True) assert LT(exp(a*(t-b)), t, s) == (exp(-a*b)/(-a + s), a, True) assert LT(t*exp(-a*(t)), t, s) == ((a + s)**(-2), -a, True) assert LT(t*exp(-a*(t-b)), t, s) == (exp(a*b)/(a + s)**2, -a, True) assert LT(b*t*exp(-a*t), t, s) == (b/(a + s)**2, -a, True) assert LT(t**(S(7)/4)*exp(-8*t)/gamma(S(11)/4), t, s) ==\ ((s + 8)**(-S(11)/4), -8, True) assert LT(t**(S(3)/2)*exp(-8*t), t, s) ==\ (3*sqrt(pi)/(4*(s + 8)**(S(5)/2)), -8, True) assert LT(t**a*exp(-a*t), t, s) == ((a+s)**(-a-1)*gamma(a+1), -a, True) assert LT(b*exp(-a*t**2), t, s) ==\ (sqrt(pi)*b*exp(s**2/(4*a))*erfc(s/(2*sqrt(a)))/(2*sqrt(a)), 0, True) assert LT(exp(-2*t**2), t, s) ==\ (sqrt(2)*sqrt(pi)*exp(s**2/8)*erfc(sqrt(2)*s/4)/4, 0, True) assert LT(b*exp(2*t**2), t, s) ==\ (b*LaplaceTransform(exp(2*t**2), t, s), -oo, True) assert LT(t*exp(-a*t**2), t, s) ==\ (1/(2*a) - s*erfc(s/(2*sqrt(a)))/(4*sqrt(pi)*a**(S(3)/2)), 0, True) assert LT(exp(-a/t), t, s) ==\ (2*sqrt(a)*sqrt(1/s)*besselk(1, 2*sqrt(a)*sqrt(s)), 0, True) assert LT(sqrt(t)*exp(-a/t), t, s, simplify=True) ==\ (sqrt(pi)*(sqrt(a)*sqrt(s) + 1/S(2))*sqrt(s**(-3))*exp(-2*sqrt(a)*sqrt(s)), 0, True) assert LT(exp(-a/t)/sqrt(t), t, s) ==\ (sqrt(pi)*sqrt(1/s)*exp(-2*sqrt(a)*sqrt(s)), 0, True) assert LT( exp(-a/t)/(t*sqrt(t)), t, s) ==\ (sqrt(pi)*sqrt(1/a)*exp(-2*sqrt(a)*sqrt(s)), 0, True) assert LT(exp(-2*sqrt(a*t)), t, s) ==\ ( 1/s -sqrt(pi)*sqrt(a) * exp(a/s)*erfc(sqrt(a)*sqrt(1/s))/\ s**(S(3)/2), 0, True) assert LT(exp(-2*sqrt(a*t))/sqrt(t), t, s) == (exp(a/s)*erfc(sqrt(a)*\ sqrt(1/s))*(sqrt(pi)*sqrt(1/s)), 0, True) assert LT(t**4*exp(-2/t), t, s) ==\ (8*sqrt(2)*(1/s)**(S(5)/2)*besselk(5, 2*sqrt(2)*sqrt(s)), 0, True) assert LT(sinh(a*t), t, s) == (a/(-a**2 + s**2), a, True) assert LT(b*sinh(a*t)**2, t, s, simplify=True) ==\ (2*a**2*b/(s*(-4*a**2 + s**2)), 2*a, True) # The following line confirms that issue #21202 is solved assert LT(cosh(2*t), t, s) == (s/(-4 + s**2), 2, True) assert LT(cosh(a*t), t, s) == (s/(-a**2 + s**2), a, True) assert LT(cosh(a*t)**2, t, s, simplify=True) ==\ ((2*a**2 - s**2)/(s*(4*a**2 - s**2)), 2*a, True) assert LT(sinh(x+3), x, s, simplify=True) ==\ ((s*sinh(3) + cosh(3))/(s**2 - 1), 1, True) # The following line replaces the old test test_issue_7173() assert LT(sinh(a*t)*cosh(a*t), t, s, simplify=True) == (a/(-4*a**2 + s**2), 2*a, True) assert LT(sinh(a*t)/t, t, s) == (log((a + s)/(-a + s))/2, a, True) assert LT(t**(-S(3)/2)*sinh(a*t), t, s) ==\ (sqrt(pi)*(-sqrt(-a + s) + sqrt(a + s)), a, True) assert LT(sinh(2*sqrt(a*t)), t, s) ==\ (sqrt(pi)*sqrt(a)*exp(a/s)/s**(S(3)/2), 0, True) assert LT(sqrt(t)*sinh(2*sqrt(a*t)), t, s, simplify=True) ==\ ((-sqrt(a)*s**(S(5)/2) + sqrt(pi)*s**2*(2*a + s)*exp(a/s)*\ erf(sqrt(a)*sqrt(1/s))/2)/s**(S(9)/2), 0, True) assert LT(sinh(2*sqrt(a*t))/sqrt(t), t, s) ==\ (sqrt(pi)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/sqrt(s), 0, True) assert LT(sinh(sqrt(a*t))**2/sqrt(t), t, s) ==\ (sqrt(pi)*(exp(a/s) - 1)/(2*sqrt(s)), 0, True) assert LT(t**(S(3)/7)*cosh(a*t), t, s) ==\ (((a + s)**(-S(10)/7) + (-a+s)**(-S(10)/7))*gamma(S(10)/7)/2, a, True) assert LT(cosh(2*sqrt(a*t)), t, s) ==\ (sqrt(pi)*sqrt(a)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/s**(S(3)/2) + 1/s, 0, True) assert LT(sqrt(t)*cosh(2*sqrt(a*t)), t, s) ==\ (sqrt(pi)*(a + s/2)*exp(a/s)/s**(S(5)/2), 0, True) assert LT(cosh(2*sqrt(a*t))/sqrt(t), t, s) ==\ (sqrt(pi)*exp(a/s)/sqrt(s), 0, True) assert LT(cosh(sqrt(a*t))**2/sqrt(t), t, s) ==\ (sqrt(pi)*(exp(a/s) + 1)/(2*sqrt(s)), 0, True) assert LT(log(t), t, s, simplify=True) == ((-log(s) - EulerGamma)/s, 0, True) assert LT(-log(t/a), t, s, simplify=True) ==\ ((log(a) + log(s) + EulerGamma)/s, 0, True) assert LT(log(1+a*t), t, s) == (-exp(s/a)*Ei(-s/a)/s, 0, True) assert LT(log(t+a), t, s, simplify=True) ==\ ((s*log(a) - exp(s/a)*Ei(-s/a))/s**2, 0, True) assert LT(log(t)/sqrt(t), t, s, simplify=True) ==\ (sqrt(pi)*(-log(s) - log(4) - EulerGamma)/sqrt(s), 0, True) assert LT(t**(S(5)/2)*log(t), t, s, simplify=True) ==\ (sqrt(pi)*(-15*log(s) - log(1073741824) - 15*EulerGamma + 46)/\ (8*s**(S(7)/2)), 0, True) assert (LT(t**3*log(t), t, s, noconds=True, simplify=True)-\ 6*(-log(s) - S.EulerGamma + S(11)/6)/s**4).simplify() == S.Zero assert LT(log(t)**2, t, s, simplify=True) ==\ (((log(s) + EulerGamma)**2 + pi**2/6)/s, 0, True) assert LT(exp(-a*t)*log(t), t, s, simplify=True) ==\ ((-log(a + s) - EulerGamma)/(a + s), -a, True) assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True) assert LT(Abs(sin(a*t)), t, s) ==\ (a*coth(pi*s/(2*a))/(a**2 + s**2), 0, True) assert LT(sin(a*t)/t, t, s) == (atan(a/s), 0, True) assert LT(sin(a*t)**2/t, t, s) == (log(4*a**2/s**2 + 1)/4, 0, True) assert LT(sin(a*t)**2/t**2, t, s) ==\ (a*atan(2*a/s) - s*log(4*a**2/s**2 + 1)/4, 0, True) assert LT(sin(2*sqrt(a*t)), t, s) ==\ (sqrt(pi)*sqrt(a)*exp(-a/s)/s**(S(3)/2), 0, True) assert LT(sin(2*sqrt(a*t))/t, t, s) == (pi*erf(sqrt(a)*sqrt(1/s)), 0, True) assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True) assert LT(cos(a*t)**2, t, s) ==\ ((2*a**2 + s**2)/(s*(4*a**2 + s**2)), 0, True) assert LT(sqrt(t)*cos(2*sqrt(a*t)), t, s, simplify=True) ==\ (sqrt(pi)*(-a + s/2)*exp(-a/s)/s**(S(5)/2), 0, True) assert LT(cos(2*sqrt(a*t))/sqrt(t), t, s) ==\ (sqrt(pi)*sqrt(1/s)*exp(-a/s), 0, True) assert LT(sin(a*t)*sin(b*t), t, s) ==\ (2*a*b*s/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)), 0, True) assert LT(cos(a*t)*sin(b*t), t, s) ==\ (b*(-a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)), 0, True) assert LT(cos(a*t)*cos(b*t), t, s) ==\ (s*(a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)), 0, True) assert LT(-a*t*cos(a*t) + sin(a*t), t, s, simplify=True) ==\ (2*a**3/(a**4 + 2*a**2*s**2 + s**4), 0, True) assert LT(c*exp(-b*t)*sin(a*t), t, s) == (a*c/(a**2 + (b + s)**2), -b, True) assert LT(c*exp(-b*t)*cos(a*t), t, s) == ((b + s)*c/(a**2 + (b + s)**2), -b, True) assert LT(cos(x + 3), x, s, simplify=True) ==\ ((s*cos(3) - sin(3))/(s**2 + 1), 0, True) # Error functions (laplace7.pdf) assert LT(erf(a*t), t, s) == (exp(s**2/(4*a**2))*erfc(s/(2*a))/s, 0, True) assert LT(erf(sqrt(a*t)), t, s) == (sqrt(a)/(s*sqrt(a + s)), 0, True) assert LT(exp(a*t)*erf(sqrt(a*t)), t, s, simplify=True) ==\ (-sqrt(a)/(sqrt(s)*(a - s)), a, True) assert LT(erf(sqrt(a/t)/2), t, s, simplify=True) ==\ (1/s - exp(-sqrt(a)*sqrt(s))/s, 0, True) assert LT(erfc(sqrt(a*t)), t, s, simplify=True) ==\ (-sqrt(a)/(s*sqrt(a + s)) + 1/s, -a, True) assert LT(exp(a*t)*erfc(sqrt(a*t)), t, s) ==\ (1/(sqrt(a)*sqrt(s) + s), 0, True) assert LT(erfc(sqrt(a/t)/2), t, s) == (exp(-sqrt(a)*sqrt(s))/s, 0, True) # Bessel functions (laplace8.pdf) assert LT(besselj(0, a*t), t, s) == (1/sqrt(a**2 + s**2), 0, True) assert LT(besselj(1, a*t), t, s, simplify=True) ==\ (a/(a**2 + s**2 + s*sqrt(a**2 + s**2)), 0, True) assert LT(besselj(2, a*t), t, s, simplify=True) ==\ (a**2/(sqrt(a**2 + s**2)*(s + sqrt(a**2 + s**2))**2), 0, True) assert LT(t*besselj(0, a*t), t, s) ==\ (s/(a**2 + s**2)**(S(3)/2), 0, True) assert LT(t*besselj(1, a*t), t, s) ==\ (a/(a**2 + s**2)**(S(3)/2), 0, True) assert LT(t**2*besselj(2, a*t), t, s) ==\ (3*a**2/(a**2 + s**2)**(S(5)/2), 0, True) assert LT(besselj(0, 2*sqrt(a*t)), t, s) == (exp(-a/s)/s, 0, True) assert LT(t**(S(3)/2)*besselj(3, 2*sqrt(a*t)), t, s) ==\ (a**(S(3)/2)*exp(-a/s)/s**4, 0, True) assert LT(besselj(0, a*sqrt(t**2+b*t)), t, s, simplify=True) ==\ (exp(b*(s - sqrt(a**2 + s**2)))/sqrt(a**2 + s**2), 0, True) assert LT(besseli(0, a*t), t, s) == (1/sqrt(-a**2 + s**2), a, True) assert LT(besseli(1, a*t), t, s, simplify=True) ==\ (a/(-a**2 + s**2 + s*sqrt(-a**2 + s**2)), a, True) assert LT(besseli(2, a*t), t, s, simplify=True) ==\ (a**2/(sqrt(-a**2 + s**2)*(s + sqrt(-a**2 + s**2))**2), a, True) assert LT(t*besseli(0, a*t), t, s) == (s/(-a**2 + s**2)**(S(3)/2), a, True) assert LT(t*besseli(1, a*t), t, s) == (a/(-a**2 + s**2)**(S(3)/2), a, True) assert LT(t**2*besseli(2, a*t), t, s) ==\ (3*a**2/(-a**2 + s**2)**(S(5)/2), a, True) assert LT(t**(S(3)/2)*besseli(3, 2*sqrt(a*t)), t, s) ==\ (a**(S(3)/2)*exp(a/s)/s**4, 0, True) assert LT(bessely(0, a*t), t, s) ==\ (-2*asinh(s/a)/(pi*sqrt(a**2 + s**2)), 0, True) assert LT(besselk(0, a*t), t, s) ==\ (log((s + sqrt(-a**2 + s**2))/a)/sqrt(-a**2 + s**2), -a, True) assert LT(sin(a*t)**8, t, s, simplify=True) ==\ (40320*a**8/(s*(147456*a**8 + 52480*a**6*s**2 + 4368*a**4*s**4 +\ 120*a**2*s**6 + s**8)), 0, True) # Test general rules and unevaluated forms # These all also test whether issue #7219 is solved. assert LT(Heaviside(t-1)*cos(t-1), t, s) == (s*exp(-s)/(s**2 + 1), 0, True) assert LT(a*f(t), t, w) == (a*LaplaceTransform(f(t), t, w), -oo, True) assert LT(a*Heaviside(t+1)*f(t+1), t, s) ==\ (a*LaplaceTransform(f(t + 1), t, s), -oo, True) assert LT(a*Heaviside(t-1)*f(t-1), t, s) ==\ (a*LaplaceTransform(f(t), t, s)*exp(-s), -oo, True) assert LT(b*f(t/a), t, s) == (a*b*LaplaceTransform(f(t), t, a*s), -oo, True) assert LT(exp(-f(x)*t), t, s) == (1/(s + f(x)), -f(x), True) assert LT(exp(-a*t)*f(t), t, s) ==\ (LaplaceTransform(f(t), t, a + s), -oo, True) assert LT(exp(-a*t)*erfc(sqrt(b/t)/2), t, s) ==\ (exp(-sqrt(b)*sqrt(a + s))/(a + s), -a, True) assert LT(sinh(a*t)*f(t), t, s) ==\ (LaplaceTransform(f(t), t, -a + s)/2 -\ LaplaceTransform(f(t), t, a + s)/2, -oo, True) assert LT(sinh(a*t)*t, t, s, simplify=True) ==\ (2*a*s/(a**4 - 2*a**2*s**2 + s**4), a, True) assert LT(cosh(a*t)*f(t), t, s) ==\ (LaplaceTransform(f(t), t, -a + s)/2 +\ LaplaceTransform(f(t), t, a + s)/2, -oo, True) assert LT(cosh(a*t)*t, t, s, simplify=True) ==\ (1/(2*(a + s)**2) + 1/(2*(a - s)**2), a, True) assert LT(sin(a*t)*f(t), t, s, simplify=True) ==\ (I*(-LaplaceTransform(f(t), t, -I*a + s) +\ LaplaceTransform(f(t), t, I*a + s))/2, -oo, True) assert LT(sin(a*t)*t, t, s, simplify=True) ==\ (2*a*s/(a**4 + 2*a**2*s**2 + s**4), 0, True) assert LT(cos(a*t)*f(t), t, s) ==\ (LaplaceTransform(f(t), t, -I*a + s)/2 +\ LaplaceTransform(f(t), t, I*a + s)/2, -oo, True) assert LT(cos(a*t)*t, t, s, simplify=True) ==\ ((-a**2 + s**2)/(a**4 + 2*a**2*s**2 + s**4), 0, True) assert LT(t**2*exp(-t**2), t, s) ==\ (sqrt(pi)*s**2*exp(s**2/4)*erfc(s/2)/8 - s/4 +\ sqrt(pi)*exp(s**2/4)*erfc(s/2)/4, 0, True) assert LT((a*t**2 + b*t + c)*f(t), t, s) ==\ (a*Derivative(LaplaceTransform(f(t), t, s), (s, 2)) -\ b*Derivative(LaplaceTransform(f(t), t, s), s) +\ c*LaplaceTransform(f(t), t, s), -oo, True) # The following two lines test whether issues #5813 and #7176 are solved. assert LT(diff(f(t), (t, 1)), t, s, noconds=True) ==\ s*LaplaceTransform(f(t), t, s) - f(0) assert LT(diff(f(t), (t, 3)), t, s, noconds=True) ==\ s**3*LaplaceTransform(f(t), t, s) - s**2*f(0) -\ s*Subs(Derivative(f(t), t), t, 0) -\ Subs(Derivative(f(t), (t, 2)), t, 0) # Issue #7219 assert LT(diff(f(x, t, w), t, 2), t, s) ==\ (s**2*LaplaceTransform(f(x, t, w), t, s) - s*f(x, 0, w) -\ Subs(Derivative(f(x, t, w), t), t, 0), -oo, True) # Issue #23307 assert LT(10*diff(f(t), (t, 1)), t, s, noconds=True) ==\ 10*s*LaplaceTransform(f(t), t, s) - 10*f(0) assert LT(a*f(b*t)+g(c*t), t, s, noconds=True) ==\ a*LaplaceTransform(f(t), t, s/b)/b + LaplaceTransform(g(t), t, s/c)/c assert inverse_laplace_transform( f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0) assert LT(f(t)*g(t), t, s, noconds=True) ==\ LaplaceTransform(f(t)*g(t), t, s) # Issue #24294 assert LT(b*f(a*t), t, s, noconds=True) ==\ b*LaplaceTransform(f(t), t, s/a)/a assert LT(3*exp(t)*Heaviside(t), t, s) == (3/(s - 1), 1, True) assert LT(2*sin(t)*Heaviside(t), t, s, simplify=True) == (2/(s**2 + 1), 0, True) # additional basic tests from wikipedia assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \ ((c + s)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True) assert LT((exp(2*t)-1)*exp(-b-t)*Heaviside(t)/2, t, s, noconds=True, simplify=True) == exp(-b)/(s**2 - 1) # DiracDelta function: standard cases assert LT(DiracDelta(t), t, s) == (1, -oo, True) assert LT(DiracDelta(a*t), t, s) == (1/a, -oo, True) assert LT(DiracDelta(t/42), t, s) == (42, -oo, True) assert LT(DiracDelta(t+42), t, s) == (0, -oo, True) assert LT(DiracDelta(t)+DiracDelta(t-42), t, s) == \ (1 + exp(-42*s), -oo, True) assert LT(DiracDelta(t)-a*exp(-a*t), t, s, simplify=True) == \ (s/(a + s), -a, True) assert LT(exp(-t)*(DiracDelta(t)+DiracDelta(t-42)), t, s, simplify=True) == \ (exp(-42*s - 42) + 1, -oo, True) assert LT(f(t)*DiracDelta(t-42), t, s) == (f(42)*exp(-42*s), -oo, True) assert LT(f(t)*DiracDelta(b*t-a), t, s) == (f(a/b)*exp(-a*s/b)/b, -oo, True) assert LT(f(t)*DiracDelta(b*t+a), t, s) == (0, -oo, True) # Collection of cases that cannot be fully evaluated and/or would catch # some common implementation errors assert LT(DiracDelta(t**2), t, s, noconds=True) ==\ LaplaceTransform(DiracDelta(t**2), t, s) assert LT(DiracDelta(t**2 - 1), t, s) == (exp(-s)/2, -oo, True) assert LT(DiracDelta(t*(1 - t)), t, s) == (1 - exp(-s), -oo, True) assert LT((DiracDelta(t) + 1)*(DiracDelta(t - 1) + 1), t, s) == \ (LaplaceTransform(DiracDelta(t)*DiracDelta(t - 1), t, s) + \ 1 + exp(-s) + 1/s, 0, True) assert LT(DiracDelta(2*t-2*exp(a)), t, s) == (exp(-s*exp(a))/2, -oo, True) assert LT(DiracDelta(-2*t+2*exp(a)), t, s) == (exp(-s*exp(a))/2, -oo, True) # Heaviside tests assert LT(Heaviside(t), t, s) == (1/s, 0, True) assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True) assert LT(Heaviside(t-1), t, s) == (exp(-s)/s, 0, True) assert LT(Heaviside(2*t-4), t, s) == (exp(-2*s)/s, 0, True) assert LT(Heaviside(2*t+4), t, s) == (1/s, 0, True) assert LT(Heaviside(-2*t+4), t, s, simplify=True) == (1/s - exp(-2*s)/s, 0, True) assert LT(g(t)*Heaviside(t - w), t, s) ==\ (LaplaceTransform(g(t)*Heaviside(t - w), t, s), -oo, True) # Fresnel functions assert laplace_transform(fresnels(t), t, s, simplify=True) == \ ((-sin(s**2/(2*pi))*fresnels(s/pi) + sqrt(2)*sin(s**2/(2*pi) + pi/4)/2\ - cos(s**2/(2*pi))*fresnelc(s/pi))/s, 0, True) assert laplace_transform(fresnelc(t), t, s, simplify=True) == \ ((sin(s**2/(2*pi))*fresnelc(s/pi) - cos(s**2/(2*pi))*fresnels(s/pi)\ + sqrt(2)*cos(s**2/(2*pi) + pi/4)/2)/s, 0, True) # Matrix tests Mt = Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]]) Ms = Matrix([[ 1/(s - 1), (s + 1)**(-2)], [(s + 1)**(-2), 1/(s - 1)]]) # The default behaviour for Laplace transform of a Matrix returns a Matrix # of Tuples and is deprecated: with warns_deprecated_sympy(): Ms_conds = Matrix([[(1/(s - 1), 1, True), ((s + 1)**(-2), -1, True)], [((s + 1)**(-2), -1, True), (1/(s - 1), 1, True)]]) with warns_deprecated_sympy(): assert LT(Mt, t, s) == Ms_conds # The new behavior is to return a tuple of a Matrix and the convergence # conditions for the matrix as a whole: assert LT(Mt, t, s, legacy_matrix=False) == (Ms, 1, True) # With noconds=True the transformed matrix is returned without conditions # either way: assert LT(Mt, t, s, noconds=True) == Ms assert LT(Mt, t, s, legacy_matrix=False, noconds=True) == Ms @slow def test_inverse_laplace_transform(): from sympy.functions.special.delta_functions import DiracDelta ILT = inverse_laplace_transform a, b, c, d = symbols('a b c d', positive=True) r = Symbol('r', real=True) t, z = symbols('t z') f = Function('f') def simp_hyp(expr): return factor_terms(expand_mul(expr)).rewrite(sin) assert ILT(1, s, t) == DiracDelta(t) assert ILT(1/s, s, t) == Heaviside(t) assert ILT(a/(a + s), s, t) == a*exp(-a*t)*Heaviside(t) assert ILT(s/(a + s), s, t) == -a*exp(-a*t)*Heaviside(t) + DiracDelta(t) assert ILT((s-a)**(-b), s, t) == t**(b - 1)*exp(a*t)*Heaviside(t)/gamma(b) assert ILT((a + s)**(-2), s, t) == t*exp(-a*t)*Heaviside(t) assert ILT((a + s)**(-5), s, t) == t**4*exp(-a*t)*Heaviside(t)/24 assert ILT(a/(a**2 + s**2), s, t) == sin(a*t)*Heaviside(t) assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t) assert ILT(b/(b**2 + (a + s)**2), s, t) == exp(-a*t)*sin(b*t)*Heaviside(t) assert ILT(b*s/(b**2 + (a + s)**2), s, t) == \ (-a*sin(b*t) + b*cos(b*t))*exp(-a*t)*Heaviside(t) assert ILT(exp(-a*s)/s, s, t) == Heaviside(-a + t) assert ILT(exp(-a*s)/(b + s), s, t) == exp(b*(a - t))*Heaviside(-a + t) assert ILT((b + s)/(a**2 + (b + s)**2), s, t) == \ exp(-b*t)*cos(a*t)*Heaviside(t) assert ILT(exp(-a*s)/s**b, s, t) == \ (-a + t)**(b - 1)*Heaviside(-a + t)/gamma(b) assert ILT(exp(-a*s)/sqrt(s**2 + 1), s, t) == \ Heaviside(-a + t)*besselj(0, a - t) assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t)) assert ILT(1/(s**2*(s**2 + 1)), s, t) == (t - sin(t))*Heaviside(t) assert ILT(s**2/(s**2 + 1), s, t) == -sin(t)*Heaviside(t) + DiracDelta(t) assert ILT(1 - 1/(s**2 + 1), s, t) == -sin(t)*Heaviside(t) + DiracDelta(t) assert ILT(1/s**2, s, t) == t*Heaviside(t) assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24 # Issue #24424 assert ILT((s + 8)/((s + 2)*(s**2 + 2*s + 10)), s, t) ==\ ((8*sin(3*t) - 9*cos(3*t))*exp(t) + 9)*exp(-2*t)*Heaviside(t)/15 assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t) assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t) # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess # TODO should this simplify further? assert ILT(exp(-a*s)/s**b, s, t) == \ (t - a)**(b - 1)*Heaviside(t - a)/gamma(b) assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \ Heaviside(t - a)*besselj(0, a - t) # note: besselj(0, x) is even # XXX ILT turns these branch factor into trig functions ... assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2), s, t).rewrite(exp)) == \ Heaviside(t)*besseli(b, a*t) assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2), s, t).rewrite(exp) == \ Heaviside(t)*besselj(b, a*t) assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t)) # TODO can we make erf(t) work? assert ILT(1/(s**2*(s**2 + 1)),s,t) == (t - sin(t))*Heaviside(t) assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\ Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]]) # New tests for rules assert ILT(b/(s**2-a**2), s, t) == b*sinh(a*t)*Heaviside(t)/a assert ILT(b*s/(s**2-a**2), s, t) == b*cosh(a*t)*Heaviside(t) assert ILT(b/(s*(s+a)), s, t) == b*(exp(a*t) - 1)*exp(-a*t)*Heaviside(t)/a assert ILT(b*s/(s+a)**2, s, t) == b*(-a*t + 1)*exp(-a*t)*Heaviside(t) assert ILT(c/((s+a)*(s+b)), s, t) ==\ c*(exp(a*t) - exp(b*t))*exp(-t*(a + b))*Heaviside(t)/(a - b) assert ILT(c*s/((s+a)*(s+b)), s, t) ==\ c*(a*exp(b*t) - b*exp(a*t))*exp(-t*(a + b))*Heaviside(t)/(a - b) assert ILT(c*s/(d**2*(s+a)**2+b**2), s, t) ==\ c*(-a*d*sin(b*t/d) + b*cos(b*t/d))*exp(-a*t)*Heaviside(t)/(b*d**2) # Test time_diff rule assert ILT(s**42*f(s), s, t) ==\ Derivative(InverseLaplaceTransform(f(s), s, t, None), (t, 42)) assert ILT((b*s**2 + d)/(a**2 + s**2)**2, s, t) ==\ (a**3*b*t*cos(a*t) + 4*a**2*b*sin(a*t)*Heaviside(t) +\ a**2*b*sin(a*t) - a*d*t*cos(a*t)*Heaviside(t) +\ d*sin(a*t)*Heaviside(t))/(2*a**3) # Rules for testing different DiracDelta cases assert ILT(2, s, t) == 2*DiracDelta(t) assert ILT(2*exp(3*s) - 5*exp(-7*s), s, t) == \ 2*InverseLaplaceTransform(exp(3*s), s, t, None) - 5*DiracDelta(t - 7) a = cos(sin(7)/2) assert ILT(a*exp(-3*s), s, t) == a*DiracDelta(t - 3) assert ILT(exp(2*s), s, t) == InverseLaplaceTransform(exp(2*s), s, t, None) r = Symbol('r', real=True) assert ILT(exp(r*s), s, t) == InverseLaplaceTransform(exp(r*s), s, t, None) # Rules from the previous test_inverse_laplace_transform_delta_cond(): assert ILT(exp(r*s), s, t, noconds=False) ==\ (InverseLaplaceTransform(exp(r*s), s, t, None), True) # inversion does not exist: verify it doesn't evaluate to DiracDelta for z in (Symbol('z', extended_real=False), Symbol('z', imaginary=True, zero=False)): f = ILT(exp(z*s), s, t, noconds=False) f = f[0] if isinstance(f, tuple) else f assert f.func != DiracDelta # old test for Issue 8514, is not important anymore since this function # is not solved by integration anymore assert ILT(1/(a*s**2+b*s+c),s, t) ==\ 2*exp(-b*t/(2*a))*sin(t*sqrt(4*a*c - b**2)/(2*a))*\ Heaviside(t)/sqrt(4*a*c - b**2) @slow def test_expint(): x = Symbol('x') a = Symbol('a') u = Symbol('u', polar=True) # TODO LT of Si, Shi, Chi is a mess ... assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True) assert laplace_transform(expint(a, x), x, s, simplify=True) == \ (lerchphi(s*exp_polar(I*pi), 1, a), 0, re(a) > S.Zero) assert laplace_transform(expint(1, x), x, s, simplify=True) == \ (log(s + 1)/s, 0, True) assert laplace_transform(expint(2, x), x, s, simplify=True) == \ ((s - log(s + 1))/s**2, 0, True) assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \ Heaviside(u)*Ci(u) assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \ Heaviside(x)*E1(x) assert inverse_laplace_transform((s - log(s + 1))/s**2, s, x).rewrite(expint).expand() == \ (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
39ff57129cf0074086cbbdb6cf8d6839d5046df980b1cb0084cbad7b6ffca1e0
from sympy.integrals.transforms import ( mellin_transform, inverse_mellin_transform, fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform, cosine_transform, inverse_cosine_transform, hankel_transform, inverse_hankel_transform, FourierTransform, SineTransform, CosineTransform, InverseFourierTransform, InverseSineTransform, InverseCosineTransform, IntegralTransformError) from sympy.integrals.laplace import ( laplace_transform, inverse_laplace_transform) from sympy.core.function import Function, expand_mul from sympy.core import EulerGamma from sympy.core.numbers import I, Rational, oo, pi from sympy.core.singleton import S from sympy.core.symbol import Symbol, symbols from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import re, unpolarify from sympy.functions.elementary.exponential import exp, exp_polar, log from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import atan, cos, sin, tan from sympy.functions.special.bessel import besseli, besselj, besselk, bessely from sympy.functions.special.delta_functions import Heaviside from sympy.functions.special.error_functions import erf, expint from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import meijerg from sympy.simplify.gammasimp import gammasimp from sympy.simplify.hyperexpand import hyperexpand from sympy.simplify.trigsimp import trigsimp from sympy.testing.pytest import XFAIL, slow, skip, raises from sympy.abc import x, s, a, b, c, d nu, beta, rho = symbols('nu beta rho') def test_undefined_function(): from sympy.integrals.transforms import MellinTransform f = Function('f') assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s) assert mellin_transform(f(x) + exp(-x), x, s) == \ (MellinTransform(f(x), x, s) + gamma(s + 1)/s, (0, oo), True) def test_free_symbols(): f = Function('f') assert mellin_transform(f(x), x, s).free_symbols == {s} assert mellin_transform(f(x)*a, x, s).free_symbols == {s, a} def test_as_integral(): from sympy.integrals.integrals import Integral f = Function('f') assert mellin_transform(f(x), x, s).rewrite('Integral') == \ Integral(x**(s - 1)*f(x), (x, 0, oo)) assert fourier_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo)) assert laplace_transform(f(x), x, s, noconds=True).rewrite('Integral') == \ Integral(f(x)*exp(-s*x), (x, 0, oo)) assert str(2*pi*I*inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \ == "Integral(f(s)/x**s, (s, _c - oo*I, _c + oo*I))" assert str(2*pi*I*inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \ "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))" assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \ Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo)) # NOTE this is stuck in risch because meijerint cannot handle it @slow @XFAIL def test_mellin_transform_fail(): skip("Risch takes forever.") MT = mellin_transform bpos = symbols('b', positive=True) # bneg = symbols('b', negative=True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) # TODO does not work with bneg, argument wrong. Needs changes to matching. assert MT(expr.subs(b, -bpos), x, s) == \ ((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s) *gamma(1 - a - 2*s)/gamma(1 - s), (-re(a), -re(a)/2 + S.Half), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, -bpos), x, s) == \ ( 2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2* s)*gamma(a + s)/gamma(-s + 1), (-re(a), -re(a)/2), True) # Test exponent 1: assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \ (-bpos**(2*s + 1)*gamma(s)*gamma(-s - S.Half)/(2*sqrt(pi)), (-1, Rational(-1, 2)), True) def test_mellin_transform(): from sympy.functions.elementary.miscellaneous import (Max, Min) MT = mellin_transform bpos = symbols('b', positive=True) # 8.4.2 assert MT(x**nu*Heaviside(x - 1), x, s) == \ (-1/(nu + s), (-oo, -re(nu)), True) assert MT(x**nu*Heaviside(1 - x), x, s) == \ (1/(nu + s), (-re(nu), oo), True) assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \ (gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(beta) > 0) assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \ (gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), (-oo, 1 - re(beta)), re(beta) > 0) assert MT((1 + x)**(-rho), x, s) == \ (gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True) assert MT(abs(1 - x)**(-rho), x, s) == ( 2*sin(pi*rho/2)*gamma(1 - rho)* cos(pi*(s - rho/2))*gamma(s)*gamma(rho-s)/pi, (0, re(rho)), re(rho) < 1) mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x) + a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s) assert mt[1], mt[2] == ((0, -re(beta) + 1), re(beta) > 0) assert MT((x**a - b**a)/(x - b), x, s)[0] == \ pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))) assert MT((x**a - bpos**a)/(x - bpos), x, s) == \ (pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))), (Max(0, -re(a)), Min(1, 1 - re(a))), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, bpos), x, s) == \ (-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1), (0, -re(a)/2), True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) assert MT(expr.subs(b, bpos), x, s) == \ (2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s) *gamma(1 - a - 2*s)/gamma(1 - a - s), (0, -re(a)/2 + S.Half), True) # 8.4.2 assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True) assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True) # 8.4.5 assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True) assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True) assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True) assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True) assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True) assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True) # 8.4.14 assert MT(erf(sqrt(x)), x, s) == \ (-gamma(s + S.Half)/(sqrt(pi)*s), (Rational(-1, 2), 0), True) def test_mellin_transform2(): MT = mellin_transform # TODO we cannot currently do these (needs summation of 3F2(-1)) # this also implies that they cannot be written as a single g-function # (although this is possible) mt = MT(log(x)/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)**2/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)/(x + 1)**2, x, s) assert mt[1:] == ((0, 2), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) @slow def test_mellin_transform_bessel(): from sympy.functions.elementary.miscellaneous import Max MT = mellin_transform # 8.4.19 assert MT(besselj(a, 2*sqrt(x)), x, s) == \ (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True) assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(-2*s + S.Half)*gamma(a/2 + s + S.Half)/( gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), ( -re(a)/2 - S.Half, Rational(1, 4)), True) assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(a/2 + s)*gamma(-2*s + S.Half)/( gamma(-a/2 - s + S.Half)*gamma(a - 2*s + 1)), ( -re(a)/2, Rational(1, 4)), True) assert MT(besselj(a, sqrt(x))**2, x, s) == \ (gamma(a + s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), (-re(a), S.Half), True) assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \ (gamma(s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)), (0, S.Half), True) # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as # I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large) assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (gamma(1 - s)*gamma(a + s - S.Half) / (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + S.Half)), (S.Half - re(a), S.Half), True) assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \ (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s) / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2) *gamma( 1 - s + (a + b)/2)), (-(re(a) + re(b))/2, S.Half), True) assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \ ((Max(re(a), -re(a)), S.Half), True) # Section 8.4.20 assert MT(bessely(a, 2*sqrt(x)), x, s) == \ (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi, (Max(-re(a)/2, re(a)/2), Rational(3, 4)), True) assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*sin(pi*(a/2 - s))*gamma(S.Half - 2*s) * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s) / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)), (Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True) assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S.Half - 2*s) / (sqrt(pi)*gamma(S.Half - s - a/2)*gamma(S.Half - s + a/2)), (Max(-re(a)/2, re(a)/2), Rational(1, 4)), True) assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S.Half - s) / (pi**S('3/2')*gamma(1 + a - s)), (Max(-re(a), 0), S.Half), True) assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S.Half), True) # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x)) # are a mess (no matter what way you look at it ...) assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \ ((Max(-re(a), 0, re(a)), S.Half), True) # Section 8.4.22 # TODO we can't do any of these (delicate cancellation) # Section 8.4.23 assert MT(besselk(a, 2*sqrt(x)), x, s) == \ (gamma( s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True) assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk( a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)* gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True) # TODO bessely(a, x)*besselk(a, x) is a mess assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (gamma(s)*gamma( a + s)*gamma(-s + S.Half)/(2*sqrt(pi)*gamma(a - s + 1)), (Max(-re(a), 0), S.Half), True) assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \ gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \ gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \ re(a)/2 - re(b)/2), S.Half), True) # TODO products of besselk are a mess mt = MT(exp(-x/2)*besselk(a, x/2), x, s) mt0 = gammasimp(trigsimp(gammasimp(mt[0].expand(func=True)))) assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(S.Half - s)/( (cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1)) assert mt[1:] == ((Max(-re(a), re(a)), oo), True) # TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done # TODO various strange products of special orders @slow def test_expint(): from sympy.functions.elementary.miscellaneous import Max from sympy.functions.special.error_functions import Ci, E1, Si from sympy.simplify.simplify import simplify aneg = Symbol('a', negative=True) u = Symbol('u', polar=True) assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True) assert inverse_mellin_transform(gamma(s)/s, s, x, (0, oo)).rewrite(expint).expand() == E1(x) assert mellin_transform(expint(a, x), x, s) == \ (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True) # XXX IMT has hickups with complicated strips ... assert simplify(unpolarify( inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x, (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \ expint(aneg, x) assert mellin_transform(Si(x), x, s) == \ (-2**s*sqrt(pi)*gamma(s/2 + S.Half)/( 2*s*gamma(-s/2 + 1)), (-1, 0), True) assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2) /(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \ == Si(x) assert mellin_transform(Ci(sqrt(x)), x, s) == \ (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S.Half)), (0, 1), True) assert inverse_mellin_transform( -4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S.Half)), s, u, (0, 1)).expand() == Ci(sqrt(u)) @slow def test_inverse_mellin_transform(): from sympy.core.function import expand from sympy.functions.elementary.miscellaneous import (Max, Min) from sympy.functions.elementary.trigonometric import cot from sympy.simplify.powsimp import powsimp from sympy.simplify.simplify import simplify IMT = inverse_mellin_transform assert IMT(gamma(s), s, x, (0, oo)) == exp(-x) assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x) assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \ (x**2 + 1)*Heaviside(1 - x)/(4*x) # test passing "None" assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) # test expansion of sums assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x # test factorisation of polys r = symbols('r', real=True) assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo) ).subs(x, r).rewrite(sin).simplify() \ == sin(r)*Heaviside(1 - exp(-r)) # test multiplicative substitution _a, _b = symbols('a b', positive=True) assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a) assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b) def simp_pows(expr): return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp) # Now test the inverses of all direct transforms tested above # Section 8.4.2 nu = symbols('nu', real=True) assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1) assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \ == (1 - x)**(beta - 1)*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), s, x, (-oo, None))) \ == (x - 1)**(beta - 1)*Heaviside(x - 1) assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \ == (1/(x + 1))**rho assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c) *gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi, s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \ == (x**c - d**c)/(x - d) assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s) *gamma(-c/2 - s)/gamma(1 - c - s), s, x, (0, -re(c)/2))) == \ (1 + sqrt(x + 1))**c assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s) /gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \ b**(a - 1)*(b**2*(sqrt(1 + x/b**2) + 1)**a + x*(sqrt(1 + x/b**2) + 1 )**(a - 1))/(b**2 + x) assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s) / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \ b**c*(sqrt(1 + x/b**2) + 1)**c # Section 8.4.5 assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x) assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \ log(x)**3*Heaviside(x - 1) assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1) assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1) assert IMT(pi/(s*sin(2*pi*s)), s, x, (Rational(-1, 2), 0)) == log(sqrt(x) + 1) assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x) # TODO def mysimp(expr): from sympy.core.function import expand from sympy.simplify.powsimp import powsimp from sympy.simplify.simplify import logcombine return expand( powsimp(logcombine(expr, force=True), force=True, deep=True), force=True).replace(exp_polar, exp) assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [ log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1), log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1)] # test passing cot assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [ log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1), -log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1), ] # 8.4.14 assert IMT(-gamma(s + S.Half)/(sqrt(pi)*s), s, x, (Rational(-1, 2), 0)) == \ erf(sqrt(x)) # 8.4.19 assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \ == besselj(a, 2*sqrt(x)) assert simplify(IMT(2**a*gamma(S.Half - 2*s)*gamma(s + (a + 1)/2) / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \ sin(sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S.Half - 2*s) / (gamma(S.Half - s - a/2)*gamma(1 - 2*s + a)), s, x, (-re(a)/2, Rational(1, 4)))) == \ cos(sqrt(x))*besselj(a, sqrt(x)) # TODO this comes out as an amazing mess, but simplifies nicely assert simplify(IMT(gamma(a + s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), s, x, (-re(a), S.Half))) == \ besselj(a, sqrt(x))**2 assert simplify(IMT(gamma(s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)), s, x, (0, S.Half))) == \ besselj(-a, sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) *gamma(a/2 + b/2 - s + 1)), s, x, (-(re(a) + re(b))/2, S.Half))) == \ besselj(a, sqrt(x))*besselj(b, sqrt(x)) # Section 8.4.20 # TODO this can be further simplified! assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), s, x, (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S.Half))) == \ besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) - besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b) # TODO more # for coverage assert IMT(pi/cos(pi*s), s, x, (0, S.Half)) == sqrt(x)/(x + 1) def test_fourier_transform(): from sympy.core.function import (expand, expand_complex, expand_trig) from sympy.polys.polytools import factor from sympy.simplify.simplify import simplify FT = fourier_transform IFT = inverse_fourier_transform def simp(x): return simplify(expand_trig(expand_complex(expand(x)))) def sinc(x): return sin(pi*x)/(pi*x) k = symbols('k', real=True) f = Function("f") # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x) a = symbols('a', positive=True) b = symbols('b', positive=True) posk = symbols('posk', positive=True) # Test unevaluated form assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k) assert inverse_fourier_transform( f(k), k, x) == InverseFourierTransform(f(k), k, x) # basic examples from wikipedia assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a # TODO IFT is a *mess* assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a # TODO IFT assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k) # NOTE: the ift comes out in pieces assert IFT(1/(a + 2*pi*I*x), x, posk, noconds=False) == (exp(-a*posk), True) assert IFT(1/(a + 2*pi*I*x), x, -posk, noconds=False) == (0, True) assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True), noconds=False) == (0, True) # TODO IFT without factoring comes out as meijer g assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k)**2 assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \ b/(b**2 + (a + 2*I*pi*k)**2) assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a) assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2) assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2) # TODO IFT (comes out as meijer G) # TODO besselj(n, x), n an integer > 0 actually can be done... # TODO are there other common transforms (no distributions!)? def test_sine_transform(): t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w) assert inverse_sine_transform( f(w), w, t) == InverseSineTransform(f(w), w, t) assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert sine_transform((1/sqrt(t))**3, t, w) == 2*sqrt(w) assert sine_transform(t**(-a), t, w) == 2**( -a + S.Half)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2) assert inverse_sine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S.Half), w, t) == t**(-a) assert sine_transform( exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)) assert inverse_sine_transform( sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert sine_transform( log(t)/t, t, w) == sqrt(2)*sqrt(pi)*-(log(w**2) + 2*EulerGamma)/4 assert sine_transform( t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)) assert inverse_sine_transform( sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)), w, t) == t*exp(-a*t**2) def test_cosine_transform(): from sympy.functions.special.error_functions import (Ci, Si) t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w) assert inverse_cosine_transform( f(w), w, t) == InverseCosineTransform(f(w), w, t) assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert cosine_transform(1/( a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a) assert cosine_transform(t**( -a), t, w) == 2**(-a + S.Half)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2) assert inverse_cosine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + S.Half)/gamma(a/2), w, t) == t**(-a) assert cosine_transform( exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)) assert inverse_cosine_transform( sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt( t)), t, w) == a*exp(-a**2/(2*w))/(2*w**Rational(3, 2)) assert cosine_transform(1/(a + t), t, w) == sqrt(2)*( (-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi) assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half, 0), ()), ( (S.Half, 0, 0), (S.Half,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t) assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg( ((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)) assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1)) def test_hankel_transform(): r = Symbol("r") k = Symbol("k") nu = Symbol("nu") m = Symbol("m") a = symbols("a") assert hankel_transform(1/r, r, k, 0) == 1/k assert inverse_hankel_transform(1/k, k, r, 0) == 1/r assert hankel_transform( 1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2) assert inverse_hankel_transform( 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m) assert hankel_transform(1/r**m, r, k, nu) == ( 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)) assert inverse_hankel_transform(2**(-m + 1)*k**( m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m) assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \ 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S( 3)/2)*gamma(nu + Rational(3, 2))/sqrt(pi) assert inverse_hankel_transform( 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - Rational(3, 2))*gamma( nu + Rational(3, 2))/sqrt(pi), k, r, nu) == r**nu*exp(-a*r) def test_issue_7181(): assert mellin_transform(1/(1 - x), x, s) != None def test_issue_8882(): # This is the original test. # from sympy import diff, Integral, integrate # r = Symbol('r') # psi = 1/r*sin(r)*exp(-(a0*r)) # h = -1/2*diff(psi, r, r) - 1/r*psi # f = 4*pi*psi*h*r**2 # assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True # To save time, only the critical part is included. F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \ sin(s*atan(sqrt(1/a**2)/2))*gamma(s) raises(IntegralTransformError, lambda: inverse_mellin_transform(F, s, x, (-1, oo), **{'as_meijerg': True, 'needeval': True})) def test_issue_12591(): x, y = symbols("x y", real=True) assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y)
45167bafe025b420b3ec2c5fba7f22b39c555549255e36c17c3543a05a2901fd
from sympy.assumptions.refine import refine from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.expr import (ExprBuilder, unchanged, Expr, UnevaluatedExpr) from sympy.core.function import (Function, expand, WildFunction, AppliedUndef, Derivative, diff, Subs) from sympy.core.mul import Mul from sympy.core.numbers import (NumberSymbol, E, zoo, oo, Float, I, Rational, nan, Integer, Number, pi, _illegal) from sympy.core.power import Pow from sympy.core.relational import Ge, Lt, Gt, Le from sympy.core.singleton import S from sympy.core.sorting import default_sort_key from sympy.core.symbol import Symbol, symbols, Dummy, Wild from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.exponential import exp_polar, exp, log from sympy.functions.elementary.miscellaneous import sqrt, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import tan, sin, cos from sympy.functions.special.delta_functions import (Heaviside, DiracDelta) from sympy.functions.special.error_functions import Si from sympy.functions.special.gamma_functions import gamma from sympy.integrals.integrals import integrate, Integral from sympy.physics.secondquant import FockState from sympy.polys.partfrac import apart from sympy.polys.polytools import factor, cancel, Poly from sympy.polys.rationaltools import together from sympy.series.order import O from sympy.sets.sets import FiniteSet from sympy.simplify.combsimp import combsimp from sympy.simplify.gammasimp import gammasimp from sympy.simplify.powsimp import powsimp from sympy.simplify.radsimp import collect, radsimp from sympy.simplify.ratsimp import ratsimp from sympy.simplify.simplify import simplify, nsimplify from sympy.simplify.trigsimp import trigsimp from sympy.tensor.indexed import Indexed from sympy.physics.units import meter from sympy.testing.pytest import raises, XFAIL from sympy.abc import a, b, c, n, t, u, x, y, z f, g, h = symbols('f,g,h', cls=Function) class DummyNumber: """ Minimal implementation of a number that works with SymPy. If one has a Number class (e.g. Sage Integer, or some other custom class) that one wants to work well with SymPy, one has to implement at least the methods of this class DummyNumber, resp. its subclasses I5 and F1_1. Basically, one just needs to implement either __int__() or __float__() and then one needs to make sure that the class works with Python integers and with itself. """ def __radd__(self, a): if isinstance(a, (int, float)): return a + self.number return NotImplemented def __add__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number + a return NotImplemented def __rsub__(self, a): if isinstance(a, (int, float)): return a - self.number return NotImplemented def __sub__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number - a return NotImplemented def __rmul__(self, a): if isinstance(a, (int, float)): return a * self.number return NotImplemented def __mul__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number * a return NotImplemented def __rtruediv__(self, a): if isinstance(a, (int, float)): return a / self.number return NotImplemented def __truediv__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number / a return NotImplemented def __rpow__(self, a): if isinstance(a, (int, float)): return a ** self.number return NotImplemented def __pow__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number ** a return NotImplemented def __pos__(self): return self.number def __neg__(self): return - self.number class I5(DummyNumber): number = 5 def __int__(self): return self.number class F1_1(DummyNumber): number = 1.1 def __float__(self): return self.number i5 = I5() f1_1 = F1_1() # basic SymPy objects basic_objs = [ Rational(2), Float("1.3"), x, y, pow(x, y)*y, ] # all supported objects all_objs = basic_objs + [ 5, 5.5, i5, f1_1 ] def dotest(s): for xo in all_objs: for yo in all_objs: s(xo, yo) return True def test_basic(): def j(a, b): x = a x = +a x = -a x = a + b x = a - b x = a*b x = a/b x = a**b del x assert dotest(j) def test_ibasic(): def s(a, b): x = a x += b x = a x -= b x = a x *= b x = a x /= b assert dotest(s) class NonBasic: '''This class represents an object that knows how to implement binary operations like +, -, etc with Expr but is not a subclass of Basic itself. The NonExpr subclass below does subclass Basic but not Expr. For both NonBasic and NonExpr it should be possible for them to override Expr.__add__ etc because Expr.__add__ should be returning NotImplemented for non Expr classes. Otherwise Expr.__add__ would create meaningless objects like Add(Integer(1), FiniteSet(2)) and it wouldn't be possible for other classes to override these operations when interacting with Expr. ''' def __add__(self, other): return SpecialOp('+', self, other) def __radd__(self, other): return SpecialOp('+', other, self) def __sub__(self, other): return SpecialOp('-', self, other) def __rsub__(self, other): return SpecialOp('-', other, self) def __mul__(self, other): return SpecialOp('*', self, other) def __rmul__(self, other): return SpecialOp('*', other, self) def __truediv__(self, other): return SpecialOp('/', self, other) def __rtruediv__(self, other): return SpecialOp('/', other, self) def __floordiv__(self, other): return SpecialOp('//', self, other) def __rfloordiv__(self, other): return SpecialOp('//', other, self) def __mod__(self, other): return SpecialOp('%', self, other) def __rmod__(self, other): return SpecialOp('%', other, self) def __divmod__(self, other): return SpecialOp('divmod', self, other) def __rdivmod__(self, other): return SpecialOp('divmod', other, self) def __pow__(self, other): return SpecialOp('**', self, other) def __rpow__(self, other): return SpecialOp('**', other, self) def __lt__(self, other): return SpecialOp('<', self, other) def __gt__(self, other): return SpecialOp('>', self, other) def __le__(self, other): return SpecialOp('<=', self, other) def __ge__(self, other): return SpecialOp('>=', self, other) class NonExpr(Basic, NonBasic): '''Like NonBasic above except this is a subclass of Basic but not Expr''' pass class SpecialOp(): '''Represents the results of operations with NonBasic and NonExpr''' def __new__(cls, op, arg1, arg2): obj = object.__new__(cls) obj.args = (op, arg1, arg2) return obj class NonArithmetic(Basic): '''Represents a Basic subclass that does not support arithmetic operations''' pass def test_cooperative_operations(): '''Tests that Expr uses binary operations cooperatively. In particular it should be possible for non-Expr classes to override binary operators like +, - etc when used with Expr instances. This should work for non-Expr classes whether they are Basic subclasses or not. Also non-Expr classes that do not define binary operators with Expr should give TypeError. ''' # A bunch of instances of Expr subclasses exprs = [ Expr(), S.Zero, S.One, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.Half, Float(0.5), Integer(2), Symbol('x'), Mul(2, Symbol('x')), Add(2, Symbol('x')), Pow(2, Symbol('x')), ] for e in exprs: # Test that these classes can override arithmetic operations in # combination with various Expr types. for ne in [NonBasic(), NonExpr()]: results = [ (ne + e, ('+', ne, e)), (e + ne, ('+', e, ne)), (ne - e, ('-', ne, e)), (e - ne, ('-', e, ne)), (ne * e, ('*', ne, e)), (e * ne, ('*', e, ne)), (ne / e, ('/', ne, e)), (e / ne, ('/', e, ne)), (ne // e, ('//', ne, e)), (e // ne, ('//', e, ne)), (ne % e, ('%', ne, e)), (e % ne, ('%', e, ne)), (divmod(ne, e), ('divmod', ne, e)), (divmod(e, ne), ('divmod', e, ne)), (ne ** e, ('**', ne, e)), (e ** ne, ('**', e, ne)), (e < ne, ('>', ne, e)), (ne < e, ('<', ne, e)), (e > ne, ('<', ne, e)), (ne > e, ('>', ne, e)), (e <= ne, ('>=', ne, e)), (ne <= e, ('<=', ne, e)), (e >= ne, ('<=', ne, e)), (ne >= e, ('>=', ne, e)), ] for res, args in results: assert type(res) is SpecialOp and res.args == args # These classes do not support binary operators with Expr. Every # operation should raise in combination with any of the Expr types. for na in [NonArithmetic(), object()]: raises(TypeError, lambda : e + na) raises(TypeError, lambda : na + e) raises(TypeError, lambda : e - na) raises(TypeError, lambda : na - e) raises(TypeError, lambda : e * na) raises(TypeError, lambda : na * e) raises(TypeError, lambda : e / na) raises(TypeError, lambda : na / e) raises(TypeError, lambda : e // na) raises(TypeError, lambda : na // e) raises(TypeError, lambda : e % na) raises(TypeError, lambda : na % e) raises(TypeError, lambda : divmod(e, na)) raises(TypeError, lambda : divmod(na, e)) raises(TypeError, lambda : e ** na) raises(TypeError, lambda : na ** e) raises(TypeError, lambda : e > na) raises(TypeError, lambda : na > e) raises(TypeError, lambda : e < na) raises(TypeError, lambda : na < e) raises(TypeError, lambda : e >= na) raises(TypeError, lambda : na >= e) raises(TypeError, lambda : e <= na) raises(TypeError, lambda : na <= e) def test_relational(): from sympy.core.relational import Lt assert (pi < 3) is S.false assert (pi <= 3) is S.false assert (pi > 3) is S.true assert (pi >= 3) is S.true assert (-pi < 3) is S.true assert (-pi <= 3) is S.true assert (-pi > 3) is S.false assert (-pi >= 3) is S.false r = Symbol('r', real=True) assert (r - 2 < r - 3) is S.false assert Lt(x + I, x + I + 2).func == Lt # issue 8288 def test_relational_assumptions(): m1 = Symbol("m1", nonnegative=False) m2 = Symbol("m2", positive=False) m3 = Symbol("m3", nonpositive=False) m4 = Symbol("m4", negative=False) assert (m1 < 0) == Lt(m1, 0) assert (m2 <= 0) == Le(m2, 0) assert (m3 > 0) == Gt(m3, 0) assert (m4 >= 0) == Ge(m4, 0) m1 = Symbol("m1", nonnegative=False, real=True) m2 = Symbol("m2", positive=False, real=True) m3 = Symbol("m3", nonpositive=False, real=True) m4 = Symbol("m4", negative=False, real=True) assert (m1 < 0) is S.true assert (m2 <= 0) is S.true assert (m3 > 0) is S.true assert (m4 >= 0) is S.true m1 = Symbol("m1", negative=True) m2 = Symbol("m2", nonpositive=True) m3 = Symbol("m3", positive=True) m4 = Symbol("m4", nonnegative=True) assert (m1 < 0) is S.true assert (m2 <= 0) is S.true assert (m3 > 0) is S.true assert (m4 >= 0) is S.true m1 = Symbol("m1", negative=False, real=True) m2 = Symbol("m2", nonpositive=False, real=True) m3 = Symbol("m3", positive=False, real=True) m4 = Symbol("m4", nonnegative=False, real=True) assert (m1 < 0) is S.false assert (m2 <= 0) is S.false assert (m3 > 0) is S.false assert (m4 >= 0) is S.false # See https://github.com/sympy/sympy/issues/17708 #def test_relational_noncommutative(): # from sympy import Lt, Gt, Le, Ge # A, B = symbols('A,B', commutative=False) # assert (A < B) == Lt(A, B) # assert (A <= B) == Le(A, B) # assert (A > B) == Gt(A, B) # assert (A >= B) == Ge(A, B) def test_basic_nostr(): for obj in basic_objs: raises(TypeError, lambda: obj + '1') raises(TypeError, lambda: obj - '1') if obj == 2: assert obj * '1' == '11' else: raises(TypeError, lambda: obj * '1') raises(TypeError, lambda: obj / '1') raises(TypeError, lambda: obj ** '1') def test_series_expansion_for_uniform_order(): assert (1/x + y + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + x).series(x, 0, 1) == 1/x + y + O(x) assert (1/x + 1 + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + 1 + x).series(x, 0, 1) == 1/x + 1 + O(x) assert (1/x + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + y*x + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + y*x + x).series(x, 0, 1) == 1/x + y + O(x) def test_leadterm(): assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0) assert (1/x**2 + 1 + x + x**2).leadterm(x)[1] == -2 assert (1/x + 1 + x + x**2).leadterm(x)[1] == -1 assert (x**2 + 1/x).leadterm(x)[1] == -1 assert (1 + x**2).leadterm(x)[1] == 0 assert (x + 1).leadterm(x)[1] == 0 assert (x + x**2).leadterm(x)[1] == 1 assert (x**2).leadterm(x)[1] == 2 def test_as_leading_term(): assert (3 + 2*x**(log(3)/log(2) - 1)).as_leading_term(x) == 3 assert (1/x**2 + 1 + x + x**2).as_leading_term(x) == 1/x**2 assert (1/x + 1 + x + x**2).as_leading_term(x) == 1/x assert (x**2 + 1/x).as_leading_term(x) == 1/x assert (1 + x**2).as_leading_term(x) == 1 assert (x + 1).as_leading_term(x) == 1 assert (x + x**2).as_leading_term(x) == x assert (x**2).as_leading_term(x) == x**2 assert (x + oo).as_leading_term(x) is oo raises(ValueError, lambda: (x + 1).as_leading_term(1)) # https://github.com/sympy/sympy/issues/21177 e = -3*x + (x + Rational(3, 2) - sqrt(3)*S.ImaginaryUnit/2)**2\ - Rational(3, 2) + 3*sqrt(3)*S.ImaginaryUnit/2 assert e.as_leading_term(x) == \ (12*sqrt(3)*x - 12*S.ImaginaryUnit*x)/(4*sqrt(3) + 12*S.ImaginaryUnit) # https://github.com/sympy/sympy/issues/21245 e = 1 - x - x**2 d = (1 + sqrt(5))/2 assert e.subs(x, y + 1/d).as_leading_term(y) == \ (-576*sqrt(5)*y - 1280*y)/(256*sqrt(5) + 576) def test_leadterm2(): assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).leadterm(x) == \ (sin(1 + sin(1)), 0) def test_leadterm3(): assert (y + z + x).leadterm(x) == (y + z, 0) def test_as_leading_term2(): assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).as_leading_term(x) == \ sin(1 + sin(1)) def test_as_leading_term3(): assert (2 + pi + x).as_leading_term(x) == 2 + pi assert (2*x + pi*x + x**2).as_leading_term(x) == 2*x + pi*x def test_as_leading_term4(): # see issue 6843 n = Symbol('n', integer=True, positive=True) r = -n**3/(2*n**2 + 4*n + 2) - n**2/(n**2 + 2*n + 1) + \ n**2/(n + 1) - n/(2*n**2 + 4*n + 2) + n/(n*x + x) + 2*n/(n + 1) - \ 1 + 1/(n*x + x) + 1/(n + 1) - 1/x assert r.as_leading_term(x).cancel() == n/2 def test_as_leading_term_stub(): class foo(Function): pass assert foo(1/x).as_leading_term(x) == foo(1/x) assert foo(1).as_leading_term(x) == foo(1) raises(NotImplementedError, lambda: foo(x).as_leading_term(x)) def test_as_leading_term_deriv_integral(): # related to issue 11313 assert Derivative(x ** 3, x).as_leading_term(x) == 3*x**2 assert Derivative(x ** 3, y).as_leading_term(x) == 0 assert Integral(x ** 3, x).as_leading_term(x) == x**4/4 assert Integral(x ** 3, y).as_leading_term(x) == y*x**3 assert Derivative(exp(x), x).as_leading_term(x) == 1 assert Derivative(log(x), x).as_leading_term(x) == (1/x).as_leading_term(x) def test_atoms(): assert x.atoms() == {x} assert (1 + x).atoms() == {x, S.One} assert (1 + 2*cos(x)).atoms(Symbol) == {x} assert (1 + 2*cos(x)).atoms(Symbol, Number) == {S.One, S(2), x} assert (2*(x**(y**x))).atoms() == {S(2), x, y} assert S.Half.atoms() == {S.Half} assert S.Half.atoms(Symbol) == set() assert sin(oo).atoms(oo) == set() assert Poly(0, x).atoms() == {S.Zero, x} assert Poly(1, x).atoms() == {S.One, x} assert Poly(x, x).atoms() == {x} assert Poly(x, x, y).atoms() == {x, y} assert Poly(x + y, x, y).atoms() == {x, y} assert Poly(x + y, x, y, z).atoms() == {x, y, z} assert Poly(x + y*t, x, y, z).atoms() == {t, x, y, z} assert (I*pi).atoms(NumberSymbol) == {pi} assert (I*pi).atoms(NumberSymbol, I) == \ (I*pi).atoms(I, NumberSymbol) == {pi, I} assert exp(exp(x)).atoms(exp) == {exp(exp(x)), exp(x)} assert (1 + x*(2 + y) + exp(3 + z)).atoms(Add) == \ {1 + x*(2 + y) + exp(3 + z), 2 + y, 3 + z} # issue 6132 e = (f(x) + sin(x) + 2) assert e.atoms(AppliedUndef) == \ {f(x)} assert e.atoms(AppliedUndef, Function) == \ {f(x), sin(x)} assert e.atoms(Function) == \ {f(x), sin(x)} assert e.atoms(AppliedUndef, Number) == \ {f(x), S(2)} assert e.atoms(Function, Number) == \ {S(2), sin(x), f(x)} def test_is_polynomial(): k = Symbol('k', nonnegative=True, integer=True) assert Rational(2).is_polynomial(x, y, z) is True assert (S.Pi).is_polynomial(x, y, z) is True assert x.is_polynomial(x) is True assert x.is_polynomial(y) is True assert (x**2).is_polynomial(x) is True assert (x**2).is_polynomial(y) is True assert (x**(-2)).is_polynomial(x) is False assert (x**(-2)).is_polynomial(y) is True assert (2**x).is_polynomial(x) is False assert (2**x).is_polynomial(y) is True assert (x**k).is_polynomial(x) is False assert (x**k).is_polynomial(k) is False assert (x**x).is_polynomial(x) is False assert (k**k).is_polynomial(k) is False assert (k**x).is_polynomial(k) is False assert (x**(-k)).is_polynomial(x) is False assert ((2*x)**k).is_polynomial(x) is False assert (x**2 + 3*x - 8).is_polynomial(x) is True assert (x**2 + 3*x - 8).is_polynomial(y) is True assert (x**2 + 3*x - 8).is_polynomial() is True assert sqrt(x).is_polynomial(x) is False assert (sqrt(x)**3).is_polynomial(x) is False assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(x) is True assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(y) is False assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial() is True assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial() is False assert ( (x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial(x, y) is True assert ( (x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial(x, y) is False assert (1/f(x) + 1).is_polynomial(f(x)) is False def test_is_rational_function(): assert Integer(1).is_rational_function() is True assert Integer(1).is_rational_function(x) is True assert Rational(17, 54).is_rational_function() is True assert Rational(17, 54).is_rational_function(x) is True assert (12/x).is_rational_function() is True assert (12/x).is_rational_function(x) is True assert (x/y).is_rational_function() is True assert (x/y).is_rational_function(x) is True assert (x/y).is_rational_function(x, y) is True assert (x**2 + 1/x/y).is_rational_function() is True assert (x**2 + 1/x/y).is_rational_function(x) is True assert (x**2 + 1/x/y).is_rational_function(x, y) is True assert (sin(y)/x).is_rational_function() is False assert (sin(y)/x).is_rational_function(y) is False assert (sin(y)/x).is_rational_function(x) is True assert (sin(y)/x).is_rational_function(x, y) is False for i in _illegal: assert not i.is_rational_function() for d in (1, x): assert not (i/d).is_rational_function() def test_is_meromorphic(): f = a/x**2 + b + x + c*x**2 assert f.is_meromorphic(x, 0) is True assert f.is_meromorphic(x, 1) is True assert f.is_meromorphic(x, zoo) is True g = 3 + 2*x**(log(3)/log(2) - 1) assert g.is_meromorphic(x, 0) is False assert g.is_meromorphic(x, 1) is True assert g.is_meromorphic(x, zoo) is False n = Symbol('n', integer=True) e = sin(1/x)**n*x assert e.is_meromorphic(x, 0) is False assert e.is_meromorphic(x, 1) is True assert e.is_meromorphic(x, zoo) is False e = log(x)**pi assert e.is_meromorphic(x, 0) is False assert e.is_meromorphic(x, 1) is False assert e.is_meromorphic(x, 2) is True assert e.is_meromorphic(x, zoo) is False assert (log(x)**a).is_meromorphic(x, 0) is False assert (log(x)**a).is_meromorphic(x, 1) is False assert (a**log(x)).is_meromorphic(x, 0) is None assert (3**log(x)).is_meromorphic(x, 0) is False assert (3**log(x)).is_meromorphic(x, 1) is True def test_is_algebraic_expr(): assert sqrt(3).is_algebraic_expr(x) is True assert sqrt(3).is_algebraic_expr() is True eq = ((1 + x**2)/(1 - y**2))**(S.One/3) assert eq.is_algebraic_expr(x) is True assert eq.is_algebraic_expr(y) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(x) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(y) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr() is True assert (cos(y)/sqrt(x)).is_algebraic_expr() is False assert (cos(y)/sqrt(x)).is_algebraic_expr(x) is True assert (cos(y)/sqrt(x)).is_algebraic_expr(y) is False assert (cos(y)/sqrt(x)).is_algebraic_expr(x, y) is False def test_SAGE1(): #see https://github.com/sympy/sympy/issues/3346 class MyInt: def _sympy_(self): return Integer(5) m = MyInt() e = Rational(2)*m assert e == 10 raises(TypeError, lambda: Rational(2)*MyInt) def test_SAGE2(): class MyInt: def __int__(self): return 5 assert sympify(MyInt()) == 5 e = Rational(2)*MyInt() assert e == 10 raises(TypeError, lambda: Rational(2)*MyInt) def test_SAGE3(): class MySymbol: def __rmul__(self, other): return ('mys', other, self) o = MySymbol() e = x*o assert e == ('mys', x, o) def test_len(): e = x*y assert len(e.args) == 2 e = x + y + z assert len(e.args) == 3 def test_doit(): a = Integral(x**2, x) assert isinstance(a.doit(), Integral) is False assert isinstance(a.doit(integrals=True), Integral) is False assert isinstance(a.doit(integrals=False), Integral) is True assert (2*Integral(x, x)).doit() == x**2 def test_attribute_error(): raises(AttributeError, lambda: x.cos()) raises(AttributeError, lambda: x.sin()) raises(AttributeError, lambda: x.exp()) def test_args(): assert (x*y).args in ((x, y), (y, x)) assert (x + y).args in ((x, y), (y, x)) assert (x*y + 1).args in ((x*y, 1), (1, x*y)) assert sin(x*y).args == (x*y,) assert sin(x*y).args[0] == x*y assert (x**y).args == (x, y) assert (x**y).args[0] == x assert (x**y).args[1] == y def test_noncommutative_expand_issue_3757(): A, B, C = symbols('A,B,C', commutative=False) assert A*B - B*A != 0 assert (A*(A + B)*B).expand() == A**2*B + A*B**2 assert (A*(A + B + C)*B).expand() == A**2*B + A*B**2 + A*C*B def test_as_numer_denom(): a, b, c = symbols('a, b, c') assert nan.as_numer_denom() == (nan, 1) assert oo.as_numer_denom() == (oo, 1) assert (-oo).as_numer_denom() == (-oo, 1) assert zoo.as_numer_denom() == (zoo, 1) assert (-zoo).as_numer_denom() == (zoo, 1) assert x.as_numer_denom() == (x, 1) assert (1/x).as_numer_denom() == (1, x) assert (x/y).as_numer_denom() == (x, y) assert (x/2).as_numer_denom() == (x, 2) assert (x*y/z).as_numer_denom() == (x*y, z) assert (x/(y*z)).as_numer_denom() == (x, y*z) assert S.Half.as_numer_denom() == (1, 2) assert (1/y**2).as_numer_denom() == (1, y**2) assert (x/y**2).as_numer_denom() == (x, y**2) assert ((x**2 + 1)/y).as_numer_denom() == (x**2 + 1, y) assert (x*(y + 1)/y**7).as_numer_denom() == (x*(y + 1), y**7) assert (x**-2).as_numer_denom() == (1, x**2) assert (a/x + b/2/x + c/3/x).as_numer_denom() == \ (6*a + 3*b + 2*c, 6*x) assert (a/x + b/2/x + c/3/y).as_numer_denom() == \ (2*c*x + y*(6*a + 3*b), 6*x*y) assert (a/x + b/2/x + c/.5/x).as_numer_denom() == \ (2*a + b + 4.0*c, 2*x) # this should take no more than a few seconds assert int(log(Add(*[Dummy()/i/x for i in range(1, 705)] ).as_numer_denom()[1]/x).n(4)) == 705 for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: assert (i + x/3).as_numer_denom() == \ (x + i, 3) assert (S.Infinity + x/3 + y/4).as_numer_denom() == \ (4*x + 3*y + S.Infinity, 12) assert (oo*x + zoo*y).as_numer_denom() == \ (zoo*y + oo*x, 1) A, B, C = symbols('A,B,C', commutative=False) assert (A*B*C**-1).as_numer_denom() == (A*B*C**-1, 1) assert (A*B*C**-1/x).as_numer_denom() == (A*B*C**-1, x) assert (C**-1*A*B).as_numer_denom() == (C**-1*A*B, 1) assert (C**-1*A*B/x).as_numer_denom() == (C**-1*A*B, x) assert ((A*B*C)**-1).as_numer_denom() == ((A*B*C)**-1, 1) assert ((A*B*C)**-1/x).as_numer_denom() == ((A*B*C)**-1, x) # the following morphs from Add to Mul during processing assert Add(0, (x + y)/z/-2, evaluate=False).as_numer_denom( ) == (-x - y, 2*z) def test_trunc(): import math x, y = symbols('x y') assert math.trunc(2) == 2 assert math.trunc(4.57) == 4 assert math.trunc(-5.79) == -5 assert math.trunc(pi) == 3 assert math.trunc(log(7)) == 1 assert math.trunc(exp(5)) == 148 assert math.trunc(cos(pi)) == -1 assert math.trunc(sin(5)) == 0 raises(TypeError, lambda: math.trunc(x)) raises(TypeError, lambda: math.trunc(x + y**2)) raises(TypeError, lambda: math.trunc(oo)) def test_as_independent(): assert S.Zero.as_independent(x, as_Add=True) == (0, 0) assert S.Zero.as_independent(x, as_Add=False) == (0, 0) assert (2*x*sin(x) + y + x).as_independent(x) == (y, x + 2*x*sin(x)) assert (2*x*sin(x) + y + x).as_independent(y) == (x + 2*x*sin(x), y) assert (2*x*sin(x) + y + x).as_independent(x, y) == (0, y + x + 2*x*sin(x)) assert (x*sin(x)*cos(y)).as_independent(x) == (cos(y), x*sin(x)) assert (x*sin(x)*cos(y)).as_independent(y) == (x*sin(x), cos(y)) assert (x*sin(x)*cos(y)).as_independent(x, y) == (1, x*sin(x)*cos(y)) assert (sin(x)).as_independent(x) == (1, sin(x)) assert (sin(x)).as_independent(y) == (sin(x), 1) assert (2*sin(x)).as_independent(x) == (2, sin(x)) assert (2*sin(x)).as_independent(y) == (2*sin(x), 1) # issue 4903 = 1766b n1, n2, n3 = symbols('n1 n2 n3', commutative=False) assert (n1 + n1*n2).as_independent(n2) == (n1, n1*n2) assert (n2*n1 + n1*n2).as_independent(n2) == (0, n1*n2 + n2*n1) assert (n1*n2*n1).as_independent(n2) == (n1, n2*n1) assert (n1*n2*n1).as_independent(n1) == (1, n1*n2*n1) assert (3*x).as_independent(x, as_Add=True) == (0, 3*x) assert (3*x).as_independent(x, as_Add=False) == (3, x) assert (3 + x).as_independent(x, as_Add=True) == (3, x) assert (3 + x).as_independent(x, as_Add=False) == (1, 3 + x) # issue 5479 assert (3*x).as_independent(Symbol) == (3, x) # issue 5648 assert (n1*x*y).as_independent(x) == (n1*y, x) assert ((x + n1)*(x - y)).as_independent(x) == (1, (x + n1)*(x - y)) assert ((x + n1)*(x - y)).as_independent(y) == (x + n1, x - y) assert (DiracDelta(x - n1)*DiracDelta(x - y)).as_independent(x) \ == (1, DiracDelta(x - n1)*DiracDelta(x - y)) assert (x*y*n1*n2*n3).as_independent(n2) == (x*y*n1, n2*n3) assert (x*y*n1*n2*n3).as_independent(n1) == (x*y, n1*n2*n3) assert (x*y*n1*n2*n3).as_independent(n3) == (x*y*n1*n2, n3) assert (DiracDelta(x - n1)*DiracDelta(y - n1)*DiracDelta(x - n2)).as_independent(y) == \ (DiracDelta(x - n1)*DiracDelta(x - n2), DiracDelta(y - n1)) # issue 5784 assert (x + Integral(x, (x, 1, 2))).as_independent(x, strict=True) == \ (Integral(x, (x, 1, 2)), x) eq = Add(x, -x, 2, -3, evaluate=False) assert eq.as_independent(x) == (-1, Add(x, -x, evaluate=False)) eq = Mul(x, 1/x, 2, -3, evaluate=False) assert eq.as_independent(x) == (-6, Mul(x, 1/x, evaluate=False)) assert (x*y).as_independent(z, as_Add=True) == (x*y, 0) @XFAIL def test_call_2(): # TODO UndefinedFunction does not subclass Expr assert (2*f)(x) == 2*f(x) def test_replace(): e = log(sin(x)) + tan(sin(x**2)) assert e.replace(sin, cos) == log(cos(x)) + tan(cos(x**2)) assert e.replace( sin, lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2)) a = Wild('a') b = Wild('b') assert e.replace(sin(a), cos(a)) == log(cos(x)) + tan(cos(x**2)) assert e.replace( sin(a), lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2)) # test exact assert (2*x).replace(a*x + b, b - a, exact=True) == 2*x assert (2*x).replace(a*x + b, b - a) == 2*x assert (2*x).replace(a*x + b, b - a, exact=False) == 2/x assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=True) == 2*x assert (2*x).replace(a*x + b, lambda a, b: b - a) == 2*x assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=False) == 2/x g = 2*sin(x**3) assert g.replace( lambda expr: expr.is_Number, lambda expr: expr**2) == 4*sin(x**9) assert cos(x).replace(cos, sin, map=True) == (sin(x), {cos(x): sin(x)}) assert sin(x).replace(cos, sin) == sin(x) cond, func = lambda x: x.is_Mul, lambda x: 2*x assert (x*y).replace(cond, func, map=True) == (2*x*y, {x*y: 2*x*y}) assert (x*(1 + x*y)).replace(cond, func, map=True) == \ (2*x*(2*x*y + 1), {x*(2*x*y + 1): 2*x*(2*x*y + 1), x*y: 2*x*y}) assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, map=True) == \ (sin(x), {sin(x): sin(x)/y}) # if not simultaneous then y*sin(x) -> y*sin(x)/y = sin(x) -> sin(x)/y assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, simultaneous=False) == sin(x)/y assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e ) == x**2/2 + O(x**3) assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e, simultaneous=False) == x**2/2 + O(x**3) assert (x*(x*y + 3)).replace(lambda x: x.is_Mul, lambda x: 2 + x) == \ x*(x*y + 5) + 2 e = (x*y + 1)*(2*x*y + 1) + 1 assert e.replace(cond, func, map=True) == ( 2*((2*x*y + 1)*(4*x*y + 1)) + 1, {2*x*y: 4*x*y, x*y: 2*x*y, (2*x*y + 1)*(4*x*y + 1): 2*((2*x*y + 1)*(4*x*y + 1))}) assert x.replace(x, y) == y assert (x + 1).replace(1, 2) == x + 2 # https://groups.google.com/forum/#!topic/sympy/8wCgeC95tz0 n1, n2, n3 = symbols('n1:4', commutative=False) assert (n1*f(n2)).replace(f, lambda x: x) == n1*n2 assert (n3*f(n2)).replace(f, lambda x: x) == n3*n2 # issue 16725 assert S.Zero.replace(Wild('x'), 1) == 1 # let the user override the default decision of False assert S.Zero.replace(Wild('x'), 1, exact=True) == 0 def test_find(): expr = (x + y + 2 + sin(3*x)) assert expr.find(lambda u: u.is_Integer) == {S(2), S(3)} assert expr.find(lambda u: u.is_Symbol) == {x, y} assert expr.find(lambda u: u.is_Integer, group=True) == {S(2): 1, S(3): 1} assert expr.find(lambda u: u.is_Symbol, group=True) == {x: 2, y: 1} assert expr.find(Integer) == {S(2), S(3)} assert expr.find(Symbol) == {x, y} assert expr.find(Integer, group=True) == {S(2): 1, S(3): 1} assert expr.find(Symbol, group=True) == {x: 2, y: 1} a = Wild('a') expr = sin(sin(x)) + sin(x) + cos(x) + x assert expr.find(lambda u: type(u) is sin) == {sin(x), sin(sin(x))} assert expr.find( lambda u: type(u) is sin, group=True) == {sin(x): 2, sin(sin(x)): 1} assert expr.find(sin(a)) == {sin(x), sin(sin(x))} assert expr.find(sin(a), group=True) == {sin(x): 2, sin(sin(x)): 1} assert expr.find(sin) == {sin(x), sin(sin(x))} assert expr.find(sin, group=True) == {sin(x): 2, sin(sin(x)): 1} def test_count(): expr = (x + y + 2 + sin(3*x)) assert expr.count(lambda u: u.is_Integer) == 2 assert expr.count(lambda u: u.is_Symbol) == 3 assert expr.count(Integer) == 2 assert expr.count(Symbol) == 3 assert expr.count(2) == 1 a = Wild('a') assert expr.count(sin) == 1 assert expr.count(sin(a)) == 1 assert expr.count(lambda u: type(u) is sin) == 1 assert f(x).count(f(x)) == 1 assert f(x).diff(x).count(f(x)) == 1 assert f(x).diff(x).count(x) == 2 def test_has_basics(): p = Wild('p') assert sin(x).has(x) assert sin(x).has(sin) assert not sin(x).has(y) assert not sin(x).has(cos) assert f(x).has(x) assert f(x).has(f) assert not f(x).has(y) assert not f(x).has(g) assert f(x).diff(x).has(x) assert f(x).diff(x).has(f) assert f(x).diff(x).has(Derivative) assert not f(x).diff(x).has(y) assert not f(x).diff(x).has(g) assert not f(x).diff(x).has(sin) assert (x**2).has(Symbol) assert not (x**2).has(Wild) assert (2*p).has(Wild) assert not x.has() def test_has_multiple(): f = x**2*y + sin(2**t + log(z)) assert f.has(x) assert f.has(y) assert f.has(z) assert f.has(t) assert not f.has(u) assert f.has(x, y, z, t) assert f.has(x, y, z, t, u) i = Integer(4400) assert not i.has(x) assert (i*x**i).has(x) assert not (i*y**i).has(x) assert (i*y**i).has(x, y) assert not (i*y**i).has(x, z) def test_has_piecewise(): f = (x*y + 3/y)**(3 + 2) p = Piecewise((g(x), x < -1), (1, x <= 1), (f, True)) assert p.has(x) assert p.has(y) assert not p.has(z) assert p.has(1) assert p.has(3) assert not p.has(4) assert p.has(f) assert p.has(g) assert not p.has(h) def test_has_iterative(): A, B, C = symbols('A,B,C', commutative=False) f = x*gamma(x)*sin(x)*exp(x*y)*A*B*C*cos(x*A*B) assert f.has(x) assert f.has(x*y) assert f.has(x*sin(x)) assert not f.has(x*sin(y)) assert f.has(x*A) assert f.has(x*A*B) assert not f.has(x*A*C) assert f.has(x*A*B*C) assert not f.has(x*A*C*B) assert f.has(x*sin(x)*A*B*C) assert not f.has(x*sin(x)*A*C*B) assert not f.has(x*sin(y)*A*B*C) assert f.has(x*gamma(x)) assert not f.has(x + sin(x)) assert (x & y & z).has(x & z) def test_has_integrals(): f = Integral(x**2 + sin(x*y*z), (x, 0, x + y + z)) assert f.has(x + y) assert f.has(x + z) assert f.has(y + z) assert f.has(x*y) assert f.has(x*z) assert f.has(y*z) assert not f.has(2*x + y) assert not f.has(2*x*y) def test_has_tuple(): assert Tuple(x, y).has(x) assert not Tuple(x, y).has(z) assert Tuple(f(x), g(x)).has(x) assert not Tuple(f(x), g(x)).has(y) assert Tuple(f(x), g(x)).has(f) assert Tuple(f(x), g(x)).has(f(x)) # XXX to be deprecated #assert not Tuple(f, g).has(x) #assert Tuple(f, g).has(f) #assert not Tuple(f, g).has(h) assert Tuple(True).has(True) assert Tuple(True).has(S.true) assert not Tuple(True).has(1) def test_has_units(): from sympy.physics.units import m, s assert (x*m/s).has(x) assert (x*m/s).has(y, z) is False def test_has_polys(): poly = Poly(x**2 + x*y*sin(z), x, y, t) assert poly.has(x) assert poly.has(x, y, z) assert poly.has(x, y, z, t) def test_has_physics(): assert FockState((x, y)).has(x) def test_as_poly_as_expr(): f = x**2 + 2*x*y assert f.as_poly().as_expr() == f assert f.as_poly(x, y).as_expr() == f assert (f + sin(x)).as_poly(x, y) is None p = Poly(f, x, y) assert p.as_poly() == p # https://github.com/sympy/sympy/issues/20610 assert S(2).as_poly() is None assert sqrt(2).as_poly(extension=True) is None raises(AttributeError, lambda: Tuple(x, x).as_poly(x)) raises(AttributeError, lambda: Tuple(x ** 2, x, y).as_poly(x)) def test_nonzero(): assert bool(S.Zero) is False assert bool(S.One) is True assert bool(x) is True assert bool(x + y) is True assert bool(x - x) is False assert bool(x*y) is True assert bool(x*1) is True assert bool(x*0) is False def test_is_number(): assert Float(3.14).is_number is True assert Integer(737).is_number is True assert Rational(3, 2).is_number is True assert Rational(8).is_number is True assert x.is_number is False assert (2*x).is_number is False assert (x + y).is_number is False assert log(2).is_number is True assert log(x).is_number is False assert (2 + log(2)).is_number is True assert (8 + log(2)).is_number is True assert (2 + log(x)).is_number is False assert (8 + log(2) + x).is_number is False assert (1 + x**2/x - x).is_number is True assert Tuple(Integer(1)).is_number is False assert Add(2, x).is_number is False assert Mul(3, 4).is_number is True assert Pow(log(2), 2).is_number is True assert oo.is_number is True g = WildFunction('g') assert g.is_number is False assert (2*g).is_number is False assert (x**2).subs(x, 3).is_number is True # test extensibility of .is_number # on subinstances of Basic class A(Basic): pass a = A() assert a.is_number is False def test_as_coeff_add(): assert S(2).as_coeff_add() == (2, ()) assert S(3.0).as_coeff_add() == (0, (S(3.0),)) assert S(-3.0).as_coeff_add() == (0, (S(-3.0),)) assert x.as_coeff_add() == (0, (x,)) assert (x - 1).as_coeff_add() == (-1, (x,)) assert (x + 1).as_coeff_add() == (1, (x,)) assert (x + 2).as_coeff_add() == (2, (x,)) assert (x + y).as_coeff_add(y) == (x, (y,)) assert (3*x).as_coeff_add(y) == (3*x, ()) # don't do expansion e = (x + y)**2 assert e.as_coeff_add(y) == (0, (e,)) def test_as_coeff_mul(): assert S(2).as_coeff_mul() == (2, ()) assert S(3.0).as_coeff_mul() == (1, (S(3.0),)) assert S(-3.0).as_coeff_mul() == (-1, (S(3.0),)) assert S(-3.0).as_coeff_mul(rational=False) == (-S(3.0), ()) assert x.as_coeff_mul() == (1, (x,)) assert (-x).as_coeff_mul() == (-1, (x,)) assert (2*x).as_coeff_mul() == (2, (x,)) assert (x*y).as_coeff_mul(y) == (x, (y,)) assert (3 + x).as_coeff_mul() == (1, (3 + x,)) assert (3 + x).as_coeff_mul(y) == (3 + x, ()) # don't do expansion e = exp(x + y) assert e.as_coeff_mul(y) == (1, (e,)) e = 2**(x + y) assert e.as_coeff_mul(y) == (1, (e,)) assert (1.1*x).as_coeff_mul(rational=False) == (1.1, (x,)) assert (1.1*x).as_coeff_mul() == (1, (1.1, x)) assert (-oo*x).as_coeff_mul(rational=True) == (-1, (oo, x)) def test_as_coeff_exponent(): assert (3*x**4).as_coeff_exponent(x) == (3, 4) assert (2*x**3).as_coeff_exponent(x) == (2, 3) assert (4*x**2).as_coeff_exponent(x) == (4, 2) assert (6*x**1).as_coeff_exponent(x) == (6, 1) assert (3*x**0).as_coeff_exponent(x) == (3, 0) assert (2*x**0).as_coeff_exponent(x) == (2, 0) assert (1*x**0).as_coeff_exponent(x) == (1, 0) assert (0*x**0).as_coeff_exponent(x) == (0, 0) assert (-1*x**0).as_coeff_exponent(x) == (-1, 0) assert (-2*x**0).as_coeff_exponent(x) == (-2, 0) assert (2*x**3 + pi*x**3).as_coeff_exponent(x) == (2 + pi, 3) assert (x*log(2)/(2*x + pi*x)).as_coeff_exponent(x) == \ (log(2)/(2 + pi), 0) # issue 4784 D = Derivative fx = D(f(x), x) assert fx.as_coeff_exponent(f(x)) == (fx, 0) def test_extractions(): for base in (2, S.Exp1): assert Pow(base**x, 3, evaluate=False ).extract_multiplicatively(base**x) == base**(2*x) assert (base**(5*x)).extract_multiplicatively( base**(3*x)) == base**(2*x) assert ((x*y)**3).extract_multiplicatively(x**2 * y) == x*y**2 assert ((x*y)**3).extract_multiplicatively(x**4 * y) is None assert (2*x).extract_multiplicatively(2) == x assert (2*x).extract_multiplicatively(3) is None assert (2*x).extract_multiplicatively(-1) is None assert (S.Half*x).extract_multiplicatively(3) == x/6 assert (sqrt(x)).extract_multiplicatively(x) is None assert (sqrt(x)).extract_multiplicatively(1/x) is None assert x.extract_multiplicatively(-x) is None assert (-2 - 4*I).extract_multiplicatively(-2) == 1 + 2*I assert (-2 - 4*I).extract_multiplicatively(3) is None assert (-2*x - 4*y - 8).extract_multiplicatively(-2) == x + 2*y + 4 assert (-2*x*y - 4*x**2*y).extract_multiplicatively(-2*y) == 2*x**2 + x assert (2*x*y + 4*x**2*y).extract_multiplicatively(2*y) == 2*x**2 + x assert (-4*y**2*x).extract_multiplicatively(-3*y) is None assert (2*x).extract_multiplicatively(1) == 2*x assert (-oo).extract_multiplicatively(5) is -oo assert (oo).extract_multiplicatively(5) is oo assert ((x*y)**3).extract_additively(1) is None assert (x + 1).extract_additively(x) == 1 assert (x + 1).extract_additively(2*x) is None assert (x + 1).extract_additively(-x) is None assert (-x + 1).extract_additively(2*x) is None assert (2*x + 3).extract_additively(x) == x + 3 assert (2*x + 3).extract_additively(2) == 2*x + 1 assert (2*x + 3).extract_additively(3) == 2*x assert (2*x + 3).extract_additively(-2) is None assert (2*x + 3).extract_additively(3*x) is None assert (2*x + 3).extract_additively(2*x) == 3 assert x.extract_additively(0) == x assert S(2).extract_additively(x) is None assert S(2.).extract_additively(2.) is S.Zero assert S(2.).extract_additively(2) is S.Zero assert S(2*x + 3).extract_additively(x + 1) == x + 2 assert S(2*x + 3).extract_additively(y + 1) is None assert S(2*x - 3).extract_additively(x + 1) is None assert S(2*x - 3).extract_additively(y + z) is None assert ((a + 1)*x*4 + y).extract_additively(x).expand() == \ 4*a*x + 3*x + y assert ((a + 1)*x*4 + 3*y).extract_additively(x + 2*y).expand() == \ 4*a*x + 3*x + y assert (y*(x + 1)).extract_additively(x + 1) is None assert ((y + 1)*(x + 1) + 3).extract_additively(x + 1) == \ y*(x + 1) + 3 assert ((x + y)*(x + 1) + x + y + 3).extract_additively(x + y) == \ x*(x + y) + 3 assert (x + y + 2*((x + y)*(x + 1)) + 3).extract_additively((x + y)*(x + 1)) == \ x + y + (x + 1)*(x + y) + 3 assert ((y + 1)*(x + 2*y + 1) + 3).extract_additively(y + 1) == \ (x + 2*y)*(y + 1) + 3 assert (-x - x*I).extract_additively(-x) == -I*x # extraction does not leave artificats, now assert (4*x*(y + 1) + y).extract_additively(x) == x*(4*y + 3) + y n = Symbol("n", integer=True) assert (Integer(-3)).could_extract_minus_sign() is True assert (-n*x + x).could_extract_minus_sign() != \ (n*x - x).could_extract_minus_sign() assert (x - y).could_extract_minus_sign() != \ (-x + y).could_extract_minus_sign() assert (1 - x - y).could_extract_minus_sign() is True assert (1 - x + y).could_extract_minus_sign() is False assert ((-x - x*y)/y).could_extract_minus_sign() is False assert ((x + x*y)/(-y)).could_extract_minus_sign() is True assert ((x + x*y)/y).could_extract_minus_sign() is False assert ((-x - y)/(x + y)).could_extract_minus_sign() is False class sign_invariant(Function, Expr): nargs = 1 def __neg__(self): return self foo = sign_invariant(x) assert foo == -foo assert foo.could_extract_minus_sign() is False assert (x - y).could_extract_minus_sign() is False assert (-x + y).could_extract_minus_sign() is True assert (x - 1).could_extract_minus_sign() is False assert (1 - x).could_extract_minus_sign() is True assert (sqrt(2) - 1).could_extract_minus_sign() is True assert (1 - sqrt(2)).could_extract_minus_sign() is False # check that result is canonical eq = (3*x + 15*y).extract_multiplicatively(3) assert eq.args == eq.func(*eq.args).args def test_nan_extractions(): for r in (1, 0, I, nan): assert nan.extract_additively(r) is None assert nan.extract_multiplicatively(r) is None def test_coeff(): assert (x + 1).coeff(x + 1) == 1 assert (3*x).coeff(0) == 0 assert (z*(1 + x)*x**2).coeff(1 + x) == z*x**2 assert (1 + 2*x*x**(1 + x)).coeff(x*x**(1 + x)) == 2 assert (1 + 2*x**(y + z)).coeff(x**(y + z)) == 2 assert (3 + 2*x + 4*x**2).coeff(1) == 0 assert (3 + 2*x + 4*x**2).coeff(-1) == 0 assert (3 + 2*x + 4*x**2).coeff(x) == 2 assert (3 + 2*x + 4*x**2).coeff(x**2) == 4 assert (3 + 2*x + 4*x**2).coeff(x**3) == 0 assert (-x/8 + x*y).coeff(x) == Rational(-1, 8) + y assert (-x/8 + x*y).coeff(-x) == S.One/8 assert (4*x).coeff(2*x) == 0 assert (2*x).coeff(2*x) == 1 assert (-oo*x).coeff(x*oo) == -1 assert (10*x).coeff(x, 0) == 0 assert (10*x).coeff(10*x, 0) == 0 n1, n2 = symbols('n1 n2', commutative=False) assert (n1*n2).coeff(n1) == 1 assert (n1*n2).coeff(n2) == n1 assert (n1*n2 + x*n1).coeff(n1) == 1 # 1*n1*(n2+x) assert (n2*n1 + x*n1).coeff(n1) == n2 + x assert (n2*n1 + x*n1**2).coeff(n1) == n2 assert (n1**x).coeff(n1) == 0 assert (n1*n2 + n2*n1).coeff(n1) == 0 assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=1) == n2 assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=0) == 2 assert (2*f(x) + 3*f(x).diff(x)).coeff(f(x)) == 2 expr = z*(x + y)**2 expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2 assert expr.coeff(z) == (x + y)**2 assert expr.coeff(x + y) == 0 assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2 assert (x + y + 3*z).coeff(1) == x + y assert (-x + 2*y).coeff(-1) == x assert (x - 2*y).coeff(-1) == 2*y assert (3 + 2*x + 4*x**2).coeff(1) == 0 assert (-x - 2*y).coeff(2) == -y assert (x + sqrt(2)*x).coeff(sqrt(2)) == x assert (3 + 2*x + 4*x**2).coeff(x) == 2 assert (3 + 2*x + 4*x**2).coeff(x**2) == 4 assert (3 + 2*x + 4*x**2).coeff(x**3) == 0 assert (z*(x + y)**2).coeff((x + y)**2) == z assert (z*(x + y)**2).coeff(x + y) == 0 assert (2 + 2*x + (x + 1)*y).coeff(x + 1) == y assert (x + 2*y + 3).coeff(1) == x assert (x + 2*y + 3).coeff(x, 0) == 2*y + 3 assert (x**2 + 2*y + 3*x).coeff(x**2, 0) == 2*y + 3*x assert x.coeff(0, 0) == 0 assert x.coeff(x, 0) == 0 n, m, o, l = symbols('n m o l', commutative=False) assert n.coeff(n) == 1 assert y.coeff(n) == 0 assert (3*n).coeff(n) == 3 assert (2 + n).coeff(x*m) == 0 assert (2*x*n*m).coeff(x) == 2*n*m assert (2 + n).coeff(x*m*n + y) == 0 assert (2*x*n*m).coeff(3*n) == 0 assert (n*m + m*n*m).coeff(n) == 1 + m assert (n*m + m*n*m).coeff(n, right=True) == m # = (1 + m)*n*m assert (n*m + m*n).coeff(n) == 0 assert (n*m + o*m*n).coeff(m*n) == o assert (n*m + o*m*n).coeff(m*n, right=True) == 1 assert (n*m + n*m*n).coeff(n*m, right=True) == 1 + n # = n*m*(n + 1) assert (x*y).coeff(z, 0) == x*y assert (x*n + y*n + z*m).coeff(n) == x + y assert (n*m + n*o + o*l).coeff(n, right=True) == m + o assert (x*n*m*n + y*n*m*o + z*l).coeff(m, right=True) == x*n + y*o assert (x*n*m*n + x*n*m*o + z*l).coeff(m, right=True) == n + o assert (x*n*m*n + x*n*m*o + z*l).coeff(m) == x*n def test_coeff2(): r, kappa = symbols('r, kappa') psi = Function("psi") g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2)) g = g.expand() assert g.coeff(psi(r).diff(r)) == 2/r def test_coeff2_0(): r, kappa = symbols('r, kappa') psi = Function("psi") g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2)) g = g.expand() assert g.coeff(psi(r).diff(r, 2)) == 1 def test_coeff_expand(): expr = z*(x + y)**2 expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2 assert expr.coeff(z) == (x + y)**2 assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2 def test_integrate(): assert x.integrate(x) == x**2/2 assert x.integrate((x, 0, 1)) == S.Half def test_as_base_exp(): assert x.as_base_exp() == (x, S.One) assert (x*y*z).as_base_exp() == (x*y*z, S.One) assert (x + y + z).as_base_exp() == (x + y + z, S.One) assert ((x + y)**z).as_base_exp() == (x + y, z) def test_issue_4963(): assert hasattr(Mul(x, y), "is_commutative") assert hasattr(Mul(x, y, evaluate=False), "is_commutative") assert hasattr(Pow(x, y), "is_commutative") assert hasattr(Pow(x, y, evaluate=False), "is_commutative") expr = Mul(Pow(2, 2, evaluate=False), 3, evaluate=False) + 1 assert hasattr(expr, "is_commutative") def test_action_verbs(): assert nsimplify(1/(exp(3*pi*x/5) + 1)) == \ (1/(exp(3*pi*x/5) + 1)).nsimplify() assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp() assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep=True) assert radsimp(1/(2 + sqrt(2))) == (1/(2 + sqrt(2))).radsimp() assert radsimp(1/(a + b*sqrt(c)), symbolic=False) == \ (1/(a + b*sqrt(c))).radsimp(symbolic=False) assert powsimp(x**y*x**z*y**z, combine='all') == \ (x**y*x**z*y**z).powsimp(combine='all') assert (x**t*y**t).powsimp(force=True) == (x*y)**t assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify() assert together(1/x + 1/y) == (1/x + 1/y).together() assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == \ (a*x**2 + b*x**2 + a*x - b*x + c).collect(x) assert apart(y/(y + 2)/(y + 1), y) == (y/(y + 2)/(y + 1)).apart(y) assert combsimp(y/(x + 2)/(x + 1)) == (y/(x + 2)/(x + 1)).combsimp() assert gammasimp(gamma(x)/gamma(x-5)) == (gamma(x)/gamma(x-5)).gammasimp() assert factor(x**2 + 5*x + 6) == (x**2 + 5*x + 6).factor() assert refine(sqrt(x**2)) == sqrt(x**2).refine() assert cancel((x**2 + 5*x + 6)/(x + 2)) == ((x**2 + 5*x + 6)/(x + 2)).cancel() def test_as_powers_dict(): assert x.as_powers_dict() == {x: 1} assert (x**y*z).as_powers_dict() == {x: y, z: 1} assert Mul(2, 2, evaluate=False).as_powers_dict() == {S(2): S(2)} assert (x*y).as_powers_dict()[z] == 0 assert (x + y).as_powers_dict()[z] == 0 def test_as_coefficients_dict(): check = [S.One, x, y, x*y, 1] assert [Add(3*x, 2*x, y, 3).as_coefficients_dict()[i] for i in check] == \ [3, 5, 1, 0, 3] assert [Add(3*x, 2*x, y, 3, evaluate=False).as_coefficients_dict()[i] for i in check] == [3, 5, 1, 0, 3] assert [(3*x*y).as_coefficients_dict()[i] for i in check] == \ [0, 0, 0, 3, 0] assert [(3.0*x*y).as_coefficients_dict()[i] for i in check] == \ [0, 0, 0, 3.0, 0] assert (3.0*x*y).as_coefficients_dict()[3.0*x*y] == 0 eq = x*(x + 1)*a + x*b + c/x assert eq.as_coefficients_dict(x) == {x: b, 1/x: c, x*(x + 1): a} assert eq.expand().as_coefficients_dict(x) == {x**2: a, x: a + b, 1/x: c} assert x.as_coefficients_dict() == {x: S.One} def test_args_cnc(): A = symbols('A', commutative=False) assert (x + A).args_cnc() == \ [[], [x + A]] assert (x + a).args_cnc() == \ [[a + x], []] assert (x*a).args_cnc() == \ [[a, x], []] assert (x*y*A*(A + 1)).args_cnc(cset=True) == \ [{x, y}, [A, 1 + A]] assert Mul(x, x, evaluate=False).args_cnc(cset=True, warn=False) == \ [{x}, []] assert Mul(x, x**2, evaluate=False).args_cnc(cset=True, warn=False) == \ [{x, x**2}, []] raises(ValueError, lambda: Mul(x, x, evaluate=False).args_cnc(cset=True)) assert Mul(x, y, x, evaluate=False).args_cnc() == \ [[x, y, x], []] # always split -1 from leading number assert (-1.*x).args_cnc() == [[-1, 1.0, x], []] def test_new_rawargs(): n = Symbol('n', commutative=False) a = x + n assert a.is_commutative is False assert a._new_rawargs(x).is_commutative assert a._new_rawargs(x, y).is_commutative assert a._new_rawargs(x, n).is_commutative is False assert a._new_rawargs(x, y, n).is_commutative is False m = x*n assert m.is_commutative is False assert m._new_rawargs(x).is_commutative assert m._new_rawargs(n).is_commutative is False assert m._new_rawargs(x, y).is_commutative assert m._new_rawargs(x, n).is_commutative is False assert m._new_rawargs(x, y, n).is_commutative is False assert m._new_rawargs(x, n, reeval=False).is_commutative is False assert m._new_rawargs(S.One) is S.One def test_issue_5226(): assert Add(evaluate=False) == 0 assert Mul(evaluate=False) == 1 assert Mul(x + y, evaluate=False).is_Add def test_free_symbols(): # free_symbols should return the free symbols of an object assert S.One.free_symbols == set() assert x.free_symbols == {x} assert Integral(x, (x, 1, y)).free_symbols == {y} assert (-Integral(x, (x, 1, y))).free_symbols == {y} assert meter.free_symbols == set() assert (meter**x).free_symbols == {x} def test_has_free(): assert x.has_free(x) assert not x.has_free(y) assert (x + y).has_free(x) assert (x + y).has_free(*(x, z)) assert f(x).has_free(x) assert f(x).has_free(f(x)) assert Integral(f(x), (f(x), 1, y)).has_free(y) assert not Integral(f(x), (f(x), 1, y)).has_free(x) assert not Integral(f(x), (f(x), 1, y)).has_free(f(x)) # simple extraction assert (x + 1 + y).has_free(x + 1) assert not (x + 2 + y).has_free(x + 1) assert (2 + 3*x*y).has_free(3*x) raises(TypeError, lambda: x.has_free({x, y})) s = FiniteSet(1, 2) assert Piecewise((s, x > 3), (4, True)).has_free(s) assert not Piecewise((1, x > 3), (4, True)).has_free(s) # can't make set of these, but fallback will handle raises(TypeError, lambda: x.has_free(y, [])) def test_has_xfree(): assert (x + 1).has_xfree({x}) assert ((x + 1)**2).has_xfree({x + 1}) assert not (x + y + 1).has_xfree({x + 1}) raises(TypeError, lambda: x.has_xfree(x)) raises(TypeError, lambda: x.has_xfree([x])) def test_issue_5300(): x = Symbol('x', commutative=False) assert x*sqrt(2)/sqrt(6) == x*sqrt(3)/3 def test_floordiv(): from sympy.functions.elementary.integers import floor assert x // y == floor(x / y) def test_as_coeff_Mul(): assert Integer(3).as_coeff_Mul() == (Integer(3), Integer(1)) assert Rational(3, 4).as_coeff_Mul() == (Rational(3, 4), Integer(1)) assert Float(5.0).as_coeff_Mul() == (Float(5.0), Integer(1)) assert (Integer(3)*x).as_coeff_Mul() == (Integer(3), x) assert (Rational(3, 4)*x).as_coeff_Mul() == (Rational(3, 4), x) assert (Float(5.0)*x).as_coeff_Mul() == (Float(5.0), x) assert (Integer(3)*x*y).as_coeff_Mul() == (Integer(3), x*y) assert (Rational(3, 4)*x*y).as_coeff_Mul() == (Rational(3, 4), x*y) assert (Float(5.0)*x*y).as_coeff_Mul() == (Float(5.0), x*y) assert (x).as_coeff_Mul() == (S.One, x) assert (x*y).as_coeff_Mul() == (S.One, x*y) assert (-oo*x).as_coeff_Mul(rational=True) == (-1, oo*x) def test_as_coeff_Add(): assert Integer(3).as_coeff_Add() == (Integer(3), Integer(0)) assert Rational(3, 4).as_coeff_Add() == (Rational(3, 4), Integer(0)) assert Float(5.0).as_coeff_Add() == (Float(5.0), Integer(0)) assert (Integer(3) + x).as_coeff_Add() == (Integer(3), x) assert (Rational(3, 4) + x).as_coeff_Add() == (Rational(3, 4), x) assert (Float(5.0) + x).as_coeff_Add() == (Float(5.0), x) assert (Float(5.0) + x).as_coeff_Add(rational=True) == (0, Float(5.0) + x) assert (Integer(3) + x + y).as_coeff_Add() == (Integer(3), x + y) assert (Rational(3, 4) + x + y).as_coeff_Add() == (Rational(3, 4), x + y) assert (Float(5.0) + x + y).as_coeff_Add() == (Float(5.0), x + y) assert (x).as_coeff_Add() == (S.Zero, x) assert (x*y).as_coeff_Add() == (S.Zero, x*y) def test_expr_sorting(): exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2] assert sorted(exprs, key=default_sort_key) == exprs exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n, sin(x**2), cos(x), cos(x**2), tan(x)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1] assert sorted(exprs, key=default_sort_key) == exprs exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1] assert sorted(exprs, key=default_sort_key) == exprs exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[3], [1, 2]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[1, 2], [2, 3]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[1, 2], [1, 2, 3]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [{x: -y}, {x: y}] assert sorted(exprs, key=default_sort_key) == exprs exprs = [{1}, {1, 2}] assert sorted(exprs, key=default_sort_key) == exprs a, b = exprs = [Dummy('x'), Dummy('x')] assert sorted([b, a], key=default_sort_key) == exprs def test_as_ordered_factors(): assert x.as_ordered_factors() == [x] assert (2*x*x**n*sin(x)*cos(x)).as_ordered_factors() \ == [Integer(2), x, x**n, sin(x), cos(x)] args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] expr = Mul(*args) assert expr.as_ordered_factors() == args A, B = symbols('A,B', commutative=False) assert (A*B).as_ordered_factors() == [A, B] assert (B*A).as_ordered_factors() == [B, A] def test_as_ordered_terms(): assert x.as_ordered_terms() == [x] assert (sin(x)**2*cos(x) + sin(x)*cos(x)**2 + 1).as_ordered_terms() \ == [sin(x)**2*cos(x), sin(x)*cos(x)**2, 1] args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] expr = Add(*args) assert expr.as_ordered_terms() == args assert (1 + 4*sqrt(3)*pi*x).as_ordered_terms() == [4*pi*x*sqrt(3), 1] assert ( 2 + 3*I).as_ordered_terms() == [2, 3*I] assert (-2 + 3*I).as_ordered_terms() == [-2, 3*I] assert ( 2 - 3*I).as_ordered_terms() == [2, -3*I] assert (-2 - 3*I).as_ordered_terms() == [-2, -3*I] assert ( 4 + 3*I).as_ordered_terms() == [4, 3*I] assert (-4 + 3*I).as_ordered_terms() == [-4, 3*I] assert ( 4 - 3*I).as_ordered_terms() == [4, -3*I] assert (-4 - 3*I).as_ordered_terms() == [-4, -3*I] e = x**2*y**2 + x*y**4 + y + 2 assert e.as_ordered_terms(order="lex") == [x**2*y**2, x*y**4, y, 2] assert e.as_ordered_terms(order="grlex") == [x*y**4, x**2*y**2, y, 2] assert e.as_ordered_terms(order="rev-lex") == [2, y, x*y**4, x**2*y**2] assert e.as_ordered_terms(order="rev-grlex") == [2, y, x**2*y**2, x*y**4] k = symbols('k') assert k.as_ordered_terms(data=True) == ([(k, ((1.0, 0.0), (1,), ()))], [k]) def test_sort_key_atomic_expr(): from sympy.physics.units import m, s assert sorted([-m, s], key=lambda arg: arg.sort_key()) == [-m, s] def test_eval_interval(): assert exp(x)._eval_interval(*Tuple(x, 0, 1)) == exp(1) - exp(0) # issue 4199 a = x/y raises(NotImplementedError, lambda: a._eval_interval(x, S.Zero, oo)._eval_interval(y, oo, S.Zero)) raises(NotImplementedError, lambda: a._eval_interval(x, S.Zero, oo)._eval_interval(y, S.Zero, oo)) a = x - y raises(NotImplementedError, lambda: a._eval_interval(x, S.One, oo)._eval_interval(y, oo, S.One)) raises(ValueError, lambda: x._eval_interval(x, None, None)) a = -y*Heaviside(x - y) assert a._eval_interval(x, -oo, oo) == -y assert a._eval_interval(x, oo, -oo) == y def test_eval_interval_zoo(): # Test that limit is used when zoo is returned assert Si(1/x)._eval_interval(x, S.Zero, S.One) == -pi/2 + Si(1) def test_primitive(): assert (3*(x + 1)**2).primitive() == (3, (x + 1)**2) assert (6*x + 2).primitive() == (2, 3*x + 1) assert (x/2 + 3).primitive() == (S.Half, x + 6) eq = (6*x + 2)*(x/2 + 3) assert eq.primitive()[0] == 1 eq = (2 + 2*x)**2 assert eq.primitive()[0] == 1 assert (4.0*x).primitive() == (1, 4.0*x) assert (4.0*x + y/2).primitive() == (S.Half, 8.0*x + y) assert (-2*x).primitive() == (2, -x) assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).primitive() == \ (S.One/14, 7.0*x + 21*y + 10*z) for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: assert (i + x/3).primitive() == \ (S.One/3, i + x) assert (S.Infinity + 2*x/3 + 4*y/7).primitive() == \ (S.One/21, 14*x + 12*y + oo) assert S.Zero.primitive() == (S.One, S.Zero) def test_issue_5843(): a = 1 + x assert (2*a).extract_multiplicatively(a) == 2 assert (4*a).extract_multiplicatively(2*a) == 2 assert ((3*a)*(2*a)).extract_multiplicatively(a) == 6*a def test_is_constant(): from sympy.solvers.solvers import checksol assert Sum(x, (x, 1, 10)).is_constant() is True assert Sum(x, (x, 1, n)).is_constant() is False assert Sum(x, (x, 1, n)).is_constant(y) is True assert Sum(x, (x, 1, n)).is_constant(n) is False assert Sum(x, (x, 1, n)).is_constant(x) is True eq = a*cos(x)**2 + a*sin(x)**2 - a assert eq.is_constant() is True assert eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 assert x.is_constant() is False assert x.is_constant(y) is True assert log(x/y).is_constant() is False assert checksol(x, x, Sum(x, (x, 1, n))) is False assert checksol(x, x, Sum(x, (x, 1, n))) is False assert f(1).is_constant assert checksol(x, x, f(x)) is False assert Pow(x, S.Zero, evaluate=False).is_constant() is True # == 1 assert Pow(S.Zero, x, evaluate=False).is_constant() is False # == 0 or 1 assert (2**x).is_constant() is False assert Pow(S(2), S(3), evaluate=False).is_constant() is True z1, z2 = symbols('z1 z2', zero=True) assert (z1 + 2*z2).is_constant() is True assert meter.is_constant() is True assert (3*meter).is_constant() is True assert (x*meter).is_constant() is False def test_equals(): assert (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2).equals(0) assert (x**2 - 1).equals((x + 1)*(x - 1)) assert (cos(x)**2 + sin(x)**2).equals(1) assert (a*cos(x)**2 + a*sin(x)**2).equals(a) r = sqrt(2) assert (-1/(r + r*x) + 1/r/(1 + x)).equals(0) assert factorial(x + 1).equals((x + 1)*factorial(x)) assert sqrt(3).equals(2*sqrt(3)) is False assert (sqrt(5)*sqrt(3)).equals(sqrt(3)) is False assert (sqrt(5) + sqrt(3)).equals(0) is False assert (sqrt(5) + pi).equals(0) is False assert meter.equals(0) is False assert (3*meter**2).equals(0) is False eq = -(-1)**(S(3)/4)*6**(S.One/4) + (-6)**(S.One/4)*I if eq != 0: # if canonicalization makes this zero, skip the test assert eq.equals(0) assert sqrt(x).equals(0) is False # from integrate(x*sqrt(1 + 2*x), x); # diff is zero only when assumptions allow i = 2*sqrt(2)*x**(S(5)/2)*(1 + 1/(2*x))**(S(5)/2)/5 + \ 2*sqrt(2)*x**(S(3)/2)*(1 + 1/(2*x))**(S(5)/2)/(-6 - 3/x) ans = sqrt(2*x + 1)*(6*x**2 + x - 1)/15 diff = i - ans assert diff.equals(0) is None # should be False, but previously this was False due to wrong intermediate result assert diff.subs(x, Rational(-1, 2)/2) == 7*sqrt(2)/120 # there are regions for x for which the expression is True, for # example, when x < -1/2 or x > 0 the expression is zero p = Symbol('p', positive=True) assert diff.subs(x, p).equals(0) is True assert diff.subs(x, -1).equals(0) is True # prove via minimal_polynomial or self-consistency eq = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert eq.equals(0) q = 3**Rational(1, 3) + 3 p = expand(q**3)**Rational(1, 3) assert (p - q).equals(0) # issue 6829 # eq = q*x + q/4 + x**4 + x**3 + 2*x**2 - S.One/3 # z = eq.subs(x, solve(eq, x)[0]) q = symbols('q') z = (q*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4) + q/4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4)**4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4)**3 + 2*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4)**2 - Rational(1, 3)) assert z.equals(0) def test_random(): from sympy.functions.combinatorial.numbers import lucas from sympy.simplify.simplify import posify assert posify(x)[0]._random() is not None assert lucas(n)._random(2, -2, 0, -1, 1) is None # issue 8662 assert Piecewise((Max(x, y), z))._random() is None def test_round(): assert str(Float('0.1249999').round(2)) == '0.12' d20 = 12345678901234567890 ans = S(d20).round(2) assert ans.is_Integer and ans == d20 ans = S(d20).round(-2) assert ans.is_Integer and ans == 12345678901234567900 assert str(S('1/7').round(4)) == '0.1429' assert str(S('.[12345]').round(4)) == '0.1235' assert str(S('.1349').round(2)) == '0.13' n = S(12345) ans = n.round() assert ans.is_Integer assert ans == n ans = n.round(1) assert ans.is_Integer assert ans == n ans = n.round(4) assert ans.is_Integer assert ans == n assert n.round(-1) == 12340 r = Float(str(n)).round(-4) assert r == 10000.0 assert n.round(-5) == 0 assert str((pi + sqrt(2)).round(2)) == '4.56' assert (10*(pi + sqrt(2))).round(-1) == 50.0 raises(TypeError, lambda: round(x + 2, 2)) assert str(S(2.3).round(1)) == '2.3' # rounding in SymPy (as in Decimal) should be # exact for the given precision; we check here # that when a 5 follows the last digit that # the rounded digit will be even. for i in range(-99, 100): # construct a decimal that ends in 5, e.g. 123 -> 0.1235 s = str(abs(i)) p = len(s) # we are going to round to the last digit of i n = '0.%s5' % s # put a 5 after i's digits j = p + 2 # 2 for '0.' if i < 0: # 1 for '-' j += 1 n = '-' + n v = str(Float(n).round(p))[:j] # pertinent digits if v.endswith('.'): continue # it ends with 0 which is even L = int(v[-1]) # last digit assert L % 2 == 0, (n, '->', v) assert (Float(.3, 3) + 2*pi).round() == 7 assert (Float(.3, 3) + 2*pi*100).round() == 629 assert (pi + 2*E*I).round() == 3 + 5*I # don't let request for extra precision give more than # what is known (in this case, only 3 digits) assert str((Float(.03, 3) + 2*pi/100).round(5)) == '0.0928' assert str((Float(.03, 3) + 2*pi/100).round(4)) == '0.0928' assert S.Zero.round() == 0 a = (Add(1, Float('1.' + '9'*27, ''), evaluate=0)) assert a.round(10) == Float('3.000000000000000000000000000', '') assert a.round(25) == Float('3.000000000000000000000000000', '') assert a.round(26) == Float('3.000000000000000000000000000', '') assert a.round(27) == Float('2.999999999999999999999999999', '') assert a.round(30) == Float('2.999999999999999999999999999', '') # XXX: Should round set the precision of the result? # The previous version of the tests above is this but they only pass # because Floats with unequal precision compare equal: # # assert a.round(10) == Float('3.0000000000', '') # assert a.round(25) == Float('3.0000000000000000000000000', '') # assert a.round(26) == Float('3.00000000000000000000000000', '') # assert a.round(27) == Float('2.999999999999999999999999999', '') # assert a.round(30) == Float('2.999999999999999999999999999', '') raises(TypeError, lambda: x.round()) raises(TypeError, lambda: f(1).round()) # exact magnitude of 10 assert str(S.One.round()) == '1' assert str(S(100).round()) == '100' # applied to real and imaginary portions assert (2*pi + E*I).round() == 6 + 3*I assert (2*pi + I/10).round() == 6 assert (pi/10 + 2*I).round() == 2*I # the lhs re and im parts are Float with dps of 2 # and those on the right have dps of 15 so they won't compare # equal unless we use string or compare components (which will # then coerce the floats to the same precision) or re-create # the floats assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I' assert str((pi/10 + E*I).round(2).as_real_imag()) == '(0.31, 2.72)' assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I' # issue 6914 assert (I**(I + 3)).round(3) == Float('-0.208', '')*I # issue 8720 assert S(-123.6).round() == -124 assert S(-1.5).round() == -2 assert S(-100.5).round() == -100 assert S(-1.5 - 10.5*I).round() == -2 - 10*I # issue 7961 assert str(S(0.006).round(2)) == '0.01' assert str(S(0.00106).round(4)) == '0.0011' # issue 8147 assert S.NaN.round() is S.NaN assert S.Infinity.round() is S.Infinity assert S.NegativeInfinity.round() is S.NegativeInfinity assert S.ComplexInfinity.round() is S.ComplexInfinity # check that types match for i in range(2): fi = float(i) # 2 args assert all(type(round(i, p)) is int for p in (-1, 0, 1)) assert all(S(i).round(p).is_Integer for p in (-1, 0, 1)) assert all(type(round(fi, p)) is float for p in (-1, 0, 1)) assert all(S(fi).round(p).is_Float for p in (-1, 0, 1)) # 1 arg (p is None) assert type(round(i)) is int assert S(i).round().is_Integer assert type(round(fi)) is int assert S(fi).round().is_Integer def test_held_expression_UnevaluatedExpr(): x = symbols("x") he = UnevaluatedExpr(1/x) e1 = x*he assert isinstance(e1, Mul) assert e1.args == (x, he) assert e1.doit() == 1 assert UnevaluatedExpr(Derivative(x, x)).doit(deep=False ) == Derivative(x, x) assert UnevaluatedExpr(Derivative(x, x)).doit() == 1 xx = Mul(x, x, evaluate=False) assert xx != x**2 ue2 = UnevaluatedExpr(xx) assert isinstance(ue2, UnevaluatedExpr) assert ue2.args == (xx,) assert ue2.doit() == x**2 assert ue2.doit(deep=False) == xx x2 = UnevaluatedExpr(2)*2 assert type(x2) is Mul assert x2.args == (2, UnevaluatedExpr(2)) def test_round_exception_nostr(): # Don't use the string form of the expression in the round exception, as # it's too slow s = Symbol('bad') try: s.round() except TypeError as e: assert 'bad' not in str(e) else: # Did not raise raise AssertionError("Did not raise") def test_extract_branch_factor(): assert exp_polar(2.0*I*pi).extract_branch_factor() == (1, 1) def test_identity_removal(): assert Add.make_args(x + 0) == (x,) assert Mul.make_args(x*1) == (x,) def test_float_0(): assert Float(0.0) + 1 == Float(1.0) @XFAIL def test_float_0_fail(): assert Float(0.0)*x == Float(0.0) assert (x + Float(0.0)).is_Add def test_issue_6325(): ans = (b**2 + z**2 - (b*(a + b*t) + z*(c + t*z))**2/( (a + b*t)**2 + (c + t*z)**2))/sqrt((a + b*t)**2 + (c + t*z)**2) e = sqrt((a + b*t)**2 + (c + z*t)**2) assert diff(e, t, 2) == ans assert e.diff(t, 2) == ans assert diff(e, t, 2, simplify=False) != ans def test_issue_7426(): f1 = a % c f2 = x % z assert f1.equals(f2) is None def test_issue_11122(): x = Symbol('x', extended_positive=False) assert unchanged(Gt, x, 0) # (x > 0) # (x > 0) should remain unevaluated after PR #16956 x = Symbol('x', positive=False, real=True) assert (x > 0) is S.false def test_issue_10651(): x = Symbol('x', real=True) e1 = (-1 + x)/(1 - x) e3 = (4*x**2 - 4)/((1 - x)*(1 + x)) e4 = 1/(cos(x)**2) - (tan(x))**2 x = Symbol('x', positive=True) e5 = (1 + x)/x assert e1.is_constant() is None assert e3.is_constant() is None assert e4.is_constant() is None assert e5.is_constant() is False def test_issue_10161(): x = symbols('x', real=True) assert x*abs(x)*abs(x) == x**3 def test_issue_10755(): x = symbols('x') raises(TypeError, lambda: int(log(x))) raises(TypeError, lambda: log(x).round(2)) def test_issue_11877(): x = symbols('x') assert integrate(log(S.Half - x), (x, 0, S.Half)) == Rational(-1, 2) -log(2)/2 def test_normal(): x = symbols('x') e = Mul(S.Half, 1 + x, evaluate=False) assert e.normal() == e def test_expr(): x = symbols('x') raises(TypeError, lambda: tan(x).series(x, 2, oo, "+")) def test_ExprBuilder(): eb = ExprBuilder(Mul) eb.args.extend([x, x]) assert eb.build() == x**2 def test_issue_22020(): from sympy.parsing.sympy_parser import parse_expr x = parse_expr("log((2*V/3-V)/C)/-(R+r)*C") y = parse_expr("log((2*V/3-V)/C)/-(R+r)*2") assert x.equals(y) is False def test_non_string_equality(): # Expressions should not compare equal to strings x = symbols('x') one = sympify(1) assert (x == 'x') is False assert (x != 'x') is True assert (one == '1') is False assert (one != '1') is True assert (x + 1 == 'x + 1') is False assert (x + 1 != 'x + 1') is True # Make sure == doesn't try to convert the resulting expression to a string # (e.g., by calling sympify() instead of _sympify()) class BadRepr: def __repr__(self): raise RuntimeError assert (x == BadRepr()) is False assert (x != BadRepr()) is True def test_21494(): from sympy.testing.pytest import warns_deprecated_sympy with warns_deprecated_sympy(): assert x.expr_free_symbols == {x} with warns_deprecated_sympy(): assert Basic().expr_free_symbols == set() with warns_deprecated_sympy(): assert S(2).expr_free_symbols == {S(2)} with warns_deprecated_sympy(): assert Indexed("A", x).expr_free_symbols == {Indexed("A", x)} with warns_deprecated_sympy(): assert Subs(x, x, 0).expr_free_symbols == set() def test_Expr__eq__iterable_handling(): assert x != range(3) def test_format(): assert '{:1.2f}'.format(S.Zero) == '0.00' assert '{:+3.0f}'.format(S(3)) == ' +3' assert '{:23.20f}'.format(pi) == ' 3.14159265358979323846' assert '{:50.48f}'.format(exp(sin(1))) == '2.319776824715853173956590377503266813254904772376'
21e192f1d5a0da733c2e770afbf5c7e32b82ca80634881e07a60c61298951277
"""Test whether all elements of cls.args are instances of Basic. """ # NOTE: keep tests sorted by (module, class name) key. If a class can't # be instantiated, add it here anyway with @SKIP("abstract class) (see # e.g. Function). import os import re from sympy.assumptions.ask import Q from sympy.core.basic import Basic from sympy.core.function import (Function, Lambda) from sympy.core.numbers import (Rational, oo, pi) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin from sympy.testing.pytest import SKIP a, b, c, x, y, z = symbols('a,b,c,x,y,z') whitelist = [ "sympy.assumptions.predicates", # tested by test_predicates() "sympy.assumptions.relation.equality", # tested by test_predicates() ] def test_all_classes_are_tested(): this = os.path.split(__file__)[0] path = os.path.join(this, os.pardir, os.pardir) sympy_path = os.path.abspath(path) prefix = os.path.split(sympy_path)[0] + os.sep re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE) modules = {} for root, dirs, files in os.walk(sympy_path): module = root.replace(prefix, "").replace(os.sep, ".") for file in files: if file.startswith(("_", "test_", "bench_")): continue if not file.endswith(".py"): continue with open(os.path.join(root, file), encoding='utf-8') as f: text = f.read() submodule = module + '.' + file[:-3] if any(submodule.startswith(wpath) for wpath in whitelist): continue names = re_cls.findall(text) if not names: continue try: mod = __import__(submodule, fromlist=names) except ImportError: continue def is_Basic(name): cls = getattr(mod, name) if hasattr(cls, '_sympy_deprecated_func'): cls = cls._sympy_deprecated_func if not isinstance(cls, type): # check instance of singleton class with same name cls = type(cls) return issubclass(cls, Basic) names = list(filter(is_Basic, names)) if names: modules[submodule] = names ns = globals() failed = [] for module, names in modules.items(): mod = module.replace('.', '__') for name in names: test = 'test_' + mod + '__' + name if test not in ns: failed.append(module + '.' + name) assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed) def _test_args(obj): all_basic = all(isinstance(arg, Basic) for arg in obj.args) # Ideally obj.func(*obj.args) would always recreate the object, but for # now, we only require it for objects with non-empty .args recreatable = not obj.args or obj.func(*obj.args) == obj return all_basic and recreatable def test_sympy__algebras__quaternion__Quaternion(): from sympy.algebras.quaternion import Quaternion assert _test_args(Quaternion(x, 1, 2, 3)) def test_sympy__assumptions__assume__AppliedPredicate(): from sympy.assumptions.assume import AppliedPredicate, Predicate assert _test_args(AppliedPredicate(Predicate("test"), 2)) assert _test_args(Q.is_true(True)) @SKIP("abstract class") def test_sympy__assumptions__assume__Predicate(): pass def test_predicates(): predicates = [ getattr(Q, attr) for attr in Q.__class__.__dict__ if not attr.startswith('__')] for p in predicates: assert _test_args(p) def test_sympy__assumptions__assume__UndefinedPredicate(): from sympy.assumptions.assume import Predicate assert _test_args(Predicate("test")) @SKIP('abstract class') def test_sympy__assumptions__relation__binrel__BinaryRelation(): pass def test_sympy__assumptions__relation__binrel__AppliedBinaryRelation(): assert _test_args(Q.eq(1, 2)) def test_sympy__assumptions__wrapper__AssumptionsWrapper(): from sympy.assumptions.wrapper import AssumptionsWrapper assert _test_args(AssumptionsWrapper(x, Q.positive(x))) @SKIP("abstract Class") def test_sympy__codegen__ast__CodegenAST(): from sympy.codegen.ast import CodegenAST assert _test_args(CodegenAST()) @SKIP("abstract Class") def test_sympy__codegen__ast__AssignmentBase(): from sympy.codegen.ast import AssignmentBase assert _test_args(AssignmentBase(x, 1)) @SKIP("abstract Class") def test_sympy__codegen__ast__AugmentedAssignment(): from sympy.codegen.ast import AugmentedAssignment assert _test_args(AugmentedAssignment(x, 1)) def test_sympy__codegen__ast__AddAugmentedAssignment(): from sympy.codegen.ast import AddAugmentedAssignment assert _test_args(AddAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__SubAugmentedAssignment(): from sympy.codegen.ast import SubAugmentedAssignment assert _test_args(SubAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__MulAugmentedAssignment(): from sympy.codegen.ast import MulAugmentedAssignment assert _test_args(MulAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__DivAugmentedAssignment(): from sympy.codegen.ast import DivAugmentedAssignment assert _test_args(DivAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__ModAugmentedAssignment(): from sympy.codegen.ast import ModAugmentedAssignment assert _test_args(ModAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__CodeBlock(): from sympy.codegen.ast import CodeBlock, Assignment assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2))) def test_sympy__codegen__ast__For(): from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment from sympy.sets import Range assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1)))) def test_sympy__codegen__ast__Token(): from sympy.codegen.ast import Token assert _test_args(Token()) def test_sympy__codegen__ast__ContinueToken(): from sympy.codegen.ast import ContinueToken assert _test_args(ContinueToken()) def test_sympy__codegen__ast__BreakToken(): from sympy.codegen.ast import BreakToken assert _test_args(BreakToken()) def test_sympy__codegen__ast__NoneToken(): from sympy.codegen.ast import NoneToken assert _test_args(NoneToken()) def test_sympy__codegen__ast__String(): from sympy.codegen.ast import String assert _test_args(String('foobar')) def test_sympy__codegen__ast__QuotedString(): from sympy.codegen.ast import QuotedString assert _test_args(QuotedString('foobar')) def test_sympy__codegen__ast__Comment(): from sympy.codegen.ast import Comment assert _test_args(Comment('this is a comment')) def test_sympy__codegen__ast__Node(): from sympy.codegen.ast import Node assert _test_args(Node()) assert _test_args(Node(attrs={1, 2, 3})) def test_sympy__codegen__ast__Type(): from sympy.codegen.ast import Type assert _test_args(Type('float128')) def test_sympy__codegen__ast__IntBaseType(): from sympy.codegen.ast import IntBaseType assert _test_args(IntBaseType('bigint')) def test_sympy__codegen__ast___SizedIntType(): from sympy.codegen.ast import _SizedIntType assert _test_args(_SizedIntType('int128', 128)) def test_sympy__codegen__ast__SignedIntType(): from sympy.codegen.ast import SignedIntType assert _test_args(SignedIntType('int128_with_sign', 128)) def test_sympy__codegen__ast__UnsignedIntType(): from sympy.codegen.ast import UnsignedIntType assert _test_args(UnsignedIntType('unt128', 128)) def test_sympy__codegen__ast__FloatBaseType(): from sympy.codegen.ast import FloatBaseType assert _test_args(FloatBaseType('positive_real')) def test_sympy__codegen__ast__FloatType(): from sympy.codegen.ast import FloatType assert _test_args(FloatType('float242', 242, nmant=142, nexp=99)) def test_sympy__codegen__ast__ComplexBaseType(): from sympy.codegen.ast import ComplexBaseType assert _test_args(ComplexBaseType('positive_cmplx')) def test_sympy__codegen__ast__ComplexType(): from sympy.codegen.ast import ComplexType assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5)) def test_sympy__codegen__ast__Attribute(): from sympy.codegen.ast import Attribute assert _test_args(Attribute('noexcept')) def test_sympy__codegen__ast__Variable(): from sympy.codegen.ast import Variable, Type, value_const assert _test_args(Variable(x)) assert _test_args(Variable(y, Type('float32'), {value_const})) assert _test_args(Variable(z, type=Type('float64'))) def test_sympy__codegen__ast__Pointer(): from sympy.codegen.ast import Pointer, Type, pointer_const assert _test_args(Pointer(x)) assert _test_args(Pointer(y, type=Type('float32'))) assert _test_args(Pointer(z, Type('float64'), {pointer_const})) def test_sympy__codegen__ast__Declaration(): from sympy.codegen.ast import Declaration, Variable, Type vx = Variable(x, type=Type('float')) assert _test_args(Declaration(vx)) def test_sympy__codegen__ast__While(): from sympy.codegen.ast import While, AddAugmentedAssignment assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Scope(): from sympy.codegen.ast import Scope, AddAugmentedAssignment assert _test_args(Scope([AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Stream(): from sympy.codegen.ast import Stream assert _test_args(Stream('stdin')) def test_sympy__codegen__ast__Print(): from sympy.codegen.ast import Print assert _test_args(Print([x, y])) assert _test_args(Print([x, y], "%d %d")) def test_sympy__codegen__ast__FunctionPrototype(): from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionPrototype(real, 'pwer', [inp_x])) def test_sympy__codegen__ast__FunctionDefinition(): from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) def test_sympy__codegen__ast__Return(): from sympy.codegen.ast import Return assert _test_args(Return(x)) def test_sympy__codegen__ast__FunctionCall(): from sympy.codegen.ast import FunctionCall assert _test_args(FunctionCall('pwer', [x])) def test_sympy__codegen__ast__Element(): from sympy.codegen.ast import Element assert _test_args(Element('x', range(3))) def test_sympy__codegen__cnodes__CommaOperator(): from sympy.codegen.cnodes import CommaOperator assert _test_args(CommaOperator(1, 2)) def test_sympy__codegen__cnodes__goto(): from sympy.codegen.cnodes import goto assert _test_args(goto('early_exit')) def test_sympy__codegen__cnodes__Label(): from sympy.codegen.cnodes import Label assert _test_args(Label('early_exit')) def test_sympy__codegen__cnodes__PreDecrement(): from sympy.codegen.cnodes import PreDecrement assert _test_args(PreDecrement(x)) def test_sympy__codegen__cnodes__PostDecrement(): from sympy.codegen.cnodes import PostDecrement assert _test_args(PostDecrement(x)) def test_sympy__codegen__cnodes__PreIncrement(): from sympy.codegen.cnodes import PreIncrement assert _test_args(PreIncrement(x)) def test_sympy__codegen__cnodes__PostIncrement(): from sympy.codegen.cnodes import PostIncrement assert _test_args(PostIncrement(x)) def test_sympy__codegen__cnodes__struct(): from sympy.codegen.ast import real, Variable from sympy.codegen.cnodes import struct assert _test_args(struct(declarations=[ Variable(x, type=real), Variable(y, type=real) ])) def test_sympy__codegen__cnodes__union(): from sympy.codegen.ast import float32, int32, Variable from sympy.codegen.cnodes import union assert _test_args(union(declarations=[ Variable(x, type=float32), Variable(y, type=int32) ])) def test_sympy__codegen__cxxnodes__using(): from sympy.codegen.cxxnodes import using assert _test_args(using('std::vector')) assert _test_args(using('std::vector', 'vec')) def test_sympy__codegen__fnodes__Program(): from sympy.codegen.fnodes import Program assert _test_args(Program('foobar', [])) def test_sympy__codegen__fnodes__Module(): from sympy.codegen.fnodes import Module assert _test_args(Module('foobar', [], [])) def test_sympy__codegen__fnodes__Subroutine(): from sympy.codegen.fnodes import Subroutine x = symbols('x', real=True) assert _test_args(Subroutine('foo', [x], [])) def test_sympy__codegen__fnodes__GoTo(): from sympy.codegen.fnodes import GoTo assert _test_args(GoTo([10])) assert _test_args(GoTo([10, 20], x > 1)) def test_sympy__codegen__fnodes__FortranReturn(): from sympy.codegen.fnodes import FortranReturn assert _test_args(FortranReturn(10)) def test_sympy__codegen__fnodes__Extent(): from sympy.codegen.fnodes import Extent assert _test_args(Extent()) assert _test_args(Extent(None)) assert _test_args(Extent(':')) assert _test_args(Extent(-3, 4)) assert _test_args(Extent(x, y)) def test_sympy__codegen__fnodes__use_rename(): from sympy.codegen.fnodes import use_rename assert _test_args(use_rename('loc', 'glob')) def test_sympy__codegen__fnodes__use(): from sympy.codegen.fnodes import use assert _test_args(use('modfoo', only='bar')) def test_sympy__codegen__fnodes__SubroutineCall(): from sympy.codegen.fnodes import SubroutineCall assert _test_args(SubroutineCall('foo', ['bar', 'baz'])) def test_sympy__codegen__fnodes__Do(): from sympy.codegen.fnodes import Do assert _test_args(Do([], 'i', 1, 42)) def test_sympy__codegen__fnodes__ImpliedDoLoop(): from sympy.codegen.fnodes import ImpliedDoLoop assert _test_args(ImpliedDoLoop('i', 'i', 1, 42)) def test_sympy__codegen__fnodes__ArrayConstructor(): from sympy.codegen.fnodes import ArrayConstructor assert _test_args(ArrayConstructor([1, 2, 3])) from sympy.codegen.fnodes import ImpliedDoLoop idl = ImpliedDoLoop('i', 'i', 1, 42) assert _test_args(ArrayConstructor([1, idl, 3])) def test_sympy__codegen__fnodes__sum_(): from sympy.codegen.fnodes import sum_ assert _test_args(sum_('arr')) def test_sympy__codegen__fnodes__product_(): from sympy.codegen.fnodes import product_ assert _test_args(product_('arr')) def test_sympy__codegen__numpy_nodes__logaddexp(): from sympy.codegen.numpy_nodes import logaddexp assert _test_args(logaddexp(x, y)) def test_sympy__codegen__numpy_nodes__logaddexp2(): from sympy.codegen.numpy_nodes import logaddexp2 assert _test_args(logaddexp2(x, y)) def test_sympy__codegen__pynodes__List(): from sympy.codegen.pynodes import List assert _test_args(List(1, 2, 3)) def test_sympy__codegen__pynodes__NumExprEvaluate(): from sympy.codegen.pynodes import NumExprEvaluate assert _test_args(NumExprEvaluate(x)) def test_sympy__codegen__scipy_nodes__cosm1(): from sympy.codegen.scipy_nodes import cosm1 assert _test_args(cosm1(x)) def test_sympy__codegen__scipy_nodes__powm1(): from sympy.codegen.scipy_nodes import powm1 assert _test_args(powm1(x, y)) def test_sympy__codegen__abstract_nodes__List(): from sympy.codegen.abstract_nodes import List assert _test_args(List(1, 2, 3)) def test_sympy__combinatorics__graycode__GrayCode(): from sympy.combinatorics.graycode import GrayCode # an integer is given and returned from GrayCode as the arg assert _test_args(GrayCode(3, start='100')) assert _test_args(GrayCode(3, rank=1)) def test_sympy__combinatorics__permutations__Permutation(): from sympy.combinatorics.permutations import Permutation assert _test_args(Permutation([0, 1, 2, 3])) def test_sympy__combinatorics__permutations__AppliedPermutation(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.permutations import AppliedPermutation p = Permutation([0, 1, 2, 3]) assert _test_args(AppliedPermutation(p, x)) def test_sympy__combinatorics__perm_groups__PermutationGroup(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup assert _test_args(PermutationGroup([Permutation([0, 1])])) def test_sympy__combinatorics__polyhedron__Polyhedron(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.polyhedron import Polyhedron from sympy.abc import w, x, y, z pgroup = [Permutation([[0, 1, 2], [3]]), Permutation([[0, 1, 3], [2]]), Permutation([[0, 2, 3], [1]]), Permutation([[1, 2, 3], [0]]), Permutation([[0, 1], [2, 3]]), Permutation([[0, 2], [1, 3]]), Permutation([[0, 3], [1, 2]]), Permutation([[0, 1, 2, 3]])] corners = [w, x, y, z] faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)] assert _test_args(Polyhedron(corners, faces, pgroup)) def test_sympy__combinatorics__prufer__Prufer(): from sympy.combinatorics.prufer import Prufer assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4)) def test_sympy__combinatorics__partitions__Partition(): from sympy.combinatorics.partitions import Partition assert _test_args(Partition([1])) def test_sympy__combinatorics__partitions__IntegerPartition(): from sympy.combinatorics.partitions import IntegerPartition assert _test_args(IntegerPartition([1])) def test_sympy__concrete__products__Product(): from sympy.concrete.products import Product assert _test_args(Product(x, (x, 0, 10))) assert _test_args(Product(x, (x, 0, y), (y, 0, 10))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__ExprWithLimits(): from sympy.concrete.expr_with_limits import ExprWithLimits assert _test_args(ExprWithLimits(x, (x, 0, 10))) assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__AddWithLimits(): from sympy.concrete.expr_with_limits import AddWithLimits assert _test_args(AddWithLimits(x, (x, 0, 10))) assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits(): from sympy.concrete.expr_with_intlimits import ExprWithIntLimits assert _test_args(ExprWithIntLimits(x, (x, 0, 10))) assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3))) def test_sympy__concrete__summations__Sum(): from sympy.concrete.summations import Sum assert _test_args(Sum(x, (x, 0, 10))) assert _test_args(Sum(x, (x, 0, y), (y, 0, 10))) def test_sympy__core__add__Add(): from sympy.core.add import Add assert _test_args(Add(x, y, z, 2)) def test_sympy__core__basic__Atom(): from sympy.core.basic import Atom assert _test_args(Atom()) def test_sympy__core__basic__Basic(): from sympy.core.basic import Basic assert _test_args(Basic()) def test_sympy__core__containers__Dict(): from sympy.core.containers import Dict assert _test_args(Dict({x: y, y: z})) def test_sympy__core__containers__Tuple(): from sympy.core.containers import Tuple assert _test_args(Tuple(x, y, z, 2)) def test_sympy__core__expr__AtomicExpr(): from sympy.core.expr import AtomicExpr assert _test_args(AtomicExpr()) def test_sympy__core__expr__Expr(): from sympy.core.expr import Expr assert _test_args(Expr()) def test_sympy__core__expr__UnevaluatedExpr(): from sympy.core.expr import UnevaluatedExpr from sympy.abc import x assert _test_args(UnevaluatedExpr(x)) def test_sympy__core__function__Application(): from sympy.core.function import Application assert _test_args(Application(1, 2, 3)) def test_sympy__core__function__AppliedUndef(): from sympy.core.function import AppliedUndef assert _test_args(AppliedUndef(1, 2, 3)) def test_sympy__core__function__Derivative(): from sympy.core.function import Derivative assert _test_args(Derivative(2, x, y, 3)) @SKIP("abstract class") def test_sympy__core__function__Function(): pass def test_sympy__core__function__Lambda(): assert _test_args(Lambda((x, y), x + y + z)) def test_sympy__core__function__Subs(): from sympy.core.function import Subs assert _test_args(Subs(x + y, x, 2)) def test_sympy__core__function__WildFunction(): from sympy.core.function import WildFunction assert _test_args(WildFunction('f')) def test_sympy__core__mod__Mod(): from sympy.core.mod import Mod assert _test_args(Mod(x, 2)) def test_sympy__core__mul__Mul(): from sympy.core.mul import Mul assert _test_args(Mul(2, x, y, z)) def test_sympy__core__numbers__Catalan(): from sympy.core.numbers import Catalan assert _test_args(Catalan()) def test_sympy__core__numbers__ComplexInfinity(): from sympy.core.numbers import ComplexInfinity assert _test_args(ComplexInfinity()) def test_sympy__core__numbers__EulerGamma(): from sympy.core.numbers import EulerGamma assert _test_args(EulerGamma()) def test_sympy__core__numbers__Exp1(): from sympy.core.numbers import Exp1 assert _test_args(Exp1()) def test_sympy__core__numbers__Float(): from sympy.core.numbers import Float assert _test_args(Float(1.23)) def test_sympy__core__numbers__GoldenRatio(): from sympy.core.numbers import GoldenRatio assert _test_args(GoldenRatio()) def test_sympy__core__numbers__TribonacciConstant(): from sympy.core.numbers import TribonacciConstant assert _test_args(TribonacciConstant()) def test_sympy__core__numbers__Half(): from sympy.core.numbers import Half assert _test_args(Half()) def test_sympy__core__numbers__ImaginaryUnit(): from sympy.core.numbers import ImaginaryUnit assert _test_args(ImaginaryUnit()) def test_sympy__core__numbers__Infinity(): from sympy.core.numbers import Infinity assert _test_args(Infinity()) def test_sympy__core__numbers__Integer(): from sympy.core.numbers import Integer assert _test_args(Integer(7)) @SKIP("abstract class") def test_sympy__core__numbers__IntegerConstant(): pass def test_sympy__core__numbers__NaN(): from sympy.core.numbers import NaN assert _test_args(NaN()) def test_sympy__core__numbers__NegativeInfinity(): from sympy.core.numbers import NegativeInfinity assert _test_args(NegativeInfinity()) def test_sympy__core__numbers__NegativeOne(): from sympy.core.numbers import NegativeOne assert _test_args(NegativeOne()) def test_sympy__core__numbers__Number(): from sympy.core.numbers import Number assert _test_args(Number(1, 7)) def test_sympy__core__numbers__NumberSymbol(): from sympy.core.numbers import NumberSymbol assert _test_args(NumberSymbol()) def test_sympy__core__numbers__One(): from sympy.core.numbers import One assert _test_args(One()) def test_sympy__core__numbers__Pi(): from sympy.core.numbers import Pi assert _test_args(Pi()) def test_sympy__core__numbers__Rational(): from sympy.core.numbers import Rational assert _test_args(Rational(1, 7)) @SKIP("abstract class") def test_sympy__core__numbers__RationalConstant(): pass def test_sympy__core__numbers__Zero(): from sympy.core.numbers import Zero assert _test_args(Zero()) @SKIP("abstract class") def test_sympy__core__operations__AssocOp(): pass @SKIP("abstract class") def test_sympy__core__operations__LatticeOp(): pass def test_sympy__core__power__Pow(): from sympy.core.power import Pow assert _test_args(Pow(x, 2)) def test_sympy__core__relational__Equality(): from sympy.core.relational import Equality assert _test_args(Equality(x, 2)) def test_sympy__core__relational__GreaterThan(): from sympy.core.relational import GreaterThan assert _test_args(GreaterThan(x, 2)) def test_sympy__core__relational__LessThan(): from sympy.core.relational import LessThan assert _test_args(LessThan(x, 2)) @SKIP("abstract class") def test_sympy__core__relational__Relational(): pass def test_sympy__core__relational__StrictGreaterThan(): from sympy.core.relational import StrictGreaterThan assert _test_args(StrictGreaterThan(x, 2)) def test_sympy__core__relational__StrictLessThan(): from sympy.core.relational import StrictLessThan assert _test_args(StrictLessThan(x, 2)) def test_sympy__core__relational__Unequality(): from sympy.core.relational import Unequality assert _test_args(Unequality(x, 2)) def test_sympy__sandbox__indexed_integrals__IndexedIntegral(): from sympy.tensor import IndexedBase, Idx from sympy.sandbox.indexed_integrals import IndexedIntegral A = IndexedBase('A') i, j = symbols('i j', integer=True) a1, a2 = symbols('a1:3', cls=Idx) assert _test_args(IndexedIntegral(A[a1], A[a2])) assert _test_args(IndexedIntegral(A[i], A[j])) def test_sympy__calculus__accumulationbounds__AccumulationBounds(): from sympy.calculus.accumulationbounds import AccumulationBounds assert _test_args(AccumulationBounds(0, 1)) def test_sympy__sets__ordinals__OmegaPower(): from sympy.sets.ordinals import OmegaPower assert _test_args(OmegaPower(1, 1)) def test_sympy__sets__ordinals__Ordinal(): from sympy.sets.ordinals import Ordinal, OmegaPower assert _test_args(Ordinal(OmegaPower(2, 1))) def test_sympy__sets__ordinals__OrdinalOmega(): from sympy.sets.ordinals import OrdinalOmega assert _test_args(OrdinalOmega()) def test_sympy__sets__ordinals__OrdinalZero(): from sympy.sets.ordinals import OrdinalZero assert _test_args(OrdinalZero()) def test_sympy__sets__powerset__PowerSet(): from sympy.sets.powerset import PowerSet from sympy.core.singleton import S assert _test_args(PowerSet(S.EmptySet)) def test_sympy__sets__sets__EmptySet(): from sympy.sets.sets import EmptySet assert _test_args(EmptySet()) def test_sympy__sets__sets__UniversalSet(): from sympy.sets.sets import UniversalSet assert _test_args(UniversalSet()) def test_sympy__sets__sets__FiniteSet(): from sympy.sets.sets import FiniteSet assert _test_args(FiniteSet(x, y, z)) def test_sympy__sets__sets__Interval(): from sympy.sets.sets import Interval assert _test_args(Interval(0, 1)) def test_sympy__sets__sets__ProductSet(): from sympy.sets.sets import ProductSet, Interval assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1))) @SKIP("does it make sense to test this?") def test_sympy__sets__sets__Set(): from sympy.sets.sets import Set assert _test_args(Set()) def test_sympy__sets__sets__Intersection(): from sympy.sets.sets import Intersection, Interval from sympy.core.symbol import Symbol x = Symbol('x') y = Symbol('y') S = Intersection(Interval(0, x), Interval(y, 1)) assert isinstance(S, Intersection) assert _test_args(S) def test_sympy__sets__sets__Union(): from sympy.sets.sets import Union, Interval assert _test_args(Union(Interval(0, 1), Interval(2, 3))) def test_sympy__sets__sets__Complement(): from sympy.sets.sets import Complement, Interval assert _test_args(Complement(Interval(0, 2), Interval(0, 1))) def test_sympy__sets__sets__SymmetricDifference(): from sympy.sets.sets import FiniteSet, SymmetricDifference assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \ FiniteSet(2, 3, 4))) def test_sympy__sets__sets__DisjointUnion(): from sympy.sets.sets import FiniteSet, DisjointUnion assert _test_args(DisjointUnion(FiniteSet(1, 2, 3), \ FiniteSet(2, 3, 4))) def test_sympy__physics__quantum__trace__Tr(): from sympy.physics.quantum.trace import Tr a, b = symbols('a b', commutative=False) assert _test_args(Tr(a + b)) def test_sympy__sets__setexpr__SetExpr(): from sympy.sets.setexpr import SetExpr from sympy.sets.sets import Interval assert _test_args(SetExpr(Interval(0, 1))) def test_sympy__sets__fancysets__Rationals(): from sympy.sets.fancysets import Rationals assert _test_args(Rationals()) def test_sympy__sets__fancysets__Naturals(): from sympy.sets.fancysets import Naturals assert _test_args(Naturals()) def test_sympy__sets__fancysets__Naturals0(): from sympy.sets.fancysets import Naturals0 assert _test_args(Naturals0()) def test_sympy__sets__fancysets__Integers(): from sympy.sets.fancysets import Integers assert _test_args(Integers()) def test_sympy__sets__fancysets__Reals(): from sympy.sets.fancysets import Reals assert _test_args(Reals()) def test_sympy__sets__fancysets__Complexes(): from sympy.sets.fancysets import Complexes assert _test_args(Complexes()) def test_sympy__sets__fancysets__ComplexRegion(): from sympy.sets.fancysets import ComplexRegion from sympy.core.singleton import S from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) theta = Interval(0, 2*S.Pi) assert _test_args(ComplexRegion(a*b)) assert _test_args(ComplexRegion(a*theta, polar=True)) def test_sympy__sets__fancysets__CartesianComplexRegion(): from sympy.sets.fancysets import CartesianComplexRegion from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) assert _test_args(CartesianComplexRegion(a*b)) def test_sympy__sets__fancysets__PolarComplexRegion(): from sympy.sets.fancysets import PolarComplexRegion from sympy.core.singleton import S from sympy.sets import Interval a = Interval(0, 1) theta = Interval(0, 2*S.Pi) assert _test_args(PolarComplexRegion(a*theta)) def test_sympy__sets__fancysets__ImageSet(): from sympy.sets.fancysets import ImageSet from sympy.core.singleton import S from sympy.core.symbol import Symbol x = Symbol('x') assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals)) def test_sympy__sets__fancysets__Range(): from sympy.sets.fancysets import Range assert _test_args(Range(1, 5, 1)) def test_sympy__sets__conditionset__ConditionSet(): from sympy.sets.conditionset import ConditionSet from sympy.core.singleton import S from sympy.core.symbol import Symbol x = Symbol('x') assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals)) def test_sympy__sets__contains__Contains(): from sympy.sets.fancysets import Range from sympy.sets.contains import Contains assert _test_args(Contains(x, Range(0, 10, 2))) # STATS from sympy.stats.crv_types import NormalDistribution nd = NormalDistribution(0, 1) from sympy.stats.frv_types import DieDistribution die = DieDistribution(6) def test_sympy__stats__crv__ContinuousDomain(): from sympy.sets.sets import Interval from sympy.stats.crv import ContinuousDomain assert _test_args(ContinuousDomain({x}, Interval(-oo, oo))) def test_sympy__stats__crv__SingleContinuousDomain(): from sympy.sets.sets import Interval from sympy.stats.crv import SingleContinuousDomain assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo))) def test_sympy__stats__crv__ProductContinuousDomain(): from sympy.sets.sets import Interval from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) E = SingleContinuousDomain(y, Interval(0, oo)) assert _test_args(ProductContinuousDomain(D, E)) def test_sympy__stats__crv__ConditionalContinuousDomain(): from sympy.sets.sets import Interval from sympy.stats.crv import (SingleContinuousDomain, ConditionalContinuousDomain) D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ConditionalContinuousDomain(D, x > 0)) def test_sympy__stats__crv__ContinuousPSpace(): from sympy.sets.sets import Interval from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ContinuousPSpace(D, nd)) def test_sympy__stats__crv__SingleContinuousPSpace(): from sympy.stats.crv import SingleContinuousPSpace assert _test_args(SingleContinuousPSpace(x, nd)) @SKIP("abstract class") def test_sympy__stats__rv__Distribution(): pass @SKIP("abstract class") def test_sympy__stats__crv__SingleContinuousDistribution(): pass def test_sympy__stats__drv__SingleDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain assert _test_args(SingleDiscreteDomain(x, S.Naturals)) def test_sympy__stats__drv__ProductDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals) Y = SingleDiscreteDomain(y, S.Integers) assert _test_args(ProductDiscreteDomain(X, Y)) def test_sympy__stats__drv__SingleDiscretePSpace(): from sympy.stats.drv import SingleDiscretePSpace from sympy.stats.drv_types import PoissonDistribution assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1))) def test_sympy__stats__drv__DiscretePSpace(): from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain density = Lambda(x, 2**(-x)) domain = SingleDiscreteDomain(x, S.Naturals) assert _test_args(DiscretePSpace(domain, density)) def test_sympy__stats__drv__ConditionalDiscreteDomain(): from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals0) assert _test_args(ConditionalDiscreteDomain(X, x > 2)) def test_sympy__stats__joint_rv__JointPSpace(): from sympy.stats.joint_rv import JointPSpace, JointDistribution assert _test_args(JointPSpace('X', JointDistribution(1))) def test_sympy__stats__joint_rv__JointRandomSymbol(): from sympy.stats.joint_rv import JointRandomSymbol assert _test_args(JointRandomSymbol(x)) def test_sympy__stats__joint_rv_types__JointDistributionHandmade(): from sympy.tensor.indexed import Indexed from sympy.stats.joint_rv_types import JointDistributionHandmade x1, x2 = (Indexed('x', i) for i in (1, 2)) assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2)) def test_sympy__stats__joint_rv__MarginalDistribution(): from sympy.stats.rv import RandomSymbol from sympy.stats.joint_rv import MarginalDistribution r = RandomSymbol(S('r')) assert _test_args(MarginalDistribution(r, (r,))) def test_sympy__stats__compound_rv__CompoundDistribution(): from sympy.stats.compound_rv import CompoundDistribution from sympy.stats.drv_types import PoissonDistribution, Poisson r = Poisson('r', 10) assert _test_args(CompoundDistribution(PoissonDistribution(r))) def test_sympy__stats__compound_rv__CompoundPSpace(): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution from sympy.stats.drv_types import PoissonDistribution, Poisson r = Poisson('r', 5) C = CompoundDistribution(PoissonDistribution(r)) assert _test_args(CompoundPSpace('C', C)) @SKIP("abstract class") def test_sympy__stats__drv__SingleDiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDomain(): pass def test_sympy__stats__rv__RandomDomain(): from sympy.stats.rv import RandomDomain from sympy.sets.sets import FiniteSet assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3))) def test_sympy__stats__rv__SingleDomain(): from sympy.stats.rv import SingleDomain from sympy.sets.sets import FiniteSet assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3))) def test_sympy__stats__rv__ConditionalDomain(): from sympy.stats.rv import ConditionalDomain, RandomDomain from sympy.sets.sets import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2)) assert _test_args(ConditionalDomain(D, x > 1)) def test_sympy__stats__rv__MatrixDomain(): from sympy.stats.rv import MatrixDomain from sympy.matrices import MatrixSet from sympy.core.singleton import S assert _test_args(MatrixDomain(x, MatrixSet(2, 2, S.Reals))) def test_sympy__stats__rv__PSpace(): from sympy.stats.rv import PSpace, RandomDomain from sympy.sets.sets import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6)) assert _test_args(PSpace(D, die)) @SKIP("abstract Class") def test_sympy__stats__rv__SinglePSpace(): pass def test_sympy__stats__rv__RandomSymbol(): from sympy.stats.rv import RandomSymbol from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) assert _test_args(RandomSymbol(x, A)) @SKIP("abstract Class") def test_sympy__stats__rv__ProductPSpace(): pass def test_sympy__stats__rv__IndependentProductPSpace(): from sympy.stats.rv import IndependentProductPSpace from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) B = SingleContinuousPSpace(y, nd) assert _test_args(IndependentProductPSpace(A, B)) def test_sympy__stats__rv__ProductDomain(): from sympy.sets.sets import Interval from sympy.stats.rv import ProductDomain, SingleDomain D = SingleDomain(x, Interval(-oo, oo)) E = SingleDomain(y, Interval(0, oo)) assert _test_args(ProductDomain(D, E)) def test_sympy__stats__symbolic_probability__Probability(): from sympy.stats.symbolic_probability import Probability from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Probability(X > 0)) def test_sympy__stats__symbolic_probability__Expectation(): from sympy.stats.symbolic_probability import Expectation from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Expectation(X > 0)) def test_sympy__stats__symbolic_probability__Covariance(): from sympy.stats.symbolic_probability import Covariance from sympy.stats import Normal X = Normal('X', 0, 1) Y = Normal('Y', 0, 3) assert _test_args(Covariance(X, Y)) def test_sympy__stats__symbolic_probability__Variance(): from sympy.stats.symbolic_probability import Variance from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Variance(X)) def test_sympy__stats__symbolic_probability__Moment(): from sympy.stats.symbolic_probability import Moment from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Moment(X, 3, 2, X > 3)) def test_sympy__stats__symbolic_probability__CentralMoment(): from sympy.stats.symbolic_probability import CentralMoment from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(CentralMoment(X, 2, X > 1)) def test_sympy__stats__frv_types__DiscreteUniformDistribution(): from sympy.stats.frv_types import DiscreteUniformDistribution from sympy.core.containers import Tuple assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6))))) def test_sympy__stats__frv_types__DieDistribution(): assert _test_args(die) def test_sympy__stats__frv_types__BernoulliDistribution(): from sympy.stats.frv_types import BernoulliDistribution assert _test_args(BernoulliDistribution(S.Half, 0, 1)) def test_sympy__stats__frv_types__BinomialDistribution(): from sympy.stats.frv_types import BinomialDistribution assert _test_args(BinomialDistribution(5, S.Half, 1, 0)) def test_sympy__stats__frv_types__BetaBinomialDistribution(): from sympy.stats.frv_types import BetaBinomialDistribution assert _test_args(BetaBinomialDistribution(5, 1, 1)) def test_sympy__stats__frv_types__HypergeometricDistribution(): from sympy.stats.frv_types import HypergeometricDistribution assert _test_args(HypergeometricDistribution(10, 5, 3)) def test_sympy__stats__frv_types__RademacherDistribution(): from sympy.stats.frv_types import RademacherDistribution assert _test_args(RademacherDistribution()) def test_sympy__stats__frv_types__IdealSolitonDistribution(): from sympy.stats.frv_types import IdealSolitonDistribution assert _test_args(IdealSolitonDistribution(10)) def test_sympy__stats__frv_types__RobustSolitonDistribution(): from sympy.stats.frv_types import RobustSolitonDistribution assert _test_args(RobustSolitonDistribution(1000, 0.5, 0.1)) def test_sympy__stats__frv__FiniteDomain(): from sympy.stats.frv import FiniteDomain assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2 def test_sympy__stats__frv__SingleFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2 def test_sympy__stats__frv__ProductFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) yd = SingleFiniteDomain(y, {1, 2}) assert _test_args(ProductFiniteDomain(xd, yd)) def test_sympy__stats__frv__ConditionalFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(ConditionalFiniteDomain(xd, x > 1)) def test_sympy__stats__frv__FinitePSpace(): from sympy.stats.frv import FinitePSpace, SingleFiniteDomain xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) def test_sympy__stats__frv__SingleFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace from sympy.core.symbol import Symbol assert _test_args(SingleFinitePSpace(Symbol('x'), die)) def test_sympy__stats__frv__ProductFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace from sympy.core.symbol import Symbol xp = SingleFinitePSpace(Symbol('x'), die) yp = SingleFinitePSpace(Symbol('y'), die) assert _test_args(ProductFinitePSpace(xp, yp)) @SKIP("abstract class") def test_sympy__stats__frv__SingleFiniteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__crv__ContinuousDistribution(): pass def test_sympy__stats__frv_types__FiniteDistributionHandmade(): from sympy.stats.frv_types import FiniteDistributionHandmade from sympy.core.containers import Dict assert _test_args(FiniteDistributionHandmade(Dict({1: 1}))) def test_sympy__stats__crv_types__ContinuousDistributionHandmade(): from sympy.stats.crv_types import ContinuousDistributionHandmade from sympy.core.function import Lambda from sympy.sets.sets import Interval from sympy.abc import x assert _test_args(ContinuousDistributionHandmade(Lambda(x, 2*x), Interval(0, 1))) def test_sympy__stats__drv_types__DiscreteDistributionHandmade(): from sympy.stats.drv_types import DiscreteDistributionHandmade from sympy.core.function import Lambda from sympy.sets.sets import FiniteSet from sympy.abc import x assert _test_args(DiscreteDistributionHandmade(Lambda(x, Rational(1, 10)), FiniteSet(*range(10)))) def test_sympy__stats__rv__Density(): from sympy.stats.rv import Density from sympy.stats.crv_types import Normal assert _test_args(Density(Normal('x', 0, 1))) def test_sympy__stats__crv_types__ArcsinDistribution(): from sympy.stats.crv_types import ArcsinDistribution assert _test_args(ArcsinDistribution(0, 1)) def test_sympy__stats__crv_types__BeniniDistribution(): from sympy.stats.crv_types import BeniniDistribution assert _test_args(BeniniDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaDistribution(): from sympy.stats.crv_types import BetaDistribution assert _test_args(BetaDistribution(1, 1)) def test_sympy__stats__crv_types__BetaNoncentralDistribution(): from sympy.stats.crv_types import BetaNoncentralDistribution assert _test_args(BetaNoncentralDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaPrimeDistribution(): from sympy.stats.crv_types import BetaPrimeDistribution assert _test_args(BetaPrimeDistribution(1, 1)) def test_sympy__stats__crv_types__BoundedParetoDistribution(): from sympy.stats.crv_types import BoundedParetoDistribution assert _test_args(BoundedParetoDistribution(1, 1, 2)) def test_sympy__stats__crv_types__CauchyDistribution(): from sympy.stats.crv_types import CauchyDistribution assert _test_args(CauchyDistribution(0, 1)) def test_sympy__stats__crv_types__ChiDistribution(): from sympy.stats.crv_types import ChiDistribution assert _test_args(ChiDistribution(1)) def test_sympy__stats__crv_types__ChiNoncentralDistribution(): from sympy.stats.crv_types import ChiNoncentralDistribution assert _test_args(ChiNoncentralDistribution(1,1)) def test_sympy__stats__crv_types__ChiSquaredDistribution(): from sympy.stats.crv_types import ChiSquaredDistribution assert _test_args(ChiSquaredDistribution(1)) def test_sympy__stats__crv_types__DagumDistribution(): from sympy.stats.crv_types import DagumDistribution assert _test_args(DagumDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExGaussianDistribution(): from sympy.stats.crv_types import ExGaussianDistribution assert _test_args(ExGaussianDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExponentialDistribution(): from sympy.stats.crv_types import ExponentialDistribution assert _test_args(ExponentialDistribution(1)) def test_sympy__stats__crv_types__ExponentialPowerDistribution(): from sympy.stats.crv_types import ExponentialPowerDistribution assert _test_args(ExponentialPowerDistribution(0, 1, 1)) def test_sympy__stats__crv_types__FDistributionDistribution(): from sympy.stats.crv_types import FDistributionDistribution assert _test_args(FDistributionDistribution(1, 1)) def test_sympy__stats__crv_types__FisherZDistribution(): from sympy.stats.crv_types import FisherZDistribution assert _test_args(FisherZDistribution(1, 1)) def test_sympy__stats__crv_types__FrechetDistribution(): from sympy.stats.crv_types import FrechetDistribution assert _test_args(FrechetDistribution(1, 1, 1)) def test_sympy__stats__crv_types__GammaInverseDistribution(): from sympy.stats.crv_types import GammaInverseDistribution assert _test_args(GammaInverseDistribution(1, 1)) def test_sympy__stats__crv_types__GammaDistribution(): from sympy.stats.crv_types import GammaDistribution assert _test_args(GammaDistribution(1, 1)) def test_sympy__stats__crv_types__GumbelDistribution(): from sympy.stats.crv_types import GumbelDistribution assert _test_args(GumbelDistribution(1, 1, False)) def test_sympy__stats__crv_types__GompertzDistribution(): from sympy.stats.crv_types import GompertzDistribution assert _test_args(GompertzDistribution(1, 1)) def test_sympy__stats__crv_types__KumaraswamyDistribution(): from sympy.stats.crv_types import KumaraswamyDistribution assert _test_args(KumaraswamyDistribution(1, 1)) def test_sympy__stats__crv_types__LaplaceDistribution(): from sympy.stats.crv_types import LaplaceDistribution assert _test_args(LaplaceDistribution(0, 1)) def test_sympy__stats__crv_types__LevyDistribution(): from sympy.stats.crv_types import LevyDistribution assert _test_args(LevyDistribution(0, 1)) def test_sympy__stats__crv_types__LogCauchyDistribution(): from sympy.stats.crv_types import LogCauchyDistribution assert _test_args(LogCauchyDistribution(0, 1)) def test_sympy__stats__crv_types__LogisticDistribution(): from sympy.stats.crv_types import LogisticDistribution assert _test_args(LogisticDistribution(0, 1)) def test_sympy__stats__crv_types__LogLogisticDistribution(): from sympy.stats.crv_types import LogLogisticDistribution assert _test_args(LogLogisticDistribution(1, 1)) def test_sympy__stats__crv_types__LogitNormalDistribution(): from sympy.stats.crv_types import LogitNormalDistribution assert _test_args(LogitNormalDistribution(0, 1)) def test_sympy__stats__crv_types__LogNormalDistribution(): from sympy.stats.crv_types import LogNormalDistribution assert _test_args(LogNormalDistribution(0, 1)) def test_sympy__stats__crv_types__LomaxDistribution(): from sympy.stats.crv_types import LomaxDistribution assert _test_args(LomaxDistribution(1, 2)) def test_sympy__stats__crv_types__MaxwellDistribution(): from sympy.stats.crv_types import MaxwellDistribution assert _test_args(MaxwellDistribution(1)) def test_sympy__stats__crv_types__MoyalDistribution(): from sympy.stats.crv_types import MoyalDistribution assert _test_args(MoyalDistribution(1,2)) def test_sympy__stats__crv_types__NakagamiDistribution(): from sympy.stats.crv_types import NakagamiDistribution assert _test_args(NakagamiDistribution(1, 1)) def test_sympy__stats__crv_types__NormalDistribution(): from sympy.stats.crv_types import NormalDistribution assert _test_args(NormalDistribution(0, 1)) def test_sympy__stats__crv_types__GaussianInverseDistribution(): from sympy.stats.crv_types import GaussianInverseDistribution assert _test_args(GaussianInverseDistribution(1, 1)) def test_sympy__stats__crv_types__ParetoDistribution(): from sympy.stats.crv_types import ParetoDistribution assert _test_args(ParetoDistribution(1, 1)) def test_sympy__stats__crv_types__PowerFunctionDistribution(): from sympy.stats.crv_types import PowerFunctionDistribution assert _test_args(PowerFunctionDistribution(2,0,1)) def test_sympy__stats__crv_types__QuadraticUDistribution(): from sympy.stats.crv_types import QuadraticUDistribution assert _test_args(QuadraticUDistribution(1, 2)) def test_sympy__stats__crv_types__RaisedCosineDistribution(): from sympy.stats.crv_types import RaisedCosineDistribution assert _test_args(RaisedCosineDistribution(1, 1)) def test_sympy__stats__crv_types__RayleighDistribution(): from sympy.stats.crv_types import RayleighDistribution assert _test_args(RayleighDistribution(1)) def test_sympy__stats__crv_types__ReciprocalDistribution(): from sympy.stats.crv_types import ReciprocalDistribution assert _test_args(ReciprocalDistribution(5, 30)) def test_sympy__stats__crv_types__ShiftedGompertzDistribution(): from sympy.stats.crv_types import ShiftedGompertzDistribution assert _test_args(ShiftedGompertzDistribution(1, 1)) def test_sympy__stats__crv_types__StudentTDistribution(): from sympy.stats.crv_types import StudentTDistribution assert _test_args(StudentTDistribution(1)) def test_sympy__stats__crv_types__TrapezoidalDistribution(): from sympy.stats.crv_types import TrapezoidalDistribution assert _test_args(TrapezoidalDistribution(1, 2, 3, 4)) def test_sympy__stats__crv_types__TriangularDistribution(): from sympy.stats.crv_types import TriangularDistribution assert _test_args(TriangularDistribution(-1, 0, 1)) def test_sympy__stats__crv_types__UniformDistribution(): from sympy.stats.crv_types import UniformDistribution assert _test_args(UniformDistribution(0, 1)) def test_sympy__stats__crv_types__UniformSumDistribution(): from sympy.stats.crv_types import UniformSumDistribution assert _test_args(UniformSumDistribution(1)) def test_sympy__stats__crv_types__VonMisesDistribution(): from sympy.stats.crv_types import VonMisesDistribution assert _test_args(VonMisesDistribution(1, 1)) def test_sympy__stats__crv_types__WeibullDistribution(): from sympy.stats.crv_types import WeibullDistribution assert _test_args(WeibullDistribution(1, 1)) def test_sympy__stats__crv_types__WignerSemicircleDistribution(): from sympy.stats.crv_types import WignerSemicircleDistribution assert _test_args(WignerSemicircleDistribution(1)) def test_sympy__stats__drv_types__GeometricDistribution(): from sympy.stats.drv_types import GeometricDistribution assert _test_args(GeometricDistribution(.5)) def test_sympy__stats__drv_types__HermiteDistribution(): from sympy.stats.drv_types import HermiteDistribution assert _test_args(HermiteDistribution(1, 2)) def test_sympy__stats__drv_types__LogarithmicDistribution(): from sympy.stats.drv_types import LogarithmicDistribution assert _test_args(LogarithmicDistribution(.5)) def test_sympy__stats__drv_types__NegativeBinomialDistribution(): from sympy.stats.drv_types import NegativeBinomialDistribution assert _test_args(NegativeBinomialDistribution(.5, .5)) def test_sympy__stats__drv_types__FlorySchulzDistribution(): from sympy.stats.drv_types import FlorySchulzDistribution assert _test_args(FlorySchulzDistribution(.5)) def test_sympy__stats__drv_types__PoissonDistribution(): from sympy.stats.drv_types import PoissonDistribution assert _test_args(PoissonDistribution(1)) def test_sympy__stats__drv_types__SkellamDistribution(): from sympy.stats.drv_types import SkellamDistribution assert _test_args(SkellamDistribution(1, 1)) def test_sympy__stats__drv_types__YuleSimonDistribution(): from sympy.stats.drv_types import YuleSimonDistribution assert _test_args(YuleSimonDistribution(.5)) def test_sympy__stats__drv_types__ZetaDistribution(): from sympy.stats.drv_types import ZetaDistribution assert _test_args(ZetaDistribution(1.5)) def test_sympy__stats__joint_rv__JointDistribution(): from sympy.stats.joint_rv import JointDistribution assert _test_args(JointDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution(): from sympy.stats.joint_rv_types import MultivariateNormalDistribution assert _test_args( MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution(): from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateTDistribution(): from sympy.stats.joint_rv_types import MultivariateTDistribution assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1)) def test_sympy__stats__joint_rv_types__NormalGammaDistribution(): from sympy.stats.joint_rv_types import NormalGammaDistribution assert _test_args(NormalGammaDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__GeneralizedMultivariateLogGammaDistribution(): from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaDistribution v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) assert _test_args(GeneralizedMultivariateLogGammaDistribution(S.Half, v, l, mu)) def test_sympy__stats__joint_rv_types__MultivariateBetaDistribution(): from sympy.stats.joint_rv_types import MultivariateBetaDistribution assert _test_args(MultivariateBetaDistribution([1, 2, 3])) def test_sympy__stats__joint_rv_types__MultivariateEwensDistribution(): from sympy.stats.joint_rv_types import MultivariateEwensDistribution assert _test_args(MultivariateEwensDistribution(5, 1)) def test_sympy__stats__joint_rv_types__MultinomialDistribution(): from sympy.stats.joint_rv_types import MultinomialDistribution assert _test_args(MultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__joint_rv_types__NegativeMultinomialDistribution(): from sympy.stats.joint_rv_types import NegativeMultinomialDistribution assert _test_args(NegativeMultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__rv__RandomIndexedSymbol(): from sympy.stats.rv import RandomIndexedSymbol, pspace from sympy.stats.stochastic_process_types import DiscreteMarkovChain X = DiscreteMarkovChain("X") assert _test_args(RandomIndexedSymbol(X[0].symbol, pspace(X[0]))) def test_sympy__stats__rv__RandomMatrixSymbol(): from sympy.stats.rv import RandomMatrixSymbol from sympy.stats.random_matrix import RandomMatrixPSpace pspace = RandomMatrixPSpace('P') assert _test_args(RandomMatrixSymbol('M', 3, 3, pspace)) def test_sympy__stats__stochastic_process__StochasticPSpace(): from sympy.stats.stochastic_process import StochasticPSpace from sympy.stats.stochastic_process_types import StochasticProcess from sympy.stats.frv_types import BernoulliDistribution assert _test_args(StochasticPSpace("Y", StochasticProcess("Y", [1, 2, 3]), BernoulliDistribution(S.Half, 1, 0))) def test_sympy__stats__stochastic_process_types__StochasticProcess(): from sympy.stats.stochastic_process_types import StochasticProcess assert _test_args(StochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__MarkovProcess(): from sympy.stats.stochastic_process_types import MarkovProcess assert _test_args(MarkovProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__DiscreteTimeStochasticProcess(): from sympy.stats.stochastic_process_types import DiscreteTimeStochasticProcess assert _test_args(DiscreteTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__ContinuousTimeStochasticProcess(): from sympy.stats.stochastic_process_types import ContinuousTimeStochasticProcess assert _test_args(ContinuousTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__TransitionMatrixOf(): from sympy.stats.stochastic_process_types import TransitionMatrixOf, DiscreteMarkovChain from sympy.matrices.expressions.matexpr import MatrixSymbol DMC = DiscreteMarkovChain("Y") assert _test_args(TransitionMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__GeneratorMatrixOf(): from sympy.stats.stochastic_process_types import GeneratorMatrixOf, ContinuousMarkovChain from sympy.matrices.expressions.matexpr import MatrixSymbol DMC = ContinuousMarkovChain("Y") assert _test_args(GeneratorMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__StochasticStateSpaceOf(): from sympy.stats.stochastic_process_types import StochasticStateSpaceOf, DiscreteMarkovChain DMC = DiscreteMarkovChain("Y") assert _test_args(StochasticStateSpaceOf(DMC, [0, 1, 2])) def test_sympy__stats__stochastic_process_types__DiscreteMarkovChain(): from sympy.stats.stochastic_process_types import DiscreteMarkovChain from sympy.matrices.expressions.matexpr import MatrixSymbol assert _test_args(DiscreteMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__ContinuousMarkovChain(): from sympy.stats.stochastic_process_types import ContinuousMarkovChain from sympy.matrices.expressions.matexpr import MatrixSymbol assert _test_args(ContinuousMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__BernoulliProcess(): from sympy.stats.stochastic_process_types import BernoulliProcess assert _test_args(BernoulliProcess("B", 0.5, 1, 0)) def test_sympy__stats__stochastic_process_types__CountingProcess(): from sympy.stats.stochastic_process_types import CountingProcess assert _test_args(CountingProcess("C")) def test_sympy__stats__stochastic_process_types__PoissonProcess(): from sympy.stats.stochastic_process_types import PoissonProcess assert _test_args(PoissonProcess("X", 2)) def test_sympy__stats__stochastic_process_types__WienerProcess(): from sympy.stats.stochastic_process_types import WienerProcess assert _test_args(WienerProcess("X")) def test_sympy__stats__stochastic_process_types__GammaProcess(): from sympy.stats.stochastic_process_types import GammaProcess assert _test_args(GammaProcess("X", 1, 2)) def test_sympy__stats__random_matrix__RandomMatrixPSpace(): from sympy.stats.random_matrix import RandomMatrixPSpace from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel model = RandomMatrixEnsembleModel('R', 3) assert _test_args(RandomMatrixPSpace('P', model=model)) def test_sympy__stats__random_matrix_models__RandomMatrixEnsembleModel(): from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel assert _test_args(RandomMatrixEnsembleModel('R', 3)) def test_sympy__stats__random_matrix_models__GaussianEnsembleModel(): from sympy.stats.random_matrix_models import GaussianEnsembleModel assert _test_args(GaussianEnsembleModel('G', 3)) def test_sympy__stats__random_matrix_models__GaussianUnitaryEnsembleModel(): from sympy.stats.random_matrix_models import GaussianUnitaryEnsembleModel assert _test_args(GaussianUnitaryEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__GaussianOrthogonalEnsembleModel(): from sympy.stats.random_matrix_models import GaussianOrthogonalEnsembleModel assert _test_args(GaussianOrthogonalEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__GaussianSymplecticEnsembleModel(): from sympy.stats.random_matrix_models import GaussianSymplecticEnsembleModel assert _test_args(GaussianSymplecticEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__CircularEnsembleModel(): from sympy.stats.random_matrix_models import CircularEnsembleModel assert _test_args(CircularEnsembleModel('C', 3)) def test_sympy__stats__random_matrix_models__CircularUnitaryEnsembleModel(): from sympy.stats.random_matrix_models import CircularUnitaryEnsembleModel assert _test_args(CircularUnitaryEnsembleModel('U', 3)) def test_sympy__stats__random_matrix_models__CircularOrthogonalEnsembleModel(): from sympy.stats.random_matrix_models import CircularOrthogonalEnsembleModel assert _test_args(CircularOrthogonalEnsembleModel('O', 3)) def test_sympy__stats__random_matrix_models__CircularSymplecticEnsembleModel(): from sympy.stats.random_matrix_models import CircularSymplecticEnsembleModel assert _test_args(CircularSymplecticEnsembleModel('S', 3)) def test_sympy__stats__symbolic_multivariate_probability__ExpectationMatrix(): from sympy.stats import ExpectationMatrix from sympy.stats.rv import RandomMatrixSymbol assert _test_args(ExpectationMatrix(RandomMatrixSymbol('R', 2, 1))) def test_sympy__stats__symbolic_multivariate_probability__VarianceMatrix(): from sympy.stats import VarianceMatrix from sympy.stats.rv import RandomMatrixSymbol assert _test_args(VarianceMatrix(RandomMatrixSymbol('R', 3, 1))) def test_sympy__stats__symbolic_multivariate_probability__CrossCovarianceMatrix(): from sympy.stats import CrossCovarianceMatrix from sympy.stats.rv import RandomMatrixSymbol assert _test_args(CrossCovarianceMatrix(RandomMatrixSymbol('R', 3, 1), RandomMatrixSymbol('X', 3, 1))) def test_sympy__stats__matrix_distributions__MatrixPSpace(): from sympy.stats.matrix_distributions import MatrixDistribution, MatrixPSpace from sympy.matrices.dense import Matrix M = MatrixDistribution(1, Matrix([[1, 0], [0, 1]])) assert _test_args(MatrixPSpace('M', M, 2, 2)) def test_sympy__stats__matrix_distributions__MatrixDistribution(): from sympy.stats.matrix_distributions import MatrixDistribution from sympy.matrices.dense import Matrix assert _test_args(MatrixDistribution(1, Matrix([[1, 0], [0, 1]]))) def test_sympy__stats__matrix_distributions__MatrixGammaDistribution(): from sympy.stats.matrix_distributions import MatrixGammaDistribution from sympy.matrices.dense import Matrix assert _test_args(MatrixGammaDistribution(3, 4, Matrix([[1, 0], [0, 1]]))) def test_sympy__stats__matrix_distributions__WishartDistribution(): from sympy.stats.matrix_distributions import WishartDistribution from sympy.matrices.dense import Matrix assert _test_args(WishartDistribution(3, Matrix([[1, 0], [0, 1]]))) def test_sympy__stats__matrix_distributions__MatrixNormalDistribution(): from sympy.stats.matrix_distributions import MatrixNormalDistribution from sympy.matrices.expressions.matexpr import MatrixSymbol L = MatrixSymbol('L', 1, 2) S1 = MatrixSymbol('S1', 1, 1) S2 = MatrixSymbol('S2', 2, 2) assert _test_args(MatrixNormalDistribution(L, S1, S2)) def test_sympy__stats__matrix_distributions__MatrixStudentTDistribution(): from sympy.stats.matrix_distributions import MatrixStudentTDistribution from sympy.matrices.expressions.matexpr import MatrixSymbol v = symbols('v', positive=True) Omega = MatrixSymbol('Omega', 3, 3) Sigma = MatrixSymbol('Sigma', 1, 1) Location = MatrixSymbol('Location', 1, 3) assert _test_args(MatrixStudentTDistribution(v, Location, Omega, Sigma)) def test_sympy__utilities__matchpy_connector__WildDot(): from sympy.utilities.matchpy_connector import WildDot assert _test_args(WildDot("w_")) def test_sympy__utilities__matchpy_connector__WildPlus(): from sympy.utilities.matchpy_connector import WildPlus assert _test_args(WildPlus("w__")) def test_sympy__utilities__matchpy_connector__WildStar(): from sympy.utilities.matchpy_connector import WildStar assert _test_args(WildStar("w___")) def test_sympy__core__symbol__Str(): from sympy.core.symbol import Str assert _test_args(Str('t')) def test_sympy__core__symbol__Dummy(): from sympy.core.symbol import Dummy assert _test_args(Dummy('t')) def test_sympy__core__symbol__Symbol(): from sympy.core.symbol import Symbol assert _test_args(Symbol('t')) def test_sympy__core__symbol__Wild(): from sympy.core.symbol import Wild assert _test_args(Wild('x', exclude=[x])) @SKIP("abstract class") def test_sympy__functions__combinatorial__factorials__CombinatorialFunction(): pass def test_sympy__functions__combinatorial__factorials__FallingFactorial(): from sympy.functions.combinatorial.factorials import FallingFactorial assert _test_args(FallingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__MultiFactorial(): from sympy.functions.combinatorial.factorials import MultiFactorial assert _test_args(MultiFactorial(x)) def test_sympy__functions__combinatorial__factorials__RisingFactorial(): from sympy.functions.combinatorial.factorials import RisingFactorial assert _test_args(RisingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__binomial(): from sympy.functions.combinatorial.factorials import binomial assert _test_args(binomial(2, x)) def test_sympy__functions__combinatorial__factorials__subfactorial(): from sympy.functions.combinatorial.factorials import subfactorial assert _test_args(subfactorial(x)) def test_sympy__functions__combinatorial__factorials__factorial(): from sympy.functions.combinatorial.factorials import factorial assert _test_args(factorial(x)) def test_sympy__functions__combinatorial__factorials__factorial2(): from sympy.functions.combinatorial.factorials import factorial2 assert _test_args(factorial2(x)) def test_sympy__functions__combinatorial__numbers__bell(): from sympy.functions.combinatorial.numbers import bell assert _test_args(bell(x, y)) def test_sympy__functions__combinatorial__numbers__bernoulli(): from sympy.functions.combinatorial.numbers import bernoulli assert _test_args(bernoulli(x)) def test_sympy__functions__combinatorial__numbers__catalan(): from sympy.functions.combinatorial.numbers import catalan assert _test_args(catalan(x)) def test_sympy__functions__combinatorial__numbers__genocchi(): from sympy.functions.combinatorial.numbers import genocchi assert _test_args(genocchi(x)) def test_sympy__functions__combinatorial__numbers__euler(): from sympy.functions.combinatorial.numbers import euler assert _test_args(euler(x)) def test_sympy__functions__combinatorial__numbers__andre(): from sympy.functions.combinatorial.numbers import andre assert _test_args(andre(x)) def test_sympy__functions__combinatorial__numbers__carmichael(): from sympy.functions.combinatorial.numbers import carmichael assert _test_args(carmichael(x)) def test_sympy__functions__combinatorial__numbers__motzkin(): from sympy.functions.combinatorial.numbers import motzkin assert _test_args(motzkin(5)) def test_sympy__functions__combinatorial__numbers__fibonacci(): from sympy.functions.combinatorial.numbers import fibonacci assert _test_args(fibonacci(x)) def test_sympy__functions__combinatorial__numbers__tribonacci(): from sympy.functions.combinatorial.numbers import tribonacci assert _test_args(tribonacci(x)) def test_sympy__functions__combinatorial__numbers__harmonic(): from sympy.functions.combinatorial.numbers import harmonic assert _test_args(harmonic(x, 2)) def test_sympy__functions__combinatorial__numbers__lucas(): from sympy.functions.combinatorial.numbers import lucas assert _test_args(lucas(x)) def test_sympy__functions__combinatorial__numbers__partition(): from sympy.core.symbol import Symbol from sympy.functions.combinatorial.numbers import partition assert _test_args(partition(Symbol('a', integer=True))) def test_sympy__functions__elementary__complexes__Abs(): from sympy.functions.elementary.complexes import Abs assert _test_args(Abs(x)) def test_sympy__functions__elementary__complexes__adjoint(): from sympy.functions.elementary.complexes import adjoint assert _test_args(adjoint(x)) def test_sympy__functions__elementary__complexes__arg(): from sympy.functions.elementary.complexes import arg assert _test_args(arg(x)) def test_sympy__functions__elementary__complexes__conjugate(): from sympy.functions.elementary.complexes import conjugate assert _test_args(conjugate(x)) def test_sympy__functions__elementary__complexes__im(): from sympy.functions.elementary.complexes import im assert _test_args(im(x)) def test_sympy__functions__elementary__complexes__re(): from sympy.functions.elementary.complexes import re assert _test_args(re(x)) def test_sympy__functions__elementary__complexes__sign(): from sympy.functions.elementary.complexes import sign assert _test_args(sign(x)) def test_sympy__functions__elementary__complexes__polar_lift(): from sympy.functions.elementary.complexes import polar_lift assert _test_args(polar_lift(x)) def test_sympy__functions__elementary__complexes__periodic_argument(): from sympy.functions.elementary.complexes import periodic_argument assert _test_args(periodic_argument(x, y)) def test_sympy__functions__elementary__complexes__principal_branch(): from sympy.functions.elementary.complexes import principal_branch assert _test_args(principal_branch(x, y)) def test_sympy__functions__elementary__complexes__transpose(): from sympy.functions.elementary.complexes import transpose assert _test_args(transpose(x)) def test_sympy__functions__elementary__exponential__LambertW(): from sympy.functions.elementary.exponential import LambertW assert _test_args(LambertW(2)) @SKIP("abstract class") def test_sympy__functions__elementary__exponential__ExpBase(): pass def test_sympy__functions__elementary__exponential__exp(): from sympy.functions.elementary.exponential import exp assert _test_args(exp(2)) def test_sympy__functions__elementary__exponential__exp_polar(): from sympy.functions.elementary.exponential import exp_polar assert _test_args(exp_polar(2)) def test_sympy__functions__elementary__exponential__log(): from sympy.functions.elementary.exponential import log assert _test_args(log(2)) @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction(): pass def test_sympy__functions__elementary__hyperbolic__acosh(): from sympy.functions.elementary.hyperbolic import acosh assert _test_args(acosh(2)) def test_sympy__functions__elementary__hyperbolic__acoth(): from sympy.functions.elementary.hyperbolic import acoth assert _test_args(acoth(2)) def test_sympy__functions__elementary__hyperbolic__asinh(): from sympy.functions.elementary.hyperbolic import asinh assert _test_args(asinh(2)) def test_sympy__functions__elementary__hyperbolic__atanh(): from sympy.functions.elementary.hyperbolic import atanh assert _test_args(atanh(2)) def test_sympy__functions__elementary__hyperbolic__asech(): from sympy.functions.elementary.hyperbolic import asech assert _test_args(asech(x)) def test_sympy__functions__elementary__hyperbolic__acsch(): from sympy.functions.elementary.hyperbolic import acsch assert _test_args(acsch(x)) def test_sympy__functions__elementary__hyperbolic__cosh(): from sympy.functions.elementary.hyperbolic import cosh assert _test_args(cosh(2)) def test_sympy__functions__elementary__hyperbolic__coth(): from sympy.functions.elementary.hyperbolic import coth assert _test_args(coth(2)) def test_sympy__functions__elementary__hyperbolic__csch(): from sympy.functions.elementary.hyperbolic import csch assert _test_args(csch(2)) def test_sympy__functions__elementary__hyperbolic__sech(): from sympy.functions.elementary.hyperbolic import sech assert _test_args(sech(2)) def test_sympy__functions__elementary__hyperbolic__sinh(): from sympy.functions.elementary.hyperbolic import sinh assert _test_args(sinh(2)) def test_sympy__functions__elementary__hyperbolic__tanh(): from sympy.functions.elementary.hyperbolic import tanh assert _test_args(tanh(2)) @SKIP("abstract class") def test_sympy__functions__elementary__integers__RoundFunction(): pass def test_sympy__functions__elementary__integers__ceiling(): from sympy.functions.elementary.integers import ceiling assert _test_args(ceiling(x)) def test_sympy__functions__elementary__integers__floor(): from sympy.functions.elementary.integers import floor assert _test_args(floor(x)) def test_sympy__functions__elementary__integers__frac(): from sympy.functions.elementary.integers import frac assert _test_args(frac(x)) def test_sympy__functions__elementary__miscellaneous__IdentityFunction(): from sympy.functions.elementary.miscellaneous import IdentityFunction assert _test_args(IdentityFunction()) def test_sympy__functions__elementary__miscellaneous__Max(): from sympy.functions.elementary.miscellaneous import Max assert _test_args(Max(x, 2)) def test_sympy__functions__elementary__miscellaneous__Min(): from sympy.functions.elementary.miscellaneous import Min assert _test_args(Min(x, 2)) @SKIP("abstract class") def test_sympy__functions__elementary__miscellaneous__MinMaxBase(): pass def test_sympy__functions__elementary__miscellaneous__Rem(): from sympy.functions.elementary.miscellaneous import Rem assert _test_args(Rem(x, 2)) def test_sympy__functions__elementary__piecewise__ExprCondPair(): from sympy.functions.elementary.piecewise import ExprCondPair assert _test_args(ExprCondPair(1, True)) def test_sympy__functions__elementary__piecewise__Piecewise(): from sympy.functions.elementary.piecewise import Piecewise assert _test_args(Piecewise((1, x >= 0), (0, True))) @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__TrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction(): pass def test_sympy__functions__elementary__trigonometric__acos(): from sympy.functions.elementary.trigonometric import acos assert _test_args(acos(2)) def test_sympy__functions__elementary__trigonometric__acot(): from sympy.functions.elementary.trigonometric import acot assert _test_args(acot(2)) def test_sympy__functions__elementary__trigonometric__asin(): from sympy.functions.elementary.trigonometric import asin assert _test_args(asin(2)) def test_sympy__functions__elementary__trigonometric__asec(): from sympy.functions.elementary.trigonometric import asec assert _test_args(asec(x)) def test_sympy__functions__elementary__trigonometric__acsc(): from sympy.functions.elementary.trigonometric import acsc assert _test_args(acsc(x)) def test_sympy__functions__elementary__trigonometric__atan(): from sympy.functions.elementary.trigonometric import atan assert _test_args(atan(2)) def test_sympy__functions__elementary__trigonometric__atan2(): from sympy.functions.elementary.trigonometric import atan2 assert _test_args(atan2(2, 3)) def test_sympy__functions__elementary__trigonometric__cos(): from sympy.functions.elementary.trigonometric import cos assert _test_args(cos(2)) def test_sympy__functions__elementary__trigonometric__csc(): from sympy.functions.elementary.trigonometric import csc assert _test_args(csc(2)) def test_sympy__functions__elementary__trigonometric__cot(): from sympy.functions.elementary.trigonometric import cot assert _test_args(cot(2)) def test_sympy__functions__elementary__trigonometric__sin(): assert _test_args(sin(2)) def test_sympy__functions__elementary__trigonometric__sinc(): from sympy.functions.elementary.trigonometric import sinc assert _test_args(sinc(2)) def test_sympy__functions__elementary__trigonometric__sec(): from sympy.functions.elementary.trigonometric import sec assert _test_args(sec(2)) def test_sympy__functions__elementary__trigonometric__tan(): from sympy.functions.elementary.trigonometric import tan assert _test_args(tan(2)) @SKIP("abstract class") def test_sympy__functions__special__bessel__BesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalBesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalHankelBase(): pass def test_sympy__functions__special__bessel__besseli(): from sympy.functions.special.bessel import besseli assert _test_args(besseli(x, 1)) def test_sympy__functions__special__bessel__besselj(): from sympy.functions.special.bessel import besselj assert _test_args(besselj(x, 1)) def test_sympy__functions__special__bessel__besselk(): from sympy.functions.special.bessel import besselk assert _test_args(besselk(x, 1)) def test_sympy__functions__special__bessel__bessely(): from sympy.functions.special.bessel import bessely assert _test_args(bessely(x, 1)) def test_sympy__functions__special__bessel__hankel1(): from sympy.functions.special.bessel import hankel1 assert _test_args(hankel1(x, 1)) def test_sympy__functions__special__bessel__hankel2(): from sympy.functions.special.bessel import hankel2 assert _test_args(hankel2(x, 1)) def test_sympy__functions__special__bessel__jn(): from sympy.functions.special.bessel import jn assert _test_args(jn(0, x)) def test_sympy__functions__special__bessel__yn(): from sympy.functions.special.bessel import yn assert _test_args(yn(0, x)) def test_sympy__functions__special__bessel__hn1(): from sympy.functions.special.bessel import hn1 assert _test_args(hn1(0, x)) def test_sympy__functions__special__bessel__hn2(): from sympy.functions.special.bessel import hn2 assert _test_args(hn2(0, x)) def test_sympy__functions__special__bessel__AiryBase(): pass def test_sympy__functions__special__bessel__airyai(): from sympy.functions.special.bessel import airyai assert _test_args(airyai(2)) def test_sympy__functions__special__bessel__airybi(): from sympy.functions.special.bessel import airybi assert _test_args(airybi(2)) def test_sympy__functions__special__bessel__airyaiprime(): from sympy.functions.special.bessel import airyaiprime assert _test_args(airyaiprime(2)) def test_sympy__functions__special__bessel__airybiprime(): from sympy.functions.special.bessel import airybiprime assert _test_args(airybiprime(2)) def test_sympy__functions__special__bessel__marcumq(): from sympy.functions.special.bessel import marcumq assert _test_args(marcumq(x, y, z)) def test_sympy__functions__special__elliptic_integrals__elliptic_k(): from sympy.functions.special.elliptic_integrals import elliptic_k as K assert _test_args(K(x)) def test_sympy__functions__special__elliptic_integrals__elliptic_f(): from sympy.functions.special.elliptic_integrals import elliptic_f as F assert _test_args(F(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_e(): from sympy.functions.special.elliptic_integrals import elliptic_e as E assert _test_args(E(x)) assert _test_args(E(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_pi(): from sympy.functions.special.elliptic_integrals import elliptic_pi as P assert _test_args(P(x, y)) assert _test_args(P(x, y, z)) def test_sympy__functions__special__delta_functions__DiracDelta(): from sympy.functions.special.delta_functions import DiracDelta assert _test_args(DiracDelta(x, 1)) def test_sympy__functions__special__singularity_functions__SingularityFunction(): from sympy.functions.special.singularity_functions import SingularityFunction assert _test_args(SingularityFunction(x, y, z)) def test_sympy__functions__special__delta_functions__Heaviside(): from sympy.functions.special.delta_functions import Heaviside assert _test_args(Heaviside(x)) def test_sympy__functions__special__error_functions__erf(): from sympy.functions.special.error_functions import erf assert _test_args(erf(2)) def test_sympy__functions__special__error_functions__erfc(): from sympy.functions.special.error_functions import erfc assert _test_args(erfc(2)) def test_sympy__functions__special__error_functions__erfi(): from sympy.functions.special.error_functions import erfi assert _test_args(erfi(2)) def test_sympy__functions__special__error_functions__erf2(): from sympy.functions.special.error_functions import erf2 assert _test_args(erf2(2, 3)) def test_sympy__functions__special__error_functions__erfinv(): from sympy.functions.special.error_functions import erfinv assert _test_args(erfinv(2)) def test_sympy__functions__special__error_functions__erfcinv(): from sympy.functions.special.error_functions import erfcinv assert _test_args(erfcinv(2)) def test_sympy__functions__special__error_functions__erf2inv(): from sympy.functions.special.error_functions import erf2inv assert _test_args(erf2inv(2, 3)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__FresnelIntegral(): pass def test_sympy__functions__special__error_functions__fresnels(): from sympy.functions.special.error_functions import fresnels assert _test_args(fresnels(2)) def test_sympy__functions__special__error_functions__fresnelc(): from sympy.functions.special.error_functions import fresnelc assert _test_args(fresnelc(2)) def test_sympy__functions__special__error_functions__erfs(): from sympy.functions.special.error_functions import _erfs assert _test_args(_erfs(2)) def test_sympy__functions__special__error_functions__Ei(): from sympy.functions.special.error_functions import Ei assert _test_args(Ei(2)) def test_sympy__functions__special__error_functions__li(): from sympy.functions.special.error_functions import li assert _test_args(li(2)) def test_sympy__functions__special__error_functions__Li(): from sympy.functions.special.error_functions import Li assert _test_args(Li(5)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__TrigonometricIntegral(): pass def test_sympy__functions__special__error_functions__Si(): from sympy.functions.special.error_functions import Si assert _test_args(Si(2)) def test_sympy__functions__special__error_functions__Ci(): from sympy.functions.special.error_functions import Ci assert _test_args(Ci(2)) def test_sympy__functions__special__error_functions__Shi(): from sympy.functions.special.error_functions import Shi assert _test_args(Shi(2)) def test_sympy__functions__special__error_functions__Chi(): from sympy.functions.special.error_functions import Chi assert _test_args(Chi(2)) def test_sympy__functions__special__error_functions__expint(): from sympy.functions.special.error_functions import expint assert _test_args(expint(y, x)) def test_sympy__functions__special__gamma_functions__gamma(): from sympy.functions.special.gamma_functions import gamma assert _test_args(gamma(x)) def test_sympy__functions__special__gamma_functions__loggamma(): from sympy.functions.special.gamma_functions import loggamma assert _test_args(loggamma(x)) def test_sympy__functions__special__gamma_functions__lowergamma(): from sympy.functions.special.gamma_functions import lowergamma assert _test_args(lowergamma(x, 2)) def test_sympy__functions__special__gamma_functions__polygamma(): from sympy.functions.special.gamma_functions import polygamma assert _test_args(polygamma(x, 2)) def test_sympy__functions__special__gamma_functions__digamma(): from sympy.functions.special.gamma_functions import digamma assert _test_args(digamma(x)) def test_sympy__functions__special__gamma_functions__trigamma(): from sympy.functions.special.gamma_functions import trigamma assert _test_args(trigamma(x)) def test_sympy__functions__special__gamma_functions__uppergamma(): from sympy.functions.special.gamma_functions import uppergamma assert _test_args(uppergamma(x, 2)) def test_sympy__functions__special__gamma_functions__multigamma(): from sympy.functions.special.gamma_functions import multigamma assert _test_args(multigamma(x, 1)) def test_sympy__functions__special__beta_functions__beta(): from sympy.functions.special.beta_functions import beta assert _test_args(beta(x)) assert _test_args(beta(x, x)) def test_sympy__functions__special__beta_functions__betainc(): from sympy.functions.special.beta_functions import betainc assert _test_args(betainc(a, b, x, y)) def test_sympy__functions__special__beta_functions__betainc_regularized(): from sympy.functions.special.beta_functions import betainc_regularized assert _test_args(betainc_regularized(a, b, x, y)) def test_sympy__functions__special__mathieu_functions__MathieuBase(): pass def test_sympy__functions__special__mathieu_functions__mathieus(): from sympy.functions.special.mathieu_functions import mathieus assert _test_args(mathieus(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieuc(): from sympy.functions.special.mathieu_functions import mathieuc assert _test_args(mathieuc(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieusprime(): from sympy.functions.special.mathieu_functions import mathieusprime assert _test_args(mathieusprime(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieucprime(): from sympy.functions.special.mathieu_functions import mathieucprime assert _test_args(mathieucprime(1, 1, 1)) @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleParametersBase(): pass @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleArg(): pass def test_sympy__functions__special__hyper__hyper(): from sympy.functions.special.hyper import hyper assert _test_args(hyper([1, 2, 3], [4, 5], x)) def test_sympy__functions__special__hyper__meijerg(): from sympy.functions.special.hyper import meijerg assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x)) @SKIP("abstract class") def test_sympy__functions__special__hyper__HyperRep(): pass def test_sympy__functions__special__hyper__HyperRep_power1(): from sympy.functions.special.hyper import HyperRep_power1 assert _test_args(HyperRep_power1(x, y)) def test_sympy__functions__special__hyper__HyperRep_power2(): from sympy.functions.special.hyper import HyperRep_power2 assert _test_args(HyperRep_power2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log1(): from sympy.functions.special.hyper import HyperRep_log1 assert _test_args(HyperRep_log1(x)) def test_sympy__functions__special__hyper__HyperRep_atanh(): from sympy.functions.special.hyper import HyperRep_atanh assert _test_args(HyperRep_atanh(x)) def test_sympy__functions__special__hyper__HyperRep_asin1(): from sympy.functions.special.hyper import HyperRep_asin1 assert _test_args(HyperRep_asin1(x)) def test_sympy__functions__special__hyper__HyperRep_asin2(): from sympy.functions.special.hyper import HyperRep_asin2 assert _test_args(HyperRep_asin2(x)) def test_sympy__functions__special__hyper__HyperRep_sqrts1(): from sympy.functions.special.hyper import HyperRep_sqrts1 assert _test_args(HyperRep_sqrts1(x, y)) def test_sympy__functions__special__hyper__HyperRep_sqrts2(): from sympy.functions.special.hyper import HyperRep_sqrts2 assert _test_args(HyperRep_sqrts2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log2(): from sympy.functions.special.hyper import HyperRep_log2 assert _test_args(HyperRep_log2(x)) def test_sympy__functions__special__hyper__HyperRep_cosasin(): from sympy.functions.special.hyper import HyperRep_cosasin assert _test_args(HyperRep_cosasin(x, y)) def test_sympy__functions__special__hyper__HyperRep_sinasin(): from sympy.functions.special.hyper import HyperRep_sinasin assert _test_args(HyperRep_sinasin(x, y)) def test_sympy__functions__special__hyper__appellf1(): from sympy.functions.special.hyper import appellf1 a, b1, b2, c, x, y = symbols('a b1 b2 c x y') assert _test_args(appellf1(a, b1, b2, c, x, y)) @SKIP("abstract class") def test_sympy__functions__special__polynomials__OrthogonalPolynomial(): pass def test_sympy__functions__special__polynomials__jacobi(): from sympy.functions.special.polynomials import jacobi assert _test_args(jacobi(x, y, 2, 2)) def test_sympy__functions__special__polynomials__gegenbauer(): from sympy.functions.special.polynomials import gegenbauer assert _test_args(gegenbauer(x, 2, 2)) def test_sympy__functions__special__polynomials__chebyshevt(): from sympy.functions.special.polynomials import chebyshevt assert _test_args(chebyshevt(x, 2)) def test_sympy__functions__special__polynomials__chebyshevt_root(): from sympy.functions.special.polynomials import chebyshevt_root assert _test_args(chebyshevt_root(3, 2)) def test_sympy__functions__special__polynomials__chebyshevu(): from sympy.functions.special.polynomials import chebyshevu assert _test_args(chebyshevu(x, 2)) def test_sympy__functions__special__polynomials__chebyshevu_root(): from sympy.functions.special.polynomials import chebyshevu_root assert _test_args(chebyshevu_root(3, 2)) def test_sympy__functions__special__polynomials__hermite(): from sympy.functions.special.polynomials import hermite assert _test_args(hermite(x, 2)) def test_sympy__functions__special__polynomials__hermite_prob(): from sympy.functions.special.polynomials import hermite_prob assert _test_args(hermite_prob(x, 2)) def test_sympy__functions__special__polynomials__legendre(): from sympy.functions.special.polynomials import legendre assert _test_args(legendre(x, 2)) def test_sympy__functions__special__polynomials__assoc_legendre(): from sympy.functions.special.polynomials import assoc_legendre assert _test_args(assoc_legendre(x, 0, y)) def test_sympy__functions__special__polynomials__laguerre(): from sympy.functions.special.polynomials import laguerre assert _test_args(laguerre(x, 2)) def test_sympy__functions__special__polynomials__assoc_laguerre(): from sympy.functions.special.polynomials import assoc_laguerre assert _test_args(assoc_laguerre(x, 0, y)) def test_sympy__functions__special__spherical_harmonics__Ynm(): from sympy.functions.special.spherical_harmonics import Ynm assert _test_args(Ynm(1, 1, x, y)) def test_sympy__functions__special__spherical_harmonics__Znm(): from sympy.functions.special.spherical_harmonics import Znm assert _test_args(Znm(x, y, 1, 1)) def test_sympy__functions__special__tensor_functions__LeviCivita(): from sympy.functions.special.tensor_functions import LeviCivita assert _test_args(LeviCivita(x, y, 2)) def test_sympy__functions__special__tensor_functions__KroneckerDelta(): from sympy.functions.special.tensor_functions import KroneckerDelta assert _test_args(KroneckerDelta(x, y)) def test_sympy__functions__special__zeta_functions__dirichlet_eta(): from sympy.functions.special.zeta_functions import dirichlet_eta assert _test_args(dirichlet_eta(x)) def test_sympy__functions__special__zeta_functions__riemann_xi(): from sympy.functions.special.zeta_functions import riemann_xi assert _test_args(riemann_xi(x)) def test_sympy__functions__special__zeta_functions__zeta(): from sympy.functions.special.zeta_functions import zeta assert _test_args(zeta(101)) def test_sympy__functions__special__zeta_functions__lerchphi(): from sympy.functions.special.zeta_functions import lerchphi assert _test_args(lerchphi(x, y, z)) def test_sympy__functions__special__zeta_functions__polylog(): from sympy.functions.special.zeta_functions import polylog assert _test_args(polylog(x, y)) def test_sympy__functions__special__zeta_functions__stieltjes(): from sympy.functions.special.zeta_functions import stieltjes assert _test_args(stieltjes(x, y)) def test_sympy__integrals__integrals__Integral(): from sympy.integrals.integrals import Integral assert _test_args(Integral(2, (x, 0, 1))) def test_sympy__integrals__risch__NonElementaryIntegral(): from sympy.integrals.risch import NonElementaryIntegral assert _test_args(NonElementaryIntegral(exp(-x**2), x)) @SKIP("abstract class") def test_sympy__integrals__transforms__IntegralTransform(): pass def test_sympy__integrals__transforms__MellinTransform(): from sympy.integrals.transforms import MellinTransform assert _test_args(MellinTransform(2, x, y)) def test_sympy__integrals__transforms__InverseMellinTransform(): from sympy.integrals.transforms import InverseMellinTransform assert _test_args(InverseMellinTransform(2, x, y, 0, 1)) def test_sympy__integrals__laplace__LaplaceTransform(): from sympy.integrals.laplace import LaplaceTransform assert _test_args(LaplaceTransform(2, x, y)) def test_sympy__integrals__laplace__InverseLaplaceTransform(): from sympy.integrals.laplace import InverseLaplaceTransform assert _test_args(InverseLaplaceTransform(2, x, y, 0)) @SKIP("abstract class") def test_sympy__integrals__transforms__FourierTypeTransform(): pass def test_sympy__integrals__transforms__InverseFourierTransform(): from sympy.integrals.transforms import InverseFourierTransform assert _test_args(InverseFourierTransform(2, x, y)) def test_sympy__integrals__transforms__FourierTransform(): from sympy.integrals.transforms import FourierTransform assert _test_args(FourierTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__SineCosineTypeTransform(): pass def test_sympy__integrals__transforms__InverseSineTransform(): from sympy.integrals.transforms import InverseSineTransform assert _test_args(InverseSineTransform(2, x, y)) def test_sympy__integrals__transforms__SineTransform(): from sympy.integrals.transforms import SineTransform assert _test_args(SineTransform(2, x, y)) def test_sympy__integrals__transforms__InverseCosineTransform(): from sympy.integrals.transforms import InverseCosineTransform assert _test_args(InverseCosineTransform(2, x, y)) def test_sympy__integrals__transforms__CosineTransform(): from sympy.integrals.transforms import CosineTransform assert _test_args(CosineTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__HankelTypeTransform(): pass def test_sympy__integrals__transforms__InverseHankelTransform(): from sympy.integrals.transforms import InverseHankelTransform assert _test_args(InverseHankelTransform(2, x, y, 0)) def test_sympy__integrals__transforms__HankelTransform(): from sympy.integrals.transforms import HankelTransform assert _test_args(HankelTransform(2, x, y, 0)) def test_sympy__liealgebras__cartan_type__Standard_Cartan(): from sympy.liealgebras.cartan_type import Standard_Cartan assert _test_args(Standard_Cartan("A", 2)) def test_sympy__liealgebras__weyl_group__WeylGroup(): from sympy.liealgebras.weyl_group import WeylGroup assert _test_args(WeylGroup("B4")) def test_sympy__liealgebras__root_system__RootSystem(): from sympy.liealgebras.root_system import RootSystem assert _test_args(RootSystem("A2")) def test_sympy__liealgebras__type_a__TypeA(): from sympy.liealgebras.type_a import TypeA assert _test_args(TypeA(2)) def test_sympy__liealgebras__type_b__TypeB(): from sympy.liealgebras.type_b import TypeB assert _test_args(TypeB(4)) def test_sympy__liealgebras__type_c__TypeC(): from sympy.liealgebras.type_c import TypeC assert _test_args(TypeC(4)) def test_sympy__liealgebras__type_d__TypeD(): from sympy.liealgebras.type_d import TypeD assert _test_args(TypeD(4)) def test_sympy__liealgebras__type_e__TypeE(): from sympy.liealgebras.type_e import TypeE assert _test_args(TypeE(6)) def test_sympy__liealgebras__type_f__TypeF(): from sympy.liealgebras.type_f import TypeF assert _test_args(TypeF(4)) def test_sympy__liealgebras__type_g__TypeG(): from sympy.liealgebras.type_g import TypeG assert _test_args(TypeG(2)) def test_sympy__logic__boolalg__And(): from sympy.logic.boolalg import And assert _test_args(And(x, y, 1)) @SKIP("abstract class") def test_sympy__logic__boolalg__Boolean(): pass def test_sympy__logic__boolalg__BooleanFunction(): from sympy.logic.boolalg import BooleanFunction assert _test_args(BooleanFunction(1, 2, 3)) @SKIP("abstract class") def test_sympy__logic__boolalg__BooleanAtom(): pass def test_sympy__logic__boolalg__BooleanTrue(): from sympy.logic.boolalg import true assert _test_args(true) def test_sympy__logic__boolalg__BooleanFalse(): from sympy.logic.boolalg import false assert _test_args(false) def test_sympy__logic__boolalg__Equivalent(): from sympy.logic.boolalg import Equivalent assert _test_args(Equivalent(x, 2)) def test_sympy__logic__boolalg__ITE(): from sympy.logic.boolalg import ITE assert _test_args(ITE(x, y, 1)) def test_sympy__logic__boolalg__Implies(): from sympy.logic.boolalg import Implies assert _test_args(Implies(x, y)) def test_sympy__logic__boolalg__Nand(): from sympy.logic.boolalg import Nand assert _test_args(Nand(x, y, 1)) def test_sympy__logic__boolalg__Nor(): from sympy.logic.boolalg import Nor assert _test_args(Nor(x, y)) def test_sympy__logic__boolalg__Not(): from sympy.logic.boolalg import Not assert _test_args(Not(x)) def test_sympy__logic__boolalg__Or(): from sympy.logic.boolalg import Or assert _test_args(Or(x, y)) def test_sympy__logic__boolalg__Xor(): from sympy.logic.boolalg import Xor assert _test_args(Xor(x, y, 2)) def test_sympy__logic__boolalg__Xnor(): from sympy.logic.boolalg import Xnor assert _test_args(Xnor(x, y, 2)) def test_sympy__logic__boolalg__Exclusive(): from sympy.logic.boolalg import Exclusive assert _test_args(Exclusive(x, y, z)) def test_sympy__matrices__matrices__DeferredVector(): from sympy.matrices.matrices import DeferredVector assert _test_args(DeferredVector("X")) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixBase(): pass @SKIP("abstract class") def test_sympy__matrices__immutable__ImmutableRepMatrix(): pass def test_sympy__matrices__immutable__ImmutableDenseMatrix(): from sympy.matrices.immutable import ImmutableDenseMatrix m = ImmutableDenseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__immutable__ImmutableSparseMatrix(): from sympy.matrices.immutable import ImmutableSparseMatrix m = ImmutableSparseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, {(0, 0): 1}) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__expressions__slice__MatrixSlice(): from sympy.matrices.expressions.slice import MatrixSlice from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 4, 4) assert _test_args(MatrixSlice(X, (0, 2), (0, 2))) def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction(): from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol("X", x, x) func = Lambda(x, x**2) assert _test_args(ElementwiseApplyFunction(func, X)) def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix(): from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) assert _test_args(BlockDiagMatrix(X, Y)) def test_sympy__matrices__expressions__blockmatrix__BlockMatrix(): from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) Z = MatrixSymbol('Z', x, y) O = ZeroMatrix(y, x) assert _test_args(BlockMatrix([[X, Z], [O, Y]])) def test_sympy__matrices__expressions__inverse__Inverse(): from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions import MatrixSymbol assert _test_args(Inverse(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__matadd__MatAdd(): from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(MatAdd(X, Y)) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixExpr(): pass def test_sympy__matrices__expressions__matexpr__MatrixElement(): from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement from sympy.core.singleton import S assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3))) def test_sympy__matrices__expressions__matexpr__MatrixSymbol(): from sympy.matrices.expressions.matexpr import MatrixSymbol assert _test_args(MatrixSymbol('A', 3, 5)) def test_sympy__matrices__expressions__special__OneMatrix(): from sympy.matrices.expressions.special import OneMatrix assert _test_args(OneMatrix(3, 5)) def test_sympy__matrices__expressions__special__ZeroMatrix(): from sympy.matrices.expressions.special import ZeroMatrix assert _test_args(ZeroMatrix(3, 5)) def test_sympy__matrices__expressions__special__GenericZeroMatrix(): from sympy.matrices.expressions.special import GenericZeroMatrix assert _test_args(GenericZeroMatrix()) def test_sympy__matrices__expressions__special__Identity(): from sympy.matrices.expressions.special import Identity assert _test_args(Identity(3)) def test_sympy__matrices__expressions__special__GenericIdentity(): from sympy.matrices.expressions.special import GenericIdentity assert _test_args(GenericIdentity()) def test_sympy__matrices__expressions__sets__MatrixSet(): from sympy.matrices.expressions.sets import MatrixSet from sympy.core.singleton import S assert _test_args(MatrixSet(2, 2, S.Reals)) def test_sympy__matrices__expressions__matmul__MatMul(): from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', y, x) assert _test_args(MatMul(X, Y)) def test_sympy__matrices__expressions__dotproduct__DotProduct(): from sympy.matrices.expressions.dotproduct import DotProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, 1) Y = MatrixSymbol('Y', x, 1) assert _test_args(DotProduct(X, Y)) def test_sympy__matrices__expressions__diagonal__DiagonalMatrix(): from sympy.matrices.expressions.diagonal import DiagonalMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagonalMatrix(x)) def test_sympy__matrices__expressions__diagonal__DiagonalOf(): from sympy.matrices.expressions.diagonal import DiagonalOf from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('x', 10, 10) assert _test_args(DiagonalOf(X)) def test_sympy__matrices__expressions__diagonal__DiagMatrix(): from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagMatrix(x)) def test_sympy__matrices__expressions__hadamard__HadamardProduct(): from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(HadamardProduct(X, Y)) def test_sympy__matrices__expressions__hadamard__HadamardPower(): from sympy.matrices.expressions.hadamard import HadamardPower from sympy.matrices.expressions import MatrixSymbol from sympy.core.symbol import Symbol X = MatrixSymbol('X', x, y) n = Symbol("n") assert _test_args(HadamardPower(X, n)) def test_sympy__matrices__expressions__kronecker__KroneckerProduct(): from sympy.matrices.expressions.kronecker import KroneckerProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(KroneckerProduct(X, Y)) def test_sympy__matrices__expressions__matpow__MatPow(): from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) assert _test_args(MatPow(X, 2)) def test_sympy__matrices__expressions__transpose__Transpose(): from sympy.matrices.expressions.transpose import Transpose from sympy.matrices.expressions import MatrixSymbol assert _test_args(Transpose(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__adjoint__Adjoint(): from sympy.matrices.expressions.adjoint import Adjoint from sympy.matrices.expressions import MatrixSymbol assert _test_args(Adjoint(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__trace__Trace(): from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions import MatrixSymbol assert _test_args(Trace(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__determinant__Determinant(): from sympy.matrices.expressions.determinant import Determinant from sympy.matrices.expressions import MatrixSymbol assert _test_args(Determinant(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__determinant__Permanent(): from sympy.matrices.expressions.determinant import Permanent from sympy.matrices.expressions import MatrixSymbol assert _test_args(Permanent(MatrixSymbol('A', 3, 4))) def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix(): from sympy.matrices.expressions.funcmatrix import FunctionMatrix from sympy.core.symbol import symbols i, j = symbols('i,j') assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) )) def test_sympy__matrices__expressions__fourier__DFT(): from sympy.matrices.expressions.fourier import DFT from sympy.core.singleton import S assert _test_args(DFT(S(2))) def test_sympy__matrices__expressions__fourier__IDFT(): from sympy.matrices.expressions.fourier import IDFT from sympy.core.singleton import S assert _test_args(IDFT(S(2))) from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 10, 10) def test_sympy__matrices__expressions__factorizations__LofLU(): from sympy.matrices.expressions.factorizations import LofLU assert _test_args(LofLU(X)) def test_sympy__matrices__expressions__factorizations__UofLU(): from sympy.matrices.expressions.factorizations import UofLU assert _test_args(UofLU(X)) def test_sympy__matrices__expressions__factorizations__QofQR(): from sympy.matrices.expressions.factorizations import QofQR assert _test_args(QofQR(X)) def test_sympy__matrices__expressions__factorizations__RofQR(): from sympy.matrices.expressions.factorizations import RofQR assert _test_args(RofQR(X)) def test_sympy__matrices__expressions__factorizations__LofCholesky(): from sympy.matrices.expressions.factorizations import LofCholesky assert _test_args(LofCholesky(X)) def test_sympy__matrices__expressions__factorizations__UofCholesky(): from sympy.matrices.expressions.factorizations import UofCholesky assert _test_args(UofCholesky(X)) def test_sympy__matrices__expressions__factorizations__EigenVectors(): from sympy.matrices.expressions.factorizations import EigenVectors assert _test_args(EigenVectors(X)) def test_sympy__matrices__expressions__factorizations__EigenValues(): from sympy.matrices.expressions.factorizations import EigenValues assert _test_args(EigenValues(X)) def test_sympy__matrices__expressions__factorizations__UofSVD(): from sympy.matrices.expressions.factorizations import UofSVD assert _test_args(UofSVD(X)) def test_sympy__matrices__expressions__factorizations__VofSVD(): from sympy.matrices.expressions.factorizations import VofSVD assert _test_args(VofSVD(X)) def test_sympy__matrices__expressions__factorizations__SofSVD(): from sympy.matrices.expressions.factorizations import SofSVD assert _test_args(SofSVD(X)) @SKIP("abstract class") def test_sympy__matrices__expressions__factorizations__Factorization(): pass def test_sympy__matrices__expressions__permutation__PermutationMatrix(): from sympy.combinatorics import Permutation from sympy.matrices.expressions.permutation import PermutationMatrix assert _test_args(PermutationMatrix(Permutation([2, 0, 1]))) def test_sympy__matrices__expressions__permutation__MatrixPermute(): from sympy.combinatorics import Permutation from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.permutation import MatrixPermute A = MatrixSymbol('A', 3, 3) assert _test_args(MatrixPermute(A, Permutation([2, 0, 1]))) def test_sympy__matrices__expressions__companion__CompanionMatrix(): from sympy.core.symbol import Symbol from sympy.matrices.expressions.companion import CompanionMatrix from sympy.polys.polytools import Poly x = Symbol('x') p = Poly([1, 2, 3], x) assert _test_args(CompanionMatrix(p)) def test_sympy__physics__vector__frame__CoordinateSym(): from sympy.physics.vector import CoordinateSym from sympy.physics.vector import ReferenceFrame assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0)) def test_sympy__physics__paulialgebra__Pauli(): from sympy.physics.paulialgebra import Pauli assert _test_args(Pauli(1)) def test_sympy__physics__quantum__anticommutator__AntiCommutator(): from sympy.physics.quantum.anticommutator import AntiCommutator assert _test_args(AntiCommutator(x, y)) def test_sympy__physics__quantum__cartesian__PositionBra3D(): from sympy.physics.quantum.cartesian import PositionBra3D assert _test_args(PositionBra3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionKet3D(): from sympy.physics.quantum.cartesian import PositionKet3D assert _test_args(PositionKet3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionState3D(): from sympy.physics.quantum.cartesian import PositionState3D assert _test_args(PositionState3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PxBra(): from sympy.physics.quantum.cartesian import PxBra assert _test_args(PxBra(x, y, z)) def test_sympy__physics__quantum__cartesian__PxKet(): from sympy.physics.quantum.cartesian import PxKet assert _test_args(PxKet(x, y, z)) def test_sympy__physics__quantum__cartesian__PxOp(): from sympy.physics.quantum.cartesian import PxOp assert _test_args(PxOp(x, y, z)) def test_sympy__physics__quantum__cartesian__XBra(): from sympy.physics.quantum.cartesian import XBra assert _test_args(XBra(x)) def test_sympy__physics__quantum__cartesian__XKet(): from sympy.physics.quantum.cartesian import XKet assert _test_args(XKet(x)) def test_sympy__physics__quantum__cartesian__XOp(): from sympy.physics.quantum.cartesian import XOp assert _test_args(XOp(x)) def test_sympy__physics__quantum__cartesian__YOp(): from sympy.physics.quantum.cartesian import YOp assert _test_args(YOp(x)) def test_sympy__physics__quantum__cartesian__ZOp(): from sympy.physics.quantum.cartesian import ZOp assert _test_args(ZOp(x)) def test_sympy__physics__quantum__cg__CG(): from sympy.physics.quantum.cg import CG from sympy.core.singleton import S assert _test_args(CG(Rational(3, 2), Rational(3, 2), S.Half, Rational(-1, 2), 1, 1)) def test_sympy__physics__quantum__cg__Wigner3j(): from sympy.physics.quantum.cg import Wigner3j assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0)) def test_sympy__physics__quantum__cg__Wigner6j(): from sympy.physics.quantum.cg import Wigner6j assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2)) def test_sympy__physics__quantum__cg__Wigner9j(): from sympy.physics.quantum.cg import Wigner9j assert _test_args(Wigner9j(2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0)) def test_sympy__physics__quantum__circuitplot__Mz(): from sympy.physics.quantum.circuitplot import Mz assert _test_args(Mz(0)) def test_sympy__physics__quantum__circuitplot__Mx(): from sympy.physics.quantum.circuitplot import Mx assert _test_args(Mx(0)) def test_sympy__physics__quantum__commutator__Commutator(): from sympy.physics.quantum.commutator import Commutator A, B = symbols('A,B', commutative=False) assert _test_args(Commutator(A, B)) def test_sympy__physics__quantum__constants__HBar(): from sympy.physics.quantum.constants import HBar assert _test_args(HBar()) def test_sympy__physics__quantum__dagger__Dagger(): from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.state import Ket assert _test_args(Dagger(Dagger(Ket('psi')))) def test_sympy__physics__quantum__gate__CGate(): from sympy.physics.quantum.gate import CGate, Gate assert _test_args(CGate((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CGateS(): from sympy.physics.quantum.gate import CGateS, Gate assert _test_args(CGateS((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CNotGate(): from sympy.physics.quantum.gate import CNotGate assert _test_args(CNotGate(0, 1)) def test_sympy__physics__quantum__gate__Gate(): from sympy.physics.quantum.gate import Gate assert _test_args(Gate(0)) def test_sympy__physics__quantum__gate__HadamardGate(): from sympy.physics.quantum.gate import HadamardGate assert _test_args(HadamardGate(0)) def test_sympy__physics__quantum__gate__IdentityGate(): from sympy.physics.quantum.gate import IdentityGate assert _test_args(IdentityGate(0)) def test_sympy__physics__quantum__gate__OneQubitGate(): from sympy.physics.quantum.gate import OneQubitGate assert _test_args(OneQubitGate(0)) def test_sympy__physics__quantum__gate__PhaseGate(): from sympy.physics.quantum.gate import PhaseGate assert _test_args(PhaseGate(0)) def test_sympy__physics__quantum__gate__SwapGate(): from sympy.physics.quantum.gate import SwapGate assert _test_args(SwapGate(0, 1)) def test_sympy__physics__quantum__gate__TGate(): from sympy.physics.quantum.gate import TGate assert _test_args(TGate(0)) def test_sympy__physics__quantum__gate__TwoQubitGate(): from sympy.physics.quantum.gate import TwoQubitGate assert _test_args(TwoQubitGate(0)) def test_sympy__physics__quantum__gate__UGate(): from sympy.physics.quantum.gate import UGate from sympy.matrices.immutable import ImmutableDenseMatrix from sympy.core.containers import Tuple from sympy.core.numbers import Integer assert _test_args( UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]]))) def test_sympy__physics__quantum__gate__XGate(): from sympy.physics.quantum.gate import XGate assert _test_args(XGate(0)) def test_sympy__physics__quantum__gate__YGate(): from sympy.physics.quantum.gate import YGate assert _test_args(YGate(0)) def test_sympy__physics__quantum__gate__ZGate(): from sympy.physics.quantum.gate import ZGate assert _test_args(ZGate(0)) def test_sympy__physics__quantum__grover__OracleGateFunction(): from sympy.physics.quantum.grover import OracleGateFunction @OracleGateFunction def f(qubit): return assert _test_args(f) def test_sympy__physics__quantum__grover__OracleGate(): from sympy.physics.quantum.grover import OracleGate def f(qubit): return assert _test_args(OracleGate(1,f)) def test_sympy__physics__quantum__grover__WGate(): from sympy.physics.quantum.grover import WGate assert _test_args(WGate(1)) def test_sympy__physics__quantum__hilbert__ComplexSpace(): from sympy.physics.quantum.hilbert import ComplexSpace assert _test_args(ComplexSpace(x)) def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace(): from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(DirectSumHilbertSpace(c, f)) def test_sympy__physics__quantum__hilbert__FockSpace(): from sympy.physics.quantum.hilbert import FockSpace assert _test_args(FockSpace()) def test_sympy__physics__quantum__hilbert__HilbertSpace(): from sympy.physics.quantum.hilbert import HilbertSpace assert _test_args(HilbertSpace()) def test_sympy__physics__quantum__hilbert__L2(): from sympy.physics.quantum.hilbert import L2 from sympy.core.numbers import oo from sympy.sets.sets import Interval assert _test_args(L2(Interval(0, oo))) def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace(): from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace f = FockSpace() assert _test_args(TensorPowerHilbertSpace(f, 2)) def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace(): from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(TensorProductHilbertSpace(f, c)) def test_sympy__physics__quantum__innerproduct__InnerProduct(): from sympy.physics.quantum import Bra, Ket, InnerProduct b = Bra('b') k = Ket('k') assert _test_args(InnerProduct(b, k)) def test_sympy__physics__quantum__operator__DifferentialOperator(): from sympy.physics.quantum.operator import DifferentialOperator from sympy.core.function import (Derivative, Function) f = Function('f') assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x))) def test_sympy__physics__quantum__operator__HermitianOperator(): from sympy.physics.quantum.operator import HermitianOperator assert _test_args(HermitianOperator('H')) def test_sympy__physics__quantum__operator__IdentityOperator(): from sympy.physics.quantum.operator import IdentityOperator assert _test_args(IdentityOperator(5)) def test_sympy__physics__quantum__operator__Operator(): from sympy.physics.quantum.operator import Operator assert _test_args(Operator('A')) def test_sympy__physics__quantum__operator__OuterProduct(): from sympy.physics.quantum.operator import OuterProduct from sympy.physics.quantum import Ket, Bra b = Bra('b') k = Ket('k') assert _test_args(OuterProduct(k, b)) def test_sympy__physics__quantum__operator__UnitaryOperator(): from sympy.physics.quantum.operator import UnitaryOperator assert _test_args(UnitaryOperator('U')) def test_sympy__physics__quantum__piab__PIABBra(): from sympy.physics.quantum.piab import PIABBra assert _test_args(PIABBra('B')) def test_sympy__physics__quantum__boson__BosonOp(): from sympy.physics.quantum.boson import BosonOp assert _test_args(BosonOp('a')) assert _test_args(BosonOp('a', False)) def test_sympy__physics__quantum__boson__BosonFockKet(): from sympy.physics.quantum.boson import BosonFockKet assert _test_args(BosonFockKet(1)) def test_sympy__physics__quantum__boson__BosonFockBra(): from sympy.physics.quantum.boson import BosonFockBra assert _test_args(BosonFockBra(1)) def test_sympy__physics__quantum__boson__BosonCoherentKet(): from sympy.physics.quantum.boson import BosonCoherentKet assert _test_args(BosonCoherentKet(1)) def test_sympy__physics__quantum__boson__BosonCoherentBra(): from sympy.physics.quantum.boson import BosonCoherentBra assert _test_args(BosonCoherentBra(1)) def test_sympy__physics__quantum__fermion__FermionOp(): from sympy.physics.quantum.fermion import FermionOp assert _test_args(FermionOp('c')) assert _test_args(FermionOp('c', False)) def test_sympy__physics__quantum__fermion__FermionFockKet(): from sympy.physics.quantum.fermion import FermionFockKet assert _test_args(FermionFockKet(1)) def test_sympy__physics__quantum__fermion__FermionFockBra(): from sympy.physics.quantum.fermion import FermionFockBra assert _test_args(FermionFockBra(1)) def test_sympy__physics__quantum__pauli__SigmaOpBase(): from sympy.physics.quantum.pauli import SigmaOpBase assert _test_args(SigmaOpBase()) def test_sympy__physics__quantum__pauli__SigmaX(): from sympy.physics.quantum.pauli import SigmaX assert _test_args(SigmaX()) def test_sympy__physics__quantum__pauli__SigmaY(): from sympy.physics.quantum.pauli import SigmaY assert _test_args(SigmaY()) def test_sympy__physics__quantum__pauli__SigmaZ(): from sympy.physics.quantum.pauli import SigmaZ assert _test_args(SigmaZ()) def test_sympy__physics__quantum__pauli__SigmaMinus(): from sympy.physics.quantum.pauli import SigmaMinus assert _test_args(SigmaMinus()) def test_sympy__physics__quantum__pauli__SigmaPlus(): from sympy.physics.quantum.pauli import SigmaPlus assert _test_args(SigmaPlus()) def test_sympy__physics__quantum__pauli__SigmaZKet(): from sympy.physics.quantum.pauli import SigmaZKet assert _test_args(SigmaZKet(0)) def test_sympy__physics__quantum__pauli__SigmaZBra(): from sympy.physics.quantum.pauli import SigmaZBra assert _test_args(SigmaZBra(0)) def test_sympy__physics__quantum__piab__PIABHamiltonian(): from sympy.physics.quantum.piab import PIABHamiltonian assert _test_args(PIABHamiltonian('P')) def test_sympy__physics__quantum__piab__PIABKet(): from sympy.physics.quantum.piab import PIABKet assert _test_args(PIABKet('K')) def test_sympy__physics__quantum__qexpr__QExpr(): from sympy.physics.quantum.qexpr import QExpr assert _test_args(QExpr(0)) def test_sympy__physics__quantum__qft__Fourier(): from sympy.physics.quantum.qft import Fourier assert _test_args(Fourier(0, 1)) def test_sympy__physics__quantum__qft__IQFT(): from sympy.physics.quantum.qft import IQFT assert _test_args(IQFT(0, 1)) def test_sympy__physics__quantum__qft__QFT(): from sympy.physics.quantum.qft import QFT assert _test_args(QFT(0, 1)) def test_sympy__physics__quantum__qft__RkGate(): from sympy.physics.quantum.qft import RkGate assert _test_args(RkGate(0, 1)) def test_sympy__physics__quantum__qubit__IntQubit(): from sympy.physics.quantum.qubit import IntQubit assert _test_args(IntQubit(0)) def test_sympy__physics__quantum__qubit__IntQubitBra(): from sympy.physics.quantum.qubit import IntQubitBra assert _test_args(IntQubitBra(0)) def test_sympy__physics__quantum__qubit__IntQubitState(): from sympy.physics.quantum.qubit import IntQubitState, QubitState assert _test_args(IntQubitState(QubitState(0, 1))) def test_sympy__physics__quantum__qubit__Qubit(): from sympy.physics.quantum.qubit import Qubit assert _test_args(Qubit(0, 0, 0)) def test_sympy__physics__quantum__qubit__QubitBra(): from sympy.physics.quantum.qubit import QubitBra assert _test_args(QubitBra('1', 0)) def test_sympy__physics__quantum__qubit__QubitState(): from sympy.physics.quantum.qubit import QubitState assert _test_args(QubitState(0, 1)) def test_sympy__physics__quantum__density__Density(): from sympy.physics.quantum.density import Density from sympy.physics.quantum.state import Ket assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5])) @SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented") def test_sympy__physics__quantum__shor__CMod(): from sympy.physics.quantum.shor import CMod assert _test_args(CMod()) def test_sympy__physics__quantum__spin__CoupledSpinState(): from sympy.physics.quantum.spin import CoupledSpinState assert _test_args(CoupledSpinState(1, 0, (1, 1))) assert _test_args(CoupledSpinState(1, 0, (1, S.Half, S.Half))) assert _test_args(CoupledSpinState( 1, 0, (1, S.Half, S.Half), ((2, 3, S.Half), (1, 2, 1)) )) j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x') assert CoupledSpinState( j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3)) assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \ CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) ) def test_sympy__physics__quantum__spin__J2Op(): from sympy.physics.quantum.spin import J2Op assert _test_args(J2Op('J')) def test_sympy__physics__quantum__spin__JminusOp(): from sympy.physics.quantum.spin import JminusOp assert _test_args(JminusOp('J')) def test_sympy__physics__quantum__spin__JplusOp(): from sympy.physics.quantum.spin import JplusOp assert _test_args(JplusOp('J')) def test_sympy__physics__quantum__spin__JxBra(): from sympy.physics.quantum.spin import JxBra assert _test_args(JxBra(1, 0)) def test_sympy__physics__quantum__spin__JxBraCoupled(): from sympy.physics.quantum.spin import JxBraCoupled assert _test_args(JxBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxKet(): from sympy.physics.quantum.spin import JxKet assert _test_args(JxKet(1, 0)) def test_sympy__physics__quantum__spin__JxKetCoupled(): from sympy.physics.quantum.spin import JxKetCoupled assert _test_args(JxKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxOp(): from sympy.physics.quantum.spin import JxOp assert _test_args(JxOp('J')) def test_sympy__physics__quantum__spin__JyBra(): from sympy.physics.quantum.spin import JyBra assert _test_args(JyBra(1, 0)) def test_sympy__physics__quantum__spin__JyBraCoupled(): from sympy.physics.quantum.spin import JyBraCoupled assert _test_args(JyBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyKet(): from sympy.physics.quantum.spin import JyKet assert _test_args(JyKet(1, 0)) def test_sympy__physics__quantum__spin__JyKetCoupled(): from sympy.physics.quantum.spin import JyKetCoupled assert _test_args(JyKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyOp(): from sympy.physics.quantum.spin import JyOp assert _test_args(JyOp('J')) def test_sympy__physics__quantum__spin__JzBra(): from sympy.physics.quantum.spin import JzBra assert _test_args(JzBra(1, 0)) def test_sympy__physics__quantum__spin__JzBraCoupled(): from sympy.physics.quantum.spin import JzBraCoupled assert _test_args(JzBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzKet(): from sympy.physics.quantum.spin import JzKet assert _test_args(JzKet(1, 0)) def test_sympy__physics__quantum__spin__JzKetCoupled(): from sympy.physics.quantum.spin import JzKetCoupled assert _test_args(JzKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzOp(): from sympy.physics.quantum.spin import JzOp assert _test_args(JzOp('J')) def test_sympy__physics__quantum__spin__Rotation(): from sympy.physics.quantum.spin import Rotation assert _test_args(Rotation(pi, 0, pi/2)) def test_sympy__physics__quantum__spin__SpinState(): from sympy.physics.quantum.spin import SpinState assert _test_args(SpinState(1, 0)) def test_sympy__physics__quantum__spin__WignerD(): from sympy.physics.quantum.spin import WignerD assert _test_args(WignerD(0, 1, 2, 3, 4, 5)) def test_sympy__physics__quantum__state__Bra(): from sympy.physics.quantum.state import Bra assert _test_args(Bra(0)) def test_sympy__physics__quantum__state__BraBase(): from sympy.physics.quantum.state import BraBase assert _test_args(BraBase(0)) def test_sympy__physics__quantum__state__Ket(): from sympy.physics.quantum.state import Ket assert _test_args(Ket(0)) def test_sympy__physics__quantum__state__KetBase(): from sympy.physics.quantum.state import KetBase assert _test_args(KetBase(0)) def test_sympy__physics__quantum__state__State(): from sympy.physics.quantum.state import State assert _test_args(State(0)) def test_sympy__physics__quantum__state__StateBase(): from sympy.physics.quantum.state import StateBase assert _test_args(StateBase(0)) def test_sympy__physics__quantum__state__OrthogonalBra(): from sympy.physics.quantum.state import OrthogonalBra assert _test_args(OrthogonalBra(0)) def test_sympy__physics__quantum__state__OrthogonalKet(): from sympy.physics.quantum.state import OrthogonalKet assert _test_args(OrthogonalKet(0)) def test_sympy__physics__quantum__state__OrthogonalState(): from sympy.physics.quantum.state import OrthogonalState assert _test_args(OrthogonalState(0)) def test_sympy__physics__quantum__state__TimeDepBra(): from sympy.physics.quantum.state import TimeDepBra assert _test_args(TimeDepBra('psi', 't')) def test_sympy__physics__quantum__state__TimeDepKet(): from sympy.physics.quantum.state import TimeDepKet assert _test_args(TimeDepKet('psi', 't')) def test_sympy__physics__quantum__state__TimeDepState(): from sympy.physics.quantum.state import TimeDepState assert _test_args(TimeDepState('psi', 't')) def test_sympy__physics__quantum__state__Wavefunction(): from sympy.physics.quantum.state import Wavefunction from sympy.functions import sin from sympy.functions.elementary.piecewise import Piecewise n = 1 L = 1 g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) assert _test_args(Wavefunction(g, x)) def test_sympy__physics__quantum__tensorproduct__TensorProduct(): from sympy.physics.quantum.tensorproduct import TensorProduct x, y = symbols("x y", commutative=False) assert _test_args(TensorProduct(x, y)) def test_sympy__physics__quantum__identitysearch__GateIdentity(): from sympy.physics.quantum.gate import X from sympy.physics.quantum.identitysearch import GateIdentity assert _test_args(GateIdentity(X(0), X(0))) def test_sympy__physics__quantum__sho1d__SHOOp(): from sympy.physics.quantum.sho1d import SHOOp assert _test_args(SHOOp('a')) def test_sympy__physics__quantum__sho1d__RaisingOp(): from sympy.physics.quantum.sho1d import RaisingOp assert _test_args(RaisingOp('a')) def test_sympy__physics__quantum__sho1d__LoweringOp(): from sympy.physics.quantum.sho1d import LoweringOp assert _test_args(LoweringOp('a')) def test_sympy__physics__quantum__sho1d__NumberOp(): from sympy.physics.quantum.sho1d import NumberOp assert _test_args(NumberOp('N')) def test_sympy__physics__quantum__sho1d__Hamiltonian(): from sympy.physics.quantum.sho1d import Hamiltonian assert _test_args(Hamiltonian('H')) def test_sympy__physics__quantum__sho1d__SHOState(): from sympy.physics.quantum.sho1d import SHOState assert _test_args(SHOState(0)) def test_sympy__physics__quantum__sho1d__SHOKet(): from sympy.physics.quantum.sho1d import SHOKet assert _test_args(SHOKet(0)) def test_sympy__physics__quantum__sho1d__SHOBra(): from sympy.physics.quantum.sho1d import SHOBra assert _test_args(SHOBra(0)) def test_sympy__physics__secondquant__AnnihilateBoson(): from sympy.physics.secondquant import AnnihilateBoson assert _test_args(AnnihilateBoson(0)) def test_sympy__physics__secondquant__AnnihilateFermion(): from sympy.physics.secondquant import AnnihilateFermion assert _test_args(AnnihilateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Annihilator(): pass def test_sympy__physics__secondquant__AntiSymmetricTensor(): from sympy.physics.secondquant import AntiSymmetricTensor i, j = symbols('i j', below_fermi=True) a, b = symbols('a b', above_fermi=True) assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j))) def test_sympy__physics__secondquant__BosonState(): from sympy.physics.secondquant import BosonState assert _test_args(BosonState((0, 1))) @SKIP("abstract class") def test_sympy__physics__secondquant__BosonicOperator(): pass def test_sympy__physics__secondquant__Commutator(): from sympy.physics.secondquant import Commutator x, y = symbols('x y', commutative=False) assert _test_args(Commutator(x, y)) def test_sympy__physics__secondquant__CreateBoson(): from sympy.physics.secondquant import CreateBoson assert _test_args(CreateBoson(0)) def test_sympy__physics__secondquant__CreateFermion(): from sympy.physics.secondquant import CreateFermion assert _test_args(CreateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Creator(): pass def test_sympy__physics__secondquant__Dagger(): from sympy.physics.secondquant import Dagger assert _test_args(Dagger(x)) def test_sympy__physics__secondquant__FermionState(): from sympy.physics.secondquant import FermionState assert _test_args(FermionState((0, 1))) def test_sympy__physics__secondquant__FermionicOperator(): from sympy.physics.secondquant import FermionicOperator assert _test_args(FermionicOperator(0)) def test_sympy__physics__secondquant__FockState(): from sympy.physics.secondquant import FockState assert _test_args(FockState((0, 1))) def test_sympy__physics__secondquant__FockStateBosonBra(): from sympy.physics.secondquant import FockStateBosonBra assert _test_args(FockStateBosonBra((0, 1))) def test_sympy__physics__secondquant__FockStateBosonKet(): from sympy.physics.secondquant import FockStateBosonKet assert _test_args(FockStateBosonKet((0, 1))) def test_sympy__physics__secondquant__FockStateBra(): from sympy.physics.secondquant import FockStateBra assert _test_args(FockStateBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionBra(): from sympy.physics.secondquant import FockStateFermionBra assert _test_args(FockStateFermionBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionKet(): from sympy.physics.secondquant import FockStateFermionKet assert _test_args(FockStateFermionKet((0, 1))) def test_sympy__physics__secondquant__FockStateKet(): from sympy.physics.secondquant import FockStateKet assert _test_args(FockStateKet((0, 1))) def test_sympy__physics__secondquant__InnerProduct(): from sympy.physics.secondquant import InnerProduct from sympy.physics.secondquant import FockStateKet, FockStateBra assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1)))) def test_sympy__physics__secondquant__NO(): from sympy.physics.secondquant import NO, F, Fd assert _test_args(NO(Fd(x)*F(y))) def test_sympy__physics__secondquant__PermutationOperator(): from sympy.physics.secondquant import PermutationOperator assert _test_args(PermutationOperator(0, 1)) def test_sympy__physics__secondquant__SqOperator(): from sympy.physics.secondquant import SqOperator assert _test_args(SqOperator(0)) def test_sympy__physics__secondquant__TensorSymbol(): from sympy.physics.secondquant import TensorSymbol assert _test_args(TensorSymbol(x)) def test_sympy__physics__control__lti__LinearTimeInvariant(): # Direct instances of LinearTimeInvariant class are not allowed. # func(*args) tests for its derived classes (TransferFunction, # Series, Parallel and TransferFunctionMatrix) should pass. pass def test_sympy__physics__control__lti__SISOLinearTimeInvariant(): # Direct instances of SISOLinearTimeInvariant class are not allowed. pass def test_sympy__physics__control__lti__MIMOLinearTimeInvariant(): # Direct instances of MIMOLinearTimeInvariant class are not allowed. pass def test_sympy__physics__control__lti__TransferFunction(): from sympy.physics.control.lti import TransferFunction assert _test_args(TransferFunction(2, 3, x)) def test_sympy__physics__control__lti__Series(): from sympy.physics.control import Series, TransferFunction tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(Series(tf1, tf2)) def test_sympy__physics__control__lti__MIMOSeries(): from sympy.physics.control import MIMOSeries, TransferFunction, TransferFunctionMatrix tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) tfm_1 = TransferFunctionMatrix([[tf2, tf1]]) tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) tfm_3 = TransferFunctionMatrix([[tf1], [tf2]]) assert _test_args(MIMOSeries(tfm_3, tfm_2, tfm_1)) def test_sympy__physics__control__lti__Parallel(): from sympy.physics.control import Parallel, TransferFunction tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(Parallel(tf1, tf2)) def test_sympy__physics__control__lti__MIMOParallel(): from sympy.physics.control import MIMOParallel, TransferFunction, TransferFunctionMatrix tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) assert _test_args(MIMOParallel(tfm_1, tfm_2)) def test_sympy__physics__control__lti__Feedback(): from sympy.physics.control import TransferFunction, Feedback tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(Feedback(tf1, tf2)) assert _test_args(Feedback(tf1, tf2, 1)) def test_sympy__physics__control__lti__MIMOFeedback(): from sympy.physics.control import TransferFunction, MIMOFeedback, TransferFunctionMatrix tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) tfm_1 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) assert _test_args(MIMOFeedback(tfm_1, tfm_2)) assert _test_args(MIMOFeedback(tfm_1, tfm_2, 1)) def test_sympy__physics__control__lti__TransferFunctionMatrix(): from sympy.physics.control import TransferFunction, TransferFunctionMatrix tf1 = TransferFunction(x**2 - y**3, y - z, x) tf2 = TransferFunction(y - x, z + y, x) assert _test_args(TransferFunctionMatrix([[tf1, tf2]])) def test_sympy__physics__units__dimensions__Dimension(): from sympy.physics.units.dimensions import Dimension assert _test_args(Dimension("length", "L")) def test_sympy__physics__units__dimensions__DimensionSystem(): from sympy.physics.units.dimensions import DimensionSystem from sympy.physics.units.definitions.dimension_definitions import length, time, velocity assert _test_args(DimensionSystem((length, time), (velocity,))) def test_sympy__physics__units__quantities__Quantity(): from sympy.physics.units.quantities import Quantity assert _test_args(Quantity("dam")) def test_sympy__physics__units__quantities__PhysicalConstant(): from sympy.physics.units.quantities import PhysicalConstant assert _test_args(PhysicalConstant("foo")) def test_sympy__physics__units__prefixes__Prefix(): from sympy.physics.units.prefixes import Prefix assert _test_args(Prefix('kilo', 'k', 3)) def test_sympy__core__numbers__AlgebraicNumber(): from sympy.core.numbers import AlgebraicNumber assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3])) def test_sympy__polys__polytools__GroebnerBasis(): from sympy.polys.polytools import GroebnerBasis assert _test_args(GroebnerBasis([x, y, z], x, y, z)) def test_sympy__polys__polytools__Poly(): from sympy.polys.polytools import Poly assert _test_args(Poly(2, x, y)) def test_sympy__polys__polytools__PurePoly(): from sympy.polys.polytools import PurePoly assert _test_args(PurePoly(2, x, y)) @SKIP('abstract class') def test_sympy__polys__rootoftools__RootOf(): pass def test_sympy__polys__rootoftools__ComplexRootOf(): from sympy.polys.rootoftools import ComplexRootOf assert _test_args(ComplexRootOf(x**3 + x + 1, 0)) def test_sympy__polys__rootoftools__RootSum(): from sympy.polys.rootoftools import RootSum assert _test_args(RootSum(x**3 + x + 1, sin)) def test_sympy__series__limits__Limit(): from sympy.series.limits import Limit assert _test_args(Limit(x, x, 0, dir='-')) def test_sympy__series__order__Order(): from sympy.series.order import Order assert _test_args(Order(1, x, y)) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqBase(): pass def test_sympy__series__sequences__EmptySequence(): # Need to import the instance from series not the class from # series.sequence from sympy.series import EmptySequence assert _test_args(EmptySequence) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqExpr(): pass def test_sympy__series__sequences__SeqPer(): from sympy.series.sequences import SeqPer assert _test_args(SeqPer((1, 2, 3), (0, 10))) def test_sympy__series__sequences__SeqFormula(): from sympy.series.sequences import SeqFormula assert _test_args(SeqFormula(x**2, (0, 10))) def test_sympy__series__sequences__RecursiveSeq(): from sympy.series.sequences import RecursiveSeq y = Function("y") n = symbols("n") assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, (0, 1))) assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n)) def test_sympy__series__sequences__SeqExprOp(): from sympy.series.sequences import SeqExprOp, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqExprOp(s1, s2)) def test_sympy__series__sequences__SeqAdd(): from sympy.series.sequences import SeqAdd, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqAdd(s1, s2)) def test_sympy__series__sequences__SeqMul(): from sympy.series.sequences import SeqMul, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqMul(s1, s2)) @SKIP('Abstract Class') def test_sympy__series__series_class__SeriesBase(): pass def test_sympy__series__fourier__FourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(x, (x, -pi, pi))) def test_sympy__series__fourier__FiniteFourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(sin(pi*x), (x, -1, 1))) def test_sympy__series__formal__FormalPowerSeries(): from sympy.series.formal import fps assert _test_args(fps(log(1 + x), x)) def test_sympy__series__formal__Coeff(): from sympy.series.formal import fps assert _test_args(fps(x**2 + x + 1, x)) @SKIP('Abstract Class') def test_sympy__series__formal__FiniteFormalPowerSeries(): pass def test_sympy__series__formal__FormalPowerSeriesProduct(): from sympy.series.formal import fps f1, f2 = fps(sin(x)), fps(exp(x)) assert _test_args(f1.product(f2, x)) def test_sympy__series__formal__FormalPowerSeriesCompose(): from sympy.series.formal import fps f1, f2 = fps(exp(x)), fps(sin(x)) assert _test_args(f1.compose(f2, x)) def test_sympy__series__formal__FormalPowerSeriesInverse(): from sympy.series.formal import fps f1 = fps(exp(x)) assert _test_args(f1.inverse(x)) def test_sympy__simplify__hyperexpand__Hyper_Function(): from sympy.simplify.hyperexpand import Hyper_Function assert _test_args(Hyper_Function([2], [1])) def test_sympy__simplify__hyperexpand__G_Function(): from sympy.simplify.hyperexpand import G_Function assert _test_args(G_Function([2], [1], [], [])) @SKIP("abstract class") def test_sympy__tensor__array__ndim_array__ImmutableNDimArray(): pass def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray(): from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(densarr) def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray(): from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(sparr) def test_sympy__tensor__array__array_comprehension__ArrayComprehension(): from sympy.tensor.array.array_comprehension import ArrayComprehension arrcom = ArrayComprehension(x, (x, 1, 5)) assert _test_args(arrcom) def test_sympy__tensor__array__array_comprehension__ArrayComprehensionMap(): from sympy.tensor.array.array_comprehension import ArrayComprehensionMap arrcomma = ArrayComprehensionMap(lambda: 0, (x, 1, 5)) assert _test_args(arrcomma) def test_sympy__tensor__array__array_derivatives__ArrayDerivative(): from sympy.tensor.array.array_derivatives import ArrayDerivative A = MatrixSymbol("A", 2, 2) arrder = ArrayDerivative(A, A, evaluate=False) assert _test_args(arrder) def test_sympy__tensor__array__expressions__array_expressions__ArraySymbol(): from sympy.tensor.array.expressions.array_expressions import ArraySymbol m, n, k = symbols("m n k") array = ArraySymbol("A", (m, n, k, 2)) assert _test_args(array) def test_sympy__tensor__array__expressions__array_expressions__ArrayElement(): from sympy.tensor.array.expressions.array_expressions import ArrayElement m, n, k = symbols("m n k") ae = ArrayElement("A", (m, n, k, 2)) assert _test_args(ae) def test_sympy__tensor__array__expressions__array_expressions__ZeroArray(): from sympy.tensor.array.expressions.array_expressions import ZeroArray m, n, k = symbols("m n k") za = ZeroArray(m, n, k, 2) assert _test_args(za) def test_sympy__tensor__array__expressions__array_expressions__OneArray(): from sympy.tensor.array.expressions.array_expressions import OneArray m, n, k = symbols("m n k") za = OneArray(m, n, k, 2) assert _test_args(za) def test_sympy__tensor__functions__TensorProduct(): from sympy.tensor.functions import TensorProduct A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) tp = TensorProduct(A, B) assert _test_args(tp) def test_sympy__tensor__indexed__Idx(): from sympy.tensor.indexed import Idx assert _test_args(Idx('test')) assert _test_args(Idx('test', (0, 10))) assert _test_args(Idx('test', 2)) assert _test_args(Idx('test', x)) def test_sympy__tensor__indexed__Indexed(): from sympy.tensor.indexed import Indexed, Idx assert _test_args(Indexed('A', Idx('i'), Idx('j'))) def test_sympy__tensor__indexed__IndexedBase(): from sympy.tensor.indexed import IndexedBase assert _test_args(IndexedBase('A', shape=(x, y))) assert _test_args(IndexedBase('A', 1)) assert _test_args(IndexedBase('A')[0, 1]) def test_sympy__tensor__tensor__TensorIndexType(): from sympy.tensor.tensor import TensorIndexType assert _test_args(TensorIndexType('Lorentz')) @SKIP("deprecated class") def test_sympy__tensor__tensor__TensorType(): pass def test_sympy__tensor__tensor__TensorSymmetry(): from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2))) def test_sympy__tensor__tensor__TensorHead(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_name='L') sym = TensorSymmetry(get_symmetric_group_sgs(1)) assert _test_args(TensorHead('p', [Lorentz], sym, 0)) def test_sympy__tensor__tensor__TensorIndex(): from sympy.tensor.tensor import TensorIndexType, TensorIndex Lorentz = TensorIndexType('Lorentz', dummy_name='L') assert _test_args(TensorIndex('i', Lorentz)) @SKIP("abstract class") def test_sympy__tensor__tensor__TensExpr(): pass def test_sympy__tensor__tensor__TensAdd(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensAdd, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p,q', [Lorentz], sym) t1 = p(a) t2 = q(a) assert _test_args(TensAdd(t1, t2)) def test_sympy__tensor__tensor__Tensor(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p = TensorHead('p', [Lorentz], sym) assert _test_args(p(a)) def test_sympy__tensor__tensor__TensMul(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p, q', [Lorentz], sym) assert _test_args(3*p(a)*q(b)) def test_sympy__tensor__tensor__TensorElement(): from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorElement L = TensorIndexType("L") A = TensorHead("A", [L, L]) telem = TensorElement(A(x, y), {x: 1}) assert _test_args(telem) def test_sympy__tensor__tensor__WildTensor(): from sympy.tensor.tensor import TensorIndexType, WildTensorHead, TensorIndex Lorentz = TensorIndexType('Lorentz', dummy_name='L') a = TensorIndex('a', Lorentz) p = WildTensorHead('p') assert _test_args(p(a)) def test_sympy__tensor__tensor__WildTensorHead(): from sympy.tensor.tensor import WildTensorHead assert _test_args(WildTensorHead('p')) def test_sympy__tensor__tensor__WildTensorIndex(): from sympy.tensor.tensor import TensorIndexType, WildTensorIndex Lorentz = TensorIndexType('Lorentz', dummy_name='L') assert _test_args(WildTensorIndex('i', Lorentz)) def test_sympy__tensor__toperators__PartialDerivative(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead from sympy.tensor.toperators import PartialDerivative Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) A = TensorHead("A", [Lorentz]) assert _test_args(PartialDerivative(A(a), A(b))) def test_as_coeff_add(): assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add() def test_sympy__geometry__curve__Curve(): from sympy.geometry.curve import Curve assert _test_args(Curve((x, 1), (x, 0, 1))) def test_sympy__geometry__point__Point(): from sympy.geometry.point import Point assert _test_args(Point(0, 1)) def test_sympy__geometry__point__Point2D(): from sympy.geometry.point import Point2D assert _test_args(Point2D(0, 1)) def test_sympy__geometry__point__Point3D(): from sympy.geometry.point import Point3D assert _test_args(Point3D(0, 1, 2)) def test_sympy__geometry__ellipse__Ellipse(): from sympy.geometry.ellipse import Ellipse assert _test_args(Ellipse((0, 1), 2, 3)) def test_sympy__geometry__ellipse__Circle(): from sympy.geometry.ellipse import Circle assert _test_args(Circle((0, 1), 2)) def test_sympy__geometry__parabola__Parabola(): from sympy.geometry.parabola import Parabola from sympy.geometry.line import Line assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3)))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity(): pass def test_sympy__geometry__line__Line(): from sympy.geometry.line import Line assert _test_args(Line((0, 1), (2, 3))) def test_sympy__geometry__line__Ray(): from sympy.geometry.line import Ray assert _test_args(Ray((0, 1), (2, 3))) def test_sympy__geometry__line__Segment(): from sympy.geometry.line import Segment assert _test_args(Segment((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity2D(): pass def test_sympy__geometry__line__Line2D(): from sympy.geometry.line import Line2D assert _test_args(Line2D((0, 1), (2, 3))) def test_sympy__geometry__line__Ray2D(): from sympy.geometry.line import Ray2D assert _test_args(Ray2D((0, 1), (2, 3))) def test_sympy__geometry__line__Segment2D(): from sympy.geometry.line import Segment2D assert _test_args(Segment2D((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity3D(): pass def test_sympy__geometry__line__Line3D(): from sympy.geometry.line import Line3D assert _test_args(Line3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Segment3D(): from sympy.geometry.line import Segment3D assert _test_args(Segment3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Ray3D(): from sympy.geometry.line import Ray3D assert _test_args(Ray3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__plane__Plane(): from sympy.geometry.plane import Plane assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3))) def test_sympy__geometry__polygon__Polygon(): from sympy.geometry.polygon import Polygon assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7))) def test_sympy__geometry__polygon__RegularPolygon(): from sympy.geometry.polygon import RegularPolygon assert _test_args(RegularPolygon((0, 1), 2, 3, 4)) def test_sympy__geometry__polygon__Triangle(): from sympy.geometry.polygon import Triangle assert _test_args(Triangle((0, 1), (2, 3), (4, 5))) def test_sympy__geometry__entity__GeometryEntity(): from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2])) @SKIP("abstract class") def test_sympy__geometry__entity__GeometrySet(): pass def test_sympy__diffgeom__diffgeom__Manifold(): from sympy.diffgeom import Manifold assert _test_args(Manifold('name', 3)) def test_sympy__diffgeom__diffgeom__Patch(): from sympy.diffgeom import Manifold, Patch assert _test_args(Patch('name', Manifold('name', 3))) def test_sympy__diffgeom__diffgeom__CoordSystem(): from sympy.diffgeom import Manifold, Patch, CoordSystem assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)))) assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])) def test_sympy__diffgeom__diffgeom__CoordinateSymbol(): from sympy.diffgeom import Manifold, Patch, CoordSystem, CoordinateSymbol assert _test_args(CoordinateSymbol(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), 0)) def test_sympy__diffgeom__diffgeom__Point(): from sympy.diffgeom import Manifold, Patch, CoordSystem, Point assert _test_args(Point( CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), [x, y])) def test_sympy__diffgeom__diffgeom__BaseScalarField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(BaseScalarField(cs, 0)) def test_sympy__diffgeom__diffgeom__BaseVectorField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(BaseVectorField(cs, 0)) def test_sympy__diffgeom__diffgeom__Differential(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(Differential(BaseScalarField(cs, 0))) def test_sympy__diffgeom__diffgeom__Commutator(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3)), [a, b, c]) v = BaseVectorField(cs, 0) v1 = BaseVectorField(cs1, 0) assert _test_args(Commutator(v, v1)) def test_sympy__diffgeom__diffgeom__TensorProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) d = Differential(BaseScalarField(cs, 0)) assert _test_args(TensorProduct(d, d)) def test_sympy__diffgeom__diffgeom__WedgeProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) d = Differential(BaseScalarField(cs, 0)) d1 = Differential(BaseScalarField(cs, 1)) assert _test_args(WedgeProduct(d, d1)) def test_sympy__diffgeom__diffgeom__LieDerivative(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) d = Differential(BaseScalarField(cs, 0)) v = BaseVectorField(cs, 0) assert _test_args(LieDerivative(v, d)) def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3)) def test_sympy__diffgeom__diffgeom__CovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]) v = BaseVectorField(cs, 0) _test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3)) def test_sympy__categories__baseclasses__Class(): from sympy.categories.baseclasses import Class assert _test_args(Class()) def test_sympy__categories__baseclasses__Object(): from sympy.categories import Object assert _test_args(Object("A")) @SKIP("abstract class") def test_sympy__categories__baseclasses__Morphism(): pass def test_sympy__categories__baseclasses__IdentityMorphism(): from sympy.categories import Object, IdentityMorphism assert _test_args(IdentityMorphism(Object("A"))) def test_sympy__categories__baseclasses__NamedMorphism(): from sympy.categories import Object, NamedMorphism assert _test_args(NamedMorphism(Object("A"), Object("B"), "f")) def test_sympy__categories__baseclasses__CompositeMorphism(): from sympy.categories import Object, NamedMorphism, CompositeMorphism A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") assert _test_args(CompositeMorphism(f, g)) def test_sympy__categories__baseclasses__Diagram(): from sympy.categories import Object, NamedMorphism, Diagram A = Object("A") B = Object("B") f = NamedMorphism(A, B, "f") d = Diagram([f]) assert _test_args(d) def test_sympy__categories__baseclasses__Category(): from sympy.categories import Object, NamedMorphism, Diagram, Category A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d1 = Diagram([f, g]) d2 = Diagram([f]) K = Category("K", commutative_diagrams=[d1, d2]) assert _test_args(K) def test_sympy__ntheory__factor___totient(): from sympy.ntheory.factor_ import totient k = symbols('k', integer=True) t = totient(k) assert _test_args(t) def test_sympy__ntheory__factor___reduced_totient(): from sympy.ntheory.factor_ import reduced_totient k = symbols('k', integer=True) t = reduced_totient(k) assert _test_args(t) def test_sympy__ntheory__factor___divisor_sigma(): from sympy.ntheory.factor_ import divisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = divisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___udivisor_sigma(): from sympy.ntheory.factor_ import udivisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = udivisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___primenu(): from sympy.ntheory.factor_ import primenu n = symbols('n', integer=True) t = primenu(n) assert _test_args(t) def test_sympy__ntheory__factor___primeomega(): from sympy.ntheory.factor_ import primeomega n = symbols('n', integer=True) t = primeomega(n) assert _test_args(t) def test_sympy__ntheory__residue_ntheory__mobius(): from sympy.ntheory import mobius assert _test_args(mobius(2)) def test_sympy__ntheory__generate__primepi(): from sympy.ntheory import primepi n = symbols('n') t = primepi(n) assert _test_args(t) def test_sympy__physics__optics__waves__TWave(): from sympy.physics.optics import TWave A, f, phi = symbols('A, f, phi') assert _test_args(TWave(A, f, phi)) def test_sympy__physics__optics__gaussopt__BeamParameter(): from sympy.physics.optics import BeamParameter assert _test_args(BeamParameter(530e-9, 1, w=1e-3, n=1)) def test_sympy__physics__optics__medium__Medium(): from sympy.physics.optics import Medium assert _test_args(Medium('m')) def test_sympy__physics__optics__medium__MediumN(): from sympy.physics.optics.medium import Medium assert _test_args(Medium('m', n=2)) def test_sympy__physics__optics__medium__MediumPP(): from sympy.physics.optics.medium import Medium assert _test_args(Medium('m', permittivity=2, permeability=2)) def test_sympy__tensor__array__expressions__array_expressions__ArrayContraction(): from sympy.tensor.array.expressions.array_expressions import ArrayContraction from sympy.tensor.indexed import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(ArrayContraction(A, (0, 1))) def test_sympy__tensor__array__expressions__array_expressions__ArrayDiagonal(): from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal from sympy.tensor.indexed import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(ArrayDiagonal(A, (0, 1))) def test_sympy__tensor__array__expressions__array_expressions__ArrayTensorProduct(): from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct from sympy.tensor.indexed import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(ArrayTensorProduct(A, B)) def test_sympy__tensor__array__expressions__array_expressions__ArrayAdd(): from sympy.tensor.array.expressions.array_expressions import ArrayAdd from sympy.tensor.indexed import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(ArrayAdd(A, B)) def test_sympy__tensor__array__expressions__array_expressions__PermuteDims(): from sympy.tensor.array.expressions.array_expressions import PermuteDims A = MatrixSymbol("A", 4, 4) assert _test_args(PermuteDims(A, (1, 0))) def test_sympy__tensor__array__expressions__array_expressions__ArrayElementwiseApplyFunc(): from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElementwiseApplyFunc A = ArraySymbol("A", (4,)) assert _test_args(ArrayElementwiseApplyFunc(exp, A)) def test_sympy__tensor__array__expressions__array_expressions__Reshape(): from sympy.tensor.array.expressions.array_expressions import ArraySymbol, Reshape A = ArraySymbol("A", (4,)) assert _test_args(Reshape(A, (2, 2))) def test_sympy__codegen__ast__Assignment(): from sympy.codegen.ast import Assignment assert _test_args(Assignment(x, y)) def test_sympy__codegen__cfunctions__expm1(): from sympy.codegen.cfunctions import expm1 assert _test_args(expm1(x)) def test_sympy__codegen__cfunctions__log1p(): from sympy.codegen.cfunctions import log1p assert _test_args(log1p(x)) def test_sympy__codegen__cfunctions__exp2(): from sympy.codegen.cfunctions import exp2 assert _test_args(exp2(x)) def test_sympy__codegen__cfunctions__log2(): from sympy.codegen.cfunctions import log2 assert _test_args(log2(x)) def test_sympy__codegen__cfunctions__fma(): from sympy.codegen.cfunctions import fma assert _test_args(fma(x, y, z)) def test_sympy__codegen__cfunctions__log10(): from sympy.codegen.cfunctions import log10 assert _test_args(log10(x)) def test_sympy__codegen__cfunctions__Sqrt(): from sympy.codegen.cfunctions import Sqrt assert _test_args(Sqrt(x)) def test_sympy__codegen__cfunctions__Cbrt(): from sympy.codegen.cfunctions import Cbrt assert _test_args(Cbrt(x)) def test_sympy__codegen__cfunctions__hypot(): from sympy.codegen.cfunctions import hypot assert _test_args(hypot(x, y)) def test_sympy__codegen__fnodes__FFunction(): from sympy.codegen.fnodes import FFunction assert _test_args(FFunction('f')) def test_sympy__codegen__fnodes__F95Function(): from sympy.codegen.fnodes import F95Function assert _test_args(F95Function('f')) def test_sympy__codegen__fnodes__isign(): from sympy.codegen.fnodes import isign assert _test_args(isign(1, x)) def test_sympy__codegen__fnodes__dsign(): from sympy.codegen.fnodes import dsign assert _test_args(dsign(1, x)) def test_sympy__codegen__fnodes__cmplx(): from sympy.codegen.fnodes import cmplx assert _test_args(cmplx(x, y)) def test_sympy__codegen__fnodes__kind(): from sympy.codegen.fnodes import kind assert _test_args(kind(x)) def test_sympy__codegen__fnodes__merge(): from sympy.codegen.fnodes import merge assert _test_args(merge(1, 2, Eq(x, 0))) def test_sympy__codegen__fnodes___literal(): from sympy.codegen.fnodes import _literal assert _test_args(_literal(1)) def test_sympy__codegen__fnodes__literal_sp(): from sympy.codegen.fnodes import literal_sp assert _test_args(literal_sp(1)) def test_sympy__codegen__fnodes__literal_dp(): from sympy.codegen.fnodes import literal_dp assert _test_args(literal_dp(1)) def test_sympy__codegen__matrix_nodes__MatrixSolve(): from sympy.matrices import MatrixSymbol from sympy.codegen.matrix_nodes import MatrixSolve A = MatrixSymbol('A', 3, 3) v = MatrixSymbol('x', 3, 1) assert _test_args(MatrixSolve(A, v)) def test_sympy__vector__coordsysrect__CoordSys3D(): from sympy.vector.coordsysrect import CoordSys3D assert _test_args(CoordSys3D('C')) def test_sympy__vector__point__Point(): from sympy.vector.point import Point assert _test_args(Point('P')) def test_sympy__vector__basisdependent__BasisDependent(): #from sympy.vector.basisdependent import BasisDependent #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__basisdependent__BasisDependentMul(): #from sympy.vector.basisdependent import BasisDependentMul #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__basisdependent__BasisDependentAdd(): #from sympy.vector.basisdependent import BasisDependentAdd #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__basisdependent__BasisDependentZero(): #from sympy.vector.basisdependent import BasisDependentZero #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized pass def test_sympy__vector__vector__BaseVector(): from sympy.vector.vector import BaseVector from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseVector(0, C, ' ', ' ')) def test_sympy__vector__vector__VectorAdd(): from sympy.vector.vector import VectorAdd, VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a, b, c, x, y, z v1 = a*C.i + b*C.j + c*C.k v2 = x*C.i + y*C.j + z*C.k assert _test_args(VectorAdd(v1, v2)) assert _test_args(VectorMul(x, v1)) def test_sympy__vector__vector__VectorMul(): from sympy.vector.vector import VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a assert _test_args(VectorMul(a, C.i)) def test_sympy__vector__vector__VectorZero(): from sympy.vector.vector import VectorZero assert _test_args(VectorZero()) def test_sympy__vector__vector__Vector(): #from sympy.vector.vector import Vector #Vector is never to be initialized using args pass def test_sympy__vector__vector__Cross(): from sympy.vector.vector import Cross from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Cross(C.i, C.j)) def test_sympy__vector__vector__Dot(): from sympy.vector.vector import Dot from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Dot(C.i, C.j)) def test_sympy__vector__dyadic__Dyadic(): #from sympy.vector.dyadic import Dyadic #Dyadic is never to be initialized using args pass def test_sympy__vector__dyadic__BaseDyadic(): from sympy.vector.dyadic import BaseDyadic from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseDyadic(C.i, C.j)) def test_sympy__vector__dyadic__DyadicMul(): from sympy.vector.dyadic import BaseDyadic, DyadicMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicAdd(): from sympy.vector.dyadic import BaseDyadic, DyadicAdd from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i), BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicZero(): from sympy.vector.dyadic import DyadicZero assert _test_args(DyadicZero()) def test_sympy__vector__deloperator__Del(): from sympy.vector.deloperator import Del assert _test_args(Del()) def test_sympy__vector__implicitregion__ImplicitRegion(): from sympy.vector.implicitregion import ImplicitRegion from sympy.abc import x, y assert _test_args(ImplicitRegion((x, y), y**3 - 4*x)) def test_sympy__vector__integrals__ParametricIntegral(): from sympy.vector.integrals import ParametricIntegral from sympy.vector.parametricregion import ParametricRegion from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(ParametricIntegral(C.y*C.i - 10*C.j,\ ParametricRegion((x, y), (x, 1, 3), (y, -2, 2)))) def test_sympy__vector__operators__Curl(): from sympy.vector.operators import Curl from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Curl(C.i)) def test_sympy__vector__operators__Laplacian(): from sympy.vector.operators import Laplacian from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Laplacian(C.i)) def test_sympy__vector__operators__Divergence(): from sympy.vector.operators import Divergence from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Divergence(C.i)) def test_sympy__vector__operators__Gradient(): from sympy.vector.operators import Gradient from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Gradient(C.x)) def test_sympy__vector__orienters__Orienter(): #from sympy.vector.orienters import Orienter #Not to be initialized pass def test_sympy__vector__orienters__ThreeAngleOrienter(): #from sympy.vector.orienters import ThreeAngleOrienter #Not to be initialized pass def test_sympy__vector__orienters__AxisOrienter(): from sympy.vector.orienters import AxisOrienter from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(AxisOrienter(x, C.i)) def test_sympy__vector__orienters__BodyOrienter(): from sympy.vector.orienters import BodyOrienter assert _test_args(BodyOrienter(x, y, z, '123')) def test_sympy__vector__orienters__SpaceOrienter(): from sympy.vector.orienters import SpaceOrienter assert _test_args(SpaceOrienter(x, y, z, '123')) def test_sympy__vector__orienters__QuaternionOrienter(): from sympy.vector.orienters import QuaternionOrienter a, b, c, d = symbols('a b c d') assert _test_args(QuaternionOrienter(a, b, c, d)) def test_sympy__vector__parametricregion__ParametricRegion(): from sympy.abc import t from sympy.vector.parametricregion import ParametricRegion assert _test_args(ParametricRegion((t, t**3), (t, 0, 2))) def test_sympy__vector__scalar__BaseScalar(): from sympy.vector.scalar import BaseScalar from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseScalar(0, C, ' ', ' ')) def test_sympy__physics__wigner__Wigner3j(): from sympy.physics.wigner import Wigner3j assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0)) def test_sympy__combinatorics__schur_number__SchurNumber(): from sympy.combinatorics.schur_number import SchurNumber assert _test_args(SchurNumber(x)) def test_sympy__combinatorics__perm_groups__SymmetricPermutationGroup(): from sympy.combinatorics.perm_groups import SymmetricPermutationGroup assert _test_args(SymmetricPermutationGroup(5)) def test_sympy__combinatorics__perm_groups__Coset(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup, Coset a = Permutation(1, 2) b = Permutation(0, 1) G = PermutationGroup([a, b]) assert _test_args(Coset(a, G))
02015ddd124031a908e80c420f37ceac68125fb51e023c6f3c7b374739369ece
import numbers as nums import decimal from sympy.concrete.summations import Sum from sympy.core import (EulerGamma, Catalan, TribonacciConstant, GoldenRatio) from sympy.core.containers import Tuple from sympy.core.expr import unchanged from sympy.core.logic import fuzzy_not from sympy.core.mul import Mul from sympy.core.numbers import (mpf_norm, mod_inverse, igcd, seterr, igcd_lehmer, Integer, I, pi, comp, ilcm, Rational, E, nan, igcd2, oo, AlgebraicNumber, igcdex, Number, Float, zoo, equal_valued) from sympy.core.power import Pow from sympy.core.relational import Ge, Gt, Le, Lt from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.integers import floor from sympy.functions.combinatorial.numbers import fibonacci from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.miscellaneous import sqrt, cbrt from sympy.functions.elementary.trigonometric import cos, sin from sympy.polys.domains.realfield import RealField from sympy.printing.latex import latex from sympy.printing.repr import srepr from sympy.simplify import simplify from sympy.core.power import integer_nthroot, isqrt, integer_log from sympy.polys.domains.groundtypes import PythonRational from sympy.utilities.decorator import conserve_mpmath_dps from sympy.utilities.iterables import permutations from sympy.testing.pytest import XFAIL, raises, _both_exp_pow from mpmath import mpf from mpmath.rational import mpq import mpmath from sympy.core import numbers t = Symbol('t', real=False) _ninf = float(-oo) _inf = float(oo) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_seterr(): seterr(divide=True) raises(ValueError, lambda: S.Zero/S.Zero) seterr(divide=False) assert S.Zero / S.Zero is S.NaN def test_mod(): x = S.Half y = Rational(3, 4) z = Rational(5, 18043) assert x % x == 0 assert x % y == S.Half assert x % z == Rational(3, 36086) assert y % x == Rational(1, 4) assert y % y == 0 assert y % z == Rational(9, 72172) assert z % x == Rational(5, 18043) assert z % y == Rational(5, 18043) assert z % z == 0 a = Float(2.6) assert (a % .2) == 0.0 assert (a % 2).round(15) == 0.6 assert (a % 0.5).round(15) == 0.1 p = Symbol('p', infinite=True) assert oo % oo is nan assert zoo % oo is nan assert 5 % oo is nan assert p % 5 is nan # In these two tests, if the precision of m does # not match the precision of the ans, then it is # likely that the change made now gives an answer # with degraded accuracy. r = Rational(500, 41) f = Float('.36', 3) m = r % f ans = Float(r % Rational(f), 3) assert m == ans and m._prec == ans._prec f = Float('8.36', 3) m = f % r ans = Float(Rational(f) % r, 3) assert m == ans and m._prec == ans._prec s = S.Zero assert s % float(1) == 0.0 # No rounding required since these numbers can be represented # exactly. assert Rational(3, 4) % Float(1.1) == 0.75 assert Float(1.5) % Rational(5, 4) == 0.25 assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25 assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25') assert 2.75 % Float('1.5') == Float('1.25') a = Integer(7) b = Integer(4) assert type(a % b) == Integer assert a % b == Integer(3) assert Integer(1) % Rational(2, 3) == Rational(1, 3) assert Rational(7, 5) % Integer(1) == Rational(2, 5) assert Integer(2) % 1.5 == 0.5 assert Integer(3).__rmod__(Integer(10)) == Integer(1) assert Integer(10) % 4 == Integer(2) assert 15 % Integer(4) == Integer(3) def test_divmod(): x = Symbol("x") assert divmod(S(12), S(8)) == Tuple(1, 4) assert divmod(-S(12), S(8)) == Tuple(-2, 4) assert divmod(S.Zero, S.One) == Tuple(0, 0) raises(ZeroDivisionError, lambda: divmod(S.Zero, S.Zero)) raises(ZeroDivisionError, lambda: divmod(S.One, S.Zero)) assert divmod(S(12), 8) == Tuple(1, 4) assert divmod(12, S(8)) == Tuple(1, 4) assert S(1024)//x == 1024//x == floor(1024/x) assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2")) assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5")) assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3")) assert divmod(S("2"), S("1/10")) == Tuple(S("20"), S("0")) assert divmod(S("2"), S(".1"))[0] == 19 assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1")) assert divmod(S("2"), 2) == Tuple(S("1"), S("0")) assert divmod(2, S("2")) == Tuple(S("1"), S("0")) assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5")) assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3")) assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2")) assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5")) assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), S("1/6")) assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3")) assert divmod(S("3/2"), S("0.1"))[0] == 14 assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1")) assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2")) assert divmod(2, S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0")) assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0")) assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0")) assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3")) assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3")) assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0")) assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1")) assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5")) assert divmod(2, S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5")) assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1")) assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3")) assert divmod(2, S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3")) assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1")) assert divmod(2, S("0.1"))[0] == 19 assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1")) assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0")) assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1")) assert str(divmod(S("2"), 0.3)) == '(6, 0.2)' assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)' assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)' assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)' assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)' assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)' assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)' assert divmod(-3, S(2)) == (-2, 1) assert divmod(S(-3), S(2)) == (-2, 1) assert divmod(S(-3), 2) == (-2, 1) assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2) assert divmod(S(4), S(-2.1)) == divmod(4, -2.1) assert divmod(S(-8), S(-2.5) ) == Tuple(3, -0.5) assert divmod(oo, 1) == (S.NaN, S.NaN) assert divmod(S.NaN, 1) == (S.NaN, S.NaN) assert divmod(1, S.NaN) == (S.NaN, S.NaN) ans = [(-1, oo), (-1, oo), (0, 0), (0, 1), (0, 2)] OO = float('inf') ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, oo) for i in range(-2, 3)] == ans ans = [(0, -2), (0, -1), (0, 0), (-1, -oo), (-1, -oo)] ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, -oo) for i in range(-2, 3)] == ans assert [divmod(i, -OO) for i in range(-2, 3)] == ANS assert divmod(S(3.5), S(-2)) == divmod(3.5, -2) assert divmod(-S(3.5), S(-2)) == divmod(-3.5, -2) assert divmod(S(0.0), S(9)) == divmod(0.0, 9) assert divmod(S(0), S(9.0)) == divmod(0, 9.0) def test_igcd(): assert igcd(0, 0) == 0 assert igcd(0, 1) == 1 assert igcd(1, 0) == 1 assert igcd(0, 7) == 7 assert igcd(7, 0) == 7 assert igcd(7, 1) == 1 assert igcd(1, 7) == 1 assert igcd(-1, 0) == 1 assert igcd(0, -1) == 1 assert igcd(-1, -1) == 1 assert igcd(-1, 7) == 1 assert igcd(7, -1) == 1 assert igcd(8, 2) == 2 assert igcd(4, 8) == 4 assert igcd(8, 16) == 8 assert igcd(7, -3) == 1 assert igcd(-7, 3) == 1 assert igcd(-7, -3) == 1 assert igcd(*[10, 20, 30]) == 10 raises(TypeError, lambda: igcd()) raises(TypeError, lambda: igcd(2)) raises(ValueError, lambda: igcd(0, None)) raises(ValueError, lambda: igcd(1, 2.2)) for args in permutations((45.1, 1, 30)): raises(ValueError, lambda: igcd(*args)) for args in permutations((1, 2, None)): raises(ValueError, lambda: igcd(*args)) def test_igcd_lehmer(): a, b = fibonacci(10001), fibonacci(10000) # len(str(a)) == 2090 # small divisors, long Euclidean sequence assert igcd_lehmer(a, b) == 1 c = fibonacci(100) assert igcd_lehmer(a*c, b*c) == c # big divisor assert igcd_lehmer(a, 10**1000) == 1 # swapping argument assert igcd_lehmer(1, 2) == igcd_lehmer(2, 1) def test_igcd2(): # short loop assert igcd2(2**100 - 1, 2**99 - 1) == 1 # Lehmer's algorithm a, b = int(fibonacci(10001)), int(fibonacci(10000)) assert igcd2(a, b) == 1 def test_ilcm(): assert ilcm(0, 0) == 0 assert ilcm(1, 0) == 0 assert ilcm(0, 1) == 0 assert ilcm(1, 1) == 1 assert ilcm(2, 1) == 2 assert ilcm(8, 2) == 8 assert ilcm(8, 6) == 24 assert ilcm(8, 7) == 56 assert ilcm(*[10, 20, 30]) == 60 raises(ValueError, lambda: ilcm(8.1, 7)) raises(ValueError, lambda: ilcm(8, 7.1)) raises(TypeError, lambda: ilcm(8)) def test_igcdex(): assert igcdex(2, 3) == (-1, 1, 1) assert igcdex(10, 12) == (-1, 1, 2) assert igcdex(100, 2004) == (-20, 1, 4) assert igcdex(0, 0) == (0, 1, 0) assert igcdex(1, 0) == (1, 0, 1) def _strictly_equal(a, b): return (a.p, a.q, type(a.p), type(a.q)) == \ (b.p, b.q, type(b.p), type(b.q)) def _test_rational_new(cls): """ Tests that are common between Integer and Rational. """ assert cls(0) is S.Zero assert cls(1) is S.One assert cls(-1) is S.NegativeOne # These look odd, but are similar to int(): assert cls('1') is S.One assert cls('-1') is S.NegativeOne i = Integer(10) assert _strictly_equal(i, cls('10')) assert _strictly_equal(i, cls('10')) assert _strictly_equal(i, cls(int(10))) assert _strictly_equal(i, cls(i)) raises(TypeError, lambda: cls(Symbol('x'))) def test_Integer_new(): """ Test for Integer constructor """ _test_rational_new(Integer) assert _strictly_equal(Integer(0.9), S.Zero) assert _strictly_equal(Integer(10.5), Integer(10)) raises(ValueError, lambda: Integer("10.5")) assert Integer(Rational('1.' + '9'*20)) == 1 def test_Rational_new(): """" Test for Rational constructor """ _test_rational_new(Rational) n1 = S.Half assert n1 == Rational(Integer(1), 2) assert n1 == Rational(Integer(1), Integer(2)) assert n1 == Rational(1, Integer(2)) assert n1 == Rational(S.Half) assert 1 == Rational(n1, n1) assert Rational(3, 2) == Rational(S.Half, Rational(1, 3)) assert Rational(3, 1) == Rational(1, Rational(1, 3)) n3_4 = Rational(3, 4) assert Rational('3/4') == n3_4 assert -Rational('-3/4') == n3_4 assert Rational('.76').limit_denominator(4) == n3_4 assert Rational(19, 25).limit_denominator(4) == n3_4 assert Rational('19/25').limit_denominator(4) == n3_4 assert Rational(1.0, 3) == Rational(1, 3) assert Rational(1, 3.0) == Rational(1, 3) assert Rational(Float(0.5)) == S.Half assert Rational('1e2/1e-2') == Rational(10000) assert Rational('1 234') == Rational(1234) assert Rational('1/1 234') == Rational(1, 1234) assert Rational(-1, 0) is S.ComplexInfinity assert Rational(1, 0) is S.ComplexInfinity # Make sure Rational doesn't lose precision on Floats assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100) raises(TypeError, lambda: Rational('3**3')) raises(TypeError, lambda: Rational('1/2 + 2/3')) # handle fractions.Fraction instances try: import fractions assert Rational(fractions.Fraction(1, 2)) == S.Half except ImportError: pass assert Rational(mpq(2, 6)) == Rational(1, 3) assert Rational(PythonRational(2, 6)) == Rational(1, 3) assert Rational(2, 4, gcd=1).q == 4 n = Rational(2, -4, gcd=1) assert n.q == 4 assert n.p == -2 def test_issue_24543(): for p in ('1.5', 1.5, 2): for q in ('1.5', 1.5, 2): assert Rational(p, q).as_numer_denom() == Rational('%s/%s'%(p,q)).as_numer_denom() assert Rational('0.5', '100') == Rational(1, 200) def test_Number_new(): """" Test for Number constructor """ # Expected behavior on numbers and strings assert Number(1) is S.One assert Number(2).__class__ is Integer assert Number(-622).__class__ is Integer assert Number(5, 3).__class__ is Rational assert Number(5.3).__class__ is Float assert Number('1') is S.One assert Number('2').__class__ is Integer assert Number('-622').__class__ is Integer assert Number('5/3').__class__ is Rational assert Number('5.3').__class__ is Float raises(ValueError, lambda: Number('cos')) raises(TypeError, lambda: Number(cos)) a = Rational(3, 5) assert Number(a) is a # Check idempotence on Numbers u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Number(i) is a, (i, Number(i), a) def test_Number_cmp(): n1 = Number(1) n2 = Number(2) n3 = Number(-3) assert n1 < n2 assert n1 <= n2 assert n3 < n1 assert n2 > n3 assert n2 >= n3 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Rational_cmp(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n6 = Rational(1) n7 = Rational(3) n8 = Rational(-3) assert n8 < n5 assert n5 < n6 assert n6 < n7 assert n8 < n7 assert n7 > n8 assert (n1 + 1)**n2 < 2 assert ((n1 + n6)/n7) < 1 assert n4 < n3 assert n2 < n3 assert n1 < n2 assert n3 > n1 assert not n3 < n1 assert not (Rational(-1) > 0) assert Rational(-1) < 0 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Float(): def eq(a, b): t = Float("1.0E-15") return (-t < a - b < t) zeros = (0, S.Zero, 0., Float(0)) for i, j in permutations(zeros, 2): assert i == j for z in zeros: assert z in zeros assert S.Zero.is_zero a = Float(2) ** Float(3) assert eq(a.evalf(), Float(8)) assert eq((pi ** -1).evalf(), Float("0.31830988618379067")) a = Float(2) ** Float(4) assert eq(a.evalf(), Float(16)) assert (S(.3) == S(.5)) is False mpf = (0, 5404319552844595, -52, 53) x_str = Float((0, '13333333333333', -52, 53)) x_0xstr = Float((0, '0x13333333333333', -52, 53)) x2_str = Float((0, '26666666666666', -53, 54)) x_hex = Float((0, int(0x13333333333333), -52, 53)) x_dec = Float(mpf) assert x_str == x_0xstr == x_hex == x_dec == Float(1.2) # x2_str was entered slightly malformed in that the mantissa # was even -- it should be odd and the even part should be # included with the exponent, but this is resolved by normalization # ONLY IF REQUIREMENTS of mpf_norm are met: the bitcount must # be exact: double the mantissa ==> increase bc by 1 assert Float(1.2)._mpf_ == mpf assert x2_str._mpf_ == mpf assert Float((0, int(0), -123, -1)) is S.NaN assert Float((0, int(0), -456, -2)) is S.Infinity assert Float((1, int(0), -789, -3)) is S.NegativeInfinity # if you don't give the full signature, it's not special assert Float((0, int(0), -123)) == Float(0) assert Float((0, int(0), -456)) == Float(0) assert Float((1, int(0), -789)) == Float(0) raises(ValueError, lambda: Float((0, 7, 1, 3), '')) assert Float('0.0').is_finite is True assert Float('0.0').is_negative is False assert Float('0.0').is_positive is False assert Float('0.0').is_infinite is False assert Float('0.0').is_zero is True # rationality properties # if the integer test fails then the use of intlike # should be removed from gamma_functions.py assert Float(1).is_integer is False assert Float(1).is_rational is None assert Float(1).is_irrational is None assert sqrt(2).n(15).is_rational is None assert sqrt(2).n(15).is_irrational is None # do not automatically evalf def teq(a): assert (a.evalf() == a) is False assert (a.evalf() != a) is True assert (a == a.evalf()) is False assert (a != a.evalf()) is True teq(pi) teq(2*pi) teq(cos(0.1, evaluate=False)) # long integer i = 12345678901234567890 assert same_and_same_prec(Float(12, ''), Float('12', '')) assert same_and_same_prec(Float(Integer(i), ''), Float(i, '')) assert same_and_same_prec(Float(i, ''), Float(str(i), 20)) assert same_and_same_prec(Float(str(i)), Float(i, '')) assert same_and_same_prec(Float(i), Float(i, '')) # inexact floats (repeating binary = denom not multiple of 2) # cannot have precision greater than 15 assert Float(.125, 22) == .125 assert Float(2.0, 22) == 2 assert float(Float('.12500000000000001', '')) == .125 raises(ValueError, lambda: Float(.12500000000000001, '')) # allow spaces assert Float('123 456.123 456') == Float('123456.123456') assert Integer('123 456') == Integer('123456') assert Rational('123 456.123 456') == Rational('123456.123456') assert Float(' .3e2') == Float('0.3e2') # allow underscore assert Float('1_23.4_56') == Float('123.456') assert Float('1_') == Float('1.0') assert Float('1_.') == Float('1.0') assert Float('1._') == Float('1.0') assert Float('1__2') == Float('12.0') # assert Float('1_23.4_5_6', 12) == Float('123.456', 12) # ...but not in all cases (per Py 3.6) raises(ValueError, lambda: Float('_1')) raises(ValueError, lambda: Float('_inf')) # allow auto precision detection assert Float('.1', '') == Float(.1, 1) assert Float('.125', '') == Float(.125, 3) assert Float('.100', '') == Float(.1, 3) assert Float('2.0', '') == Float('2', 2) raises(ValueError, lambda: Float("12.3d-4", "")) raises(ValueError, lambda: Float(12.3, "")) raises(ValueError, lambda: Float('.')) raises(ValueError, lambda: Float('-.')) zero = Float('0.0') assert Float('-0') == zero assert Float('.0') == zero assert Float('-.0') == zero assert Float('-0.0') == zero assert Float(0.0) == zero assert Float(0) == zero assert Float(0, '') == Float('0', '') assert Float(1) == Float(1.0) assert Float(S.Zero) == zero assert Float(S.One) == Float(1.0) assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3) assert Float(decimal.Decimal('nan')) is S.NaN assert Float(decimal.Decimal('Infinity')) is S.Infinity assert Float(decimal.Decimal('-Infinity')) is S.NegativeInfinity assert '{:.3f}'.format(Float(4.236622)) == '4.237' assert '{:.35f}'.format(Float(pi.n(40), 40)) == \ '3.14159265358979323846264338327950288' # unicode assert Float('0.73908513321516064100000000') == \ Float('0.73908513321516064100000000') assert Float('0.73908513321516064100000000', 28) == \ Float('0.73908513321516064100000000', 28) # binary precision # Decimal value 0.1 cannot be expressed precisely as a base 2 fraction a = Float(S.One/10, dps=15) b = Float(S.One/10, dps=16) p = Float(S.One/10, precision=53) q = Float(S.One/10, precision=54) assert a._mpf_ == p._mpf_ assert not a._mpf_ == q._mpf_ assert not b._mpf_ == q._mpf_ # Precision specifying errors raises(ValueError, lambda: Float("1.23", dps=3, precision=10)) raises(ValueError, lambda: Float("1.23", dps="", precision=10)) raises(ValueError, lambda: Float("1.23", dps=3, precision="")) raises(ValueError, lambda: Float("1.23", dps="", precision="")) # from NumberSymbol assert same_and_same_prec(Float(pi, 32), pi.evalf(32)) assert same_and_same_prec(Float(Catalan), Catalan.evalf()) # oo and nan u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Float(i) is a def test_zero_not_false(): # https://github.com/sympy/sympy/issues/20796 assert (S(0.0) == S.false) is False assert (S.false == S(0.0)) is False assert (S(0) == S.false) is False assert (S.false == S(0)) is False @conserve_mpmath_dps def test_float_mpf(): import mpmath mpmath.mp.dps = 100 mp_pi = mpmath.pi() assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) mpmath.mp.dps = 15 assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) def test_Float_RealElement(): repi = RealField(dps=100)(pi.evalf(100)) # We still have to pass the precision because Float doesn't know what # RealElement is, but make sure it keeps full precision from the result. assert Float(repi, 100) == pi.evalf(100) def test_Float_default_to_highprec_from_str(): s = str(pi.evalf(128)) assert same_and_same_prec(Float(s), Float(s, '')) def test_Float_eval(): a = Float(3.2) assert (a**2).is_Float def test_Float_issue_2107(): a = Float(0.1, 10) b = Float("0.1", 10) assert a - a == 0 assert a + (-a) == 0 assert S.Zero + a - a == 0 assert S.Zero + a + (-a) == 0 assert b - b == 0 assert b + (-b) == 0 assert S.Zero + b - b == 0 assert S.Zero + b + (-b) == 0 def test_issue_14289(): from sympy.polys.numberfields import to_number_field a = 1 - sqrt(2) b = to_number_field(a) assert b.as_expr() == a assert b.minpoly(a).expand() == 0 def test_Float_from_tuple(): a = Float((0, '1L', 0, 1)) b = Float((0, '1', 0, 1)) assert a == b def test_Infinity(): assert oo != 1 assert 1*oo is oo assert 1 != oo assert oo != -oo assert oo != Symbol("x")**3 assert oo + 1 is oo assert 2 + oo is oo assert 3*oo + 2 is oo assert S.Half**oo == 0 assert S.Half**(-oo) is oo assert -oo*3 is -oo assert oo + oo is oo assert -oo + oo*(-5) is -oo assert 1/oo == 0 assert 1/(-oo) == 0 assert 8/oo == 0 assert oo % 2 is nan assert 2 % oo is nan assert oo/oo is nan assert oo/-oo is nan assert -oo/oo is nan assert -oo/-oo is nan assert oo - oo is nan assert oo - -oo is oo assert -oo - oo is -oo assert -oo - -oo is nan assert oo + -oo is nan assert -oo + oo is nan assert oo + oo is oo assert -oo + oo is nan assert oo + -oo is nan assert -oo + -oo is -oo assert oo*oo is oo assert -oo*oo is -oo assert oo*-oo is -oo assert -oo*-oo is oo assert oo/0 is oo assert -oo/0 is -oo assert 0/oo == 0 assert 0/-oo == 0 assert oo*0 is nan assert -oo*0 is nan assert 0*oo is nan assert 0*-oo is nan assert oo + 0 is oo assert -oo + 0 is -oo assert 0 + oo is oo assert 0 + -oo is -oo assert oo - 0 is oo assert -oo - 0 is -oo assert 0 - oo is -oo assert 0 - -oo is oo assert oo/2 is oo assert -oo/2 is -oo assert oo/-2 is -oo assert -oo/-2 is oo assert oo*2 is oo assert -oo*2 is -oo assert oo*-2 is -oo assert 2/oo == 0 assert 2/-oo == 0 assert -2/oo == 0 assert -2/-oo == 0 assert 2*oo is oo assert 2*-oo is -oo assert -2*oo is -oo assert -2*-oo is oo assert 2 + oo is oo assert 2 - oo is -oo assert -2 + oo is oo assert -2 - oo is -oo assert 2 + -oo is -oo assert 2 - -oo is oo assert -2 + -oo is -oo assert -2 - -oo is oo assert S(2) + oo is oo assert S(2) - oo is -oo assert oo/I == -oo*I assert -oo/I == oo*I assert oo*float(1) == _inf and (oo*float(1)) is oo assert -oo*float(1) == _ninf and (-oo*float(1)) is -oo assert oo/float(1) == _inf and (oo/float(1)) is oo assert -oo/float(1) == _ninf and (-oo/float(1)) is -oo assert oo*float(-1) == _ninf and (oo*float(-1)) is -oo assert -oo*float(-1) == _inf and (-oo*float(-1)) is oo assert oo/float(-1) == _ninf and (oo/float(-1)) is -oo assert -oo/float(-1) == _inf and (-oo/float(-1)) is oo assert oo + float(1) == _inf and (oo + float(1)) is oo assert -oo + float(1) == _ninf and (-oo + float(1)) is -oo assert oo - float(1) == _inf and (oo - float(1)) is oo assert -oo - float(1) == _ninf and (-oo - float(1)) is -oo assert float(1)*oo == _inf and (float(1)*oo) is oo assert float(1)*-oo == _ninf and (float(1)*-oo) is -oo assert float(1)/oo == 0 assert float(1)/-oo == 0 assert float(-1)*oo == _ninf and (float(-1)*oo) is -oo assert float(-1)*-oo == _inf and (float(-1)*-oo) is oo assert float(-1)/oo == 0 assert float(-1)/-oo == 0 assert float(1) + oo is oo assert float(1) + -oo is -oo assert float(1) - oo is -oo assert float(1) - -oo is oo assert oo == float(oo) assert (oo != float(oo)) is False assert type(float(oo)) is float assert -oo == float(-oo) assert (-oo != float(-oo)) is False assert type(float(-oo)) is float assert Float('nan') is nan assert nan*1.0 is nan assert -1.0*nan is nan assert nan*oo is nan assert nan*-oo is nan assert nan/oo is nan assert nan/-oo is nan assert nan + oo is nan assert nan + -oo is nan assert nan - oo is nan assert nan - -oo is nan assert -oo * S.Zero is nan assert oo*nan is nan assert -oo*nan is nan assert oo/nan is nan assert -oo/nan is nan assert oo + nan is nan assert -oo + nan is nan assert oo - nan is nan assert -oo - nan is nan assert S.Zero * oo is nan assert oo.is_Rational is False assert isinstance(oo, Rational) is False assert S.One/oo == 0 assert -S.One/oo == 0 assert S.One/-oo == 0 assert -S.One/-oo == 0 assert S.One*oo is oo assert -S.One*oo is -oo assert S.One*-oo is -oo assert -S.One*-oo is oo assert S.One/nan is nan assert S.One - -oo is oo assert S.One + nan is nan assert S.One - nan is nan assert nan - S.One is nan assert nan/S.One is nan assert -oo - S.One is -oo def test_Infinity_2(): x = Symbol('x') assert oo*x != oo assert oo*(pi - 1) is oo assert oo*(1 - pi) is -oo assert (-oo)*x != -oo assert (-oo)*(pi - 1) is -oo assert (-oo)*(1 - pi) is oo assert (-1)**S.NaN is S.NaN assert oo - _inf is S.NaN assert oo + _ninf is S.NaN assert oo*0 is S.NaN assert oo/_inf is S.NaN assert oo/_ninf is S.NaN assert oo**S.NaN is S.NaN assert -oo + _inf is S.NaN assert -oo - _ninf is S.NaN assert -oo*S.NaN is S.NaN assert -oo*0 is S.NaN assert -oo/_inf is S.NaN assert -oo/_ninf is S.NaN assert -oo/S.NaN is S.NaN assert abs(-oo) is oo assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN)) assert (-oo)**3 is -oo assert (-oo)**2 is oo assert abs(S.ComplexInfinity) is oo def test_Mul_Infinity_Zero(): assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan def test_Div_By_Zero(): assert 1/S.Zero is zoo assert 1/Float(0) is zoo assert 0/S.Zero is nan assert 0/Float(0) is nan assert S.Zero/0 is nan assert Float(0)/0 is nan assert -1/S.Zero is zoo assert -1/Float(0) is zoo @_both_exp_pow def test_Infinity_inequations(): assert oo > pi assert not (oo < pi) assert exp(-3) < oo assert _inf > pi assert not (_inf < pi) assert exp(-3) < _inf raises(TypeError, lambda: oo < I) raises(TypeError, lambda: oo <= I) raises(TypeError, lambda: oo > I) raises(TypeError, lambda: oo >= I) raises(TypeError, lambda: -oo < I) raises(TypeError, lambda: -oo <= I) raises(TypeError, lambda: -oo > I) raises(TypeError, lambda: -oo >= I) raises(TypeError, lambda: I < oo) raises(TypeError, lambda: I <= oo) raises(TypeError, lambda: I > oo) raises(TypeError, lambda: I >= oo) raises(TypeError, lambda: I < -oo) raises(TypeError, lambda: I <= -oo) raises(TypeError, lambda: I > -oo) raises(TypeError, lambda: I >= -oo) assert oo > -oo and oo >= -oo assert (oo < -oo) == False and (oo <= -oo) == False assert -oo < oo and -oo <= oo assert (-oo > oo) == False and (-oo >= oo) == False assert (oo < oo) == False # issue 7775 assert (oo > oo) == False assert (-oo > -oo) == False and (-oo < -oo) == False assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo assert (-oo < -_inf) == False assert (oo > _inf) == False assert -oo >= -_inf assert oo <= _inf x = Symbol('x') b = Symbol('b', finite=True, real=True) assert (x < oo) == Lt(x, oo) # issue 7775 assert b < oo and b > -oo and b <= oo and b >= -oo assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x) assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x) assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x) assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x) def test_NaN(): assert nan is nan assert nan != 1 assert 1*nan is nan assert 1 != nan assert -nan is nan assert oo != Symbol("x")**3 assert 2 + nan is nan assert 3*nan + 2 is nan assert -nan*3 is nan assert nan + nan is nan assert -nan + nan*(-5) is nan assert 8/nan is nan raises(TypeError, lambda: nan > 0) raises(TypeError, lambda: nan < 0) raises(TypeError, lambda: nan >= 0) raises(TypeError, lambda: nan <= 0) raises(TypeError, lambda: 0 < nan) raises(TypeError, lambda: 0 > nan) raises(TypeError, lambda: 0 <= nan) raises(TypeError, lambda: 0 >= nan) assert nan**0 == 1 # as per IEEE 754 assert 1**nan is nan # IEEE 754 is not the best choice for symbolic work # test Pow._eval_power's handling of NaN assert Pow(nan, 0, evaluate=False)**2 == 1 for n in (1, 1., S.One, S.NegativeOne, Float(1)): assert n + nan is nan assert n - nan is nan assert nan + n is nan assert nan - n is nan assert n/nan is nan assert nan/n is nan def test_special_numbers(): assert isinstance(S.NaN, Number) is True assert isinstance(S.Infinity, Number) is True assert isinstance(S.NegativeInfinity, Number) is True assert S.NaN.is_number is True assert S.Infinity.is_number is True assert S.NegativeInfinity.is_number is True assert S.ComplexInfinity.is_number is True assert isinstance(S.NaN, Rational) is False assert isinstance(S.Infinity, Rational) is False assert isinstance(S.NegativeInfinity, Rational) is False assert S.NaN.is_rational is not True assert S.Infinity.is_rational is not True assert S.NegativeInfinity.is_rational is not True def test_powers(): assert integer_nthroot(1, 2) == (1, True) assert integer_nthroot(1, 5) == (1, True) assert integer_nthroot(2, 1) == (2, True) assert integer_nthroot(2, 2) == (1, False) assert integer_nthroot(2, 5) == (1, False) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(123**25, 25) == (123, True) assert integer_nthroot(123**25 + 1, 25) == (123, False) assert integer_nthroot(123**25 - 1, 25) == (122, False) assert integer_nthroot(1, 1) == (1, True) assert integer_nthroot(0, 1) == (0, True) assert integer_nthroot(0, 3) == (0, True) assert integer_nthroot(10000, 1) == (10000, True) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(16, 2) == (4, True) assert integer_nthroot(26, 2) == (5, False) assert integer_nthroot(1234567**7, 7) == (1234567, True) assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False) assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False) b = 25**1000 assert integer_nthroot(b, 1000) == (25, True) assert integer_nthroot(b + 1, 1000) == (25, False) assert integer_nthroot(b - 1, 1000) == (24, False) c = 10**400 c2 = c**2 assert integer_nthroot(c2, 2) == (c, True) assert integer_nthroot(c2 + 1, 2) == (c, False) assert integer_nthroot(c2 - 1, 2) == (c - 1, False) assert integer_nthroot(2, 10**10) == (1, False) p, r = integer_nthroot(int(factorial(10000)), 100) assert p % (10**10) == 5322420655 assert not r # Test that this is fast assert integer_nthroot(2, 10**10) == (1, False) # output should be int if possible assert type(integer_nthroot(2**61, 2)[0]) is int def test_integer_nthroot_overflow(): assert integer_nthroot(10**(50*50), 50) == (10**50, True) assert integer_nthroot(10**100000, 10000) == (10**10, True) def test_integer_log(): raises(ValueError, lambda: integer_log(2, 1)) raises(ValueError, lambda: integer_log(0, 2)) raises(ValueError, lambda: integer_log(1.1, 2)) raises(ValueError, lambda: integer_log(1, 2.2)) assert integer_log(1, 2) == (0, True) assert integer_log(1, 3) == (0, True) assert integer_log(2, 3) == (0, False) assert integer_log(3, 3) == (1, True) assert integer_log(3*2, 3) == (1, False) assert integer_log(3**2, 3) == (2, True) assert integer_log(3*4, 3) == (2, False) assert integer_log(3**3, 3) == (3, True) assert integer_log(27, 5) == (2, False) assert integer_log(2, 3) == (0, False) assert integer_log(-4, -2) == (2, False) assert integer_log(27, -3) == (3, False) assert integer_log(-49, 7) == (0, False) assert integer_log(-49, -7) == (2, False) def test_isqrt(): from math import sqrt as _sqrt limit = 4503599761588223 assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0] assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + S.Half) == integer_nthroot(limit, 2)[0] assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 2 + S.Half) == integer_nthroot(limit + 2, 2)[0] # Regression tests for https://github.com/sympy/sympy/issues/17034 assert isqrt(4503599761588224) == 67108864 assert isqrt(9999999999999999) == 99999999 # Other corner cases, especially involving non-integers. raises(ValueError, lambda: isqrt(-1)) raises(ValueError, lambda: isqrt(-10**1000)) raises(ValueError, lambda: isqrt(Rational(-1, 2))) tiny = Rational(1, 10**1000) raises(ValueError, lambda: isqrt(-tiny)) assert isqrt(1-tiny) == 0 assert isqrt(4503599761588224-tiny) == 67108864 assert isqrt(10**100 - tiny) == 10**50 - 1 # Check that using an inaccurate math.sqrt doesn't affect the results. from sympy.core import power old_sqrt = power._sqrt power._sqrt = lambda x: 2.999999999 try: assert isqrt(9) == 3 assert isqrt(10000) == 100 finally: power._sqrt = old_sqrt def test_powers_Integer(): """Test Integer._eval_power""" # check infinity assert S.One ** S.Infinity is S.NaN assert S.NegativeOne** S.Infinity is S.NaN assert S(2) ** S.Infinity is S.Infinity assert S(-2)** S.Infinity == zoo assert S(0) ** S.Infinity is S.Zero # check Nan assert S.One ** S.NaN is S.NaN assert S.NegativeOne ** S.NaN is S.NaN # check for exact roots assert S.NegativeOne ** Rational(6, 5) == - (-1)**(S.One/5) assert sqrt(S(4)) == 2 assert sqrt(S(-4)) == I * 2 assert S(16) ** Rational(1, 4) == 2 assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4) assert S(9) ** Rational(3, 2) == 27 assert S(-9) ** Rational(3, 2) == -27*I assert S(27) ** Rational(2, 3) == 9 assert S(-27) ** Rational(2, 3) == 9 * (S.NegativeOne ** Rational(2, 3)) assert (-2) ** Rational(-2, 1) == Rational(1, 4) # not exact roots assert sqrt(-3) == I*sqrt(3) assert (3) ** (Rational(3, 2)) == 3 * sqrt(3) assert (-3) ** (Rational(3, 2)) == - 3 * sqrt(-3) assert (-3) ** (Rational(5, 2)) == 9 * I * sqrt(3) assert (-3) ** (Rational(7, 2)) == - I * 27 * sqrt(3) assert (2) ** (Rational(3, 2)) == 2 * sqrt(2) assert (2) ** (Rational(-3, 2)) == sqrt(2) / 4 assert (81) ** (Rational(2, 3)) == 9 * (S(3) ** (Rational(2, 3))) assert (-81) ** (Rational(2, 3)) == 9 * (S(-3) ** (Rational(2, 3))) assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 # join roots assert sqrt(6) + sqrt(24) == 3*sqrt(6) assert sqrt(2) * sqrt(3) == sqrt(6) # separate symbols & constansts x = Symbol("x") assert sqrt(49 * x) == 7 * sqrt(x) assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi) # check that it is fast for big numbers assert (2**64 + 1) ** Rational(4, 3) assert (2**64 + 1) ** Rational(17, 25) # negative rational power and negative base assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 assert (-2) ** Rational(-10, 3) == \ (-1)**Rational(2, 3)*2**Rational(2, 3)/16 assert abs(Pow(-2, Rational(-10, 3)).n() - Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16 # negative base and rational power with some simplification assert (-8) ** Rational(2, 5) == \ 2*(-1)**Rational(2, 5)*2**Rational(1, 5) assert (-4) ** Rational(9, 5) == \ -8*(-1)**Rational(4, 5)*2**Rational(3, 5) assert S(1234).factors() == {617: 1, 2: 1} assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1} # test that eval_power factors numbers bigger than # the current limit in factor_trial_division (2**15) from sympy.ntheory.generate import nextprime n = nextprime(2**15) assert sqrt(n**2) == n assert sqrt(n**3) == n*sqrt(n) assert sqrt(4*n) == 2*sqrt(n) # check that factors of base with powers sharing gcd with power are removed assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6) assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6) # check that bases sharing a gcd are exptracted assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \ 2**Rational(8, 15)*3**Rational(9, 20) assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \ 4*2**Rational(7, 10)*3**Rational(8, 15) assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \ 4*(-3)**Rational(8, 15)*2**Rational(7, 10) assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9) assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3) assert 2**Rational(2, 3)*6**Rational(8, 9) == \ 2*2**Rational(5, 9)*3**Rational(8, 9) assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3) assert 3*Pow(3, 2, evaluate=False) == 3**3 assert 3*Pow(3, Rational(-1, 3), evaluate=False) == 3**Rational(2, 3) assert (-2)**Rational(1, 3)*(-3)**Rational(1, 4)*(-5)**Rational(5, 6) == \ -(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \ 5**Rational(5, 6) assert Integer(-2)**Symbol('', even=True) == \ Integer(2)**Symbol('', even=True) assert (-1)**Float(.5) == 1.0*I def test_powers_Rational(): """Test Rational._eval_power""" # check infinity assert S.Half ** S.Infinity == 0 assert Rational(3, 2) ** S.Infinity is S.Infinity assert Rational(-1, 2) ** S.Infinity == 0 assert Rational(-3, 2) ** S.Infinity == zoo # check Nan assert Rational(3, 4) ** S.NaN is S.NaN assert Rational(-2, 3) ** S.NaN is S.NaN # exact roots on numerator assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3 assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9 assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3 assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9 assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2 assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4) # exact root on denominator assert sqrt(Rational(1, 4)) == S.Half assert sqrt(Rational(1, -4)) == I * S.Half assert sqrt(Rational(3, 4)) == sqrt(3) / 2 assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2 assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3 # not exact roots assert sqrt(S.Half) == sqrt(2) / 2 assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7)) assert Rational(-3, 2)**Rational(-7, 3) == \ -4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27 assert Rational(-3, 2)**Rational(-2, 3) == \ -(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3 assert Rational(-3, 2)**Rational(-10, 3) == \ 8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81 assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() - Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16 # negative integer power and negative rational base assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4) a = Rational(1, 10) assert a**Float(a, 2) == Float(a, 2)**Float(a, 2) assert Rational(-2, 3)**Symbol('', even=True) == \ Rational(2, 3)**Symbol('', even=True) def test_powers_Float(): assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3)) def test_lshift_Integer(): assert Integer(0) << Integer(2) == Integer(0) assert Integer(0) << 2 == Integer(0) assert 0 << Integer(2) == Integer(0) assert Integer(0b11) << Integer(0) == Integer(0b11) assert Integer(0b11) << 0 == Integer(0b11) assert 0b11 << Integer(0) == Integer(0b11) assert Integer(0b11) << Integer(2) == Integer(0b11 << 2) assert Integer(0b11) << 2 == Integer(0b11 << 2) assert 0b11 << Integer(2) == Integer(0b11 << 2) assert Integer(-0b11) << Integer(2) == Integer(-0b11 << 2) assert Integer(-0b11) << 2 == Integer(-0b11 << 2) assert -0b11 << Integer(2) == Integer(-0b11 << 2) raises(TypeError, lambda: Integer(2) << 0.0) raises(TypeError, lambda: 0.0 << Integer(2)) raises(ValueError, lambda: Integer(1) << Integer(-1)) def test_rshift_Integer(): assert Integer(0) >> Integer(2) == Integer(0) assert Integer(0) >> 2 == Integer(0) assert 0 >> Integer(2) == Integer(0) assert Integer(0b11) >> Integer(0) == Integer(0b11) assert Integer(0b11) >> 0 == Integer(0b11) assert 0b11 >> Integer(0) == Integer(0b11) assert Integer(0b11) >> Integer(2) == Integer(0) assert Integer(0b11) >> 2 == Integer(0) assert 0b11 >> Integer(2) == Integer(0) assert Integer(-0b11) >> Integer(2) == Integer(-1) assert Integer(-0b11) >> 2 == Integer(-1) assert -0b11 >> Integer(2) == Integer(-1) assert Integer(0b1100) >> Integer(2) == Integer(0b1100 >> 2) assert Integer(0b1100) >> 2 == Integer(0b1100 >> 2) assert 0b1100 >> Integer(2) == Integer(0b1100 >> 2) assert Integer(-0b1100) >> Integer(2) == Integer(-0b1100 >> 2) assert Integer(-0b1100) >> 2 == Integer(-0b1100 >> 2) assert -0b1100 >> Integer(2) == Integer(-0b1100 >> 2) raises(TypeError, lambda: Integer(0b10) >> 0.0) raises(TypeError, lambda: 0.0 >> Integer(2)) raises(ValueError, lambda: Integer(1) >> Integer(-1)) def test_and_Integer(): assert Integer(0b01010101) & Integer(0b10101010) == Integer(0) assert Integer(0b01010101) & 0b10101010 == Integer(0) assert 0b01010101 & Integer(0b10101010) == Integer(0) assert Integer(0b01010101) & Integer(0b11011011) == Integer(0b01010001) assert Integer(0b01010101) & 0b11011011 == Integer(0b01010001) assert 0b01010101 & Integer(0b11011011) == Integer(0b01010001) assert -Integer(0b01010101) & Integer(0b11011011) == Integer(-0b01010101 & 0b11011011) assert Integer(-0b01010101) & 0b11011011 == Integer(-0b01010101 & 0b11011011) assert -0b01010101 & Integer(0b11011011) == Integer(-0b01010101 & 0b11011011) assert Integer(0b01010101) & -Integer(0b11011011) == Integer(0b01010101 & -0b11011011) assert Integer(0b01010101) & -0b11011011 == Integer(0b01010101 & -0b11011011) assert 0b01010101 & Integer(-0b11011011) == Integer(0b01010101 & -0b11011011) raises(TypeError, lambda: Integer(2) & 0.0) raises(TypeError, lambda: 0.0 & Integer(2)) def test_xor_Integer(): assert Integer(0b01010101) ^ Integer(0b11111111) == Integer(0b10101010) assert Integer(0b01010101) ^ 0b11111111 == Integer(0b10101010) assert 0b01010101 ^ Integer(0b11111111) == Integer(0b10101010) assert Integer(0b01010101) ^ Integer(0b11011011) == Integer(0b10001110) assert Integer(0b01010101) ^ 0b11011011 == Integer(0b10001110) assert 0b01010101 ^ Integer(0b11011011) == Integer(0b10001110) assert -Integer(0b01010101) ^ Integer(0b11011011) == Integer(-0b01010101 ^ 0b11011011) assert Integer(-0b01010101) ^ 0b11011011 == Integer(-0b01010101 ^ 0b11011011) assert -0b01010101 ^ Integer(0b11011011) == Integer(-0b01010101 ^ 0b11011011) assert Integer(0b01010101) ^ -Integer(0b11011011) == Integer(0b01010101 ^ -0b11011011) assert Integer(0b01010101) ^ -0b11011011 == Integer(0b01010101 ^ -0b11011011) assert 0b01010101 ^ Integer(-0b11011011) == Integer(0b01010101 ^ -0b11011011) raises(TypeError, lambda: Integer(2) ^ 0.0) raises(TypeError, lambda: 0.0 ^ Integer(2)) def test_or_Integer(): assert Integer(0b01010101) | Integer(0b10101010) == Integer(0b11111111) assert Integer(0b01010101) | 0b10101010 == Integer(0b11111111) assert 0b01010101 | Integer(0b10101010) == Integer(0b11111111) assert Integer(0b01010101) | Integer(0b11011011) == Integer(0b11011111) assert Integer(0b01010101) | 0b11011011 == Integer(0b11011111) assert 0b01010101 | Integer(0b11011011) == Integer(0b11011111) assert -Integer(0b01010101) | Integer(0b11011011) == Integer(-0b01010101 | 0b11011011) assert Integer(-0b01010101) | 0b11011011 == Integer(-0b01010101 | 0b11011011) assert -0b01010101 | Integer(0b11011011) == Integer(-0b01010101 | 0b11011011) assert Integer(0b01010101) | -Integer(0b11011011) == Integer(0b01010101 | -0b11011011) assert Integer(0b01010101) | -0b11011011 == Integer(0b01010101 | -0b11011011) assert 0b01010101 | Integer(-0b11011011) == Integer(0b01010101 | -0b11011011) raises(TypeError, lambda: Integer(2) | 0.0) raises(TypeError, lambda: 0.0 | Integer(2)) def test_invert_Integer(): assert ~Integer(0b01010101) == Integer(-0b01010110) assert ~Integer(0b01010101) == Integer(~0b01010101) assert ~(~Integer(0b01010101)) == Integer(0b01010101) def test_abs1(): assert Rational(1, 6) != Rational(-1, 6) assert abs(Rational(1, 6)) == abs(Rational(-1, 6)) def test_accept_int(): assert Float(4) == 4 def test_dont_accept_str(): assert Float("0.2") != "0.2" assert not (Float("0.2") == "0.2") def test_int(): a = Rational(5) assert int(a) == 5 a = Rational(9, 10) assert int(a) == int(-a) == 0 assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3) # issue 10368 a = Rational(32442016954, 78058255275) assert type(int(a)) is type(int(-a)) is int def test_int_NumberSymbols(): assert int(Catalan) == 0 assert int(EulerGamma) == 0 assert int(pi) == 3 assert int(E) == 2 assert int(GoldenRatio) == 1 assert int(TribonacciConstant) == 1 for i in [Catalan, E, EulerGamma, GoldenRatio, TribonacciConstant, pi]: a, b = i.approximation_interval(Integer) ia = int(i) assert ia == a assert isinstance(ia, int) assert b == a + 1 assert a.is_Integer and b.is_Integer def test_real_bug(): x = Symbol("x") assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"] assert str(2.1*x*x) != "(2.0*x)*x" def test_bug_sqrt(): assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1 def test_pi_Pi(): "Test that pi (instance) is imported, but Pi (class) is not" from sympy import pi # noqa with raises(ImportError): from sympy import Pi # noqa def test_no_len(): # there should be no len for numbers raises(TypeError, lambda: len(Rational(2))) raises(TypeError, lambda: len(Rational(2, 3))) raises(TypeError, lambda: len(Integer(2))) def test_issue_3321(): assert sqrt(Rational(1, 5)) == Rational(1, 5)**S.Half assert 5 * sqrt(Rational(1, 5)) == sqrt(5) def test_issue_3692(): assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2 assert ((-5)**Rational(1, 6)).expand(complex=True) == \ 5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2 assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3) def test_issue_3423(): x = Symbol("x") assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half) assert sqrt(x - 1) != I*sqrt(1 - x) def test_issue_3449(): x = Symbol("x") assert sqrt(x - 1).subs(x, 5) == 2 def test_issue_13890(): x = Symbol("x") e = (-x/4 - S.One/12)**x - 1 f = simplify(e) a = Rational(9, 5) assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15 def test_Integer_factors(): def F(i): return Integer(i).factors() assert F(1) == {} assert F(2) == {2: 1} assert F(3) == {3: 1} assert F(4) == {2: 2} assert F(5) == {5: 1} assert F(6) == {2: 1, 3: 1} assert F(7) == {7: 1} assert F(8) == {2: 3} assert F(9) == {3: 2} assert F(10) == {2: 1, 5: 1} assert F(11) == {11: 1} assert F(12) == {2: 2, 3: 1} assert F(13) == {13: 1} assert F(14) == {2: 1, 7: 1} assert F(15) == {3: 1, 5: 1} assert F(16) == {2: 4} assert F(17) == {17: 1} assert F(18) == {2: 1, 3: 2} assert F(19) == {19: 1} assert F(20) == {2: 2, 5: 1} assert F(21) == {3: 1, 7: 1} assert F(22) == {2: 1, 11: 1} assert F(23) == {23: 1} assert F(24) == {2: 3, 3: 1} assert F(25) == {5: 2} assert F(26) == {2: 1, 13: 1} assert F(27) == {3: 3} assert F(28) == {2: 2, 7: 1} assert F(29) == {29: 1} assert F(30) == {2: 1, 3: 1, 5: 1} assert F(31) == {31: 1} assert F(32) == {2: 5} assert F(33) == {3: 1, 11: 1} assert F(34) == {2: 1, 17: 1} assert F(35) == {5: 1, 7: 1} assert F(36) == {2: 2, 3: 2} assert F(37) == {37: 1} assert F(38) == {2: 1, 19: 1} assert F(39) == {3: 1, 13: 1} assert F(40) == {2: 3, 5: 1} assert F(41) == {41: 1} assert F(42) == {2: 1, 3: 1, 7: 1} assert F(43) == {43: 1} assert F(44) == {2: 2, 11: 1} assert F(45) == {3: 2, 5: 1} assert F(46) == {2: 1, 23: 1} assert F(47) == {47: 1} assert F(48) == {2: 4, 3: 1} assert F(49) == {7: 2} assert F(50) == {2: 1, 5: 2} assert F(51) == {3: 1, 17: 1} def test_Rational_factors(): def F(p, q, visual=None): return Rational(p, q).factors(visual=visual) assert F(2, 3) == {2: 1, 3: -1} assert F(2, 9) == {2: 1, 3: -2} assert F(2, 15) == {2: 1, 3: -1, 5: -1} assert F(6, 10) == {3: 1, 5: -1} def test_issue_4107(): assert pi*(E + 10) + pi*(-E - 10) != 0 assert pi*(E + 10**10) + pi*(-E - 10**10) != 0 assert pi*(E + 10**20) + pi*(-E - 10**20) != 0 assert pi*(E + 10**80) + pi*(-E - 10**80) != 0 assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0 assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0 assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0 assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0 def test_IntegerInteger(): a = Integer(4) b = Integer(a) assert a == b def test_Rational_gcd_lcm_cofactors(): assert Integer(4).gcd(2) == Integer(2) assert Integer(4).lcm(2) == Integer(4) assert Integer(4).gcd(Integer(2)) == Integer(2) assert Integer(4).lcm(Integer(2)) == Integer(4) a, b = 720**99911, 480**12342 assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b) assert Integer(4).gcd(3) == Integer(1) assert Integer(4).lcm(3) == Integer(12) assert Integer(4).gcd(Integer(3)) == Integer(1) assert Integer(4).lcm(Integer(3)) == Integer(12) assert Rational(4, 3).gcd(2) == Rational(2, 3) assert Rational(4, 3).lcm(2) == Integer(4) assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3) assert Rational(4, 3).lcm(Integer(2)) == Integer(4) assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9) assert Integer(4).lcm(Rational(2, 9)) == Integer(4) assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9) assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3) assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45) assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4) assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7)) assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1)) assert Integer(4).cofactors(Integer(2)) == \ (Integer(2), Integer(2), Integer(1)) assert Integer(4).gcd(Float(2.0)) == Float(1.0) assert Integer(4).lcm(Float(2.0)) == Float(8.0) assert Integer(4).cofactors(Float(2.0)) == (Float(1.0), Float(4.0), Float(2.0)) assert S.Half.gcd(Float(2.0)) == Float(1.0) assert S.Half.lcm(Float(2.0)) == Float(1.0) assert S.Half.cofactors(Float(2.0)) == \ (Float(1.0), Float(0.5), Float(2.0)) def test_Float_gcd_lcm_cofactors(): assert Float(2.0).gcd(Integer(4)) == Float(1.0) assert Float(2.0).lcm(Integer(4)) == Float(8.0) assert Float(2.0).cofactors(Integer(4)) == (Float(1.0), Float(2.0), Float(4.0)) assert Float(2.0).gcd(S.Half) == Float(1.0) assert Float(2.0).lcm(S.Half) == Float(1.0) assert Float(2.0).cofactors(S.Half) == \ (Float(1.0), Float(2.0), Float(0.5)) def test_issue_4611(): assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10 assert abs(E._evalf(50) - 2.71828182845905) < 1e-10 assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10 assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10 assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10 assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10 x = Symbol("x") assert (pi + x).evalf() == pi.evalf() + x assert (E + x).evalf() == E.evalf() + x assert (Catalan + x).evalf() == Catalan.evalf() + x assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x @conserve_mpmath_dps def test_conversion_to_mpmath(): assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1) assert mpmath.mpmathify(S.Half) == mpmath.mpf(0.5) assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23') assert mpmath.mpmathify(I) == mpmath.mpc(1j) assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(S.Half + S.Half*I) == mpmath.mpc(0.5 + 0.5j) assert mpmath.mpmathify(2*I) == mpmath.mpc(2j) assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j) assert mpmath.mpmathify(S.Half*I) == mpmath.mpc(0.5j) mpmath.mp.dps = 100 assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j def test_relational(): # real x = S(.1) assert (x != cos) is True assert (x == cos) is False # rational x = Rational(1, 3) assert (x != cos) is True assert (x == cos) is False # integer defers to rational so these tests are omitted # number symbol x = pi assert (x != cos) is True assert (x == cos) is False def test_Integer_as_index(): assert 'hello'[Integer(2):] == 'llo' def test_Rational_int(): assert int( Rational(7, 5)) == 1 assert int( S.Half) == 0 assert int(Rational(-1, 2)) == 0 assert int(-Rational(7, 5)) == -1 def test_zoo(): b = Symbol('b', finite=True) nz = Symbol('nz', nonzero=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) im = Symbol('i', imaginary=True) c = Symbol('c', complex=True) pb = Symbol('pb', positive=True) nb = Symbol('nb', negative=True) imb = Symbol('ib', imaginary=True, finite=True) for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3), b, nz, p, n, im, pb, nb, imb, c]: if i.is_finite and (i.is_real or i.is_imaginary): assert i + zoo is zoo assert i - zoo is zoo assert zoo + i is zoo assert zoo - i is zoo elif i.is_finite is not False: assert (i + zoo).is_Add assert (i - zoo).is_Add assert (zoo + i).is_Add assert (zoo - i).is_Add else: assert (i + zoo) is S.NaN assert (i - zoo) is S.NaN assert (zoo + i) is S.NaN assert (zoo - i) is S.NaN if fuzzy_not(i.is_zero) and (i.is_extended_real or i.is_imaginary): assert i*zoo is zoo assert zoo*i is zoo elif i.is_zero: assert i*zoo is S.NaN assert zoo*i is S.NaN else: assert (i*zoo).is_Mul assert (zoo*i).is_Mul if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary): assert zoo/i is zoo elif (1/i).is_zero: assert zoo/i is S.NaN elif i.is_zero: assert zoo/i is zoo else: assert (zoo/i).is_Mul assert (I*oo).is_Mul # allow directed infinity assert zoo + zoo is S.NaN assert zoo * zoo is zoo assert zoo - zoo is S.NaN assert zoo/zoo is S.NaN assert zoo**zoo is S.NaN assert zoo**0 is S.One assert zoo**2 is zoo assert 1/zoo is S.Zero assert Mul.flatten([S.NegativeOne, oo, S(0)]) == ([S.NaN], [], None) def test_issue_4122(): x = Symbol('x', nonpositive=True) assert oo + x is oo x = Symbol('x', extended_nonpositive=True) assert (oo + x).is_Add x = Symbol('x', finite=True) assert (oo + x).is_Add # x could be imaginary x = Symbol('x', nonnegative=True) assert oo + x is oo x = Symbol('x', extended_nonnegative=True) assert oo + x is oo x = Symbol('x', finite=True, real=True) assert oo + x is oo # similarly for negative infinity x = Symbol('x', nonnegative=True) assert -oo + x is -oo x = Symbol('x', extended_nonnegative=True) assert (-oo + x).is_Add x = Symbol('x', finite=True) assert (-oo + x).is_Add x = Symbol('x', nonpositive=True) assert -oo + x is -oo x = Symbol('x', extended_nonpositive=True) assert -oo + x is -oo x = Symbol('x', finite=True, real=True) assert -oo + x is -oo def test_GoldenRatio_expand(): assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2 def test_TribonacciConstant_expand(): assert TribonacciConstant.expand(func=True) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_as_content_primitive(): assert S.Zero.as_content_primitive() == (1, 0) assert S.Half.as_content_primitive() == (S.Half, 1) assert (Rational(-1, 2)).as_content_primitive() == (S.Half, -1) assert S(3).as_content_primitive() == (3, 1) assert S(3.1).as_content_primitive() == (1, 3.1) def test_hashing_sympy_integers(): # Test for issue 5072 assert {Integer(3)} == {int(3)} assert hash(Integer(4)) == hash(int(4)) def test_rounding_issue_4172(): assert int((E**100).round()) == \ 26881171418161354484126255515800135873611119 assert int((pi**100).round()) == \ 51878483143196131920862615246303013562686760680406 assert int((Rational(1)/EulerGamma**100).round()) == \ 734833795660954410469466 @XFAIL def test_mpmath_issues(): from mpmath.libmp.libmpf import _normalize import mpmath.libmp as mlib rnd = mlib.round_nearest mpf = (0, int(0), -123, -1, 53, rnd) # nan assert _normalize(mpf, 53) != (0, int(0), 0, 0) mpf = (0, int(0), -456, -2, 53, rnd) # +inf assert _normalize(mpf, 53) != (0, int(0), 0, 0) mpf = (1, int(0), -789, -3, 53, rnd) # -inf assert _normalize(mpf, 53) != (0, int(0), 0, 0) from mpmath.libmp.libmpf import fnan assert mlib.mpf_eq(fnan, fnan) def test_Catalan_EulerGamma_prec(): n = GoldenRatio f = Float(n.n(), 5) assert f._mpf_ == (0, int(212079), -17, 18) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ n = EulerGamma f = Float(n.n(), 5) assert f._mpf_ == (0, int(302627), -19, 19) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ def test_Catalan_rewrite(): k = Dummy('k', integer=True, nonnegative=True) assert Catalan.rewrite(Sum).dummy_eq( Sum((-1)**k/(2*k + 1)**2, (k, 0, oo))) assert Catalan.rewrite() == Catalan def test_bool_eq(): assert 0 == False assert S(0) == False assert S(0) != S.false assert 1 == True assert S.One == True assert S.One != S.true def test_Float_eq(): # all .5 values are the same assert Float(.5, 10) == Float(.5, 11) == Float(.5, 1) # but floats that aren't exact in base-2 still # don't compare the same because they have different # underlying mpf values assert Float(.12, 3) != Float(.12, 4) assert Float(.12, 3) != .12 assert 0.12 != Float(.12, 3) assert Float('.12', 22) != .12 # issue 11707 # but Float/Rational -- except for 0 -- # are exact so Rational(x) = Float(y) only if # Rational(x) == Rational(Float(y)) assert Float('1.1') != Rational(11, 10) assert Rational(11, 10) != Float('1.1') # coverage assert not Float(3) == 2 assert not Float(2**2) == S.Half assert Float(2**2) == 4 assert not Float(2**-2) == 1 assert Float(2**-1) == S.Half assert not Float(2*3) == 3 assert not Float(2*3) == S.Half assert Float(2*3) == 6 assert not Float(2*3) == 8 assert Float(.75) == Rational(3, 4) assert Float(5/18) == 5/18 # 4473 assert Float(2.) != 3 assert Float((0,1,-3)) == S.One/8 assert Float((0,1,-3)) != S.One/9 # 16196 assert 2 == Float(2) # as per Python # but in a computation... assert t**2 != t**2.0 def test_issue_6640(): from mpmath.libmp.libmpf import finf, fninf # fnan is not included because Float no longer returns fnan, # but otherwise, the same sort of test could apply assert Float(finf).is_zero is False assert Float(fninf).is_zero is False assert bool(Float(0)) is False def test_issue_6349(): assert Float('23.e3', '')._prec == 10 assert Float('23e3', '')._prec == 20 assert Float('23000', '')._prec == 20 assert Float('-23000', '')._prec == 20 def test_mpf_norm(): assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_ assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_ def test_latex(): assert latex(pi) == r"\pi" assert latex(E) == r"e" assert latex(GoldenRatio) == r"\phi" assert latex(TribonacciConstant) == r"\text{TribonacciConstant}" assert latex(EulerGamma) == r"\gamma" assert latex(oo) == r"\infty" assert latex(-oo) == r"-\infty" assert latex(zoo) == r"\tilde{\infty}" assert latex(nan) == r"\text{NaN}" assert latex(I) == r"i" def test_issue_7742(): assert -oo % 1 is nan def test_simplify_AlgebraicNumber(): A = AlgebraicNumber e = 3**(S.One/6)*(3 + (135 + 78*sqrt(3))**Rational(2, 3))/(45 + 26*sqrt(3))**(S.One/3) assert simplify(A(e)) == A(12) # wester test_C20 e = (41 + 29*sqrt(2))**(S.One/5) assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21 e = (3 + 4*I)**Rational(3, 2) assert simplify(A(e)) == A(2 + 11*I) # issue 4401 def test_Float_idempotence(): x = Float('1.23', '') y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) x = Float(10**20) y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) def test_comp1(): # sqrt(2) = 1.414213 5623730950... a = sqrt(2).n(7) assert comp(a, 1.4142129) is False assert comp(a, 1.4142130) # ... assert comp(a, 1.4142141) assert comp(a, 1.4142142) is False assert comp(sqrt(2).n(2), '1.4') assert comp(sqrt(2).n(2), Float(1.4, 2), '') assert comp(sqrt(2).n(2), 1.4, '') assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False assert comp(sqrt(2) + sqrt(3)*I, 1.4 + 1.7*I, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.89, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.90, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.07, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.08, .1) assert [(i, j) for i in range(130, 150) for j in range(170, 180) if comp((sqrt(2)+ I*sqrt(3)).n(3), i/100. + I*j/100.)] == [ (141, 173), (142, 173)] raises(ValueError, lambda: comp(t, '1')) raises(ValueError, lambda: comp(t, 1)) assert comp(0, 0.0) assert comp(.5, S.Half) assert comp(2 + sqrt(2), 2.0 + sqrt(2)) assert not comp(0, 1) assert not comp(2, sqrt(2)) assert not comp(2 + I, 2.0 + sqrt(2)) assert not comp(2.0 + sqrt(2), 2 + I) assert not comp(2.0 + sqrt(2), sqrt(3)) assert comp(1/pi.n(4), 0.3183, 1e-5) assert not comp(1/pi.n(4), 0.3183, 8e-6) def test_issue_9491(): assert oo**zoo is nan def test_issue_10063(): assert 2**Float(3) == Float(8) def test_issue_10020(): assert oo**I is S.NaN assert oo**(1 + I) is S.ComplexInfinity assert oo**(-1 + I) is S.Zero assert (-oo)**I is S.NaN assert (-oo)**(-1 + I) is S.Zero assert oo**t == Pow(oo, t, evaluate=False) assert (-oo)**t == Pow(-oo, t, evaluate=False) def test_invert_numbers(): assert S(2).invert(5) == 3 assert S(2).invert(Rational(5, 2)) == S.Half assert S(2).invert(5.) == S.Half assert S(2).invert(S(5)) == 3 assert S(2.).invert(5) == 0.5 assert S(sqrt(2)).invert(5) == 1/sqrt(2) assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2) def test_mod_inverse(): assert mod_inverse(3, 11) == 4 assert mod_inverse(5, 11) == 9 assert mod_inverse(21124921, 521512) == 7713 assert mod_inverse(124215421, 5125) == 2981 assert mod_inverse(214, 12515) == 1579 assert mod_inverse(5823991, 3299) == 1442 assert mod_inverse(123, 44) == 39 assert mod_inverse(2, 5) == 3 assert mod_inverse(-2, 5) == 2 assert mod_inverse(2, -5) == -2 assert mod_inverse(-2, -5) == -3 assert mod_inverse(-3, -7) == -5 x = Symbol('x') assert S(2).invert(x) == S.Half raises(TypeError, lambda: mod_inverse(2, x)) raises(ValueError, lambda: mod_inverse(2, S.Half)) raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2)) def test_golden_ratio_rewrite_as_sqrt(): assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half def test_tribonacci_constant_rewrite_as_sqrt(): assert TribonacciConstant.rewrite(sqrt) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_comparisons_with_unknown_type(): class Foo: """ Class that is unaware of Basic, and relies on both classes returning the NotImplemented singleton for equivalence to evaluate to False. """ ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3) foo = Foo() for n in ni, nf, nr, oo, -oo, zoo, nan: assert n != foo assert foo != n assert not n == foo assert not foo == n raises(TypeError, lambda: n < foo) raises(TypeError, lambda: foo > n) raises(TypeError, lambda: n > foo) raises(TypeError, lambda: foo < n) raises(TypeError, lambda: n <= foo) raises(TypeError, lambda: foo >= n) raises(TypeError, lambda: n >= foo) raises(TypeError, lambda: foo <= n) class Bar: """ Class that considers itself equal to any instance of Number except infinities and nans, and relies on SymPy types returning the NotImplemented singleton for symmetric equality relations. """ def __eq__(self, other): if other in (oo, -oo, zoo, nan): return False if isinstance(other, Number): return True return NotImplemented def __ne__(self, other): return not self == other bar = Bar() for n in ni, nf, nr: assert n == bar assert bar == n assert not n != bar assert not bar != n for n in oo, -oo, zoo, nan: assert n != bar assert bar != n assert not n == bar assert not bar == n for n in ni, nf, nr, oo, -oo, zoo, nan: raises(TypeError, lambda: n < bar) raises(TypeError, lambda: bar > n) raises(TypeError, lambda: n > bar) raises(TypeError, lambda: bar < n) raises(TypeError, lambda: n <= bar) raises(TypeError, lambda: bar >= n) raises(TypeError, lambda: n >= bar) raises(TypeError, lambda: bar <= n) def test_NumberSymbol_comparison(): from sympy.core.tests.test_relational import rel_check rpi = Rational('905502432259640373/288230376151711744') fpi = Float(float(pi)) assert rel_check(rpi, fpi) def test_Integer_precision(): # Make sure Integer inputs for keyword args work assert Float('1.0', dps=Integer(15))._prec == 53 assert Float('1.0', precision=Integer(15))._prec == 15 assert type(Float('1.0', precision=Integer(15))._prec) == int assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15) def test_numpy_to_float(): from sympy.testing.pytest import skip from sympy.external import import_module np = import_module('numpy') if not np: skip('numpy not installed. Abort numpy tests.') def check_prec_and_relerr(npval, ratval): prec = np.finfo(npval).nmant + 1 x = Float(npval) assert x._prec == prec y = Float(ratval, precision=prec) assert abs((x - y)/y) < 2**(-(prec + 1)) check_prec_and_relerr(np.float16(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float32(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float64(2.0/3), Rational(2, 3)) # extended precision, on some arch/compilers: x = np.longdouble(2)/3 check_prec_and_relerr(x, Rational(2, 3)) y = Float(x, precision=10) assert same_and_same_prec(y, Float(Rational(2, 3), precision=10)) raises(TypeError, lambda: Float(np.complex64(1+2j))) raises(TypeError, lambda: Float(np.complex128(1+2j))) def test_Integer_ceiling_floor(): a = Integer(4) assert a.floor() == a assert a.ceiling() == a def test_ComplexInfinity(): assert zoo.floor() is zoo assert zoo.ceiling() is zoo assert zoo**zoo is S.NaN def test_Infinity_floor_ceiling_power(): assert oo.floor() is oo assert oo.ceiling() is oo assert oo**S.NaN is S.NaN assert oo**zoo is S.NaN def test_One_power(): assert S.One**12 is S.One assert S.NegativeOne**S.NaN is S.NaN def test_NegativeInfinity(): assert (-oo).floor() is -oo assert (-oo).ceiling() is -oo assert (-oo)**11 is -oo assert (-oo)**12 is oo def test_issue_6133(): raises(TypeError, lambda: (-oo < None)) raises(TypeError, lambda: (S(-2) < None)) raises(TypeError, lambda: (oo < None)) raises(TypeError, lambda: (oo > None)) raises(TypeError, lambda: (S(2) < None)) def test_abc(): x = numbers.Float(5) assert(isinstance(x, nums.Number)) assert(isinstance(x, numbers.Number)) assert(isinstance(x, nums.Real)) y = numbers.Rational(1, 3) assert(isinstance(y, nums.Number)) assert(y.numerator == 1) assert(y.denominator == 3) assert(isinstance(y, nums.Rational)) z = numbers.Integer(3) assert(isinstance(z, nums.Number)) assert(isinstance(z, numbers.Number)) assert(isinstance(z, nums.Rational)) assert(isinstance(z, numbers.Rational)) assert(isinstance(z, nums.Integral)) def test_floordiv(): assert S(2)//S.Half == 4 def test_negation(): assert -S.Zero is S.Zero assert -Float(0) is not S.Zero and -Float(0) == 0.0 def test_exponentiation_of_0(): x = Symbol('x') assert 0**-x == zoo**x assert unchanged(Pow, 0, x) x = Symbol('x', zero=True) assert 0**-x == S.One assert 0**x == S.One def test_equal_valued(): x = Symbol('x') equal_values = [ [1, 1.0, S(1), S(1.0), S(1).n(5)], [2, 2.0, S(2), S(2.0), S(2).n(5)], [-1, -1.0, -S(1), -S(1.0), -S(1).n(5)], [0.5, S(0.5), S(1)/2], [-0.5, -S(0.5), -S(1)/2], [0, 0.0, S(0), S(0.0), S(0).n()], [pi], [pi.n()], # <-- not equal [S(1)/10], [0.1, S(0.1)], # <-- not equal [S(0.1).n(5)], [oo], [cos(x/2)], [cos(0.5*x)], # <-- no recursion ] for m, values_m in enumerate(equal_values): for value_i in values_m: # All values in same list equal for value_j in values_m: assert equal_valued(value_i, value_j) is True # Not equal to anything in any other list: for n, values_n in enumerate(equal_values): if n == m: continue for value_j in values_n: assert equal_valued(value_i, value_j) is False
bd5a176321b37533b712d951bb4b0e3718c1ddfa6b5f167bffd55ee87747f38b
from sympy.concrete.summations import Sum from sympy.core.basic import Basic, _aresame from sympy.core.cache import clear_cache from sympy.core.containers import Dict, Tuple from sympy.core.expr import Expr, unchanged from sympy.core.function import (Subs, Function, diff, Lambda, expand, nfloat, Derivative) from sympy.core.numbers import E, Float, zoo, Rational, pi, I, oo, nan from sympy.core.power import Pow from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import symbols, Dummy, Symbol from sympy.functions.elementary.complexes import im, re from sympy.functions.elementary.exponential import log, exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import sin, cos, acos from sympy.functions.special.error_functions import expint from sympy.functions.special.gamma_functions import loggamma, polygamma from sympy.matrices.dense import Matrix from sympy.printing.str import sstr from sympy.series.order import O from sympy.tensor.indexed import Indexed from sympy.core.function import (PoleError, _mexpand, arity, BadSignatureError, BadArgumentsError) from sympy.core.parameters import _exp_is_pow from sympy.core.sympify import sympify, SympifyError from sympy.matrices import MutableMatrix, ImmutableMatrix from sympy.sets.sets import FiniteSet from sympy.solvers.solveset import solveset from sympy.tensor.array import NDimArray from sympy.utilities.iterables import subsets, variations from sympy.testing.pytest import XFAIL, raises, warns_deprecated_sympy, _both_exp_pow from sympy.abc import t, w, x, y, z f, g, h = symbols('f g h', cls=Function) _xi_1, _xi_2, _xi_3 = [Dummy() for i in range(3)] def test_f_expand_complex(): x = Symbol('x', real=True) assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x)) assert exp(x).expand(complex=True) == exp(x) assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x) assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \ I*sin(im(z))*exp(re(z)) def test_bug1(): e = sqrt(-log(w)) assert e.subs(log(w), -x) == sqrt(x) e = sqrt(-5*log(w)) assert e.subs(log(w), -x) == sqrt(5*x) def test_general_function(): nu = Function('nu') e = nu(x) edx = e.diff(x) edy = e.diff(y) edxdx = e.diff(x).diff(x) edxdy = e.diff(x).diff(y) assert e == nu(x) assert edx != nu(x) assert edx == diff(nu(x), x) assert edy == 0 assert edxdx == diff(diff(nu(x), x), x) assert edxdy == 0 def test_general_function_nullary(): nu = Function('nu') e = nu() edx = e.diff(x) edxdx = e.diff(x).diff(x) assert e == nu() assert edx != nu() assert edx == 0 assert edxdx == 0 def test_derivative_subs_bug(): e = diff(g(x), x) assert e.subs(g(x), f(x)) != e assert e.subs(g(x), f(x)) == Derivative(f(x), x) assert e.subs(g(x), -f(x)) == Derivative(-f(x), x) assert e.subs(x, y) == Derivative(g(y), y) def test_derivative_subs_self_bug(): d = diff(f(x), x) assert d.subs(d, y) == y def test_derivative_linearity(): assert diff(-f(x), x) == -diff(f(x), x) assert diff(8*f(x), x) == 8*diff(f(x), x) assert diff(8*f(x), x) != 7*diff(f(x), x) assert diff(8*f(x)*x, x) == 8*f(x) + 8*x*diff(f(x), x) assert diff(8*f(x)*y*x, x).expand() == 8*y*f(x) + 8*y*x*diff(f(x), x) def test_derivative_evaluate(): assert Derivative(sin(x), x) != diff(sin(x), x) assert Derivative(sin(x), x).doit() == diff(sin(x), x) assert Derivative(Derivative(f(x), x), x) == diff(f(x), x, x) assert Derivative(sin(x), x, 0) == sin(x) assert Derivative(sin(x), (x, y), (x, -y)) == sin(x) def test_diff_symbols(): assert diff(f(x, y, z), x, y, z) == Derivative(f(x, y, z), x, y, z) assert diff(f(x, y, z), x, x, x) == Derivative(f(x, y, z), x, x, x) == Derivative(f(x, y, z), (x, 3)) assert diff(f(x, y, z), x, 3) == Derivative(f(x, y, z), x, 3) # issue 5028 assert [diff(-z + x/y, sym) for sym in (z, x, y)] == [-1, 1/y, -x/y**2] assert diff(f(x, y, z), x, y, z, 2) == Derivative(f(x, y, z), x, y, z, z) assert diff(f(x, y, z), x, y, z, 2, evaluate=False) == \ Derivative(f(x, y, z), x, y, z, z) assert Derivative(f(x, y, z), x, y, z)._eval_derivative(z) == \ Derivative(f(x, y, z), x, y, z, z) assert Derivative(Derivative(f(x, y, z), x), y)._eval_derivative(z) == \ Derivative(f(x, y, z), x, y, z) raises(TypeError, lambda: cos(x).diff((x, y)).variables) assert cos(x).diff((x, y))._wrt_variables == [x] # issue 23222 assert sympify("a*x+b").diff("x") == sympify("a") def test_Function(): class myfunc(Function): @classmethod def eval(cls): # zero args return assert myfunc.nargs == FiniteSet(0) assert myfunc().nargs == FiniteSet(0) raises(TypeError, lambda: myfunc(x).nargs) class myfunc(Function): @classmethod def eval(cls, x): # one arg return assert myfunc.nargs == FiniteSet(1) assert myfunc(x).nargs == FiniteSet(1) raises(TypeError, lambda: myfunc(x, y).nargs) class myfunc(Function): @classmethod def eval(cls, *x): # star args return assert myfunc.nargs == S.Naturals0 assert myfunc(x).nargs == S.Naturals0 def test_nargs(): f = Function('f') assert f.nargs == S.Naturals0 assert f(1).nargs == S.Naturals0 assert Function('f', nargs=2)(1, 2).nargs == FiniteSet(2) assert sin.nargs == FiniteSet(1) assert sin(2).nargs == FiniteSet(1) assert log.nargs == FiniteSet(1, 2) assert log(2).nargs == FiniteSet(1, 2) assert Function('f', nargs=2).nargs == FiniteSet(2) assert Function('f', nargs=0).nargs == FiniteSet(0) assert Function('f', nargs=(0, 1)).nargs == FiniteSet(0, 1) assert Function('f', nargs=None).nargs == S.Naturals0 raises(ValueError, lambda: Function('f', nargs=())) def test_nargs_inheritance(): class f1(Function): nargs = 2 class f2(f1): pass class f3(f2): pass class f4(f3): nargs = 1,2 class f5(f4): pass class f6(f5): pass class f7(f6): nargs=None class f8(f7): pass class f9(f8): pass class f10(f9): nargs = 1 class f11(f10): pass assert f1.nargs == FiniteSet(2) assert f2.nargs == FiniteSet(2) assert f3.nargs == FiniteSet(2) assert f4.nargs == FiniteSet(1, 2) assert f5.nargs == FiniteSet(1, 2) assert f6.nargs == FiniteSet(1, 2) assert f7.nargs == S.Naturals0 assert f8.nargs == S.Naturals0 assert f9.nargs == S.Naturals0 assert f10.nargs == FiniteSet(1) assert f11.nargs == FiniteSet(1) def test_arity(): f = lambda x, y: 1 assert arity(f) == 2 def f(x, y, z=None): pass assert arity(f) == (2, 3) assert arity(lambda *x: x) is None assert arity(log) == (1, 2) def test_Lambda(): e = Lambda(x, x**2) assert e(4) == 16 assert e(x) == x**2 assert e(y) == y**2 assert Lambda((), 42)() == 42 assert unchanged(Lambda, (), 42) assert Lambda((), 42) != Lambda((), 43) assert Lambda((), f(x))() == f(x) assert Lambda((), 42).nargs == FiniteSet(0) assert unchanged(Lambda, (x,), x**2) assert Lambda(x, x**2) == Lambda((x,), x**2) assert Lambda(x, x**2) != Lambda(x, x**2 + 1) assert Lambda((x, y), x**y) != Lambda((y, x), y**x) assert Lambda((x, y), x**y) != Lambda((x, y), y**x) assert Lambda((x, y), x**y)(x, y) == x**y assert Lambda((x, y), x**y)(3, 3) == 3**3 assert Lambda((x, y), x**y)(x, 3) == x**3 assert Lambda((x, y), x**y)(3, y) == 3**y assert Lambda(x, f(x))(x) == f(x) assert Lambda(x, x**2)(e(x)) == x**4 assert e(e(x)) == x**4 x1, x2 = (Indexed('x', i) for i in (1, 2)) assert Lambda((x1, x2), x1 + x2)(x, y) == x + y assert Lambda((x, y), x + y).nargs == FiniteSet(2) p = x, y, z, t assert Lambda(p, t*(x + y + z))(*p) == t * (x + y + z) eq = Lambda(x, 2*x) + Lambda(y, 2*y) assert eq != 2*Lambda(x, 2*x) assert eq.as_dummy() == 2*Lambda(x, 2*x).as_dummy() assert Lambda(x, 2*x) not in [ Lambda(x, x) ] raises(BadSignatureError, lambda: Lambda(1, x)) assert Lambda(x, 1)(1) is S.One raises(BadSignatureError, lambda: Lambda((x, x), x + 2)) raises(BadSignatureError, lambda: Lambda(((x, x), y), x)) raises(BadSignatureError, lambda: Lambda(((y, x), x), x)) raises(BadSignatureError, lambda: Lambda(((y, 1), 2), x)) with warns_deprecated_sympy(): assert Lambda([x, y], x+y) == Lambda((x, y), x+y) flam = Lambda(((x, y),), x + y) assert flam((2, 3)) == 5 flam = Lambda(((x, y), z), x + y + z) assert flam((2, 3), 1) == 6 flam = Lambda((((x, y), z),), x + y + z) assert flam(((2, 3), 1)) == 6 raises(BadArgumentsError, lambda: flam(1, 2, 3)) flam = Lambda( (x,), (x, x)) assert flam(1,) == (1, 1) assert flam((1,)) == ((1,), (1,)) flam = Lambda( ((x,),), (x, x)) raises(BadArgumentsError, lambda: flam(1)) assert flam((1,)) == (1, 1) # Previously TypeError was raised so this is potentially needed for # backwards compatibility. assert issubclass(BadSignatureError, TypeError) assert issubclass(BadArgumentsError, TypeError) # These are tested to see they don't raise: hash(Lambda(x, 2*x)) hash(Lambda(x, x)) # IdentityFunction subclass def test_IdentityFunction(): assert Lambda(x, x) is Lambda(y, y) is S.IdentityFunction assert Lambda(x, 2*x) is not S.IdentityFunction assert Lambda((x, y), x) is not S.IdentityFunction def test_Lambda_symbols(): assert Lambda(x, 2*x).free_symbols == set() assert Lambda(x, x*y).free_symbols == {y} assert Lambda((), 42).free_symbols == set() assert Lambda((), x*y).free_symbols == {x,y} def test_functionclas_symbols(): assert f.free_symbols == set() def test_Lambda_arguments(): raises(TypeError, lambda: Lambda(x, 2*x)(x, y)) raises(TypeError, lambda: Lambda((x, y), x + y)(x)) raises(TypeError, lambda: Lambda((), 42)(x)) def test_Lambda_equality(): assert Lambda((x, y), 2*x) == Lambda((x, y), 2*x) # these, of course, should never be equal assert Lambda(x, 2*x) != Lambda((x, y), 2*x) assert Lambda(x, 2*x) != 2*x # But it is tempting to want expressions that differ only # in bound symbols to compare the same. But this is not what # Python's `==` is intended to do; two objects that compare # as equal means that they are indistibguishable and cache to the # same value. We wouldn't want to expression that are # mathematically the same but written in different variables to be # interchanged else what is the point of allowing for different # variable names? assert Lambda(x, 2*x) != Lambda(y, 2*y) def test_Subs(): assert Subs(1, (), ()) is S.One # check null subs influence on hashing assert Subs(x, y, z) != Subs(x, y, 1) # neutral subs works assert Subs(x, x, 1).subs(x, y).has(y) # self mapping var/point assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x) assert Subs(x, x, 0).has(x) # it's a structural answer assert not Subs(x, x, 0).free_symbols assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1)) assert Subs(x, (x,), (0,)) == Subs(x, x, 0) assert Subs(x, x, 0) == Subs(y, y, 0) assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0) assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0) assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y, z), (x, y, z), (0, 0, 1)) assert Subs(x, y, 2).subs(x, y).doit() == 2 assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y) + z, (x, y, z), (0, 1, 0)) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1))) raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1))) assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1)) assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y assert Subs(f(x), x, 0).free_symbols == set() assert Subs(f(x, y), x, z).free_symbols == {y, z} assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0) e = Subs(y**2*f(x), x, y) assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0) e1 = Subs(z*f(x), x, 1) e2 = Subs(z*f(y), y, 1) assert e1 + e2 == 2*e1 assert e1.__hash__() == e2.__hash__() assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x), x, x + y) assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \ Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \ z + Rational('1/2').n(2)*f(0) assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0) assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit() == 2*exp(x) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit(deep=False) == 2*Derivative(exp(x), x) assert Derivative(f(x, g(x)), x).doit() == Derivative( f(x, g(x)), g(x))*Derivative(g(x), x) + Subs(Derivative( f(y, g(x)), y), y, x) def test_doitdoit(): done = Derivative(f(x, g(x)), x, g(x)).doit() assert done == done.doit() @XFAIL def test_Subs2(): # this reflects a limitation of subs(), probably won't fix assert Subs(f(x), x**2, x).doit() == f(sqrt(x)) def test_expand_function(): assert expand(x + y) == x + y assert expand(x + y, complex=True) == I*im(x) + I*im(y) + re(x) + re(y) assert expand((x + y)**11, modulus=11) == x**11 + y**11 def test_function_comparable(): assert sin(x).is_comparable is False assert cos(x).is_comparable is False assert sin(Float('0.1')).is_comparable is True assert cos(Float('0.1')).is_comparable is True assert sin(E).is_comparable is True assert cos(E).is_comparable is True assert sin(Rational(1, 3)).is_comparable is True assert cos(Rational(1, 3)).is_comparable is True def test_function_comparable_infinities(): assert sin(oo).is_comparable is False assert sin(-oo).is_comparable is False assert sin(zoo).is_comparable is False assert sin(nan).is_comparable is False def test_deriv1(): # These all require derivatives evaluated at a point (issue 4719) to work. # See issue 4624 assert f(2*x).diff(x) == 2*Subs(Derivative(f(x), x), x, 2*x) assert (f(x)**3).diff(x) == 3*f(x)**2*f(x).diff(x) assert (f(2*x)**3).diff(x) == 6*f(2*x)**2*Subs( Derivative(f(x), x), x, 2*x) assert f(2 + x).diff(x) == Subs(Derivative(f(x), x), x, x + 2) assert f(2 + 3*x).diff(x) == 3*Subs( Derivative(f(x), x), x, 3*x + 2) assert f(3*sin(x)).diff(x) == 3*cos(x)*Subs( Derivative(f(x), x), x, 3*sin(x)) # See issue 8510 assert f(x, x + z).diff(x) == ( Subs(Derivative(f(y, x + z), y), y, x) + Subs(Derivative(f(x, y), y), y, x + z)) assert f(x, x**2).diff(x) == ( 2*x*Subs(Derivative(f(x, y), y), y, x**2) + Subs(Derivative(f(y, x**2), y), y, x)) # but Subs is not always necessary assert f(x, g(y)).diff(g(y)) == Derivative(f(x, g(y)), g(y)) def test_deriv2(): assert (x**3).diff(x) == 3*x**2 assert (x**3).diff(x, evaluate=False) != 3*x**2 assert (x**3).diff(x, evaluate=False) == Derivative(x**3, x) assert diff(x**3, x) == 3*x**2 assert diff(x**3, x, evaluate=False) != 3*x**2 assert diff(x**3, x, evaluate=False) == Derivative(x**3, x) def test_func_deriv(): assert f(x).diff(x) == Derivative(f(x), x) # issue 4534 assert f(x, y).diff(x, y) - f(x, y).diff(y, x) == 0 assert Derivative(f(x, y), x, y).args[1:] == ((x, 1), (y, 1)) assert Derivative(f(x, y), y, x).args[1:] == ((y, 1), (x, 1)) assert (Derivative(f(x, y), x, y) - Derivative(f(x, y), y, x)).doit() == 0 def test_suppressed_evaluation(): a = sin(0, evaluate=False) assert a != 0 assert a.func is sin assert a.args == (0,) def test_function_evalf(): def eq(a, b, eps): return abs(a - b) < eps assert eq(sin(1).evalf(15), Float("0.841470984807897"), 1e-13) assert eq( sin(2).evalf(25), Float("0.9092974268256816953960199", 25), 1e-23) assert eq(sin(1 + I).evalf( 15), Float("1.29845758141598") + Float("0.634963914784736")*I, 1e-13) assert eq(exp(1 + I).evalf(15), Float( "1.46869393991588") + Float("2.28735528717884239")*I, 1e-13) assert eq(exp(-0.5 + 1.5*I).evalf(15), Float( "0.0429042815937374") + Float("0.605011292285002")*I, 1e-13) assert eq(log(pi + sqrt(2)*I).evalf( 15), Float("1.23699044022052") + Float("0.422985442737893")*I, 1e-13) assert eq(cos(100).evalf(15), Float("0.86231887228768"), 1e-13) def test_extensibility_eval(): class MyFunc(Function): @classmethod def eval(cls, *args): return (0, 0, 0) assert MyFunc(0) == (0, 0, 0) @_both_exp_pow def test_function_non_commutative(): x = Symbol('x', commutative=False) assert f(x).is_commutative is False assert sin(x).is_commutative is False assert exp(x).is_commutative is False assert log(x).is_commutative is False assert f(x).is_complex is False assert sin(x).is_complex is False assert exp(x).is_complex is False assert log(x).is_complex is False def test_function_complex(): x = Symbol('x', complex=True) xzf = Symbol('x', complex=True, zero=False) assert f(x).is_commutative is True assert sin(x).is_commutative is True assert exp(x).is_commutative is True assert log(x).is_commutative is True assert f(x).is_complex is None assert sin(x).is_complex is True assert exp(x).is_complex is True assert log(x).is_complex is None assert log(xzf).is_complex is True def test_function__eval_nseries(): n = Symbol('n') assert sin(x)._eval_nseries(x, 2, None) == x + O(x**2) assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2) assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**2) assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x**2) + O(x**2) assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \ polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2) raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None)) assert acos(1 - x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x) + sqrt(2)*x**(S(3)/2)/12 + O(x**2) assert acos(1 + x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(-x) + sqrt(2)*(-x)**(S(3)/2)/12 + O(x**2) assert loggamma(1/x)._eval_nseries(x, 0, None) == \ log(x)/2 - log(x)/x - 1/x + O(1, x) assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y) # issue 6725: assert expint(Rational(3, 2), -x)._eval_nseries(x, 5, None) == \ 2 - 2*sqrt(pi)*sqrt(-x) - 2*x + x**2 + x**3/3 + x**4/12 + 4*I*x**(S(3)/2)*sqrt(-x)/3 + \ 2*I*x**(S(5)/2)*sqrt(-x)/5 + 2*I*x**(S(7)/2)*sqrt(-x)/21 + O(x**5) assert sin(sqrt(x))._eval_nseries(x, 3, None) == \ sqrt(x) - x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + O(x**3) # issue 19065: s1 = f(x,y).series(y, n=2) assert {i.name for i in s1.atoms(Symbol)} == {'x', 'xi', 'y'} xi = Symbol('xi') s2 = f(xi, y).series(y, n=2) assert {i.name for i in s2.atoms(Symbol)} == {'xi', 'xi0', 'y'} def test_doit(): n = Symbol('n', integer=True) f = Sum(2 * n * x, (n, 1, 3)) d = Derivative(f, x) assert d.doit() == 12 assert d.doit(deep=False) == Sum(2*n, (n, 1, 3)) def test_evalf_default(): from sympy.functions.special.gamma_functions import polygamma assert type(sin(4.0)) == Float assert type(re(sin(I + 1.0))) == Float assert type(im(sin(I + 1.0))) == Float assert type(sin(4)) == sin assert type(polygamma(2.0, 4.0)) == Float assert type(sin(Rational(1, 4))) == sin def test_issue_5399(): args = [x, y, S(2), S.Half] def ok(a): """Return True if the input args for diff are ok""" if not a: return False if a[0].is_Symbol is False: return False s_at = [i for i in range(len(a)) if a[i].is_Symbol] n_at = [i for i in range(len(a)) if not a[i].is_Symbol] # every symbol is followed by symbol or int # every number is followed by a symbol return (all(a[i + 1].is_Symbol or a[i + 1].is_Integer for i in s_at if i + 1 < len(a)) and all(a[i + 1].is_Symbol for i in n_at if i + 1 < len(a))) eq = x**10*y**8 for a in subsets(args): for v in variations(a, len(a)): if ok(v): eq.diff(*v) # does not raise else: raises(ValueError, lambda: eq.diff(*v)) def test_derivative_numerically(): z0 = x._random() assert abs(Derivative(sin(x), x).doit_numerically(z0) - cos(z0)) < 1e-15 def test_fdiff_argument_index_error(): from sympy.core.function import ArgumentIndexError class myfunc(Function): nargs = 1 # define since there is no eval routine def fdiff(self, idx): raise ArgumentIndexError mf = myfunc(x) assert mf.diff(x) == Derivative(mf, x) raises(TypeError, lambda: myfunc(x, x)) def test_deriv_wrt_function(): x = f(t) xd = diff(x, t) xdd = diff(xd, t) y = g(t) yd = diff(y, t) assert diff(x, t) == xd assert diff(2 * x + 4, t) == 2 * xd assert diff(2 * x + 4 + y, t) == 2 * xd + yd assert diff(2 * x + 4 + y * x, t) == 2 * xd + x * yd + xd * y assert diff(2 * x + 4 + y * x, x) == 2 + y assert (diff(4 * x**2 + 3 * x + x * y, t) == 3 * xd + x * yd + xd * y + 8 * x * xd) assert (diff(4 * x**2 + 3 * xd + x * y, t) == 3 * xdd + x * yd + xd * y + 8 * x * xd) assert diff(4 * x**2 + 3 * xd + x * y, xd) == 3 assert diff(4 * x**2 + 3 * xd + x * y, xdd) == 0 assert diff(sin(x), t) == xd * cos(x) assert diff(exp(x), t) == xd * exp(x) assert diff(sqrt(x), t) == xd / (2 * sqrt(x)) def test_diff_wrt_value(): assert Expr()._diff_wrt is False assert x._diff_wrt is True assert f(x)._diff_wrt is True assert Derivative(f(x), x)._diff_wrt is True assert Derivative(x**2, x)._diff_wrt is False def test_diff_wrt(): fx = f(x) dfx = diff(f(x), x) ddfx = diff(f(x), x, x) assert diff(sin(fx) + fx**2, fx) == cos(fx) + 2*fx assert diff(sin(dfx) + dfx**2, dfx) == cos(dfx) + 2*dfx assert diff(sin(ddfx) + ddfx**2, ddfx) == cos(ddfx) + 2*ddfx assert diff(fx**2, dfx) == 0 assert diff(fx**2, ddfx) == 0 assert diff(dfx**2, fx) == 0 assert diff(dfx**2, ddfx) == 0 assert diff(ddfx**2, dfx) == 0 assert diff(fx*dfx*ddfx, fx) == dfx*ddfx assert diff(fx*dfx*ddfx, dfx) == fx*ddfx assert diff(fx*dfx*ddfx, ddfx) == fx*dfx assert diff(f(x), x).diff(f(x)) == 0 assert (sin(f(x)) - cos(diff(f(x), x))).diff(f(x)) == cos(f(x)) assert diff(sin(fx), fx, x) == diff(sin(fx), x, fx) # Chain rule cases assert f(g(x)).diff(x) == \ Derivative(g(x), x)*Derivative(f(g(x)), g(x)) assert diff(f(g(x), h(y)), x) == \ Derivative(g(x), x)*Derivative(f(g(x), h(y)), g(x)) assert diff(f(g(x), h(x)), x) == ( Derivative(f(g(x), h(x)), g(x))*Derivative(g(x), x) + Derivative(f(g(x), h(x)), h(x))*Derivative(h(x), x)) assert f( sin(x)).diff(x) == cos(x)*Subs(Derivative(f(x), x), x, sin(x)) assert diff(f(g(x)), g(x)) == Derivative(f(g(x)), g(x)) def test_diff_wrt_func_subs(): assert f(g(x)).diff(x).subs(g, Lambda(x, 2*x)).doit() == f(2*x).diff(x) def test_subs_in_derivative(): expr = sin(x*exp(y)) u = Function('u') v = Function('v') assert Derivative(expr, y).subs(expr, y) == Derivative(y, y) assert Derivative(expr, y).subs(y, x).doit() == \ Derivative(expr, y).doit().subs(y, x) assert Derivative(f(x, y), y).subs(y, x) == Subs(Derivative(f(x, y), y), y, x) assert Derivative(f(x, y), y).subs(x, y) == Subs(Derivative(f(x, y), y), x, y) assert Derivative(f(x, y), y).subs(y, g(x, y)) == Subs(Derivative(f(x, y), y), y, g(x, y)).doit() assert Derivative(f(x, y), y).subs(x, g(x, y)) == Subs(Derivative(f(x, y), y), x, g(x, y)) assert Derivative(f(x, y), g(y)).subs(x, g(x, y)) == Derivative(f(g(x, y), y), g(y)) assert Derivative(f(u(x), h(y)), h(y)).subs(h(y), g(x, y)) == \ Subs(Derivative(f(u(x), h(y)), h(y)), h(y), g(x, y)).doit() assert Derivative(f(x, y), y).subs(y, z) == Derivative(f(x, z), z) assert Derivative(f(x, y), y).subs(y, g(y)) == Derivative(f(x, g(y)), g(y)) assert Derivative(f(g(x), h(y)), h(y)).subs(h(y), u(y)) == \ Derivative(f(g(x), u(y)), u(y)) assert Derivative(f(x, f(x, x)), f(x, x)).subs( f, Lambda((x, y), x + y)) == Subs( Derivative(z + x, z), z, 2*x) assert Subs(Derivative(f(f(x)), x), f, cos).doit() == sin(x)*sin(cos(x)) assert Subs(Derivative(f(f(x)), f(x)), f, cos).doit() == -sin(cos(x)) # Issue 13791. No comparison (it's a long formula) but this used to raise an exception. assert isinstance(v(x, y, u(x, y)).diff(y).diff(x).diff(y), Expr) # This is also related to issues 13791 and 13795; issue 15190 F = Lambda((x, y), exp(2*x + 3*y)) abstract = f(x, f(x, x)).diff(x, 2) concrete = F(x, F(x, x)).diff(x, 2) assert (abstract.subs(f, F).doit() - concrete).simplify() == 0 # don't introduce a new symbol if not necessary assert x in f(x).diff(x).subs(x, 0).atoms() # case (4) assert Derivative(f(x,f(x,y)), x, y).subs(x, g(y) ) == Subs(Derivative(f(x, f(x, y)), x, y), x, g(y)) assert Derivative(f(x, x), x).subs(x, 0 ) == Subs(Derivative(f(x, x), x), x, 0) # issue 15194 assert Derivative(f(y, g(x)), (x, z)).subs(z, x ) == Derivative(f(y, g(x)), (x, x)) df = f(x).diff(x) assert df.subs(df, 1) is S.One assert df.diff(df) is S.One dxy = Derivative(f(x, y), x, y) dyx = Derivative(f(x, y), y, x) assert dxy.subs(Derivative(f(x, y), y, x), 1) is S.One assert dxy.diff(dyx) is S.One assert Derivative(f(x, y), x, 2, y, 3).subs( dyx, g(x, y)) == Derivative(g(x, y), x, 1, y, 2) assert Derivative(f(x, x - y), y).subs(x, x + y) == Subs( Derivative(f(x, x - y), y), x, x + y) def test_diff_wrt_not_allowed(): # issue 7027 included for wrt in ( cos(x), re(x), x**2, x*y, 1 + x, Derivative(cos(x), x), Derivative(f(f(x)), x)): raises(ValueError, lambda: diff(f(x), wrt)) # if we don't differentiate wrt then don't raise error assert diff(exp(x*y), x*y, 0) == exp(x*y) def test_diff_wrt_intlike(): class Two: def __int__(self): return 2 assert cos(x).diff(x, Two()) == -cos(x) def test_klein_gordon_lagrangian(): m = Symbol('m') phi = f(x, t) L = -(diff(phi, t)**2 - diff(phi, x)**2 - m**2*phi**2)/2 eqna = Eq( diff(L, phi) - diff(L, diff(phi, x), x) - diff(L, diff(phi, t), t), 0) eqnb = Eq(diff(phi, t, t) - diff(phi, x, x) + m**2*phi, 0) assert eqna == eqnb def test_sho_lagrangian(): m = Symbol('m') k = Symbol('k') x = f(t) L = m*diff(x, t)**2/2 - k*x**2/2 eqna = Eq(diff(L, x), diff(L, diff(x, t), t)) eqnb = Eq(-k*x, m*diff(x, t, t)) assert eqna == eqnb assert diff(L, x, t) == diff(L, t, x) assert diff(L, diff(x, t), t) == m*diff(x, t, 2) assert diff(L, t, diff(x, t)) == -k*x + m*diff(x, t, 2) def test_straight_line(): F = f(x) Fd = F.diff(x) L = sqrt(1 + Fd**2) assert diff(L, F) == 0 assert diff(L, Fd) == Fd/sqrt(1 + Fd**2) def test_sort_variable(): vsort = Derivative._sort_variable_count def vsort0(*v, reverse=False): return [i[0] for i in vsort([(i, 0) for i in ( reversed(v) if reverse else v)])] for R in range(2): assert vsort0(y, x, reverse=R) == [x, y] assert vsort0(f(x), x, reverse=R) == [x, f(x)] assert vsort0(f(y), f(x), reverse=R) == [f(x), f(y)] assert vsort0(g(x), f(y), reverse=R) == [f(y), g(x)] assert vsort0(f(x, y), f(x), reverse=R) == [f(x), f(x, y)] fx = f(x).diff(x) assert vsort0(fx, y, reverse=R) == [y, fx] fy = f(y).diff(y) assert vsort0(fy, fx, reverse=R) == [fx, fy] fxx = fx.diff(x) assert vsort0(fxx, fx, reverse=R) == [fx, fxx] assert vsort0(Basic(x), f(x), reverse=R) == [f(x), Basic(x)] assert vsort0(Basic(y), Basic(x), reverse=R) == [Basic(x), Basic(y)] assert vsort0(Basic(y, z), Basic(x), reverse=R) == [ Basic(x), Basic(y, z)] assert vsort0(fx, x, reverse=R) == [ x, fx] if R else [fx, x] assert vsort0(Basic(x), x, reverse=R) == [ x, Basic(x)] if R else [Basic(x), x] assert vsort0(Basic(f(x)), f(x), reverse=R) == [ f(x), Basic(f(x))] if R else [Basic(f(x)), f(x)] assert vsort0(Basic(x, z), Basic(x), reverse=R) == [ Basic(x), Basic(x, z)] if R else [Basic(x, z), Basic(x)] assert vsort([]) == [] assert _aresame(vsort([(x, 1)]), [Tuple(x, 1)]) assert vsort([(x, y), (x, z)]) == [(x, y + z)] assert vsort([(y, 1), (x, 1 + y)]) == [(x, 1 + y), (y, 1)] # coverage complete; legacy tests below assert vsort([(x, 3), (y, 2), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(x), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 2), (x, 3), (h(x), 1), (g(x), 1), (f(x), 1)]) == [(x, 3), (y, 2), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(x, 1), (f(x), 1), (y, 1), (f(y), 1)]) == [(x, 1), (y, 1), (f(x), 1), (f(y), 1)] assert vsort([(y, 1), (x, 2), (g(x), 1), (f(x), 1), (z, 1), (h(x), 1), (y, 2), (x, 1)]) == [(x, 3), (y, 3), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 1), (f(x), 1), (x, 1), (f(x), 1), (g(x), 1)]) == [(x, 1), (y, 1), (z, 1), (f(x), 2), (g(x), 1)] assert vsort([(z, 1), (y, 2), (f(x), 1), (x, 2), (f(x), 2), (g(x), 1), (z, 2), (z, 1), (y, 1), (x, 1)]) == [(x, 3), (y, 3), (z, 4), (f(x), 3), (g(x), 1)] assert vsort(((y, 2), (x, 1), (y, 1), (x, 1))) == [(x, 2), (y, 3)] assert isinstance(vsort([(x, 3), (y, 2), (z, 1)])[0], Tuple) assert vsort([(x, 1), (f(x), 1), (x, 1)]) == [(x, 2), (f(x), 1)] assert vsort([(y, 2), (x, 3), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(y), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(y), 1)] assert vsort([(x, 1), (y, 1), (x, 1)]) == [(x, 2), (y, 1)] assert vsort([(f(x), 1), (f(y), 1), (f(x), 1)]) == [ (f(x), 2), (f(y), 1)] dfx = f(x).diff(x) self = [(dfx, 1), (x, 1)] assert vsort(self) == self assert vsort([ (dfx, 1), (y, 1), (f(x), 1), (x, 1), (f(y), 1), (x, 1)]) == [ (y, 1), (f(x), 1), (f(y), 1), (dfx, 1), (x, 2)] dfy = f(y).diff(y) assert vsort([(dfy, 1), (dfx, 1)]) == [(dfx, 1), (dfy, 1)] d2fx = dfx.diff(x) assert vsort([(d2fx, 1), (dfx, 1)]) == [(dfx, 1), (d2fx, 1)] def test_multiple_derivative(): # Issue #15007 assert f(x, y).diff(y, y, x, y, x ) == Derivative(f(x, y), (x, 2), (y, 3)) def test_unhandled(): class MyExpr(Expr): def _eval_derivative(self, s): if not s.name.startswith('xi'): return self else: return None eq = MyExpr(f(x), y, z) assert diff(eq, x, y, f(x), z) == Derivative(eq, f(x)) assert diff(eq, f(x), x) == Derivative(eq, f(x)) assert f(x, y).diff(x,(y, z)) == Derivative(f(x, y), x, (y, z)) assert f(x, y).diff(x,(y, 0)) == Derivative(f(x, y), x) def test_nfloat(): from sympy.core.basic import _aresame from sympy.polys.rootoftools import rootof x = Symbol("x") eq = x**Rational(4, 3) + 4*x**(S.One/3)/3 assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0/3)*x**(S.One/3)) assert _aresame(nfloat(eq, exponent=True), x**(4.0/3) + (4.0/3)*x**(1.0/3)) eq = x**Rational(4, 3) + 4*x**(x/3)/3 assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0/3)*x**(x/3)) big = 12345678901234567890 # specify precision to match value used in nfloat Float_big = Float(big, 15) assert _aresame(nfloat(big), Float_big) assert _aresame(nfloat(big*x), Float_big*x) assert _aresame(nfloat(x**big, exponent=True), x**Float_big) assert nfloat(cos(x + sqrt(2))) == cos(x + nfloat(sqrt(2))) # issue 6342 f = S('x*lamda + lamda**3*(x/2 + 1/2) + lamda**2 + 1/4') assert not any(a.free_symbols for a in solveset(f.subs(x, -0.139))) # issue 6632 assert nfloat(-100000*sqrt(2500000001) + 5000000001) == \ 9.99999999800000e-11 # issue 7122 eq = cos(3*x**4 + y)*rootof(x**5 + 3*x**3 + 1, 0) assert str(nfloat(eq, exponent=False, n=1)) == '-0.7*cos(3.0*x**4 + y)' # issue 10933 for ti in (dict, Dict): d = ti({S.Half: S.Half}) n = nfloat(d) assert isinstance(n, ti) assert _aresame(list(n.items()).pop(), (S.Half, Float(.5))) for ti in (dict, Dict): d = ti({S.Half: S.Half}) n = nfloat(d, dkeys=True) assert isinstance(n, ti) assert _aresame(list(n.items()).pop(), (Float(.5), Float(.5))) d = [S.Half] n = nfloat(d) assert type(n) is list assert _aresame(n[0], Float(.5)) assert _aresame(nfloat(Eq(x, S.Half)).rhs, Float(.5)) assert _aresame(nfloat(S(True)), S(True)) assert _aresame(nfloat(Tuple(S.Half))[0], Float(.5)) assert nfloat(Eq((3 - I)**2/2 + I, 0)) == S.false # pass along kwargs assert nfloat([{S.Half: x}], dkeys=True) == [{Float(0.5): x}] # Issue 17706 A = MutableMatrix([[1, 2], [3, 4]]) B = MutableMatrix( [[Float('1.0', precision=53), Float('2.0', precision=53)], [Float('3.0', precision=53), Float('4.0', precision=53)]]) assert _aresame(nfloat(A), B) A = ImmutableMatrix([[1, 2], [3, 4]]) B = ImmutableMatrix( [[Float('1.0', precision=53), Float('2.0', precision=53)], [Float('3.0', precision=53), Float('4.0', precision=53)]]) assert _aresame(nfloat(A), B) # issue 22524 f = Function('f') assert not nfloat(f(2)).atoms(Float) def test_issue_7068(): from sympy.abc import a, b f = Function('f') y1 = Dummy('y') y2 = Dummy('y') func1 = f(a + y1 * b) func2 = f(a + y2 * b) func1_y = func1.diff(y1) func2_y = func2.diff(y2) assert func1_y != func2_y z1 = Subs(f(a), a, y1) z2 = Subs(f(a), a, y2) assert z1 != z2 def test_issue_7231(): from sympy.abc import a ans1 = f(x).series(x, a) res = (f(a) + (-a + x)*Subs(Derivative(f(y), y), y, a) + (-a + x)**2*Subs(Derivative(f(y), y, y), y, a)/2 + (-a + x)**3*Subs(Derivative(f(y), y, y, y), y, a)/6 + (-a + x)**4*Subs(Derivative(f(y), y, y, y, y), y, a)/24 + (-a + x)**5*Subs(Derivative(f(y), y, y, y, y, y), y, a)/120 + O((-a + x)**6, (x, a))) assert res == ans1 ans2 = f(x).series(x, a) assert res == ans2 def test_issue_7687(): from sympy.core.function import Function from sympy.abc import x f = Function('f')(x) ff = Function('f')(x) match_with_cache = ff.matches(f) assert isinstance(f, type(ff)) clear_cache() ff = Function('f')(x) assert isinstance(f, type(ff)) assert match_with_cache == ff.matches(f) def test_issue_7688(): from sympy.core.function import Function, UndefinedFunction f = Function('f') # actually an UndefinedFunction clear_cache() class A(UndefinedFunction): pass a = A('f') assert isinstance(a, type(f)) def test_mexpand(): from sympy.abc import x assert _mexpand(None) is None assert _mexpand(1) is S.One assert _mexpand(x*(x + 1)**2) == (x*(x + 1)**2).expand() def test_issue_8469(): # This should not take forever to run N = 40 def g(w, theta): return 1/(1+exp(w-theta)) ws = symbols(['w%i'%i for i in range(N)]) import functools expr = functools.reduce(g, ws) assert isinstance(expr, Pow) def test_issue_12996(): # foo=True imitates the sort of arguments that Derivative can get # from Integral when it passes doit to the expression assert Derivative(im(x), x).doit(foo=True) == Derivative(im(x), x) def test_should_evalf(): # This should not take forever to run (see #8506) assert isinstance(sin((1.0 + 1.0*I)**10000 + 1), sin) def test_Derivative_as_finite_difference(): # Central 1st derivative at gridpoint x, h = symbols('x h', real=True) dfdx = f(x).diff(x) assert (dfdx.as_finite_difference([x-2, x-1, x, x+1, x+2]) - (S.One/12*(f(x-2)-f(x+2)) + Rational(2, 3)*(f(x+1)-f(x-1)))).simplify() == 0 # Central 1st derivative "half-way" assert (dfdx.as_finite_difference() - (f(x + S.Half)-f(x - S.Half))).simplify() == 0 assert (dfdx.as_finite_difference(h) - (f(x + h/S(2))-f(x - h/S(2)))/h).simplify() == 0 assert (dfdx.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (S(9)/(8*2*h)*(f(x+h) - f(x-h)) + S.One/(24*2*h)*(f(x - 3*h) - f(x + 3*h)))).simplify() == 0 # One sided 1st derivative at gridpoint assert (dfdx.as_finite_difference([0, 1, 2], 0) - (Rational(-3, 2)*f(0) + 2*f(1) - f(2)/2)).simplify() == 0 assert (dfdx.as_finite_difference([x, x+h], x) - (f(x+h) - f(x))/h).simplify() == 0 assert (dfdx.as_finite_difference([x-h, x, x+h], x-h) - (-S(3)/(2*h)*f(x-h) + 2/h*f(x) - S.One/(2*h)*f(x+h))).simplify() == 0 # One sided 1st derivative "half-way" assert (dfdx.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h, x + 7*h]) - 1/(2*h)*(-S(11)/(12)*f(x-h) + S(17)/(24)*f(x+h) + Rational(3, 8)*f(x + 3*h) - Rational(5, 24)*f(x + 5*h) + S.One/24*f(x + 7*h))).simplify() == 0 d2fdx2 = f(x).diff(x, 2) # Central 2nd derivative at gridpoint assert (d2fdx2.as_finite_difference([x-h, x, x+h]) - h**-2 * (f(x-h) + f(x+h) - 2*f(x))).simplify() == 0 assert (d2fdx2.as_finite_difference([x - 2*h, x-h, x, x+h, x + 2*h]) - h**-2 * (Rational(-1, 12)*(f(x - 2*h) + f(x + 2*h)) + Rational(4, 3)*(f(x+h) + f(x-h)) - Rational(5, 2)*f(x))).simplify() == 0 # Central 2nd derivative "half-way" assert (d2fdx2.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (2*h)**-2 * (S.Half*(f(x - 3*h) + f(x + 3*h)) - S.Half*(f(x+h) + f(x-h)))).simplify() == 0 # One sided 2nd derivative at gridpoint assert (d2fdx2.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) - h**-2 * (2*f(x) - 5*f(x+h) + 4*f(x+2*h) - f(x+3*h))).simplify() == 0 # One sided 2nd derivative at "half-way" assert (d2fdx2.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) - (2*h)**-2 * (Rational(3, 2)*f(x-h) - Rational(7, 2)*f(x+h) + Rational(5, 2)*f(x + 3*h) - S.Half*f(x + 5*h))).simplify() == 0 d3fdx3 = f(x).diff(x, 3) # Central 3rd derivative at gridpoint assert (d3fdx3.as_finite_difference() - (-f(x - Rational(3, 2)) + 3*f(x - S.Half) - 3*f(x + S.Half) + f(x + Rational(3, 2)))).simplify() == 0 assert (d3fdx3.as_finite_difference( [x - 3*h, x - 2*h, x-h, x, x+h, x + 2*h, x + 3*h]) - h**-3 * (S.One/8*(f(x - 3*h) - f(x + 3*h)) - f(x - 2*h) + f(x + 2*h) + Rational(13, 8)*(f(x-h) - f(x+h)))).simplify() == 0 # Central 3rd derivative at "half-way" assert (d3fdx3.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (2*h)**-3 * (f(x + 3*h)-f(x - 3*h) + 3*(f(x-h)-f(x+h)))).simplify() == 0 # One sided 3rd derivative at gridpoint assert (d3fdx3.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) - h**-3 * (f(x + 3*h)-f(x) + 3*(f(x+h)-f(x + 2*h)))).simplify() == 0 # One sided 3rd derivative at "half-way" assert (d3fdx3.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) - (2*h)**-3 * (f(x + 5*h)-f(x-h) + 3*(f(x+h)-f(x + 3*h)))).simplify() == 0 # issue 11007 y = Symbol('y', real=True) d2fdxdy = f(x, y).diff(x, y) ref0 = Derivative(f(x + S.Half, y), y) - Derivative(f(x - S.Half, y), y) assert (d2fdxdy.as_finite_difference(wrt=x) - ref0).simplify() == 0 half = S.Half xm, xp, ym, yp = x-half, x+half, y-half, y+half ref2 = f(xm, ym) + f(xp, yp) - f(xp, ym) - f(xm, yp) assert (d2fdxdy.as_finite_difference() - ref2).simplify() == 0 def test_issue_11159(): # Tests Application._eval_subs with _exp_is_pow(False): expr1 = E expr0 = expr1 * expr1 expr1 = expr0.subs(expr1,expr0) assert expr0 == expr1 with _exp_is_pow(True): expr1 = E expr0 = expr1 * expr1 expr2 = expr0.subs(expr1, expr0) assert expr2 == E ** 4 def test_issue_12005(): e1 = Subs(Derivative(f(x), x), x, x) assert e1.diff(x) == Derivative(f(x), x, x) e2 = Subs(Derivative(f(x), x), x, x**2 + 1) assert e2.diff(x) == 2*x*Subs(Derivative(f(x), x, x), x, x**2 + 1) e3 = Subs(Derivative(f(x) + y**2 - y, y), y, y**2) assert e3.diff(y) == 4*y e4 = Subs(Derivative(f(x + y), y), y, (x**2)) assert e4.diff(y) is S.Zero e5 = Subs(Derivative(f(x), x), (y, z), (y, z)) assert e5.diff(x) == Derivative(f(x), x, x) assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x)) def test_issue_13843(): x = symbols('x') f = Function('f') m, n = symbols('m n', integer=True) assert Derivative(Derivative(f(x), (x, m)), (x, n)) == Derivative(f(x), (x, m + n)) assert Derivative(Derivative(f(x), (x, m+5)), (x, n+3)) == Derivative(f(x), (x, m + n + 8)) assert Derivative(f(x), (x, n)).doit() == Derivative(f(x), (x, n)) def test_order_could_be_zero(): x, y = symbols('x, y') n = symbols('n', integer=True, nonnegative=True) m = symbols('m', integer=True, positive=True) assert diff(y, (x, n)) == Piecewise((y, Eq(n, 0)), (0, True)) assert diff(y, (x, n + 1)) is S.Zero assert diff(y, (x, m)) is S.Zero def test_undefined_function_eq(): f = Function('f') f2 = Function('f') g = Function('g') f_real = Function('f', is_real=True) # This test may only be meaningful if the cache is turned off assert f == f2 assert hash(f) == hash(f2) assert f == f assert f != g assert f != f_real def test_function_assumptions(): x = Symbol('x') f = Function('f') f_real = Function('f', real=True) f_real1 = Function('f', real=1) f_real_inherit = Function(Symbol('f', real=True)) assert f_real == f_real1 # assumptions are sanitized assert f != f_real assert f(x) != f_real(x) assert f(x).is_real is None assert f_real(x).is_real is True assert f_real_inherit(x).is_real is True and f_real_inherit.name == 'f' # Can also do it this way, but it won't be equal to f_real because of the # way UndefinedFunction.__new__ works. Any non-recognized assumptions # are just added literally as something which is used in the hash f_real2 = Function('f', is_real=True) assert f_real2(x).is_real is True def test_undef_fcn_float_issue_6938(): f = Function('ceil') assert not f(0.3).is_number f = Function('sin') assert not f(0.3).is_number assert not f(pi).evalf().is_number x = Symbol('x') assert not f(x).evalf(subs={x:1.2}).is_number def test_undefined_function_eval(): # Issue 15170. Make sure UndefinedFunction with eval defined works # properly. fdiff = lambda self, argindex=1: cos(self.args[argindex - 1]) eval = classmethod(lambda cls, t: None) _imp_ = classmethod(lambda cls, t: sin(t)) temp = Function('temp', fdiff=fdiff, eval=eval, _imp_=_imp_) expr = temp(t) assert sympify(expr) == expr assert type(sympify(expr)).fdiff.__name__ == "<lambda>" assert expr.diff(t) == cos(t) def test_issue_15241(): F = f(x) Fx = F.diff(x) assert (F + x*Fx).diff(x, Fx) == 2 assert (F + x*Fx).diff(Fx, x) == 1 assert (x*F + x*Fx*F).diff(F, x) == x*Fx.diff(x) + Fx + 1 assert (x*F + x*Fx*F).diff(x, F) == x*Fx.diff(x) + Fx + 1 y = f(x) G = f(y) Gy = G.diff(y) assert (G + y*Gy).diff(y, Gy) == 2 assert (G + y*Gy).diff(Gy, y) == 1 assert (y*G + y*Gy*G).diff(G, y) == y*Gy.diff(y) + Gy + 1 assert (y*G + y*Gy*G).diff(y, G) == y*Gy.diff(y) + Gy + 1 def test_issue_15226(): assert Subs(Derivative(f(y), x, y), y, g(x)).doit() != 0 def test_issue_7027(): for wrt in (cos(x), re(x), Derivative(cos(x), x)): raises(ValueError, lambda: diff(f(x), wrt)) def test_derivative_quick_exit(): assert f(x).diff(y) == 0 assert f(x).diff(y, f(x)) == 0 assert f(x).diff(x, f(y)) == 0 assert f(f(x)).diff(x, f(x), f(y)) == 0 assert f(f(x)).diff(x, f(x), y) == 0 assert f(x).diff(g(x)) == 0 assert f(x).diff(x, f(x).diff(x)) == 1 df = f(x).diff(x) assert f(x).diff(df) == 0 dg = g(x).diff(x) assert dg.diff(df).doit() == 0 def test_issue_15084_13166(): eq = f(x, g(x)) assert eq.diff((g(x), y)) == Derivative(f(x, g(x)), (g(x), y)) # issue 13166 assert eq.diff(x, 2).doit() == ( (Derivative(f(x, g(x)), (g(x), 2))*Derivative(g(x), x) + Subs(Derivative(f(x, _xi_2), _xi_2, x), _xi_2, g(x)))*Derivative(g(x), x) + Derivative(f(x, g(x)), g(x))*Derivative(g(x), (x, 2)) + Derivative(g(x), x)*Subs(Derivative(f(_xi_1, g(x)), _xi_1, g(x)), _xi_1, x) + Subs(Derivative(f(_xi_1, g(x)), (_xi_1, 2)), _xi_1, x)) # issue 6681 assert diff(f(x, t, g(x, t)), x).doit() == ( Derivative(f(x, t, g(x, t)), g(x, t))*Derivative(g(x, t), x) + Subs(Derivative(f(_xi_1, t, g(x, t)), _xi_1), _xi_1, x)) # make sure the order doesn't matter when using diff assert eq.diff(x, g(x)) == eq.diff(g(x), x) def test_negative_counts(): # issue 13873 raises(ValueError, lambda: sin(x).diff(x, -1)) def test_Derivative__new__(): raises(TypeError, lambda: f(x).diff((x, 2), 0)) assert f(x, y).diff([(x, y), 0]) == f(x, y) assert f(x, y).diff([(x, y), 1]) == NDimArray([ Derivative(f(x, y), x), Derivative(f(x, y), y)]) assert f(x,y).diff(y, (x, z), y, x) == Derivative( f(x, y), (x, z + 1), (y, 2)) assert Matrix([x]).diff(x, 2) == Matrix([0]) # is_zero exit def test_issue_14719_10150(): class V(Expr): _diff_wrt = True is_scalar = False assert V().diff(V()) == Derivative(V(), V()) assert (2*V()).diff(V()) == 2*Derivative(V(), V()) class X(Expr): _diff_wrt = True assert X().diff(X()) == 1 assert (2*X()).diff(X()) == 2 def test_noncommutative_issue_15131(): x = Symbol('x', commutative=False) t = Symbol('t', commutative=False) fx = Function('Fx', commutative=False)(x) ft = Function('Ft', commutative=False)(t) A = Symbol('A', commutative=False) eq = fx * A * ft eqdt = eq.diff(t) assert eqdt.args[-1] == ft.diff(t) def test_Subs_Derivative(): a = Derivative(f(g(x), h(x)), g(x), h(x),x) b = Derivative(Derivative(f(g(x), h(x)), g(x), h(x)),x) c = f(g(x), h(x)).diff(g(x), h(x), x) d = f(g(x), h(x)).diff(g(x), h(x)).diff(x) e = Derivative(f(g(x), h(x)), x) eqs = (a, b, c, d, e) subs = lambda arg: arg.subs(f, Lambda((x, y), exp(x + y)) ).subs(g(x), 1/x).subs(h(x), x**3) ans = 3*x**2*exp(1/x)*exp(x**3) - exp(1/x)*exp(x**3)/x**2 assert all(subs(i).doit().expand() == ans for i in eqs) assert all(subs(i.doit()).doit().expand() == ans for i in eqs) def test_issue_15360(): f = Function('f') assert f.name == 'f' def test_issue_15947(): assert f._diff_wrt is False raises(TypeError, lambda: f(f)) raises(TypeError, lambda: f(x).diff(f)) def test_Derivative_free_symbols(): f = Function('f') n = Symbol('n', integer=True, positive=True) assert diff(f(x), (x, n)).free_symbols == {n, x} def test_issue_20683(): x = Symbol('x') y = Symbol('y') z = Symbol('z') y = Derivative(z, x).subs(x,0) assert y.doit() == 0 y = Derivative(8, x).subs(x,0) assert y.doit() == 0 def test_issue_10503(): f = exp(x**3)*cos(x**6) assert f.series(x, 0, 14) == 1 + x**3 + x**6/2 + x**9/6 - 11*x**12/24 + O(x**14) def test_issue_17382(): # copied from sympy/core/tests/test_evalf.py def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) x = Symbol('x') expr = solveset(2 * cos(x) * cos(2 * x) - 1, x, S.Reals) expected = "Union(" \ "ImageSet(Lambda(_n, 6.28318530717959*_n + 5.79812359592087), Integers), " \ "ImageSet(Lambda(_n, 6.28318530717959*_n + 0.485061711258717), Integers))" assert NS(expr) == expected def test_eval_sympified(): # Check both arguments and return types from eval are sympified class F(Function): @classmethod def eval(cls, x): assert x is S.One return 1 assert F(1) is S.One # String arguments are not allowed class F2(Function): @classmethod def eval(cls, x): if x == 0: return '1' raises(SympifyError, lambda: F2(0)) F2(1) # Doesn't raise # TODO: Disable string inputs (https://github.com/sympy/sympy/issues/11003) # raises(SympifyError, lambda: F2('2')) def test_eval_classmethod_check(): with raises(TypeError): class F(Function): def eval(self, x): pass
8de6cf8ebdf6550b0bf96de568e3312ae624ca8f5216991d5eb4c57ea0cbddee
from sympy.core.logic import fuzzy_and from sympy.core.sympify import _sympify from sympy.multipledispatch import dispatch from sympy.testing.pytest import XFAIL, raises from sympy.assumptions.ask import Q from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.mul import Mul from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.exponential import (exp, exp_polar, log) from sympy.functions.elementary.integers import (ceiling, floor) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.logic.boolalg import (And, Implies, Not, Or, Xor) from sympy.sets import Reals from sympy.simplify.simplify import simplify from sympy.simplify.trigsimp import trigsimp from sympy.core.relational import (Relational, Equality, Unequality, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Rel, Eq, Lt, Le, Gt, Ge, Ne, is_le, is_gt, is_ge, is_lt, is_eq, is_neq) from sympy.sets.sets import Interval, FiniteSet from itertools import combinations x, y, z, t = symbols('x,y,z,t') def rel_check(a, b): from sympy.testing.pytest import raises assert a.is_number and b.is_number for do in range(len({type(a), type(b)})): if S.NaN in (a, b): v = [(a == b), (a != b)] assert len(set(v)) == 1 and v[0] == False assert not (a != b) and not (a == b) assert raises(TypeError, lambda: a < b) assert raises(TypeError, lambda: a <= b) assert raises(TypeError, lambda: a > b) assert raises(TypeError, lambda: a >= b) else: E = [(a == b), (a != b)] assert len(set(E)) == 2 v = [ (a < b), (a <= b), (a > b), (a >= b)] i = [ [True, True, False, False], [False, True, False, True], # <-- i == 1 [False, False, True, True]].index(v) if i == 1: assert E[0] or (a.is_Float != b.is_Float) # ugh else: assert E[1] a, b = b, a return True def test_rel_ne(): assert Relational(x, y, '!=') == Ne(x, y) # issue 6116 p = Symbol('p', positive=True) assert Ne(p, 0) is S.true def test_rel_subs(): e = Relational(x, y, '==') e = e.subs(x, z) assert isinstance(e, Equality) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '>=') e = e.subs(x, z) assert isinstance(e, GreaterThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '<=') e = e.subs(x, z) assert isinstance(e, LessThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '>') e = e.subs(x, z) assert isinstance(e, StrictGreaterThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '<') e = e.subs(x, z) assert isinstance(e, StrictLessThan) assert e.lhs == z assert e.rhs == y e = Eq(x, 0) assert e.subs(x, 0) is S.true assert e.subs(x, 1) is S.false def test_wrappers(): e = x + x**2 res = Relational(y, e, '==') assert Rel(y, x + x**2, '==') == res assert Eq(y, x + x**2) == res res = Relational(y, e, '<') assert Lt(y, x + x**2) == res res = Relational(y, e, '<=') assert Le(y, x + x**2) == res res = Relational(y, e, '>') assert Gt(y, x + x**2) == res res = Relational(y, e, '>=') assert Ge(y, x + x**2) == res res = Relational(y, e, '!=') assert Ne(y, x + x**2) == res def test_Eq_Ne(): assert Eq(x, x) # issue 5719 # issue 6116 p = Symbol('p', positive=True) assert Eq(p, 0) is S.false # issue 13348; 19048 # SymPy is strict about 0 and 1 not being # interpreted as Booleans assert Eq(True, 1) is S.false assert Eq(False, 0) is S.false assert Eq(~x, 0) is S.false assert Eq(~x, 1) is S.false assert Ne(True, 1) is S.true assert Ne(False, 0) is S.true assert Ne(~x, 0) is S.true assert Ne(~x, 1) is S.true assert Eq((), 1) is S.false assert Ne((), 1) is S.true def test_as_poly(): from sympy.polys.polytools import Poly # Only Eq should have an as_poly method: assert Eq(x, 1).as_poly() == Poly(x - 1, x, domain='ZZ') raises(AttributeError, lambda: Ne(x, 1).as_poly()) raises(AttributeError, lambda: Ge(x, 1).as_poly()) raises(AttributeError, lambda: Gt(x, 1).as_poly()) raises(AttributeError, lambda: Le(x, 1).as_poly()) raises(AttributeError, lambda: Lt(x, 1).as_poly()) def test_rel_Infinity(): # NOTE: All of these are actually handled by sympy.core.Number, and do # not create Relational objects. assert (oo > oo) is S.false assert (oo > -oo) is S.true assert (oo > 1) is S.true assert (oo < oo) is S.false assert (oo < -oo) is S.false assert (oo < 1) is S.false assert (oo >= oo) is S.true assert (oo >= -oo) is S.true assert (oo >= 1) is S.true assert (oo <= oo) is S.true assert (oo <= -oo) is S.false assert (oo <= 1) is S.false assert (-oo > oo) is S.false assert (-oo > -oo) is S.false assert (-oo > 1) is S.false assert (-oo < oo) is S.true assert (-oo < -oo) is S.false assert (-oo < 1) is S.true assert (-oo >= oo) is S.false assert (-oo >= -oo) is S.true assert (-oo >= 1) is S.false assert (-oo <= oo) is S.true assert (-oo <= -oo) is S.true assert (-oo <= 1) is S.true def test_infinite_symbol_inequalities(): x = Symbol('x', extended_positive=True, infinite=True) y = Symbol('y', extended_positive=True, infinite=True) z = Symbol('z', extended_negative=True, infinite=True) w = Symbol('w', extended_negative=True, infinite=True) inf_set = (x, y, oo) ninf_set = (z, w, -oo) for inf1 in inf_set: assert (inf1 < 1) is S.false assert (inf1 > 1) is S.true assert (inf1 <= 1) is S.false assert (inf1 >= 1) is S.true for inf2 in inf_set: assert (inf1 < inf2) is S.false assert (inf1 > inf2) is S.false assert (inf1 <= inf2) is S.true assert (inf1 >= inf2) is S.true for ninf1 in ninf_set: assert (inf1 < ninf1) is S.false assert (inf1 > ninf1) is S.true assert (inf1 <= ninf1) is S.false assert (inf1 >= ninf1) is S.true assert (ninf1 < inf1) is S.true assert (ninf1 > inf1) is S.false assert (ninf1 <= inf1) is S.true assert (ninf1 >= inf1) is S.false for ninf1 in ninf_set: assert (ninf1 < 1) is S.true assert (ninf1 > 1) is S.false assert (ninf1 <= 1) is S.true assert (ninf1 >= 1) is S.false for ninf2 in ninf_set: assert (ninf1 < ninf2) is S.false assert (ninf1 > ninf2) is S.false assert (ninf1 <= ninf2) is S.true assert (ninf1 >= ninf2) is S.true def test_bool(): assert Eq(0, 0) is S.true assert Eq(1, 0) is S.false assert Ne(0, 0) is S.false assert Ne(1, 0) is S.true assert Lt(0, 1) is S.true assert Lt(1, 0) is S.false assert Le(0, 1) is S.true assert Le(1, 0) is S.false assert Le(0, 0) is S.true assert Gt(1, 0) is S.true assert Gt(0, 1) is S.false assert Ge(1, 0) is S.true assert Ge(0, 1) is S.false assert Ge(1, 1) is S.true assert Eq(I, 2) is S.false assert Ne(I, 2) is S.true raises(TypeError, lambda: Gt(I, 2)) raises(TypeError, lambda: Ge(I, 2)) raises(TypeError, lambda: Lt(I, 2)) raises(TypeError, lambda: Le(I, 2)) a = Float('.000000000000000000001', '') b = Float('.0000000000000000000001', '') assert Eq(pi + a, pi + b) is S.false def test_rich_cmp(): assert (x < y) == Lt(x, y) assert (x <= y) == Le(x, y) assert (x > y) == Gt(x, y) assert (x >= y) == Ge(x, y) def test_doit(): from sympy.core.symbol import Symbol p = Symbol('p', positive=True) n = Symbol('n', negative=True) np = Symbol('np', nonpositive=True) nn = Symbol('nn', nonnegative=True) assert Gt(p, 0).doit() is S.true assert Gt(p, 1).doit() == Gt(p, 1) assert Ge(p, 0).doit() is S.true assert Le(p, 0).doit() is S.false assert Lt(n, 0).doit() is S.true assert Le(np, 0).doit() is S.true assert Gt(nn, 0).doit() == Gt(nn, 0) assert Lt(nn, 0).doit() is S.false assert Eq(x, 0).doit() == Eq(x, 0) def test_new_relational(): x = Symbol('x') assert Eq(x, 0) == Relational(x, 0) # None ==> Equality assert Eq(x, 0) == Relational(x, 0, '==') assert Eq(x, 0) == Relational(x, 0, 'eq') assert Eq(x, 0) == Equality(x, 0) assert Eq(x, 0) != Relational(x, 1) # None ==> Equality assert Eq(x, 0) != Relational(x, 1, '==') assert Eq(x, 0) != Relational(x, 1, 'eq') assert Eq(x, 0) != Equality(x, 1) assert Eq(x, -1) == Relational(x, -1) # None ==> Equality assert Eq(x, -1) == Relational(x, -1, '==') assert Eq(x, -1) == Relational(x, -1, 'eq') assert Eq(x, -1) == Equality(x, -1) assert Eq(x, -1) != Relational(x, 1) # None ==> Equality assert Eq(x, -1) != Relational(x, 1, '==') assert Eq(x, -1) != Relational(x, 1, 'eq') assert Eq(x, -1) != Equality(x, 1) assert Ne(x, 0) == Relational(x, 0, '!=') assert Ne(x, 0) == Relational(x, 0, '<>') assert Ne(x, 0) == Relational(x, 0, 'ne') assert Ne(x, 0) == Unequality(x, 0) assert Ne(x, 0) != Relational(x, 1, '!=') assert Ne(x, 0) != Relational(x, 1, '<>') assert Ne(x, 0) != Relational(x, 1, 'ne') assert Ne(x, 0) != Unequality(x, 1) assert Ge(x, 0) == Relational(x, 0, '>=') assert Ge(x, 0) == Relational(x, 0, 'ge') assert Ge(x, 0) == GreaterThan(x, 0) assert Ge(x, 1) != Relational(x, 0, '>=') assert Ge(x, 1) != Relational(x, 0, 'ge') assert Ge(x, 1) != GreaterThan(x, 0) assert (x >= 1) == Relational(x, 1, '>=') assert (x >= 1) == Relational(x, 1, 'ge') assert (x >= 1) == GreaterThan(x, 1) assert (x >= 0) != Relational(x, 1, '>=') assert (x >= 0) != Relational(x, 1, 'ge') assert (x >= 0) != GreaterThan(x, 1) assert Le(x, 0) == Relational(x, 0, '<=') assert Le(x, 0) == Relational(x, 0, 'le') assert Le(x, 0) == LessThan(x, 0) assert Le(x, 1) != Relational(x, 0, '<=') assert Le(x, 1) != Relational(x, 0, 'le') assert Le(x, 1) != LessThan(x, 0) assert (x <= 1) == Relational(x, 1, '<=') assert (x <= 1) == Relational(x, 1, 'le') assert (x <= 1) == LessThan(x, 1) assert (x <= 0) != Relational(x, 1, '<=') assert (x <= 0) != Relational(x, 1, 'le') assert (x <= 0) != LessThan(x, 1) assert Gt(x, 0) == Relational(x, 0, '>') assert Gt(x, 0) == Relational(x, 0, 'gt') assert Gt(x, 0) == StrictGreaterThan(x, 0) assert Gt(x, 1) != Relational(x, 0, '>') assert Gt(x, 1) != Relational(x, 0, 'gt') assert Gt(x, 1) != StrictGreaterThan(x, 0) assert (x > 1) == Relational(x, 1, '>') assert (x > 1) == Relational(x, 1, 'gt') assert (x > 1) == StrictGreaterThan(x, 1) assert (x > 0) != Relational(x, 1, '>') assert (x > 0) != Relational(x, 1, 'gt') assert (x > 0) != StrictGreaterThan(x, 1) assert Lt(x, 0) == Relational(x, 0, '<') assert Lt(x, 0) == Relational(x, 0, 'lt') assert Lt(x, 0) == StrictLessThan(x, 0) assert Lt(x, 1) != Relational(x, 0, '<') assert Lt(x, 1) != Relational(x, 0, 'lt') assert Lt(x, 1) != StrictLessThan(x, 0) assert (x < 1) == Relational(x, 1, '<') assert (x < 1) == Relational(x, 1, 'lt') assert (x < 1) == StrictLessThan(x, 1) assert (x < 0) != Relational(x, 1, '<') assert (x < 0) != Relational(x, 1, 'lt') assert (x < 0) != StrictLessThan(x, 1) # finally, some fuzz testing from sympy.core.random import randint for i in range(100): while 1: strtype, length = (chr, 65535) if randint(0, 1) else (chr, 255) relation_type = strtype(randint(0, length)) if randint(0, 1): relation_type += strtype(randint(0, length)) if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge', '<=', 'le', '>', 'gt', '<', 'lt', ':=', '+=', '-=', '*=', '/=', '%='): break raises(ValueError, lambda: Relational(x, 1, relation_type)) assert all(Relational(x, 0, op).rel_op == '==' for op in ('eq', '==')) assert all(Relational(x, 0, op).rel_op == '!=' for op in ('ne', '<>', '!=')) assert all(Relational(x, 0, op).rel_op == '>' for op in ('gt', '>')) assert all(Relational(x, 0, op).rel_op == '<' for op in ('lt', '<')) assert all(Relational(x, 0, op).rel_op == '>=' for op in ('ge', '>=')) assert all(Relational(x, 0, op).rel_op == '<=' for op in ('le', '<=')) def test_relational_arithmetic(): for cls in [Eq, Ne, Le, Lt, Ge, Gt]: rel = cls(x, y) raises(TypeError, lambda: 0+rel) raises(TypeError, lambda: 1*rel) raises(TypeError, lambda: 1**rel) raises(TypeError, lambda: rel**1) raises(TypeError, lambda: Add(0, rel)) raises(TypeError, lambda: Mul(1, rel)) raises(TypeError, lambda: Pow(1, rel)) raises(TypeError, lambda: Pow(rel, 1)) def test_relational_bool_output(): # https://github.com/sympy/sympy/issues/5931 raises(TypeError, lambda: bool(x > 3)) raises(TypeError, lambda: bool(x >= 3)) raises(TypeError, lambda: bool(x < 3)) raises(TypeError, lambda: bool(x <= 3)) raises(TypeError, lambda: bool(Eq(x, 3))) raises(TypeError, lambda: bool(Ne(x, 3))) def test_relational_logic_symbols(): # See issue 6204 assert (x < y) & (z < t) == And(x < y, z < t) assert (x < y) | (z < t) == Or(x < y, z < t) assert ~(x < y) == Not(x < y) assert (x < y) >> (z < t) == Implies(x < y, z < t) assert (x < y) << (z < t) == Implies(z < t, x < y) assert (x < y) ^ (z < t) == Xor(x < y, z < t) assert isinstance((x < y) & (z < t), And) assert isinstance((x < y) | (z < t), Or) assert isinstance(~(x < y), GreaterThan) assert isinstance((x < y) >> (z < t), Implies) assert isinstance((x < y) << (z < t), Implies) assert isinstance((x < y) ^ (z < t), (Or, Xor)) def test_univariate_relational_as_set(): assert (x > 0).as_set() == Interval(0, oo, True, True) assert (x >= 0).as_set() == Interval(0, oo) assert (x < 0).as_set() == Interval(-oo, 0, True, True) assert (x <= 0).as_set() == Interval(-oo, 0) assert Eq(x, 0).as_set() == FiniteSet(0) assert Ne(x, 0).as_set() == Interval(-oo, 0, True, True) + \ Interval(0, oo, True, True) assert (x**2 >= 4).as_set() == Interval(-oo, -2) + Interval(2, oo) @XFAIL def test_multivariate_relational_as_set(): assert (x*y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) + \ Interval(-oo, 0)*Interval(-oo, 0) def test_Not(): assert Not(Equality(x, y)) == Unequality(x, y) assert Not(Unequality(x, y)) == Equality(x, y) assert Not(StrictGreaterThan(x, y)) == LessThan(x, y) assert Not(StrictLessThan(x, y)) == GreaterThan(x, y) assert Not(GreaterThan(x, y)) == StrictLessThan(x, y) assert Not(LessThan(x, y)) == StrictGreaterThan(x, y) def test_evaluate(): assert str(Eq(x, x, evaluate=False)) == 'Eq(x, x)' assert Eq(x, x, evaluate=False).doit() == S.true assert str(Ne(x, x, evaluate=False)) == 'Ne(x, x)' assert Ne(x, x, evaluate=False).doit() == S.false assert str(Ge(x, x, evaluate=False)) == 'x >= x' assert str(Le(x, x, evaluate=False)) == 'x <= x' assert str(Gt(x, x, evaluate=False)) == 'x > x' assert str(Lt(x, x, evaluate=False)) == 'x < x' def assert_all_ineq_raise_TypeError(a, b): raises(TypeError, lambda: a > b) raises(TypeError, lambda: a >= b) raises(TypeError, lambda: a < b) raises(TypeError, lambda: a <= b) raises(TypeError, lambda: b > a) raises(TypeError, lambda: b >= a) raises(TypeError, lambda: b < a) raises(TypeError, lambda: b <= a) def assert_all_ineq_give_class_Inequality(a, b): """All inequality operations on `a` and `b` result in class Inequality.""" from sympy.core.relational import _Inequality as Inequality assert isinstance(a > b, Inequality) assert isinstance(a >= b, Inequality) assert isinstance(a < b, Inequality) assert isinstance(a <= b, Inequality) assert isinstance(b > a, Inequality) assert isinstance(b >= a, Inequality) assert isinstance(b < a, Inequality) assert isinstance(b <= a, Inequality) def test_imaginary_compare_raises_TypeError(): # See issue #5724 assert_all_ineq_raise_TypeError(I, x) def test_complex_compare_not_real(): # two cases which are not real y = Symbol('y', imaginary=True) z = Symbol('z', complex=True, extended_real=False) for w in (y, z): assert_all_ineq_raise_TypeError(2, w) # some cases which should remain un-evaluated t = Symbol('t') x = Symbol('x', real=True) z = Symbol('z', complex=True) for w in (x, z, t): assert_all_ineq_give_class_Inequality(2, w) def test_imaginary_and_inf_compare_raises_TypeError(): # See pull request #7835 y = Symbol('y', imaginary=True) assert_all_ineq_raise_TypeError(oo, y) assert_all_ineq_raise_TypeError(-oo, y) def test_complex_pure_imag_not_ordered(): raises(TypeError, lambda: 2*I < 3*I) # more generally x = Symbol('x', real=True, nonzero=True) y = Symbol('y', imaginary=True) z = Symbol('z', complex=True) assert_all_ineq_raise_TypeError(I, y) t = I*x # an imaginary number, should raise errors assert_all_ineq_raise_TypeError(2, t) t = -I*y # a real number, so no errors assert_all_ineq_give_class_Inequality(2, t) t = I*z # unknown, should be unevaluated assert_all_ineq_give_class_Inequality(2, t) def test_x_minus_y_not_same_as_x_lt_y(): """ A consequence of pull request #7792 is that `x - y < 0` and `x < y` are not synonymous. """ x = I + 2 y = I + 3 raises(TypeError, lambda: x < y) assert x - y < 0 ineq = Lt(x, y, evaluate=False) raises(TypeError, lambda: ineq.doit()) assert ineq.lhs - ineq.rhs < 0 t = Symbol('t', imaginary=True) x = 2 + t y = 3 + t ineq = Lt(x, y, evaluate=False) raises(TypeError, lambda: ineq.doit()) assert ineq.lhs - ineq.rhs < 0 # this one should give error either way x = I + 2 y = 2*I + 3 raises(TypeError, lambda: x < y) raises(TypeError, lambda: x - y < 0) def test_nan_equality_exceptions(): # See issue #7774 import random assert Equality(nan, nan) is S.false assert Unequality(nan, nan) is S.true # See issue #7773 A = (x, S.Zero, S.One/3, pi, oo, -oo) assert Equality(nan, random.choice(A)) is S.false assert Equality(random.choice(A), nan) is S.false assert Unequality(nan, random.choice(A)) is S.true assert Unequality(random.choice(A), nan) is S.true def test_nan_inequality_raise_errors(): # See discussion in pull request #7776. We test inequalities with # a set including examples of various classes. for q in (x, S.Zero, S(10), S.One/3, pi, S(1.3), oo, -oo, nan): assert_all_ineq_raise_TypeError(q, nan) def test_nan_complex_inequalities(): # Comparisons of NaN with non-real raise errors, we're not too # fussy whether its the NaN error or complex error. for r in (I, zoo, Symbol('z', imaginary=True)): assert_all_ineq_raise_TypeError(r, nan) def test_complex_infinity_inequalities(): raises(TypeError, lambda: zoo > 0) raises(TypeError, lambda: zoo >= 0) raises(TypeError, lambda: zoo < 0) raises(TypeError, lambda: zoo <= 0) def test_inequalities_symbol_name_same(): """Using the operator and functional forms should give same results.""" # We test all combinations from a set # FIXME: could replace with random selection after test passes A = (x, y, S.Zero, S.One/3, pi, oo, -oo) for a in A: for b in A: assert Gt(a, b) == (a > b) assert Lt(a, b) == (a < b) assert Ge(a, b) == (a >= b) assert Le(a, b) == (a <= b) for b in (y, S.Zero, S.One/3, pi, oo, -oo): assert Gt(x, b, evaluate=False) == (x > b) assert Lt(x, b, evaluate=False) == (x < b) assert Ge(x, b, evaluate=False) == (x >= b) assert Le(x, b, evaluate=False) == (x <= b) for b in (y, S.Zero, S.One/3, pi, oo, -oo): assert Gt(b, x, evaluate=False) == (b > x) assert Lt(b, x, evaluate=False) == (b < x) assert Ge(b, x, evaluate=False) == (b >= x) assert Le(b, x, evaluate=False) == (b <= x) def test_inequalities_symbol_name_same_complex(): """Using the operator and functional forms should give same results. With complex non-real numbers, both should raise errors. """ # FIXME: could replace with random selection after test passes for a in (x, S.Zero, S.One/3, pi, oo, Rational(1, 3)): raises(TypeError, lambda: Gt(a, I)) raises(TypeError, lambda: a > I) raises(TypeError, lambda: Lt(a, I)) raises(TypeError, lambda: a < I) raises(TypeError, lambda: Ge(a, I)) raises(TypeError, lambda: a >= I) raises(TypeError, lambda: Le(a, I)) raises(TypeError, lambda: a <= I) def test_inequalities_cant_sympify_other(): # see issue 7833 from operator import gt, lt, ge, le bar = "foo" for a in (x, S.Zero, S.One/3, pi, I, zoo, oo, -oo, nan, Rational(1, 3)): for op in (lt, gt, le, ge): raises(TypeError, lambda: op(a, bar)) def test_ineq_avoid_wild_symbol_flip(): # see issue #7951, we try to avoid this internally, e.g., by using # __lt__ instead of "<". from sympy.core.symbol import Wild p = symbols('p', cls=Wild) # x > p might flip, but Gt should not: assert Gt(x, p) == Gt(x, p, evaluate=False) # Previously failed as 'p > x': e = Lt(x, y).subs({y: p}) assert e == Lt(x, p, evaluate=False) # Previously failed as 'p <= x': e = Ge(x, p).doit() assert e == Ge(x, p, evaluate=False) def test_issue_8245(): a = S("6506833320952669167898688709329/5070602400912917605986812821504") assert rel_check(a, a.n(10)) assert rel_check(a, a.n(20)) assert rel_check(a, a.n()) # prec of 31 is enough to fully capture a as mpf assert Float(a, 31) == Float(str(a.p), '')/Float(str(a.q), '') for i in range(31): r = Rational(Float(a, i)) f = Float(r) assert (f < a) == (Rational(f) < a) # test sign handling assert (-f < -a) == (Rational(-f) < -a) # test equivalence handling isa = Float(a.p,'')/Float(a.q,'') assert isa <= a assert not isa < a assert isa >= a assert not isa > a assert isa > 0 a = sqrt(2) r = Rational(str(a.n(30))) assert rel_check(a, r) a = sqrt(2) r = Rational(str(a.n(29))) assert rel_check(a, r) assert Eq(log(cos(2)**2 + sin(2)**2), 0) is S.true def test_issue_8449(): p = Symbol('p', nonnegative=True) assert Lt(-oo, p) assert Ge(-oo, p) is S.false assert Gt(oo, -p) assert Le(oo, -p) is S.false def test_simplify_relational(): assert simplify(x*(y + 1) - x*y - x + 1 < x) == (x > 1) assert simplify(x*(y + 1) - x*y - x - 1 < x) == (x > -1) assert simplify(x < x*(y + 1) - x*y - x + 1) == (x < 1) q, r = symbols("q r") assert (((-q + r) - (q - r)) <= 0).simplify() == (q >= r) root2 = sqrt(2) equation = ((root2 * (-q + r) - root2 * (q - r)) <= 0).simplify() assert equation == (q >= r) r = S.One < x # canonical operations are not the same as simplification, # so if there is no simplification, canonicalization will # be done unless the measure forbids it assert simplify(r) == r.canonical assert simplify(r, ratio=0) != r.canonical # this is not a random test; in _eval_simplify # this will simplify to S.false and that is the # reason for the 'if r.is_Relational' in Relational's # _eval_simplify routine assert simplify(-(2**(pi*Rational(3, 2)) + 6**pi)**(1/pi) + 2*(2**(pi/2) + 3**pi)**(1/pi) < 0) is S.false # canonical at least assert Eq(y, x).simplify() == Eq(x, y) assert Eq(x - 1, 0).simplify() == Eq(x, 1) assert Eq(x - 1, x).simplify() == S.false assert Eq(2*x - 1, x).simplify() == Eq(x, 1) assert Eq(2*x, 4).simplify() == Eq(x, 2) z = cos(1)**2 + sin(1)**2 - 1 # z.is_zero is None assert Eq(z*x, 0).simplify() == S.true assert Ne(y, x).simplify() == Ne(x, y) assert Ne(x - 1, 0).simplify() == Ne(x, 1) assert Ne(x - 1, x).simplify() == S.true assert Ne(2*x - 1, x).simplify() == Ne(x, 1) assert Ne(2*x, 4).simplify() == Ne(x, 2) assert Ne(z*x, 0).simplify() == S.false # No real-valued assumptions assert Ge(y, x).simplify() == Le(x, y) assert Ge(x - 1, 0).simplify() == Ge(x, 1) assert Ge(x - 1, x).simplify() == S.false assert Ge(2*x - 1, x).simplify() == Ge(x, 1) assert Ge(2*x, 4).simplify() == Ge(x, 2) assert Ge(z*x, 0).simplify() == S.true assert Ge(x, -2).simplify() == Ge(x, -2) assert Ge(-x, -2).simplify() == Le(x, 2) assert Ge(x, 2).simplify() == Ge(x, 2) assert Ge(-x, 2).simplify() == Le(x, -2) assert Le(y, x).simplify() == Ge(x, y) assert Le(x - 1, 0).simplify() == Le(x, 1) assert Le(x - 1, x).simplify() == S.true assert Le(2*x - 1, x).simplify() == Le(x, 1) assert Le(2*x, 4).simplify() == Le(x, 2) assert Le(z*x, 0).simplify() == S.true assert Le(x, -2).simplify() == Le(x, -2) assert Le(-x, -2).simplify() == Ge(x, 2) assert Le(x, 2).simplify() == Le(x, 2) assert Le(-x, 2).simplify() == Ge(x, -2) assert Gt(y, x).simplify() == Lt(x, y) assert Gt(x - 1, 0).simplify() == Gt(x, 1) assert Gt(x - 1, x).simplify() == S.false assert Gt(2*x - 1, x).simplify() == Gt(x, 1) assert Gt(2*x, 4).simplify() == Gt(x, 2) assert Gt(z*x, 0).simplify() == S.false assert Gt(x, -2).simplify() == Gt(x, -2) assert Gt(-x, -2).simplify() == Lt(x, 2) assert Gt(x, 2).simplify() == Gt(x, 2) assert Gt(-x, 2).simplify() == Lt(x, -2) assert Lt(y, x).simplify() == Gt(x, y) assert Lt(x - 1, 0).simplify() == Lt(x, 1) assert Lt(x - 1, x).simplify() == S.true assert Lt(2*x - 1, x).simplify() == Lt(x, 1) assert Lt(2*x, 4).simplify() == Lt(x, 2) assert Lt(z*x, 0).simplify() == S.false assert Lt(x, -2).simplify() == Lt(x, -2) assert Lt(-x, -2).simplify() == Gt(x, 2) assert Lt(x, 2).simplify() == Lt(x, 2) assert Lt(-x, 2).simplify() == Gt(x, -2) # Test particulat branches of _eval_simplify m = exp(1) - exp_polar(1) assert simplify(m*x > 1) is S.false # These two tests the same branch assert simplify(m*x + 2*m*y > 1) is S.false assert simplify(m*x + y > 1 + y) is S.false def test_equals(): w, x, y, z = symbols('w:z') f = Function('f') assert Eq(x, 1).equals(Eq(x*(y + 1) - x*y - x + 1, x)) assert Eq(x, y).equals(x < y, True) == False assert Eq(x, f(1)).equals(Eq(x, f(2)), True) == f(1) - f(2) assert Eq(f(1), y).equals(Eq(f(2), y), True) == f(1) - f(2) assert Eq(x, f(1)).equals(Eq(f(2), x), True) == f(1) - f(2) assert Eq(f(1), x).equals(Eq(x, f(2)), True) == f(1) - f(2) assert Eq(w, x).equals(Eq(y, z), True) == False assert Eq(f(1), f(2)).equals(Eq(f(3), f(4)), True) == f(1) - f(3) assert (x < y).equals(y > x, True) == True assert (x < y).equals(y >= x, True) == False assert (x < y).equals(z < y, True) == False assert (x < y).equals(x < z, True) == False assert (x < f(1)).equals(x < f(2), True) == f(1) - f(2) assert (f(1) < x).equals(f(2) < x, True) == f(1) - f(2) def test_reversed(): assert (x < y).reversed == (y > x) assert (x <= y).reversed == (y >= x) assert Eq(x, y, evaluate=False).reversed == Eq(y, x, evaluate=False) assert Ne(x, y, evaluate=False).reversed == Ne(y, x, evaluate=False) assert (x >= y).reversed == (y <= x) assert (x > y).reversed == (y < x) def test_canonical(): c = [i.canonical for i in ( x + y < z, x + 2 > 3, x < 2, S(2) > x, x**2 > -x/y, Gt(3, 2, evaluate=False) )] assert [i.canonical for i in c] == c assert [i.reversed.canonical for i in c] == c assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c) c = [i.reversed.func(i.rhs, i.lhs, evaluate=False).canonical for i in c] assert [i.canonical for i in c] == c assert [i.reversed.canonical for i in c] == c assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c) assert Eq(y < x, x > y).canonical is S.true @XFAIL def test_issue_8444_nonworkingtests(): x = symbols('x', real=True) assert (x <= oo) == (x >= -oo) == True x = symbols('x') assert x >= floor(x) assert (x < floor(x)) == False assert x <= ceiling(x) assert (x > ceiling(x)) == False def test_issue_8444_workingtests(): x = symbols('x') assert Gt(x, floor(x)) == Gt(x, floor(x), evaluate=False) assert Ge(x, floor(x)) == Ge(x, floor(x), evaluate=False) assert Lt(x, ceiling(x)) == Lt(x, ceiling(x), evaluate=False) assert Le(x, ceiling(x)) == Le(x, ceiling(x), evaluate=False) i = symbols('i', integer=True) assert (i > floor(i)) == False assert (i < ceiling(i)) == False def test_issue_10304(): d = cos(1)**2 + sin(1)**2 - 1 assert d.is_comparable is False # if this fails, find a new d e = 1 + d*I assert simplify(Eq(e, 0)) is S.false def test_issue_18412(): d = (Rational(1, 6) + z / 4 / y) assert Eq(x, pi * y**3 * d).replace(y**3, z) == Eq(x, pi * z * d) def test_issue_10401(): x = symbols('x') fin = symbols('inf', finite=True) inf = symbols('inf', infinite=True) inf2 = symbols('inf2', infinite=True) infx = symbols('infx', infinite=True, extended_real=True) # Used in the commented tests below: #infx2 = symbols('infx2', infinite=True, extended_real=True) infnx = symbols('inf~x', infinite=True, extended_real=False) infnx2 = symbols('inf~x2', infinite=True, extended_real=False) infp = symbols('infp', infinite=True, extended_positive=True) infp1 = symbols('infp1', infinite=True, extended_positive=True) infn = symbols('infn', infinite=True, extended_negative=True) zero = symbols('z', zero=True) nonzero = symbols('nz', zero=False, finite=True) assert Eq(1/(1/x + 1), 1).func is Eq assert Eq(1/(1/x + 1), 1).subs(x, S.ComplexInfinity) is S.true assert Eq(1/(1/fin + 1), 1) is S.false T, F = S.true, S.false assert Eq(fin, inf) is F assert Eq(inf, inf2) not in (T, F) and inf != inf2 assert Eq(1 + inf, 2 + inf2) not in (T, F) and inf != inf2 assert Eq(infp, infp1) is T assert Eq(infp, infn) is F assert Eq(1 + I*oo, I*oo) is F assert Eq(I*oo, 1 + I*oo) is F assert Eq(1 + I*oo, 2 + I*oo) is F assert Eq(1 + I*oo, 2 + I*infx) is F assert Eq(1 + I*oo, 2 + infx) is F # FIXME: The test below fails because (-infx).is_extended_positive is True # (should be None) #assert Eq(1 + I*infx, 1 + I*infx2) not in (T, F) and infx != infx2 # assert Eq(zoo, sqrt(2) + I*oo) is F assert Eq(zoo, oo) is F r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert Eq(i*I, r) not in (T, F) assert Eq(infx, infnx) is F assert Eq(infnx, infnx2) not in (T, F) and infnx != infnx2 assert Eq(zoo, oo) is F assert Eq(inf/inf2, 0) is F assert Eq(inf/fin, 0) is F assert Eq(fin/inf, 0) is T assert Eq(zero/nonzero, 0) is T and ((zero/nonzero) != 0) # The commented out test below is incorrect because: assert zoo == -zoo assert Eq(zoo, -zoo) is T assert Eq(oo, -oo) is F assert Eq(inf, -inf) not in (T, F) assert Eq(fin/(fin + 1), 1) is S.false o = symbols('o', odd=True) assert Eq(o, 2*o) is S.false p = symbols('p', positive=True) assert Eq(p/(p - 1), 1) is F def test_issue_10633(): assert Eq(True, False) == False assert Eq(False, True) == False assert Eq(True, True) == True assert Eq(False, False) == True def test_issue_10927(): x = symbols('x') assert str(Eq(x, oo)) == 'Eq(x, oo)' assert str(Eq(x, -oo)) == 'Eq(x, -oo)' def test_issues_13081_12583_12534(): # 13081 r = Rational('905502432259640373/288230376151711744') assert (r < pi) is S.false assert (r > pi) is S.true # 12583 v = sqrt(2) u = sqrt(v) + 2/sqrt(10 - 8/sqrt(2 - v) + 4*v*(1/sqrt(2 - v) - 1)) assert (u >= 0) is S.true # 12534; Rational vs NumberSymbol # here are some precisions for which Rational forms # at a lower and higher precision bracket the value of pi # e.g. for p = 20: # Rational(pi.n(p + 1)).n(25) = 3.14159265358979323846 2834 # pi.n(25) = 3.14159265358979323846 2643 # Rational(pi.n(p )).n(25) = 3.14159265358979323846 1987 assert [p for p in range(20, 50) if (Rational(pi.n(p)) < pi) and (pi < Rational(pi.n(p + 1)))] == [20, 24, 27, 33, 37, 43, 48] # pick one such precision and affirm that the reversed operation # gives the opposite result, i.e. if x < y is true then x > y # must be false for i in (20, 21): v = pi.n(i) assert rel_check(Rational(v), pi) assert rel_check(v, pi) assert rel_check(pi.n(20), pi.n(21)) # Float vs Rational # the rational form is less than the floating representation # at the same precision assert [i for i in range(15, 50) if Rational(pi.n(i)) > pi.n(i)] == [] # this should be the same if we reverse the relational assert [i for i in range(15, 50) if pi.n(i) < Rational(pi.n(i))] == [] def test_issue_18188(): from sympy.sets.conditionset import ConditionSet result1 = Eq(x*cos(x) - 3*sin(x), 0) assert result1.as_set() == ConditionSet(x, Eq(x*cos(x) - 3*sin(x), 0), Reals) result2 = Eq(x**2 + sqrt(x*2) + sin(x), 0) assert result2.as_set() == ConditionSet(x, Eq(sqrt(2)*sqrt(x) + x**2 + sin(x), 0), Reals) def test_binary_symbols(): ans = {x} for f in Eq, Ne: for t in S.true, S.false: eq = f(x, S.true) assert eq.binary_symbols == ans assert eq.reversed.binary_symbols == ans assert f(x, 1).binary_symbols == set() def test_rel_args(): # can't have Boolean args; this is automatic for True/False # with Python 3 and we confirm that SymPy does the same # for true/false for op in ['<', '<=', '>', '>=']: for b in (S.true, x < 1, And(x, y)): for v in (0.1, 1, 2**32, t, S.One): raises(TypeError, lambda: Relational(b, v, op)) def test_Equality_rewrite_as_Add(): eq = Eq(x + y, y - x) assert eq.rewrite(Add) == 2*x assert eq.rewrite(Add, evaluate=None).args == (x, x, y, -y) assert eq.rewrite(Add, evaluate=False).args == (x, y, x, -y) for e in (True, False, None): assert Eq(x, 0, evaluate=e).rewrite(Add) == x assert Eq(0, x, evaluate=e).rewrite(Add) == x def test_issue_15847(): a = Ne(x*(x+y), x**2 + x*y) assert simplify(a) == False def test_negated_property(): eq = Eq(x, y) assert eq.negated == Ne(x, y) eq = Ne(x, y) assert eq.negated == Eq(x, y) eq = Ge(x + y, y - x) assert eq.negated == Lt(x + y, y - x) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, y).negated.negated == f(x, y) def test_reversedsign_property(): eq = Eq(x, y) assert eq.reversedsign == Eq(-x, -y) eq = Ne(x, y) assert eq.reversedsign == Ne(-x, -y) eq = Ge(x + y, y - x) assert eq.reversedsign == Le(-x - y, x - y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, y).reversedsign.reversedsign == f(x, y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, y).reversedsign.reversedsign == f(-x, y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, -y).reversedsign.reversedsign == f(x, -y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, -y).reversedsign.reversedsign == f(-x, -y) def test_reversed_reversedsign_property(): for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, y).reversed.reversedsign == f(x, y).reversedsign.reversed for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, y).reversed.reversedsign == f(-x, y).reversedsign.reversed for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, -y).reversed.reversedsign == f(x, -y).reversedsign.reversed for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, -y).reversed.reversedsign == \ f(-x, -y).reversedsign.reversed def test_improved_canonical(): def test_different_forms(listofforms): for form1, form2 in combinations(listofforms, 2): assert form1.canonical == form2.canonical def generate_forms(expr): return [expr, expr.reversed, expr.reversedsign, expr.reversed.reversedsign] test_different_forms(generate_forms(x > -y)) test_different_forms(generate_forms(x >= -y)) test_different_forms(generate_forms(Eq(x, -y))) test_different_forms(generate_forms(Ne(x, -y))) test_different_forms(generate_forms(pi < x)) test_different_forms(generate_forms(pi - 5*y < -x + 2*y**2 - 7)) assert (pi >= x).canonical == (x <= pi) def test_set_equality_canonical(): a, b, c = symbols('a b c') A = Eq(FiniteSet(a, b, c), FiniteSet(1, 2, 3)) B = Ne(FiniteSet(a, b, c), FiniteSet(4, 5, 6)) assert A.canonical == A.reversed assert B.canonical == B.reversed def test_trigsimp(): # issue 16736 s, c = sin(2*x), cos(2*x) eq = Eq(s, c) assert trigsimp(eq) == eq # no rearrangement of sides # simplification of sides might result in # an unevaluated Eq changed = trigsimp(Eq(s + c, sqrt(2))) assert isinstance(changed, Eq) assert changed.subs(x, pi/8) is S.true # or an evaluated one assert trigsimp(Eq(cos(x)**2 + sin(x)**2, 1)) is S.true def test_polynomial_relation_simplification(): assert Ge(3*x*(x + 1) + 4, 3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))] assert Le(-(3*x*(x + 1) + 4), -3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))] assert ((x**2+3)*(x**2-1)+3*x >= 2*x**2).simplify() in [(x**4 + 3*x >= 3), (-x**4 - 3*x <= -3)] def test_multivariate_linear_function_simplification(): assert Ge(x + y, x - y).simplify() == Ge(y, 0) assert Le(-x + y, -x - y).simplify() == Le(y, 0) assert Eq(2*x + y, 2*x + y - 3).simplify() == False assert (2*x + y > 2*x + y - 3).simplify() == True assert (2*x + y < 2*x + y - 3).simplify() == False assert (2*x + y < 2*x + y + 3).simplify() == True a, b, c, d, e, f, g = symbols('a b c d e f g') assert Lt(a + b + c + 2*d, 3*d - f + g). simplify() == Lt(a, -b - c + d - f + g) def test_nonpolymonial_relations(): assert Eq(cos(x), 0).simplify() == Eq(cos(x), 0) def test_18778(): raises(TypeError, lambda: is_le(Basic(), Basic())) raises(TypeError, lambda: is_gt(Basic(), Basic())) raises(TypeError, lambda: is_ge(Basic(), Basic())) raises(TypeError, lambda: is_lt(Basic(), Basic())) def test_EvalEq(): """ This test exists to ensure backwards compatibility. The method to use is _eval_is_eq """ from sympy.core.expr import Expr class PowTest(Expr): def __new__(cls, base, exp): return Basic.__new__(PowTest, _sympify(base), _sympify(exp)) def _eval_Eq(lhs, rhs): if type(lhs) == PowTest and type(rhs) == PowTest: return lhs.args[0] == rhs.args[0] and lhs.args[1] == rhs.args[1] assert is_eq(PowTest(3, 4), PowTest(3,4)) assert is_eq(PowTest(3, 4), _sympify(4)) is None assert is_neq(PowTest(3, 4), PowTest(3,7)) def test_is_eq(): # test assumptions assert is_eq(x, y, Q.infinite(x) & Q.finite(y)) is False assert is_eq(x, y, Q.infinite(x) & Q.infinite(y) & Q.extended_real(x) & ~Q.extended_real(y)) is False assert is_eq(x, y, Q.infinite(x) & Q.infinite(y) & Q.extended_positive(x) & Q.extended_negative(y)) is False assert is_eq(x+I, y+I, Q.infinite(x) & Q.finite(y)) is False assert is_eq(1+x*I, 1+y*I, Q.infinite(x) & Q.finite(y)) is False assert is_eq(x, S(0), assumptions=Q.zero(x)) assert is_eq(x, S(0), assumptions=~Q.zero(x)) is False assert is_eq(x, S(0), assumptions=Q.nonzero(x)) is False assert is_neq(x, S(0), assumptions=Q.zero(x)) is False assert is_neq(x, S(0), assumptions=~Q.zero(x)) assert is_neq(x, S(0), assumptions=Q.nonzero(x)) # test registration class PowTest(Expr): def __new__(cls, base, exp): return Basic.__new__(cls, _sympify(base), _sympify(exp)) @dispatch(PowTest, PowTest) def _eval_is_eq(lhs, rhs): if type(lhs) == PowTest and type(rhs) == PowTest: return fuzzy_and([is_eq(lhs.args[0], rhs.args[0]), is_eq(lhs.args[1], rhs.args[1])]) assert is_eq(PowTest(3, 4), PowTest(3,4)) assert is_eq(PowTest(3, 4), _sympify(4)) is None assert is_neq(PowTest(3, 4), PowTest(3,7)) def test_is_ge_le(): # test assumptions assert is_ge(x, S(0), Q.nonnegative(x)) is True assert is_ge(x, S(0), Q.negative(x)) is False # test registration class PowTest(Expr): def __new__(cls, base, exp): return Basic.__new__(cls, _sympify(base), _sympify(exp)) @dispatch(PowTest, PowTest) def _eval_is_ge(lhs, rhs): if type(lhs) == PowTest and type(rhs) == PowTest: return fuzzy_and([is_ge(lhs.args[0], rhs.args[0]), is_ge(lhs.args[1], rhs.args[1])]) assert is_ge(PowTest(3, 9), PowTest(3,2)) assert is_gt(PowTest(3, 9), PowTest(3,2)) assert is_le(PowTest(3, 2), PowTest(3,9)) assert is_lt(PowTest(3, 2), PowTest(3,9)) def test_weak_strict(): for func in (Eq, Ne): eq = func(x, 1) assert eq.strict == eq.weak == eq eq = Gt(x, 1) assert eq.weak == Ge(x, 1) assert eq.strict == eq eq = Lt(x, 1) assert eq.weak == Le(x, 1) assert eq.strict == eq eq = Ge(x, 1) assert eq.strict == Gt(x, 1) assert eq.weak == eq eq = Le(x, 1) assert eq.strict == Lt(x, 1) assert eq.weak == eq
8549b2e17c94fc0016da9e3dc22b4fe204c04aa0d7cbda3b2c91cefab6127b71
from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.function import (Function, Lambda) from sympy.core.mul import Mul from sympy.core.numbers import (Float, I, Integer, Rational, pi, oo) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.logic.boolalg import (false, Or, true, Xor) from sympy.matrices.dense import Matrix from sympy.parsing.sympy_parser import null from sympy.polys.polytools import Poly from sympy.printing.repr import srepr from sympy.sets.fancysets import Range from sympy.sets.sets import Interval from sympy.abc import x, y from sympy.core.sympify import (sympify, _sympify, SympifyError, kernS, CantSympify, converter) from sympy.core.decorators import _sympifyit from sympy.external import import_module from sympy.testing.pytest import raises, XFAIL, skip, warns_deprecated_sympy from sympy.utilities.decorator import conserve_mpmath_dps from sympy.geometry import Point, Line from sympy.functions.combinatorial.factorials import factorial, factorial2 from sympy.abc import _clash, _clash1, _clash2 from sympy.external.gmpy import HAS_GMPY from sympy.sets import FiniteSet, EmptySet from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray import mpmath from collections import defaultdict, OrderedDict from mpmath.rational import mpq numpy = import_module('numpy') def test_issue_3538(): v = sympify("exp(x)") assert v == exp(x) assert type(v) == type(exp(x)) assert str(type(v)) == str(type(exp(x))) def test_sympify1(): assert sympify("x") == Symbol("x") assert sympify(" x") == Symbol("x") assert sympify(" x ") == Symbol("x") # issue 4877 assert sympify('--.5') == 0.5 assert sympify('-1/2') == -S.Half assert sympify('-+--.5') == -0.5 assert sympify('-.[3]') == Rational(-1, 3) assert sympify('.[3]') == Rational(1, 3) assert sympify('+.[3]') == Rational(1, 3) assert sympify('+0.[3]*10**-2') == Rational(1, 300) assert sympify('.[052631578947368421]') == Rational(1, 19) assert sympify('.0[526315789473684210]') == Rational(1, 19) assert sympify('.034[56]') == Rational(1711, 49500) # options to make reals into rationals assert sympify('1.22[345]', rational=True) == \ 1 + Rational(22, 100) + Rational(345, 99900) assert sympify('2/2.6', rational=True) == Rational(10, 13) assert sympify('2.6/2', rational=True) == Rational(13, 10) assert sympify('2.6e2/17', rational=True) == Rational(260, 17) assert sympify('2.6e+2/17', rational=True) == Rational(260, 17) assert sympify('2.6e-2/17', rational=True) == Rational(26, 17000) assert sympify('2.1+3/4', rational=True) == \ Rational(21, 10) + Rational(3, 4) assert sympify('2.234456', rational=True) == Rational(279307, 125000) assert sympify('2.234456e23', rational=True) == 223445600000000000000000 assert sympify('2.234456e-23', rational=True) == \ Rational(279307, 12500000000000000000000000000) assert sympify('-2.234456e-23', rational=True) == \ Rational(-279307, 12500000000000000000000000000) assert sympify('12345678901/17', rational=True) == \ Rational(12345678901, 17) assert sympify('1/.3 + x', rational=True) == Rational(10, 3) + x # make sure longs in fractions work assert sympify('222222222222/11111111111') == \ Rational(222222222222, 11111111111) # ... even if they come from repetend notation assert sympify('1/.2[123456789012]') == Rational(333333333333, 70781892967) # ... or from high precision reals assert sympify('.1234567890123456', rational=True) == \ Rational(19290123283179, 156250000000000) def test_sympify_Fraction(): try: import fractions except ImportError: pass else: value = sympify(fractions.Fraction(101, 127)) assert value == Rational(101, 127) and type(value) is Rational def test_sympify_gmpy(): if HAS_GMPY: if HAS_GMPY == 2: import gmpy2 as gmpy elif HAS_GMPY == 1: import gmpy value = sympify(gmpy.mpz(1000001)) assert value == Integer(1000001) and type(value) is Integer value = sympify(gmpy.mpq(101, 127)) assert value == Rational(101, 127) and type(value) is Rational @conserve_mpmath_dps def test_sympify_mpmath(): value = sympify(mpmath.mpf(1.0)) assert value == Float(1.0) and type(value) is Float mpmath.mp.dps = 12 assert sympify( mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-12")) == True assert sympify( mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-13")) == False mpmath.mp.dps = 6 assert sympify( mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-5")) == True assert sympify( mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-6")) == False mpmath.mp.dps = 15 assert sympify(mpmath.mpc(1.0 + 2.0j)) == Float(1.0) + Float(2.0)*I assert sympify(mpq(1, 2)) == S.Half def test_sympify2(): class A: def _sympy_(self): return Symbol("x")**3 a = A() assert _sympify(a) == x**3 assert sympify(a) == x**3 assert a == x**3 def test_sympify3(): assert sympify("x**3") == x**3 assert sympify("x^3") == x**3 assert sympify("1/2") == Integer(1)/2 raises(SympifyError, lambda: _sympify('x**3')) raises(SympifyError, lambda: _sympify('1/2')) def test_sympify_keywords(): raises(SympifyError, lambda: sympify('if')) raises(SympifyError, lambda: sympify('for')) raises(SympifyError, lambda: sympify('while')) raises(SympifyError, lambda: sympify('lambda')) def test_sympify_float(): assert sympify("1e-64") != 0 assert sympify("1e-20000") != 0 def test_sympify_bool(): assert sympify(True) is true assert sympify(False) is false def test_sympyify_iterables(): ans = [Rational(3, 10), Rational(1, 5)] assert sympify(['.3', '.2'], rational=True) == ans assert sympify(dict(x=0, y=1)) == {x: 0, y: 1} assert sympify(['1', '2', ['3', '4']]) == [S(1), S(2), [S(3), S(4)]] @XFAIL def test_issue_16772(): # because there is a converter for tuple, the # args are only sympified without the flags being passed # along; list, on the other hand, is not converted # with a converter so its args are traversed later ans = [Rational(3, 10), Rational(1, 5)] assert sympify(tuple(['.3', '.2']), rational=True) == Tuple(*ans) def test_issue_16859(): class no(float, CantSympify): pass raises(SympifyError, lambda: sympify(no(1.2))) def test_sympify4(): class A: def _sympy_(self): return Symbol("x") a = A() assert _sympify(a)**3 == x**3 assert sympify(a)**3 == x**3 assert a == x def test_sympify_text(): assert sympify('some') == Symbol('some') assert sympify('core') == Symbol('core') assert sympify('True') is True assert sympify('False') is False assert sympify('Poly') == Poly assert sympify('sin') == sin def test_sympify_function(): assert sympify('factor(x**2-1, x)') == -(1 - x)*(x + 1) assert sympify('sin(pi/2)*cos(pi)') == -Integer(1) def test_sympify_poly(): p = Poly(x**2 + x + 1, x) assert _sympify(p) is p assert sympify(p) is p def test_sympify_factorial(): assert sympify('x!') == factorial(x) assert sympify('(x+1)!') == factorial(x + 1) assert sympify('(1 + y*(x + 1))!') == factorial(1 + y*(x + 1)) assert sympify('(1 + y*(x + 1)!)^2') == (1 + y*factorial(x + 1))**2 assert sympify('y*x!') == y*factorial(x) assert sympify('x!!') == factorial2(x) assert sympify('(x+1)!!') == factorial2(x + 1) assert sympify('(1 + y*(x + 1))!!') == factorial2(1 + y*(x + 1)) assert sympify('(1 + y*(x + 1)!!)^2') == (1 + y*factorial2(x + 1))**2 assert sympify('y*x!!') == y*factorial2(x) assert sympify('factorial2(x)!') == factorial(factorial2(x)) raises(SympifyError, lambda: sympify("+!!")) raises(SympifyError, lambda: sympify(")!!")) raises(SympifyError, lambda: sympify("!")) raises(SympifyError, lambda: sympify("(!)")) raises(SympifyError, lambda: sympify("x!!!")) def test_issue_3595(): assert sympify("a_") == Symbol("a_") assert sympify("_a") == Symbol("_a") def test_lambda(): x = Symbol('x') assert sympify('lambda: 1') == Lambda((), 1) assert sympify('lambda x: x') == Lambda(x, x) assert sympify('lambda x: 2*x') == Lambda(x, 2*x) assert sympify('lambda x, y: 2*x+y') == Lambda((x, y), 2*x + y) def test_lambda_raises(): raises(SympifyError, lambda: sympify("lambda *args: args")) # args argument error raises(SympifyError, lambda: sympify("lambda **kwargs: kwargs[0]")) # kwargs argument error raises(SympifyError, lambda: sympify("lambda x = 1: x")) # Keyword argument error with raises(SympifyError): _sympify('lambda: 1') def test_sympify_raises(): raises(SympifyError, lambda: sympify("fx)")) class A: def __str__(self): return 'x' with warns_deprecated_sympy(): assert sympify(A()) == Symbol('x') def test__sympify(): x = Symbol('x') f = Function('f') # positive _sympify assert _sympify(x) is x assert _sympify(1) == Integer(1) assert _sympify(0.5) == Float("0.5") assert _sympify(1 + 1j) == 1.0 + I*1.0 # Function f is not Basic and can't sympify to Basic. We allow it to pass # with sympify but not with _sympify. # https://github.com/sympy/sympy/issues/20124 assert sympify(f) is f raises(SympifyError, lambda: _sympify(f)) class A: def _sympy_(self): return Integer(5) a = A() assert _sympify(a) == Integer(5) # negative _sympify raises(SympifyError, lambda: _sympify('1')) raises(SympifyError, lambda: _sympify([1, 2, 3])) def test_sympifyit(): x = Symbol('x') y = Symbol('y') @_sympifyit('b', NotImplemented) def add(a, b): return a + b assert add(x, 1) == x + 1 assert add(x, 0.5) == x + Float('0.5') assert add(x, y) == x + y assert add(x, '1') == NotImplemented @_sympifyit('b') def add_raises(a, b): return a + b assert add_raises(x, 1) == x + 1 assert add_raises(x, 0.5) == x + Float('0.5') assert add_raises(x, y) == x + y raises(SympifyError, lambda: add_raises(x, '1')) def test_int_float(): class F1_1: def __float__(self): return 1.1 class F1_1b: """ This class is still a float, even though it also implements __int__(). """ def __float__(self): return 1.1 def __int__(self): return 1 class F1_1c: """ This class is still a float, because it implements _sympy_() """ def __float__(self): return 1.1 def __int__(self): return 1 def _sympy_(self): return Float(1.1) class I5: def __int__(self): return 5 class I5b: """ This class implements both __int__() and __float__(), so it will be treated as Float in SymPy. One could change this behavior, by using float(a) == int(a), but deciding that integer-valued floats represent exact numbers is arbitrary and often not correct, so we do not do it. If, in the future, we decide to do it anyway, the tests for I5b need to be changed. """ def __float__(self): return 5.0 def __int__(self): return 5 class I5c: """ This class implements both __int__() and __float__(), but also a _sympy_() method, so it will be Integer. """ def __float__(self): return 5.0 def __int__(self): return 5 def _sympy_(self): return Integer(5) i5 = I5() i5b = I5b() i5c = I5c() f1_1 = F1_1() f1_1b = F1_1b() f1_1c = F1_1c() assert sympify(i5) == 5 assert isinstance(sympify(i5), Integer) assert sympify(i5b) == 5.0 assert isinstance(sympify(i5b), Float) assert sympify(i5c) == 5 assert isinstance(sympify(i5c), Integer) assert abs(sympify(f1_1) - 1.1) < 1e-5 assert abs(sympify(f1_1b) - 1.1) < 1e-5 assert abs(sympify(f1_1c) - 1.1) < 1e-5 assert _sympify(i5) == 5 assert isinstance(_sympify(i5), Integer) assert _sympify(i5b) == 5.0 assert isinstance(_sympify(i5b), Float) assert _sympify(i5c) == 5 assert isinstance(_sympify(i5c), Integer) assert abs(_sympify(f1_1) - 1.1) < 1e-5 assert abs(_sympify(f1_1b) - 1.1) < 1e-5 assert abs(_sympify(f1_1c) - 1.1) < 1e-5 def test_evaluate_false(): cases = { '2 + 3': Add(2, 3, evaluate=False), '2**2 / 3': Mul(Pow(2, 2, evaluate=False), Pow(3, -1, evaluate=False), evaluate=False), '2 + 3 * 5': Add(2, Mul(3, 5, evaluate=False), evaluate=False), '2 - 3 * 5': Add(2, Mul(-1, Mul(3, 5,evaluate=False), evaluate=False), evaluate=False), '1 / 3': Mul(1, Pow(3, -1, evaluate=False), evaluate=False), 'True | False': Or(True, False, evaluate=False), '1 + 2 + 3 + 5*3 + integrate(x)': Add(1, 2, 3, Mul(5, 3, evaluate=False), x**2/2, evaluate=False), '2 * 4 * 6 + 8': Add(Mul(2, 4, 6, evaluate=False), 8, evaluate=False), '2 - 8 / 4': Add(2, Mul(-1, Mul(8, Pow(4, -1, evaluate=False), evaluate=False), evaluate=False), evaluate=False), '2 - 2**2': Add(2, Mul(-1, Pow(2, 2, evaluate=False), evaluate=False), evaluate=False), } for case, result in cases.items(): assert sympify(case, evaluate=False) == result def test_issue_4133(): a = sympify('Integer(4)') assert a == Integer(4) assert a.is_Integer def test_issue_3982(): a = [3, 2.0] assert sympify(a) == [Integer(3), Float(2.0)] assert sympify(tuple(a)) == Tuple(Integer(3), Float(2.0)) assert sympify(set(a)) == FiniteSet(Integer(3), Float(2.0)) def test_S_sympify(): assert S(1)/2 == sympify(1)/2 == S.Half assert (-2)**(S(1)/2) == sqrt(2)*I def test_issue_4788(): assert srepr(S(1.0 + 0J)) == srepr(S(1.0)) == srepr(Float(1.0)) def test_issue_4798_None(): assert S(None) is None def test_issue_3218(): assert sympify("x+\ny") == x + y def test_issue_4988_builtins(): C = Symbol('C') vars = {'C': C} exp1 = sympify('C') assert exp1 == C # Make sure it did not get mixed up with sympy.C exp2 = sympify('C', vars) assert exp2 == C # Make sure it did not get mixed up with sympy.C def test_geometry(): p = sympify(Point(0, 1)) assert p == Point(0, 1) and isinstance(p, Point) L = sympify(Line(p, (1, 0))) assert L == Line((0, 1), (1, 0)) and isinstance(L, Line) def test_kernS(): s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))' # when 1497 is fixed, this no longer should pass: the expression # should be unchanged assert -1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) == -1 # sympification should not allow the constant to enter a Mul # or else the structure can change dramatically ss = kernS(s) assert ss != -1 and ss.simplify() == -1 s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))'.replace( 'x', '_kern') ss = kernS(s) assert ss != -1 and ss.simplify() == -1 # issue 6687 assert (kernS('Interval(-1,-2 - 4*(-3))') == Interval(-1, Add(-2, Mul(12, 1, evaluate=False), evaluate=False))) assert kernS('_kern') == Symbol('_kern') assert kernS('E**-(x)') == exp(-x) e = 2*(x + y)*y assert kernS(['2*(x + y)*y', ('2*(x + y)*y',)]) == [e, (e,)] assert kernS('-(2*sin(x)**2 + 2*sin(x)*cos(x))*y/2') == \ -y*(2*sin(x)**2 + 2*sin(x)*cos(x))/2 # issue 15132 assert kernS('(1 - x)/(1 - x*(1-y))') == kernS('(1-x)/(1-(1-y)*x)') assert kernS('(1-2**-(4+1)*(1-y)*x)') == (1 - x*(1 - y)/32) assert kernS('(1-2**(4+1)*(1-y)*x)') == (1 - 32*x*(1 - y)) assert kernS('(1-2.*(1-y)*x)') == 1 - 2.*x*(1 - y) one = kernS('x - (x - 1)') assert one != 1 and one.expand() == 1 assert kernS("(2*x)/(x-1)") == 2*x/(x-1) def test_issue_6540_6552(): assert S('[[1/3,2], (2/5,)]') == [[Rational(1, 3), 2], (Rational(2, 5),)] assert S('[[2/6,2], (2/4,)]') == [[Rational(1, 3), 2], (S.Half,)] assert S('[[[2*(1)]]]') == [[[2]]] assert S('Matrix([2*(1)])') == Matrix([2]) def test_issue_6046(): assert str(S("Q & C", locals=_clash1)) == 'C & Q' assert str(S('pi(x)', locals=_clash2)) == 'pi(x)' locals = {} exec("from sympy.abc import Q, C", locals) assert str(S('C&Q', locals)) == 'C & Q' # clash can act as Symbol or Function assert str(S('pi(C, Q)', locals=_clash)) == 'pi(C, Q)' assert len(S('pi + x', locals=_clash2).free_symbols) == 2 # but not both raises(TypeError, lambda: S('pi + pi(x)', locals=_clash2)) assert all(set(i.values()) == {null} for i in ( _clash, _clash1, _clash2)) def test_issue_8821_highprec_from_str(): s = str(pi.evalf(128)) p = sympify(s) assert Abs(sin(p)) < 1e-127 def test_issue_10295(): if not numpy: skip("numpy not installed.") A = numpy.array([[1, 3, -1], [0, 1, 7]]) sA = S(A) assert sA.shape == (2, 3) for (ri, ci), val in numpy.ndenumerate(A): assert sA[ri, ci] == val B = numpy.array([-7, x, 3*y**2]) sB = S(B) assert sB.shape == (3,) assert B[0] == sB[0] == -7 assert B[1] == sB[1] == x assert B[2] == sB[2] == 3*y**2 C = numpy.arange(0, 24) C.resize(2,3,4) sC = S(C) assert sC[0, 0, 0].is_integer assert sC[0, 0, 0] == 0 a1 = numpy.array([1, 2, 3]) a2 = numpy.array([i for i in range(24)]) a2.resize(2, 4, 3) assert sympify(a1) == ImmutableDenseNDimArray([1, 2, 3]) assert sympify(a2) == ImmutableDenseNDimArray([i for i in range(24)], (2, 4, 3)) def test_Range(): # Only works in Python 3 where range returns a range type assert sympify(range(10)) == Range(10) assert _sympify(range(10)) == Range(10) def test_sympify_set(): n = Symbol('n') assert sympify({n}) == FiniteSet(n) assert sympify(set()) == EmptySet def test_sympify_numpy(): if not numpy: skip('numpy not installed. Abort numpy tests.') np = numpy def equal(x, y): return x == y and type(x) == type(y) assert sympify(np.bool_(1)) is S(True) try: assert equal( sympify(np.int_(1234567891234567891)), S(1234567891234567891)) assert equal( sympify(np.intp(1234567891234567891)), S(1234567891234567891)) except OverflowError: # May fail on 32-bit systems: Python int too large to convert to C long pass assert equal(sympify(np.intc(1234567891)), S(1234567891)) assert equal(sympify(np.int8(-123)), S(-123)) assert equal(sympify(np.int16(-12345)), S(-12345)) assert equal(sympify(np.int32(-1234567891)), S(-1234567891)) assert equal( sympify(np.int64(-1234567891234567891)), S(-1234567891234567891)) assert equal(sympify(np.uint8(123)), S(123)) assert equal(sympify(np.uint16(12345)), S(12345)) assert equal(sympify(np.uint32(1234567891)), S(1234567891)) assert equal( sympify(np.uint64(1234567891234567891)), S(1234567891234567891)) assert equal(sympify(np.float32(1.123456)), Float(1.123456, precision=24)) assert equal(sympify(np.float64(1.1234567891234)), Float(1.1234567891234, precision=53)) # The exact precision of np.longdouble, npfloat128 and other extended # precision dtypes is platform dependent. ldprec = np.finfo(np.longdouble(1)).nmant + 1 assert equal(sympify(np.longdouble(1.123456789)), Float(1.123456789, precision=ldprec)) assert equal(sympify(np.complex64(1 + 2j)), S(1.0 + 2.0*I)) assert equal(sympify(np.complex128(1 + 2j)), S(1.0 + 2.0*I)) lcprec = np.finfo(np.longcomplex(1)).nmant + 1 assert equal(sympify(np.longcomplex(1 + 2j)), Float(1.0, precision=lcprec) + Float(2.0, precision=lcprec)*I) #float96 does not exist on all platforms if hasattr(np, 'float96'): f96prec = np.finfo(np.float96(1)).nmant + 1 assert equal(sympify(np.float96(1.123456789)), Float(1.123456789, precision=f96prec)) #float128 does not exist on all platforms if hasattr(np, 'float128'): f128prec = np.finfo(np.float128(1)).nmant + 1 assert equal(sympify(np.float128(1.123456789123)), Float(1.123456789123, precision=f128prec)) @XFAIL def test_sympify_rational_numbers_set(): ans = [Rational(3, 10), Rational(1, 5)] assert sympify({'.3', '.2'}, rational=True) == FiniteSet(*ans) def test_sympify_mro(): """Tests the resolution order for classes that implement _sympy_""" class a: def _sympy_(self): return Integer(1) class b(a): def _sympy_(self): return Integer(2) class c(a): pass assert sympify(a()) == Integer(1) assert sympify(b()) == Integer(2) assert sympify(c()) == Integer(1) def test_sympify_converter(): """Tests the resolution order for classes in converter""" class a: pass class b(a): pass class c(a): pass converter[a] = lambda x: Integer(1) converter[b] = lambda x: Integer(2) assert sympify(a()) == Integer(1) assert sympify(b()) == Integer(2) assert sympify(c()) == Integer(1) class MyInteger(Integer): pass if int in converter: int_converter = converter[int] else: int_converter = None try: converter[int] = MyInteger assert sympify(1) == MyInteger(1) finally: if int_converter is None: del converter[int] else: converter[int] = int_converter def test_issue_13924(): if not numpy: skip("numpy not installed.") a = sympify(numpy.array([1])) assert isinstance(a, ImmutableDenseNDimArray) assert a[0] == 1 def test_numpy_sympify_args(): # Issue 15098. Make sure sympify args work with numpy types (like numpy.str_) if not numpy: skip("numpy not installed.") a = sympify(numpy.str_('a')) assert type(a) is Symbol assert a == Symbol('a') class CustomSymbol(Symbol): pass a = sympify(numpy.str_('a'), {"Symbol": CustomSymbol}) assert isinstance(a, CustomSymbol) a = sympify(numpy.str_('x^y')) assert a == x**y a = sympify(numpy.str_('x^y'), convert_xor=False) assert a == Xor(x, y) raises(SympifyError, lambda: sympify(numpy.str_('x'), strict=True)) a = sympify(numpy.str_('1.1')) assert isinstance(a, Float) assert a == 1.1 a = sympify(numpy.str_('1.1'), rational=True) assert isinstance(a, Rational) assert a == Rational(11, 10) a = sympify(numpy.str_('x + x')) assert isinstance(a, Mul) assert a == 2*x a = sympify(numpy.str_('x + x'), evaluate=False) assert isinstance(a, Add) assert a == Add(x, x, evaluate=False) def test_issue_5939(): a = Symbol('a') b = Symbol('b') assert sympify('''a+\nb''') == a + b def test_issue_16759(): d = sympify({.5: 1}) assert S.Half not in d assert Float(.5) in d assert d[.5] is S.One d = sympify(OrderedDict({.5: 1})) assert S.Half not in d assert Float(.5) in d assert d[.5] is S.One d = sympify(defaultdict(int, {.5: 1})) assert S.Half not in d assert Float(.5) in d assert d[.5] is S.One def test_issue_17811(): a = Function('a') assert sympify('a(x)*5', evaluate=False) == Mul(a(x), 5, evaluate=False) def test_issue_8439(): assert sympify(float('inf')) == oo assert x + float('inf') == x + oo assert S(float('inf')) == oo def test_issue_14706(): if not numpy: skip("numpy not installed.") z1 = numpy.zeros((1, 1), dtype=numpy.float64) z2 = numpy.zeros((2, 2), dtype=numpy.float64) z3 = numpy.zeros((), dtype=numpy.float64) y1 = numpy.ones((1, 1), dtype=numpy.float64) y2 = numpy.ones((2, 2), dtype=numpy.float64) y3 = numpy.ones((), dtype=numpy.float64) assert numpy.all(x + z1 == numpy.full((1, 1), x)) assert numpy.all(x + z2 == numpy.full((2, 2), x)) assert numpy.all(z1 + x == numpy.full((1, 1), x)) assert numpy.all(z2 + x == numpy.full((2, 2), x)) for z in [z3, numpy.int64(0), numpy.float64(0), numpy.complex64(0)]: assert x + z == x assert z + x == x assert isinstance(x + z, Symbol) assert isinstance(z + x, Symbol) # If these tests fail, then it means that numpy has finally # fixed the issue of scalar conversion for rank>0 arrays # which is mentioned in numpy/numpy#10404. In that case, # some changes have to be made in sympify.py. # Note: For future reference, for anyone who takes up this # issue when numpy has finally fixed their side of the problem, # the changes for this temporary fix were introduced in PR 18651 assert numpy.all(x + y1 == numpy.full((1, 1), x + 1.0)) assert numpy.all(x + y2 == numpy.full((2, 2), x + 1.0)) assert numpy.all(y1 + x == numpy.full((1, 1), x + 1.0)) assert numpy.all(y2 + x == numpy.full((2, 2), x + 1.0)) for y_ in [y3, numpy.int64(1), numpy.float64(1), numpy.complex64(1)]: assert x + y_ == y_ + x assert isinstance(x + y_, Add) assert isinstance(y_ + x, Add) assert x + numpy.array(x) == 2 * x assert x + numpy.array([x]) == numpy.array([2*x], dtype=object) assert sympify(numpy.array([1])) == ImmutableDenseNDimArray([1], 1) assert sympify(numpy.array([[[1]]])) == ImmutableDenseNDimArray([1], (1, 1, 1)) assert sympify(z1) == ImmutableDenseNDimArray([0.0], (1, 1)) assert sympify(z2) == ImmutableDenseNDimArray([0.0, 0.0, 0.0, 0.0], (2, 2)) assert sympify(z3) == ImmutableDenseNDimArray([0.0], ()) assert sympify(z3, strict=True) == 0.0 raises(SympifyError, lambda: sympify(numpy.array([1]), strict=True)) raises(SympifyError, lambda: sympify(z1, strict=True)) raises(SympifyError, lambda: sympify(z2, strict=True)) def test_issue_21536(): #test to check evaluate=False in case of iterable input u = sympify("x+3*x+2", evaluate=False) v = sympify("2*x+4*x+2+4", evaluate=False) assert u.is_Add and set(u.args) == {x, 3*x, 2} assert v.is_Add and set(v.args) == {2*x, 4*x, 2, 4} assert sympify(["x+3*x+2", "2*x+4*x+2+4"], evaluate=False) == [u, v] #test to check evaluate=True in case of iterable input u = sympify("x+3*x+2", evaluate=True) v = sympify("2*x+4*x+2+4", evaluate=True) assert u.is_Add and set(u.args) == {4*x, 2} assert v.is_Add and set(v.args) == {6*x, 6} assert sympify(["x+3*x+2", "2*x+4*x+2+4"], evaluate=True) == [u, v] #test to check evaluate with no input in case of iterable input u = sympify("x+3*x+2") v = sympify("2*x+4*x+2+4") assert u.is_Add and set(u.args) == {4*x, 2} assert v.is_Add and set(v.args) == {6*x, 6} assert sympify(["x+3*x+2", "2*x+4*x+2+4"]) == [u, v]
4a13ad6b5f3173e8c59529e79478725ac0ee98bc9046bf756220b58ff80bf52c
import math from sympy.concrete.products import (Product, product) from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.evalf import N from sympy.core.function import (Function, nfloat) from sympy.core.mul import Mul from sympy.core import (GoldenRatio) from sympy.core.numbers import (AlgebraicNumber, E, Float, I, Rational, oo, zoo, nan, pi) from sympy.core.power import Pow from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import factorial from sympy.functions.combinatorial.numbers import fibonacci from sympy.functions.elementary.complexes import (Abs, re, im) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.hyperbolic import (acosh, cosh) from sympy.functions.elementary.integers import (ceiling, floor) from sympy.functions.elementary.miscellaneous import (Max, sqrt) from sympy.functions.elementary.trigonometric import (acos, atan, cos, sin, tan) from sympy.integrals.integrals import (Integral, integrate) from sympy.polys.polytools import factor from sympy.polys.rootoftools import CRootOf from sympy.polys.specialpolys import cyclotomic_poly from sympy.printing import srepr from sympy.printing.str import sstr from sympy.simplify.simplify import simplify from sympy.core.numbers import comp from sympy.core.evalf import (complex_accuracy, PrecisionExhausted, scaled_zero, get_integer_part, as_mpmath, evalf, _evalf_with_bounded_error) from mpmath import inf, ninf, make_mpc from mpmath.libmp.libmpf import from_float, fzero from sympy.core.expr import unchanged from sympy.testing.pytest import raises, XFAIL from sympy.abc import n, x, y def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_evalf_helpers(): from mpmath.libmp import finf assert complex_accuracy((from_float(2.0), None, 35, None)) == 35 assert complex_accuracy((from_float(2.0), from_float(10.0), 35, 100)) == 37 assert complex_accuracy( (from_float(2.0), from_float(1000.0), 35, 100)) == 43 assert complex_accuracy((from_float(2.0), from_float(10.0), 100, 35)) == 35 assert complex_accuracy( (from_float(2.0), from_float(1000.0), 100, 35)) == 35 assert complex_accuracy(finf) == math.inf assert complex_accuracy(zoo) == math.inf raises(ValueError, lambda: get_integer_part(zoo, 1, {})) def test_evalf_basic(): assert NS('pi', 15) == '3.14159265358979' assert NS('2/3', 10) == '0.6666666667' assert NS('355/113-pi', 6) == '2.66764e-7' assert NS('16*atan(1/5)-4*atan(1/239)', 15) == '3.14159265358979' def test_cancellation(): assert NS(Add(pi, Rational(1, 10**1000), -pi, evaluate=False), 15, maxn=1200) == '1.00000000000000e-1000' def test_evalf_powers(): assert NS('pi**(10**20)', 10) == '1.339148777e+49714987269413385435' assert NS(pi**(10**100), 10) == ('4.946362032e+4971498726941338543512682882' '9089887365167832438044244613405349992494711208' '95526746555473864642912223') assert NS('2**(1/10**50)', 15) == '1.00000000000000' assert NS('2**(1/10**50)-1', 15) == '6.93147180559945e-51' # Evaluation of Rump's ill-conditioned polynomial def test_evalf_rump(): a = 1335*y**6/4 + x**2*(11*x**2*y**2 - y**6 - 121*y**4 - 2) + 11*y**8/2 + x/(2*y) assert NS(a, 15, subs={x: 77617, y: 33096}) == '-0.827396059946821' def test_evalf_complex(): assert NS('2*sqrt(pi)*I', 10) == '3.544907702*I' assert NS('3+3*I', 15) == '3.00000000000000 + 3.00000000000000*I' assert NS('E+pi*I', 15) == '2.71828182845905 + 3.14159265358979*I' assert NS('pi * (3+4*I)', 15) == '9.42477796076938 + 12.5663706143592*I' assert NS('I*(2+I)', 15) == '-1.00000000000000 + 2.00000000000000*I' @XFAIL def test_evalf_complex_bug(): assert NS('(pi+E*I)*(E+pi*I)', 15) in ('0.e-15 + 17.25866050002*I', '0.e-17 + 17.25866050002*I', '-0.e-17 + 17.25866050002*I') def test_evalf_complex_powers(): assert NS('(E+pi*I)**100000000000000000') == \ '-3.58896782867793e+61850354284995199 + 4.58581754997159e+61850354284995199*I' # XXX: rewrite if a+a*I simplification introduced in SymPy #assert NS('(pi + pi*I)**2') in ('0.e-15 + 19.7392088021787*I', '0.e-16 + 19.7392088021787*I') assert NS('(pi + pi*I)**2', chop=True) == '19.7392088021787*I' assert NS( '(pi + 1/10**8 + pi*I)**2') == '6.2831853e-8 + 19.7392088650106*I' assert NS('(pi + 1/10**12 + pi*I)**2') == '6.283e-12 + 19.7392088021850*I' assert NS('(pi + pi*I)**4', chop=True) == '-389.636364136010' assert NS( '(pi + 1/10**8 + pi*I)**4') == '-389.636366616512 + 2.4805021e-6*I' assert NS('(pi + 1/10**12 + pi*I)**4') == '-389.636364136258 + 2.481e-10*I' assert NS( '(10000*pi + 10000*pi*I)**4', chop=True) == '-3.89636364136010e+18' @XFAIL def test_evalf_complex_powers_bug(): assert NS('(pi + pi*I)**4') == '-389.63636413601 + 0.e-14*I' def test_evalf_exponentiation(): assert NS(sqrt(-pi)) == '1.77245385090552*I' assert NS(Pow(pi*I, Rational( 1, 2), evaluate=False)) == '1.25331413731550 + 1.25331413731550*I' assert NS(pi**I) == '0.413292116101594 + 0.910598499212615*I' assert NS(pi**(E + I/3)) == '20.8438653991931 + 8.36343473930031*I' assert NS((pi + I/3)**(E + I/3)) == '17.2442906093590 + 13.6839376767037*I' assert NS(exp(pi)) == '23.1406926327793' assert NS(exp(pi + E*I)) == '-21.0981542849657 + 9.50576358282422*I' assert NS(pi**pi) == '36.4621596072079' assert NS((-pi)**pi) == '-32.9138577418939 - 15.6897116534332*I' assert NS((-pi)**(-pi)) == '-0.0247567717232697 + 0.0118013091280262*I' # An example from Smith, "Multiple Precision Complex Arithmetic and Functions" def test_evalf_complex_cancellation(): A = Rational('63287/100000') B = Rational('52498/100000') C = Rational('69301/100000') D = Rational('83542/100000') F = Rational('2231321613/2500000000') # XXX: the number of returned mantissa digits in the real part could # change with the implementation. What matters is that the returned digits are # correct; those that are showing now are correct. # >>> ((A+B*I)*(C+D*I)).expand() # 64471/10000000000 + 2231321613*I/2500000000 # >>> 2231321613*4 # 8925286452L assert NS((A + B*I)*(C + D*I), 6) == '6.44710e-6 + 0.892529*I' assert NS((A + B*I)*(C + D*I), 10) == '6.447100000e-6 + 0.8925286452*I' assert NS((A + B*I)*( C + D*I) - F*I, 5) in ('6.4471e-6 + 0.e-14*I', '6.4471e-6 - 0.e-14*I') def test_evalf_logs(): assert NS("log(3+pi*I)", 15) == '1.46877619736226 + 0.808448792630022*I' assert NS("log(pi*I)", 15) == '1.14472988584940 + 1.57079632679490*I' assert NS('log(-1 + 0.00001)', 2) == '-1.0e-5 + 3.1*I' assert NS('log(100, 10, evaluate=False)', 15) == '2.00000000000000' assert NS('-2*I*log(-(-1)**(S(1)/9))', 15) == '-5.58505360638185' def test_evalf_trig(): assert NS('sin(1)', 15) == '0.841470984807897' assert NS('cos(1)', 15) == '0.540302305868140' assert NS('sin(10**-6)', 15) == '9.99999999999833e-7' assert NS('cos(10**-6)', 15) == '0.999999999999500' assert NS('sin(E*10**100)', 15) == '0.409160531722613' # Some input near roots assert NS(sin(exp(pi*sqrt(163))*pi), 15) == '-2.35596641936785e-12' assert NS(sin(pi*10**100 + Rational(7, 10**5), evaluate=False), 15, maxn=120) == \ '6.99999999428333e-5' assert NS(sin(Rational(7, 10**5), evaluate=False), 15) == \ '6.99999999428333e-5' # Check detection of various false identities def test_evalf_near_integers(): # Binet's formula f = lambda n: ((1 + sqrt(5))**n)/(2**n * sqrt(5)) assert NS(f(5000) - fibonacci(5000), 10, maxn=1500) == '5.156009964e-1046' # Some near-integer identities from # http://mathworld.wolfram.com/AlmostInteger.html assert NS('sin(2017*2**(1/5))', 15) == '-1.00000000000000' assert NS('sin(2017*2**(1/5))', 20) == '-0.99999999999999997857' assert NS('1+sin(2017*2**(1/5))', 15) == '2.14322287389390e-17' assert NS('45 - 613*E/37 + 35/991', 15) == '6.03764498766326e-11' def test_evalf_ramanujan(): assert NS(exp(pi*sqrt(163)) - 640320**3 - 744, 10) == '-7.499274028e-13' # A related identity A = 262537412640768744*exp(-pi*sqrt(163)) B = 196884*exp(-2*pi*sqrt(163)) C = 103378831900730205293632*exp(-3*pi*sqrt(163)) assert NS(1 - A - B + C, 10) == '1.613679005e-59' # Input that for various reasons have failed at some point def test_evalf_bugs(): assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10) assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10) assert NS('expand_log(log(1+1/10**50))', 20) == '1.0000000000000000000e-50' assert NS('log(10**100,10)', 10) == '100.0000000' assert NS('log(2)', 10) == '0.6931471806' assert NS( '(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667' assert NS(sin(1) + Rational( 1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I' assert x.evalf() == x assert NS((1 + I)**2*I, 6) == '-2.00000' d = {n: ( -1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)} assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I' assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619' assert NS((1 + I)**2*I, 15) == '-2.00000000000000' # issue 4758 (1/2): assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71' # issue 4758 (2/2): With the bug present, this still only fails if the # terms are in the order given here. This is not generally the case, # because the order depends on the hashes of the terms. assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n, subs={n: .01}) == '19.8100000000000' assert NS(((x - 1)*(1 - x)**1000).n() ) == '(1.00000000000000 - x)**1000*(x - 1.00000000000000)' assert NS((-x).n()) == '-x' assert NS((-2*x).n()) == '-2.00000000000000*x' assert NS((-2*x*y).n()) == '-2.00000000000000*x*y' assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n() # issue 6660. Also NaN != mpmath.nan # In this order: # 0*nan, 0/nan, 0*inf, 0/inf # 0+nan, 0-nan, 0+inf, 0-inf # >>> n = Some Number # n*nan, n/nan, n*inf, n/inf # n+nan, n-nan, n+inf, n-inf assert (0*E**(oo)).n() is S.NaN assert (0/E**(oo)).n() is S.Zero assert (0+E**(oo)).n() is S.Infinity assert (0-E**(oo)).n() is S.NegativeInfinity assert (5*E**(oo)).n() is S.Infinity assert (5/E**(oo)).n() is S.Zero assert (5+E**(oo)).n() is S.Infinity assert (5-E**(oo)).n() is S.NegativeInfinity #issue 7416 assert as_mpmath(0.0, 10, {'chop': True}) == 0 #issue 5412 assert ((oo*I).n() == S.Infinity*I) assert ((oo+oo*I).n() == S.Infinity + S.Infinity*I) #issue 11518 assert NS(2*x**2.5, 5) == '2.0000*x**2.5000' #issue 13076 assert NS(Mul(Max(0, y), x, evaluate=False).evalf()) == 'x*Max(0, y)' #issue 18516 assert NS(log(S(3273390607896141870013189696827599152216642046043064789483291368096133796404674554883270092325904157150886684127560071009217256545885393053328527589376)/36360291795869936842385267079543319118023385026001623040346035832580600191583895484198508262979388783308179702534403855752855931517013066142992430916562025780021771247847643450125342836565813209972590371590152578728008385990139795377610001).evalf(15, chop=True)) == '-oo' def test_evalf_integer_parts(): a = floor(log(8)/log(2) - exp(-1000), evaluate=False) b = floor(log(8)/log(2), evaluate=False) assert a.evalf() == 3.0 assert b.evalf() == 3.0 # equals, as a fallback, can still fail but it might succeed as here assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10 assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \ int(11188719610782480504630258070757734324011354208865721592720336800) assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \ int(11188719610782480504630258070757734324011354208865721592720336801) assert int(floor(GoldenRatio**999 / sqrt(5) + S.Half) .evalf(1000)) == fibonacci(999) assert int(floor(GoldenRatio**1000 / sqrt(5) + S.Half) .evalf(1000)) == fibonacci(1000) assert ceiling(x).evalf(subs={x: 3}) == 3.0 assert ceiling(x).evalf(subs={x: 3*I}) == 3.0*I assert ceiling(x).evalf(subs={x: 2 + 3*I}) == 2.0 + 3.0*I assert ceiling(x).evalf(subs={x: 3.}) == 3.0 assert ceiling(x).evalf(subs={x: 3.*I}) == 3.0*I assert ceiling(x).evalf(subs={x: 2. + 3*I}) == 2.0 + 3.0*I assert float((floor(1.5, evaluate=False)+1/9).evalf()) == 1 + 1/9 assert float((floor(0.5, evaluate=False)+20).evalf()) == 20 # issue 19991 n = 1169809367327212570704813632106852886389036911 r = 744723773141314414542111064094745678855643068 assert floor(n / (pi / 2)) == r assert floor(80782 * sqrt(2)) == 114242 # issue 20076 assert 260515 - floor(260515/pi + 1/2) * pi == atan(tan(260515)) def test_evalf_trig_zero_detection(): a = sin(160*pi, evaluate=False) t = a.evalf(maxn=100) assert abs(t) < 1e-100 assert t._prec < 2 assert a.evalf(chop=True) == 0 raises(PrecisionExhausted, lambda: a.evalf(strict=True)) def test_evalf_sum(): assert Sum(n,(n,1,2)).evalf() == 3. assert Sum(n,(n,1,2)).doit().evalf() == 3. # the next test should return instantly assert Sum(1/n,(n,1,2)).evalf() == 1.5 # issue 8219 assert Sum(E/factorial(n), (n, 0, oo)).evalf() == (E*E).evalf() # issue 8254 assert Sum(2**n*n/factorial(n), (n, 0, oo)).evalf() == (2*E*E).evalf() # issue 8411 s = Sum(1/x**2, (x, 100, oo)) assert s.n() == s.doit().n() def test_evalf_divergent_series(): raises(ValueError, lambda: Sum(1/n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(n/(n**2 + 1), (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(n**2, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(2**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-2)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((2*n + 3)/(3*n**2 + 4), (n, 0, oo)).evalf()) raises(ValueError, lambda: Sum((0.5*n**3)/(n**4 + 1), (n, 0, oo)).evalf()) def test_evalf_product(): assert Product(n, (n, 1, 10)).evalf() == 3628800. assert comp(Product(1 - S.Half**2/n**2, (n, 1, oo)).n(5), 0.63662) assert Product(n, (n, -1, 3)).evalf() == 0 def test_evalf_py_methods(): assert abs(float(pi + 1) - 4.1415926535897932) < 1e-10 assert abs(complex(pi + 1) - 4.1415926535897932) < 1e-10 assert abs( complex(pi + E*I) - (3.1415926535897931 + 2.7182818284590451j)) < 1e-10 raises(TypeError, lambda: float(pi + x)) def test_evalf_power_subs_bugs(): assert (x**2).evalf(subs={x: 0}) == 0 assert sqrt(x).evalf(subs={x: 0}) == 0 assert (x**Rational(2, 3)).evalf(subs={x: 0}) == 0 assert (x**x).evalf(subs={x: 0}) == 1.0 assert (3**x).evalf(subs={x: 0}) == 1.0 assert exp(x).evalf(subs={x: 0}) == 1.0 assert ((2 + I)**x).evalf(subs={x: 0}) == 1.0 assert (0**x).evalf(subs={x: 0}) == 1.0 def test_evalf_arguments(): raises(TypeError, lambda: pi.evalf(method="garbage")) def test_implemented_function_evalf(): from sympy.utilities.lambdify import implemented_function f = Function('f') f = implemented_function(f, lambda x: x + 1) assert str(f(x)) == "f(x)" assert str(f(2)) == "f(2)" assert f(2).evalf() == 3.0 assert f(x).evalf() == f(x) f = implemented_function(Function('sin'), lambda x: x + 1) assert f(2).evalf() != sin(2) del f._imp_ # XXX: due to caching _imp_ would influence all other tests def test_evaluate_false(): for no in [0, False]: assert Add(3, 2, evaluate=no).is_Add assert Mul(3, 2, evaluate=no).is_Mul assert Pow(3, 2, evaluate=no).is_Pow assert Pow(y, 2, evaluate=True) - Pow(y, 2, evaluate=True) == 0 def test_evalf_relational(): assert Eq(x/5, y/10).evalf() == Eq(0.2*x, 0.1*y) # if this first assertion fails it should be replaced with # one that doesn't assert unchanged(Eq, (3 - I)**2/2 + I, 0) assert Eq((3 - I)**2/2 + I, 0).n() is S.false assert nfloat(Eq((3 - I)**2 + I, 0)) == S.false def test_issue_5486(): assert not cos(sqrt(0.5 + I)).n().is_Function def test_issue_5486_bug(): from sympy.core.expr import Expr from sympy.core.numbers import I assert abs(Expr._from_mpmath(I._to_mpmath(15), 15) - I) < 1.0e-15 def test_bugs(): from sympy.functions.elementary.complexes import (polar_lift, re) assert abs(re((1 + I)**2)) < 1e-15 # anything that evalf's to 0 will do in place of polar_lift assert abs(polar_lift(0)).n() == 0 def test_subs(): assert NS('besseli(-x, y) - besseli(x, y)', subs={x: 3.5, y: 20.0}) == \ '-4.92535585957223e-10' assert NS('Piecewise((x, x>0)) + Piecewise((1-x, x>0))', subs={x: 0.1}) == \ '1.00000000000000' raises(TypeError, lambda: x.evalf(subs=(x, 1))) def test_issue_4956_5204(): # issue 4956 v = S('''(-27*12**(1/3)*sqrt(31)*I + 27*2**(2/3)*3**(1/3)*sqrt(31)*I)/(-2511*2**(2/3)*3**(1/3) + (29*18**(1/3) + 9*2**(1/3)*3**(2/3)*sqrt(31)*I + 87*2**(1/3)*3**(1/6)*I)**2)''') assert NS(v, 1) == '0.e-118 - 0.e-118*I' # issue 5204 v = S('''-(357587765856 + 18873261792*249**(1/2) + 56619785376*I*83**(1/2) + 108755765856*I*3**(1/2) + 41281887168*6**(1/3)*(1422 + 54*249**(1/2))**(1/3) - 1239810624*6**(1/3)*249**(1/2)*(1422 + 54*249**(1/2))**(1/3) - 3110400000*I*6**(1/3)*83**(1/2)*(1422 + 54*249**(1/2))**(1/3) + 13478400000*I*3**(1/2)*6**(1/3)*(1422 + 54*249**(1/2))**(1/3) + 1274950152*6**(2/3)*(1422 + 54*249**(1/2))**(2/3) + 32347944*6**(2/3)*249**(1/2)*(1422 + 54*249**(1/2))**(2/3) - 1758790152*I*3**(1/2)*6**(2/3)*(1422 + 54*249**(1/2))**(2/3) - 304403832*I*6**(2/3)*83**(1/2)*(1422 + 4*249**(1/2))**(2/3))/(175732658352 + (1106028 + 25596*249**(1/2) + 76788*I*83**(1/2))**2)''') assert NS(v, 5) == '0.077284 + 1.1104*I' assert NS(v, 1) == '0.08 + 1.*I' def test_old_docstring(): a = (E + pi*I)*(E - pi*I) assert NS(a) == '17.2586605000200' assert a.n() == 17.25866050002001 def test_issue_4806(): assert integrate(atan(x)**2, (x, -1, 1)).evalf().round(1) == Float(0.5, 1) assert atan(0, evaluate=False).n() == 0 def test_evalf_mul(): # SymPy should not try to expand this; it should be handled term-wise # in evalf through mpmath assert NS(product(1 + sqrt(n)*I, (n, 1, 500)), 1) == '5.e+567 + 2.e+568*I' def test_scaled_zero(): a, b = (([0], 1, 100, 1), -1) assert scaled_zero(100) == (a, b) assert scaled_zero(a) == (0, 1, 100, 1) a, b = (([1], 1, 100, 1), -1) assert scaled_zero(100, -1) == (a, b) assert scaled_zero(a) == (1, 1, 100, 1) raises(ValueError, lambda: scaled_zero(scaled_zero(100))) raises(ValueError, lambda: scaled_zero(100, 2)) raises(ValueError, lambda: scaled_zero(100, 0)) raises(ValueError, lambda: scaled_zero((1, 5, 1, 3))) def test_chop_value(): for i in range(-27, 28): assert (Pow(10, i)*2).n(chop=10**i) and not (Pow(10, i)).n(chop=10**i) def test_infinities(): assert oo.evalf(chop=True) == inf assert (-oo).evalf(chop=True) == ninf def test_to_mpmath(): assert sqrt(3)._to_mpmath(20)._mpf_ == (0, int(908093), -19, 20) assert S(3.2)._to_mpmath(20)._mpf_ == (0, int(838861), -18, 20) def test_issue_6632_evalf(): add = (-100000*sqrt(2500000001) + 5000000001) assert add.n() == 9.999999998e-11 assert (add*add).n() == 9.999999996e-21 def test_issue_4945(): from sympy.abc import H assert (H/0).evalf(subs={H:1}) == zoo def test_evalf_integral(): # test that workprec has to increase in order to get a result other than 0 eps = Rational(1, 1000000) assert Integral(sin(x), (x, -pi, pi + eps)).n(2)._prec == 10 def test_issue_8821_highprec_from_str(): s = str(pi.evalf(128)) p = N(s) assert Abs(sin(p)) < 1e-15 p = N(s, 64) assert Abs(sin(p)) < 1e-64 def test_issue_8853(): p = Symbol('x', even=True, positive=True) assert floor(-p - S.Half).is_even == False assert floor(-p + S.Half).is_even == True assert ceiling(p - S.Half).is_even == True assert ceiling(p + S.Half).is_even == False assert get_integer_part(S.Half, -1, {}, True) == (0, 0) assert get_integer_part(S.Half, 1, {}, True) == (1, 0) assert get_integer_part(Rational(-1, 2), -1, {}, True) == (-1, 0) assert get_integer_part(Rational(-1, 2), 1, {}, True) == (0, 0) def test_issue_17681(): class identity_func(Function): def _eval_evalf(self, *args, **kwargs): return self.args[0].evalf(*args, **kwargs) assert floor(identity_func(S(0))) == 0 assert get_integer_part(S(0), 1, {}, True) == (0, 0) def test_issue_9326(): from sympy.core.symbol import Dummy d1 = Dummy('d') d2 = Dummy('d') e = d1 + d2 assert e.evalf(subs = {d1: 1, d2: 2}) == 3.0 def test_issue_10323(): assert ceiling(sqrt(2**30 + 1)) == 2**15 + 1 def test_AssocOp_Function(): # the first arg of Min is not comparable in the imaginary part raises(ValueError, lambda: S(''' Min(-sqrt(3)*cos(pi/18)/6 + re(1/((-1/2 - sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 + sin(pi/18)/2 + 2 + I*(-cos(pi/18)/2 - sqrt(3)*sin(pi/18)/6 + im(1/((-1/2 - sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3), re(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*cos(pi/18)/6 - sin(pi/18)/2 + 2 + I*(im(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*sin(pi/18)/6 + cos(pi/18)/2))''')) # if that is changed so a non-comparable number remains as # an arg, then the Min/Max instantiation needs to be changed # to watch out for non-comparable args when making simplifications # and the following test should be added instead (with e being # the sympified expression above): # raises(ValueError, lambda: e._eval_evalf(2)) def test_issue_10395(): eq = x*Max(0, y) assert nfloat(eq) == eq eq = x*Max(y, -1.1) assert nfloat(eq) == eq assert Max(y, 4).n() == Max(4.0, y) def test_issue_13098(): assert floor(log(S('9.'+'9'*20), 10)) == 0 assert ceiling(log(S('9.'+'9'*20), 10)) == 1 assert floor(log(20 - S('9.'+'9'*20), 10)) == 1 assert ceiling(log(20 - S('9.'+'9'*20), 10)) == 2 def test_issue_14601(): e = 5*x*y/2 - y*(35*(x**3)/2 - 15*x/2) subst = {x:0.0, y:0.0} e2 = e.evalf(subs=subst) assert float(e2) == 0.0 assert float((x + x*(x**2 + x)).evalf(subs={x: 0.0})) == 0.0 def test_issue_11151(): z = S.Zero e = Sum(z, (x, 1, 2)) assert e != z # it shouldn't evaluate # when it does evaluate, this is what it should give assert evalf(e, 15, {}) == \ evalf(z, 15, {}) == (None, None, 15, None) # so this shouldn't fail assert (e/2).n() == 0 # this was where the issue appeared expr0 = Sum(x**2 + x, (x, 1, 2)) expr1 = Sum(0, (x, 1, 2)) expr2 = expr1/expr0 assert simplify(factor(expr2) - expr2) == 0 def test_issue_13425(): assert N('2**.5', 30) == N('sqrt(2)', 30) assert N('x - x', 30) == 0 assert abs((N('pi*.1', 22)*10 - pi).n()) < 1e-22 def test_issue_17421(): assert N(acos(-I + acosh(cosh(cosh(1) + I)))) == 1.0*I def test_issue_20291(): from sympy.sets import EmptySet, Reals from sympy.sets.sets import (Complement, FiniteSet, Intersection) a = Symbol('a') b = Symbol('b') A = FiniteSet(a, b) assert A.evalf(subs={a: 1, b: 2}) == FiniteSet(1.0, 2.0) B = FiniteSet(a-b, 1) assert B.evalf(subs={a: 1, b: 2}) == FiniteSet(-1.0, 1.0) sol = Complement(Intersection(FiniteSet(-b/2 - sqrt(b**2-4*pi)/2), Reals), FiniteSet(0)) assert sol.evalf(subs={b: 1}) == EmptySet def test_evalf_with_zoo(): assert (1/x).evalf(subs={x: 0}) == zoo # issue 8242 assert (-1/x).evalf(subs={x: 0}) == zoo # PR 16150 assert (0 ** x).evalf(subs={x: -1}) == zoo # PR 16150 assert (0 ** x).evalf(subs={x: -1 + I}) == nan assert Mul(2, Pow(0, -1, evaluate=False), evaluate=False).evalf() == zoo # issue 21147 assert Mul(x, 1/x, evaluate=False).evalf(subs={x: 0}) == Mul(x, 1/x, evaluate=False).subs(x, 0) == nan assert Mul(1/x, 1/x, evaluate=False).evalf(subs={x: 0}) == zoo assert Mul(1/x, Abs(1/x), evaluate=False).evalf(subs={x: 0}) == zoo assert Abs(zoo, evaluate=False).evalf() == oo assert re(zoo, evaluate=False).evalf() == nan assert im(zoo, evaluate=False).evalf() == nan assert Add(zoo, zoo, evaluate=False).evalf() == nan assert Add(oo, zoo, evaluate=False).evalf() == nan assert Pow(zoo, -1, evaluate=False).evalf() == 0 assert Pow(zoo, Rational(-1, 3), evaluate=False).evalf() == 0 assert Pow(zoo, Rational(1, 3), evaluate=False).evalf() == zoo assert Pow(zoo, S.Half, evaluate=False).evalf() == zoo assert Pow(zoo, 2, evaluate=False).evalf() == zoo assert Pow(0, zoo, evaluate=False).evalf() == nan assert log(zoo, evaluate=False).evalf() == zoo assert zoo.evalf(chop=True) == zoo assert x.evalf(subs={x: zoo}) == zoo def test_evalf_with_bounded_error(): cases = [ # zero (Rational(0), None, 1), # zero im part (pi, None, 10), # zero real part (pi*I, None, 10), # re and im nonzero (2-3*I, None, 5), # similar tests again, but using eps instead of m (Rational(0), Rational(1, 2), None), (pi, Rational(1, 1000), None), (pi * I, Rational(1, 1000), None), (2 - 3 * I, Rational(1, 1000), None), # very large eps (2 - 3 * I, Rational(1000), None), # case where x already small, hence some cancellation in p = m + n - 1 (Rational(1234, 10**8), Rational(1, 10**12), None), ] for x0, eps, m in cases: a, b, _, _ = evalf(x0, 53, {}) c, d, _, _ = _evalf_with_bounded_error(x0, eps, m) if eps is None: eps = 2**(-m) z = make_mpc((a or fzero, b or fzero)) w = make_mpc((c or fzero, d or fzero)) assert abs(w - z) < eps # eps must be positive raises(ValueError, lambda: _evalf_with_bounded_error(pi, Rational(0))) raises(ValueError, lambda: _evalf_with_bounded_error(pi, -pi)) raises(ValueError, lambda: _evalf_with_bounded_error(pi, I)) def test_issue_22849(): a = -8 + 3 * sqrt(3) x = AlgebraicNumber(a) assert evalf(a, 1, {}) == evalf(x, 1, {}) def test_evalf_real_alg_num(): # This test demonstrates why the entry for `AlgebraicNumber` in # `sympy.core.evalf._create_evalf_table()` has to use `x.to_root()`, # instead of `x.as_expr()`. If the latter is used, then `z` will be # a complex number with `0.e-20` for imaginary part, even though `a5` # is a real number. zeta = Symbol('zeta') a5 = AlgebraicNumber(CRootOf(cyclotomic_poly(5), -1), [-1, -1, 0, 0], alias=zeta) z = a5.evalf() assert isinstance(z, Float) assert not hasattr(z, '_mpc_') assert hasattr(z, '_mpf_') def test_issue_20733(): expr = 1/((x - 9)*(x - 8)*(x - 7)*(x - 4)**2*(x - 3)**3*(x - 2)) assert str(expr.evalf(1, subs={x:1})) == '-4.e-5' assert str(expr.evalf(2, subs={x:1})) == '-4.1e-5' assert str(expr.evalf(11, subs={x:1})) == '-4.1335978836e-5' assert str(expr.evalf(20, subs={x:1})) == '-0.000041335978835978835979' expr = Mul(*((x - i) for i in range(2, 1000))) assert srepr(expr.evalf(2, subs={x: 1})) == "Float('4.0271e+2561', precision=10)" assert srepr(expr.evalf(10, subs={x: 1})) == "Float('4.02790050126e+2561', precision=37)" assert srepr(expr.evalf(53, subs={x: 1})) == "Float('4.0279005012722099453824067459760158730668154575647110393e+2561', precision=179)"
e0f5d4c09fd8757f5e81b60dacfc08facdc89034c6c9185867ac5cff554b53b0
"""Implementation of :class:`AlgebraicField` class. """ from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.polys.domains.characteristiczero import CharacteristicZero from sympy.polys.domains.field import Field from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyclasses import ANP from sympy.polys.polyerrors import CoercionFailed, DomainError, NotAlgebraic, IsomorphismFailed from sympy.utilities import public @public class AlgebraicField(Field, CharacteristicZero, SimpleDomain): r"""Algebraic number field :ref:`QQ(a)` A :ref:`QQ(a)` domain represents an `algebraic number field`_ `\mathbb{Q}(a)` as a :py:class:`~.Domain` in the domain system (see :ref:`polys-domainsintro`). A :py:class:`~.Poly` created from an expression involving `algebraic numbers`_ will treat the algebraic numbers as generators if the generators argument is not specified. >>> from sympy import Poly, Symbol, sqrt >>> x = Symbol('x') >>> Poly(x**2 + sqrt(2)) Poly(x**2 + (sqrt(2)), x, sqrt(2), domain='ZZ') That is a multivariate polynomial with ``sqrt(2)`` treated as one of the generators (variables). If the generators are explicitly specified then ``sqrt(2)`` will be considered to be a coefficient but by default the :ref:`EX` domain is used. To make a :py:class:`~.Poly` with a :ref:`QQ(a)` domain the argument ``extension=True`` can be given. >>> Poly(x**2 + sqrt(2), x) Poly(x**2 + sqrt(2), x, domain='EX') >>> Poly(x**2 + sqrt(2), x, extension=True) Poly(x**2 + sqrt(2), x, domain='QQ<sqrt(2)>') A generator of the algebraic field extension can also be specified explicitly which is particularly useful if the coefficients are all rational but an extension field is needed (e.g. to factor the polynomial). >>> Poly(x**2 + 1) Poly(x**2 + 1, x, domain='ZZ') >>> Poly(x**2 + 1, extension=sqrt(2)) Poly(x**2 + 1, x, domain='QQ<sqrt(2)>') It is possible to factorise a polynomial over a :ref:`QQ(a)` domain using the ``extension`` argument to :py:func:`~.factor` or by specifying the domain explicitly. >>> from sympy import factor, QQ >>> factor(x**2 - 2) x**2 - 2 >>> factor(x**2 - 2, extension=sqrt(2)) (x - sqrt(2))*(x + sqrt(2)) >>> factor(x**2 - 2, domain='QQ<sqrt(2)>') (x - sqrt(2))*(x + sqrt(2)) >>> factor(x**2 - 2, domain=QQ.algebraic_field(sqrt(2))) (x - sqrt(2))*(x + sqrt(2)) The ``extension=True`` argument can be used but will only create an extension that contains the coefficients which is usually not enough to factorise the polynomial. >>> p = x**3 + sqrt(2)*x**2 - 2*x - 2*sqrt(2) >>> factor(p) # treats sqrt(2) as a symbol (x + sqrt(2))*(x**2 - 2) >>> factor(p, extension=True) (x - sqrt(2))*(x + sqrt(2))**2 >>> factor(x**2 - 2, extension=True) # all rational coefficients x**2 - 2 It is also possible to use :ref:`QQ(a)` with the :py:func:`~.cancel` and :py:func:`~.gcd` functions. >>> from sympy import cancel, gcd >>> cancel((x**2 - 2)/(x - sqrt(2))) (x**2 - 2)/(x - sqrt(2)) >>> cancel((x**2 - 2)/(x - sqrt(2)), extension=sqrt(2)) x + sqrt(2) >>> gcd(x**2 - 2, x - sqrt(2)) 1 >>> gcd(x**2 - 2, x - sqrt(2), extension=sqrt(2)) x - sqrt(2) When using the domain directly :ref:`QQ(a)` can be used as a constructor to create instances which then support the operations ``+,-,*,**,/``. The :py:meth:`~.Domain.algebraic_field` method is used to construct a particular :ref:`QQ(a)` domain. The :py:meth:`~.Domain.from_sympy` method can be used to create domain elements from normal SymPy expressions. >>> K = QQ.algebraic_field(sqrt(2)) >>> K QQ<sqrt(2)> >>> xk = K.from_sympy(3 + 4*sqrt(2)) >>> xk # doctest: +SKIP ANP([4, 3], [1, 0, -2], QQ) Elements of :ref:`QQ(a)` are instances of :py:class:`~.ANP` which have limited printing support. The raw display shows the internal representation of the element as the list ``[4, 3]`` representing the coefficients of ``1`` and ``sqrt(2)`` for this element in the form ``a * sqrt(2) + b * 1`` where ``a`` and ``b`` are elements of :ref:`QQ`. The minimal polynomial for the generator ``(x**2 - 2)`` is also shown in the :ref:`dup-representation` as the list ``[1, 0, -2]``. We can use :py:meth:`~.Domain.to_sympy` to get a better printed form for the elements and to see the results of operations. >>> xk = K.from_sympy(3 + 4*sqrt(2)) >>> yk = K.from_sympy(2 + 3*sqrt(2)) >>> xk * yk # doctest: +SKIP ANP([17, 30], [1, 0, -2], QQ) >>> K.to_sympy(xk * yk) 17*sqrt(2) + 30 >>> K.to_sympy(xk + yk) 5 + 7*sqrt(2) >>> K.to_sympy(xk ** 2) 24*sqrt(2) + 41 >>> K.to_sympy(xk / yk) sqrt(2)/14 + 9/7 Any expression representing an algebraic number can be used to generate a :ref:`QQ(a)` domain provided its `minimal polynomial`_ can be computed. The function :py:func:`~.minpoly` function is used for this. >>> from sympy import exp, I, pi, minpoly >>> g = exp(2*I*pi/3) >>> g exp(2*I*pi/3) >>> g.is_algebraic True >>> minpoly(g, x) x**2 + x + 1 >>> factor(x**3 - 1, extension=g) (x - 1)*(x - exp(2*I*pi/3))*(x + 1 + exp(2*I*pi/3)) It is also possible to make an algebraic field from multiple extension elements. >>> K = QQ.algebraic_field(sqrt(2), sqrt(3)) >>> K QQ<sqrt(2) + sqrt(3)> >>> p = x**4 - 5*x**2 + 6 >>> factor(p) (x**2 - 3)*(x**2 - 2) >>> factor(p, domain=K) (x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3)) >>> factor(p, extension=[sqrt(2), sqrt(3)]) (x - sqrt(2))*(x + sqrt(2))*(x - sqrt(3))*(x + sqrt(3)) Multiple extension elements are always combined together to make a single `primitive element`_. In the case of ``[sqrt(2), sqrt(3)]`` the primitive element chosen is ``sqrt(2) + sqrt(3)`` which is why the domain displays as ``QQ<sqrt(2) + sqrt(3)>``. The minimal polynomial for the primitive element is computed using the :py:func:`~.primitive_element` function. >>> from sympy import primitive_element >>> primitive_element([sqrt(2), sqrt(3)], x) (x**4 - 10*x**2 + 1, [1, 1]) >>> minpoly(sqrt(2) + sqrt(3), x) x**4 - 10*x**2 + 1 The extension elements that generate the domain can be accessed from the domain using the :py:attr:`~.ext` and :py:attr:`~.orig_ext` attributes as instances of :py:class:`~.AlgebraicNumber`. The minimal polynomial for the primitive element as a :py:class:`~.DMP` instance is available as :py:attr:`~.mod`. >>> K = QQ.algebraic_field(sqrt(2), sqrt(3)) >>> K QQ<sqrt(2) + sqrt(3)> >>> K.ext sqrt(2) + sqrt(3) >>> K.orig_ext (sqrt(2), sqrt(3)) >>> K.mod DMP([1, 0, -10, 0, 1], QQ, None) The `discriminant`_ of the field can be obtained from the :py:meth:`~.discriminant` method, and an `integral basis`_ from the :py:meth:`~.integral_basis` method. The latter returns a list of :py:class:`~.ANP` instances by default, but can be made to return instances of :py:class:`~.Expr` or :py:class:`~.AlgebraicNumber` by passing a ``fmt`` argument. The maximal order, or ring of integers, of the field can also be obtained from the :py:meth:`~.maximal_order` method, as a :py:class:`~sympy.polys.numberfields.modules.Submodule`. >>> zeta5 = exp(2*I*pi/5) >>> K = QQ.algebraic_field(zeta5) >>> K QQ<exp(2*I*pi/5)> >>> K.discriminant() 125 >>> K = QQ.algebraic_field(sqrt(5)) >>> K QQ<sqrt(5)> >>> K.integral_basis(fmt='sympy') [1, 1/2 + sqrt(5)/2] >>> K.maximal_order() Submodule[[2, 0], [1, 1]]/2 The factorization of a rational prime into prime ideals of the field is computed by the :py:meth:`~.primes_above` method, which returns a list of :py:class:`~sympy.polys.numberfields.primes.PrimeIdeal` instances. >>> zeta7 = exp(2*I*pi/7) >>> K = QQ.algebraic_field(zeta7) >>> K QQ<exp(2*I*pi/7)> >>> K.primes_above(11) [(11, _x**3 + 5*_x**2 + 4*_x - 1), (11, _x**3 - 4*_x**2 - 5*_x - 1)] Notes ===== It is not currently possible to generate an algebraic extension over any domain other than :ref:`QQ`. Ideally it would be possible to generate extensions like ``QQ(x)(sqrt(x**2 - 2))``. This is equivalent to the quotient ring ``QQ(x)[y]/(y**2 - x**2 + 2)`` and there are two implementations of this kind of quotient ring/extension in the :py:class:`~.QuotientRing` and :py:class:`~.MonogenicFiniteExtension` classes. Each of those implementations needs some work to make them fully usable though. .. _algebraic number field: https://en.wikipedia.org/wiki/Algebraic_number_field .. _algebraic numbers: https://en.wikipedia.org/wiki/Algebraic_number .. _discriminant: https://en.wikipedia.org/wiki/Discriminant_of_an_algebraic_number_field .. _integral basis: https://en.wikipedia.org/wiki/Algebraic_number_field#Integral_basis .. _minimal polynomial: https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory) .. _primitive element: https://en.wikipedia.org/wiki/Primitive_element_theorem """ dtype = ANP is_AlgebraicField = is_Algebraic = True is_Numerical = True has_assoc_Ring = False has_assoc_Field = True def __init__(self, dom, *ext, alias=None): r""" Parameters ========== dom : :py:class:`~.Domain` The base field over which this is an extension field. Currently only :ref:`QQ` is accepted. *ext : One or more :py:class:`~.Expr` Generators of the extension. These should be expressions that are algebraic over `\mathbb{Q}`. alias : str, :py:class:`~.Symbol`, None, optional (default=None) If provided, this will be used as the alias symbol for the primitive element of the :py:class:`~.AlgebraicField`. If ``None``, while ``ext`` consists of exactly one :py:class:`~.AlgebraicNumber`, its alias (if any) will be used. """ if not dom.is_QQ: raise DomainError("ground domain must be a rational field") from sympy.polys.numberfields import to_number_field if len(ext) == 1 and isinstance(ext[0], tuple): orig_ext = ext[0][1:] else: orig_ext = ext if alias is None and len(ext) == 1: alias = getattr(ext[0], 'alias', None) self.orig_ext = orig_ext """ Original elements given to generate the extension. >>> from sympy import QQ, sqrt >>> K = QQ.algebraic_field(sqrt(2), sqrt(3)) >>> K.orig_ext (sqrt(2), sqrt(3)) """ self.ext = to_number_field(ext, alias=alias) """ Primitive element used for the extension. >>> from sympy import QQ, sqrt >>> K = QQ.algebraic_field(sqrt(2), sqrt(3)) >>> K.ext sqrt(2) + sqrt(3) """ self.mod = self.ext.minpoly.rep """ Minimal polynomial for the primitive element of the extension. >>> from sympy import QQ, sqrt >>> K = QQ.algebraic_field(sqrt(2)) >>> K.mod DMP([1, 0, -2], QQ, None) """ self.domain = self.dom = dom self.ngens = 1 self.symbols = self.gens = (self.ext,) self.unit = self([dom(1), dom(0)]) self.zero = self.dtype.zero(self.mod.rep, dom) self.one = self.dtype.one(self.mod.rep, dom) self._maximal_order = None self._discriminant = None self._nilradicals_mod_p = {} def new(self, element): return self.dtype(element, self.mod.rep, self.dom) def __str__(self): return str(self.dom) + '<' + str(self.ext) + '>' def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.dom, self.ext)) def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, AlgebraicField) and \ self.dtype == other.dtype and self.ext == other.ext def algebraic_field(self, *extension, alias=None): r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. """ return AlgebraicField(self.dom, *((self.ext,) + extension), alias=alias) def to_alg_num(self, a): """Convert ``a`` of ``dtype`` to an :py:class:`~.AlgebraicNumber`. """ return self.ext.field_element(a) def to_sympy(self, a): """Convert ``a`` of ``dtype`` to a SymPy object. """ # Precompute a converter to be reused: if not hasattr(self, '_converter'): self._converter = _make_converter(self) return self._converter(a) def from_sympy(self, a): """Convert SymPy's expression to ``dtype``. """ try: return self([self.dom.from_sympy(a)]) except CoercionFailed: pass from sympy.polys.numberfields import to_number_field try: return self(to_number_field(a, self.ext).native_coeffs()) except (NotAlgebraic, IsomorphismFailed): raise CoercionFailed( "%s is not a valid algebraic number in %s" % (a, self)) def from_ZZ(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_QQ(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_RealField(K1, a, K0): """Convert a mpmath ``mpf`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError('there is no ring associated with %s' % self) def is_positive(self, a): """Returns True if ``a`` is positive. """ return self.dom.is_positive(a.LC()) def is_negative(self, a): """Returns True if ``a`` is negative. """ return self.dom.is_negative(a.LC()) def is_nonpositive(self, a): """Returns True if ``a`` is non-positive. """ return self.dom.is_nonpositive(a.LC()) def is_nonnegative(self, a): """Returns True if ``a`` is non-negative. """ return self.dom.is_nonnegative(a.LC()) def numer(self, a): """Returns numerator of ``a``. """ return a def denom(self, a): """Returns denominator of ``a``. """ return self.one def from_AlgebraicField(K1, a, K0): """Convert AlgebraicField element 'a' to another AlgebraicField """ return K1.from_sympy(K0.to_sympy(a)) def from_GaussianIntegerRing(K1, a, K0): """Convert a GaussianInteger element 'a' to ``dtype``. """ return K1.from_sympy(K0.to_sympy(a)) def from_GaussianRationalField(K1, a, K0): """Convert a GaussianRational element 'a' to ``dtype``. """ return K1.from_sympy(K0.to_sympy(a)) def _do_round_two(self): from sympy.polys.numberfields.basis import round_two ZK, dK = round_two(self, radicals=self._nilradicals_mod_p) self._maximal_order = ZK self._discriminant = dK def maximal_order(self): """ Compute the maximal order, or ring of integers, of the field. Returns ======= :py:class:`~sympy.polys.numberfields.modules.Submodule`. See Also ======== integral_basis """ if self._maximal_order is None: self._do_round_two() return self._maximal_order def integral_basis(self, fmt=None): r""" Get an integral basis for the field. Parameters ========== fmt : str, None, optional (default=None) If ``None``, return a list of :py:class:`~.ANP` instances. If ``"sympy"``, convert each element of the list to an :py:class:`~.Expr`, using ``self.to_sympy()``. If ``"alg"``, convert each element of the list to an :py:class:`~.AlgebraicNumber`, using ``self.to_alg_num()``. Examples ======== >>> from sympy import QQ, AlgebraicNumber, sqrt >>> alpha = AlgebraicNumber(sqrt(5), alias='alpha') >>> k = QQ.algebraic_field(alpha) >>> B0 = k.integral_basis() >>> B1 = k.integral_basis(fmt='sympy') >>> B2 = k.integral_basis(fmt='alg') >>> print(B0[1]) # doctest: +SKIP ANP([mpq(1,2), mpq(1,2)], [mpq(1,1), mpq(0,1), mpq(-5,1)], QQ) >>> print(B1[1]) 1/2 + alpha/2 >>> print(B2[1]) alpha/2 + 1/2 In the last two cases we get legible expressions, which print somewhat differently because of the different types involved: >>> print(type(B1[1])) <class 'sympy.core.add.Add'> >>> print(type(B2[1])) <class 'sympy.core.numbers.AlgebraicNumber'> See Also ======== to_sympy to_alg_num maximal_order """ ZK = self.maximal_order() M = ZK.QQ_matrix n = M.shape[1] B = [self.new(list(reversed(M[:, j].flat()))) for j in range(n)] if fmt == 'sympy': return [self.to_sympy(b) for b in B] elif fmt == 'alg': return [self.to_alg_num(b) for b in B] return B def discriminant(self): """Get the discriminant of the field.""" if self._discriminant is None: self._do_round_two() return self._discriminant def primes_above(self, p): """Compute the prime ideals lying above a given rational prime *p*.""" from sympy.polys.numberfields.primes import prime_decomp ZK = self.maximal_order() dK = self.discriminant() rad = self._nilradicals_mod_p.get(p) return prime_decomp(p, ZK=ZK, dK=dK, radical=rad) def _make_converter(K): """Construct the converter to convert back to Expr""" # Precompute the effect of converting to SymPy and expanding expressions # like (sqrt(2) + sqrt(3))**2. Asking Expr to do the expansion on every # conversion from K to Expr is slow. Here we compute the expansions for # each power of the generator and collect together the resulting algebraic # terms and the rational coefficients into a matrix. gen = K.ext.as_expr() todom = K.dom.from_sympy # We'll let Expr compute the expansions. We won't make any presumptions # about what this results in except that it is QQ-linear in some terms # that we will call algebraics. The final result will be expressed in # terms of those. powers = [S.One, gen] for n in range(2, K.mod.degree()): powers.append((gen * powers[-1]).expand()) # Collect the rational coefficients and algebraic Expr that can # map the ANP coefficients into an expanded SymPy expression terms = [dict(t.as_coeff_Mul()[::-1] for t in Add.make_args(p)) for p in powers] algebraics = set().union(*terms) matrix = [[todom(t.get(a, S.Zero)) for t in terms] for a in algebraics] # Create a function to do the conversion efficiently: def converter(a): """Convert a to Expr using converter""" ai = a.rep[::-1] tosympy = K.dom.to_sympy coeffs_dom = [sum(mij*aj for mij, aj in zip(mi, ai)) for mi in matrix] coeffs_sympy = [tosympy(c) for c in coeffs_dom] res = Add(*(Mul(c, a) for c, a in zip(coeffs_sympy, algebraics))) return res return converter
4f632f222108dce3c5a0e439129dc781984d5357af3fe5b1bb4a03546ee825af
"""Implementation of :class:`IntegerRing` class. """ from sympy.external.gmpy import MPZ, HAS_GMPY from sympy.polys.domains.groundtypes import ( SymPyInteger, factorial, gcdex, gcd, lcm, sqrt, ) from sympy.polys.domains.characteristiczero import CharacteristicZero from sympy.polys.domains.ring import Ring from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyerrors import CoercionFailed from sympy.utilities import public import math @public class IntegerRing(Ring, CharacteristicZero, SimpleDomain): r"""The domain ``ZZ`` representing the integers `\mathbb{Z}`. The :py:class:`IntegerRing` class represents the ring of integers as a :py:class:`~.Domain` in the domain system. :py:class:`IntegerRing` is a super class of :py:class:`PythonIntegerRing` and :py:class:`GMPYIntegerRing` one of which will be the implementation for :ref:`ZZ` depending on whether or not ``gmpy`` or ``gmpy2`` is installed. See also ======== Domain """ rep = 'ZZ' alias = 'ZZ' dtype = MPZ zero = dtype(0) one = dtype(1) tp = type(one) is_IntegerRing = is_ZZ = True is_Numerical = True is_PID = True has_assoc_Ring = True has_assoc_Field = True def __init__(self): """Allow instantiation of this domain. """ def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return SymPyInteger(int(a)) def from_sympy(self, a): """Convert SymPy's Integer to ``dtype``. """ if a.is_Integer: return MPZ(a.p) elif a.is_Float and int(a) == a: return MPZ(int(a)) else: raise CoercionFailed("expected an integer, got %s" % a) def get_field(self): r"""Return the associated field of fractions :ref:`QQ` Returns ======= :ref:`QQ`: The associated field of fractions :ref:`QQ`, a :py:class:`~.Domain` representing the rational numbers `\mathbb{Q}`. Examples ======== >>> from sympy import ZZ >>> ZZ.get_field() QQ """ from sympy.polys.domains import QQ return QQ def algebraic_field(self, *extension, alias=None): r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. Parameters ========== *extension : One or more :py:class:`~.Expr`. Generators of the extension. These should be expressions that are algebraic over `\mathbb{Q}`. alias : str, :py:class:`~.Symbol`, None, optional (default=None) If provided, this will be used as the alias symbol for the primitive element of the returned :py:class:`~.AlgebraicField`. Returns ======= :py:class:`~.AlgebraicField` A :py:class:`~.Domain` representing the algebraic field extension. Examples ======== >>> from sympy import ZZ, sqrt >>> ZZ.algebraic_field(sqrt(2)) QQ<sqrt(2)> """ return self.get_field().algebraic_field(*extension, alias=alias) def from_AlgebraicField(K1, a, K0): """Convert a :py:class:`~.ANP` object to :ref:`ZZ`. See :py:meth:`~.Domain.convert`. """ if a.is_ground: return K1.convert(a.LC(), K0.dom) def log(self, a, b): r"""Logarithm of *a* to the base *b*. Parameters ========== a: number b: number Returns ======= $\\lfloor\log(a, b)\\rfloor$: Floor of the logarithm of *a* to the base *b* Examples ======== >>> from sympy import ZZ >>> ZZ.log(ZZ(8), ZZ(2)) 3 >>> ZZ.log(ZZ(9), ZZ(2)) 3 Notes ===== This function uses ``math.log`` which is based on ``float`` so it will fail for large integer arguments. """ return self.dtype(math.log(int(a), b)) def from_FF(K1, a, K0): """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """ return MPZ(a.to_int()) def from_FF_python(K1, a, K0): """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """ return MPZ(a.to_int()) def from_ZZ(K1, a, K0): """Convert Python's ``int`` to GMPY's ``mpz``. """ return MPZ(a) def from_ZZ_python(K1, a, K0): """Convert Python's ``int`` to GMPY's ``mpz``. """ return MPZ(a) def from_QQ(K1, a, K0): """Convert Python's ``Fraction`` to GMPY's ``mpz``. """ if a.denominator == 1: return MPZ(a.numerator) def from_QQ_python(K1, a, K0): """Convert Python's ``Fraction`` to GMPY's ``mpz``. """ if a.denominator == 1: return MPZ(a.numerator) def from_FF_gmpy(K1, a, K0): """Convert ``ModularInteger(mpz)`` to GMPY's ``mpz``. """ return a.to_int() def from_ZZ_gmpy(K1, a, K0): """Convert GMPY's ``mpz`` to GMPY's ``mpz``. """ return a def from_QQ_gmpy(K1, a, K0): """Convert GMPY ``mpq`` to GMPY's ``mpz``. """ if a.denominator == 1: return a.numerator def from_RealField(K1, a, K0): """Convert mpmath's ``mpf`` to GMPY's ``mpz``. """ p, q = K0.to_rational(a) if q == 1: return MPZ(p) def from_GaussianIntegerRing(K1, a, K0): if a.y == 0: return a.x def gcdex(self, a, b): """Compute extended GCD of ``a`` and ``b``. """ h, s, t = gcdex(a, b) if HAS_GMPY: return s, t, h else: return h, s, t def gcd(self, a, b): """Compute GCD of ``a`` and ``b``. """ return gcd(a, b) def lcm(self, a, b): """Compute LCM of ``a`` and ``b``. """ return lcm(a, b) def sqrt(self, a): """Compute square root of ``a``. """ return sqrt(a) def factorial(self, a): """Compute factorial of ``a``. """ return factorial(a) ZZ = IntegerRing()
a6c55fdd803530c91eb95be7f88a6617fadcdc012187c538534f61e9d118f6ed
"""Tests for the implementation of RootOf class and related tools. """ from sympy.polys.polytools import Poly import sympy.polys.rootoftools as rootoftools from sympy.polys.rootoftools import (rootof, RootOf, CRootOf, RootSum, _pure_key_dict as D) from sympy.polys.polyerrors import ( MultivariatePolynomialError, GeneratorsNeeded, PolynomialError, ) from sympy.core.function import (Function, Lambda) from sympy.core.numbers import (Float, I, Rational) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import tan from sympy.integrals.integrals import Integral from sympy.polys.orthopolys import legendre_poly from sympy.solvers.solvers import solve from sympy.testing.pytest import raises, slow from sympy.core.expr import unchanged from sympy.abc import a, b, x, y, z, r def test_CRootOf___new__(): assert rootof(x, 0) == 0 assert rootof(x, -1) == 0 assert rootof(x, S.Zero) == 0 assert rootof(x - 1, 0) == 1 assert rootof(x - 1, -1) == 1 assert rootof(x + 1, 0) == -1 assert rootof(x + 1, -1) == -1 assert rootof(x**2 + 2*x + 3, 0) == -1 - I*sqrt(2) assert rootof(x**2 + 2*x + 3, 1) == -1 + I*sqrt(2) assert rootof(x**2 + 2*x + 3, -1) == -1 + I*sqrt(2) assert rootof(x**2 + 2*x + 3, -2) == -1 - I*sqrt(2) r = rootof(x**2 + 2*x + 3, 0, radicals=False) assert isinstance(r, RootOf) is True r = rootof(x**2 + 2*x + 3, 1, radicals=False) assert isinstance(r, RootOf) is True r = rootof(x**2 + 2*x + 3, -1, radicals=False) assert isinstance(r, RootOf) is True r = rootof(x**2 + 2*x + 3, -2, radicals=False) assert isinstance(r, RootOf) is True assert rootof((x - 1)*(x + 1), 0, radicals=False) == -1 assert rootof((x - 1)*(x + 1), 1, radicals=False) == 1 assert rootof((x - 1)*(x + 1), -1, radicals=False) == 1 assert rootof((x - 1)*(x + 1), -2, radicals=False) == -1 assert rootof((x - 1)*(x + 1), 0, radicals=True) == -1 assert rootof((x - 1)*(x + 1), 1, radicals=True) == 1 assert rootof((x - 1)*(x + 1), -1, radicals=True) == 1 assert rootof((x - 1)*(x + 1), -2, radicals=True) == -1 assert rootof((x - 1)*(x**3 + x + 3), 0) == rootof(x**3 + x + 3, 0) assert rootof((x - 1)*(x**3 + x + 3), 1) == 1 assert rootof((x - 1)*(x**3 + x + 3), 2) == rootof(x**3 + x + 3, 1) assert rootof((x - 1)*(x**3 + x + 3), 3) == rootof(x**3 + x + 3, 2) assert rootof((x - 1)*(x**3 + x + 3), -1) == rootof(x**3 + x + 3, 2) assert rootof((x - 1)*(x**3 + x + 3), -2) == rootof(x**3 + x + 3, 1) assert rootof((x - 1)*(x**3 + x + 3), -3) == 1 assert rootof((x - 1)*(x**3 + x + 3), -4) == rootof(x**3 + x + 3, 0) assert rootof(x**4 + 3*x**3, 0) == -3 assert rootof(x**4 + 3*x**3, 1) == 0 assert rootof(x**4 + 3*x**3, 2) == 0 assert rootof(x**4 + 3*x**3, 3) == 0 raises(GeneratorsNeeded, lambda: rootof(0, 0)) raises(GeneratorsNeeded, lambda: rootof(1, 0)) raises(PolynomialError, lambda: rootof(Poly(0, x), 0)) raises(PolynomialError, lambda: rootof(Poly(1, x), 0)) raises(PolynomialError, lambda: rootof(x - y, 0)) # issue 8617 raises(PolynomialError, lambda: rootof(exp(x), 0)) raises(NotImplementedError, lambda: rootof(x**3 - x + sqrt(2), 0)) raises(NotImplementedError, lambda: rootof(x**3 - x + I, 0)) raises(IndexError, lambda: rootof(x**2 - 1, -4)) raises(IndexError, lambda: rootof(x**2 - 1, -3)) raises(IndexError, lambda: rootof(x**2 - 1, 2)) raises(IndexError, lambda: rootof(x**2 - 1, 3)) raises(ValueError, lambda: rootof(x**2 - 1, x)) assert rootof(Poly(x - y, x), 0) == y assert rootof(Poly(x**2 - y, x), 0) == -sqrt(y) assert rootof(Poly(x**2 - y, x), 1) == sqrt(y) assert rootof(Poly(x**3 - y, x), 0) == y**Rational(1, 3) assert rootof(y*x**3 + y*x + 2*y, x, 0) == -1 raises(NotImplementedError, lambda: rootof(x**3 + x + 2*y, x, 0)) assert rootof(x**3 + x + 1, 0).is_commutative is True def test_CRootOf_attributes(): r = rootof(x**3 + x + 3, 0) assert r.is_number assert r.free_symbols == set() # if the following assertion fails then multivariate polynomials # are apparently supported and the RootOf.free_symbols routine # should be changed to return whatever symbols would not be # the PurePoly dummy symbol raises(NotImplementedError, lambda: rootof(Poly(x**3 + y*x + 1, x), 0)) def test_CRootOf___eq__(): assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 0)) is True assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 1)) is False assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 1)) is True assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 2)) is False assert (rootof(x**3 + x + 3, 2) == rootof(x**3 + x + 3, 2)) is True assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 0)) is True assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 1)) is False assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 1)) is True assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 2)) is False assert (rootof(x**3 + x + 3, 2) == rootof(y**3 + y + 3, 2)) is True def test_CRootOf___eval_Eq__(): f = Function('f') eq = x**3 + x + 3 r = rootof(eq, 2) r1 = rootof(eq, 1) assert Eq(r, r1) is S.false assert Eq(r, r) is S.true assert unchanged(Eq, r, x) assert Eq(r, 0) is S.false assert Eq(r, S.Infinity) is S.false assert Eq(r, I) is S.false assert unchanged(Eq, r, f(0)) sol = solve(eq) for s in sol: if s.is_real: assert Eq(r, s) is S.false r = rootof(eq, 0) for s in sol: if s.is_real: assert Eq(r, s) is S.true eq = x**3 + x + 1 sol = solve(eq) assert [Eq(rootof(eq, i), j) for i in range(3) for j in sol ].count(True) == 3 assert Eq(rootof(eq, 0), 1 + S.ImaginaryUnit) == False def test_CRootOf_is_real(): assert rootof(x**3 + x + 3, 0).is_real is True assert rootof(x**3 + x + 3, 1).is_real is False assert rootof(x**3 + x + 3, 2).is_real is False def test_CRootOf_is_complex(): assert rootof(x**3 + x + 3, 0).is_complex is True def test_CRootOf_subs(): assert rootof(x**3 + x + 1, 0).subs(x, y) == rootof(y**3 + y + 1, 0) def test_CRootOf_diff(): assert rootof(x**3 + x + 1, 0).diff(x) == 0 assert rootof(x**3 + x + 1, 0).diff(y) == 0 @slow def test_CRootOf_evalf(): real = rootof(x**3 + x + 3, 0).evalf(n=20) assert real.epsilon_eq(Float("-1.2134116627622296341")) re, im = rootof(x**3 + x + 3, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq( Float("0.60670583138111481707")) assert im.epsilon_eq(-Float("1.45061224918844152650")) re, im = rootof(x**3 + x + 3, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(Float("1.45061224918844152650")) p = legendre_poly(4, x, polys=True) roots = [str(r.n(17)) for r in p.real_roots()] # magnitudes are given by # sqrt(3/S(7) - 2*sqrt(6/S(5))/7) # and # sqrt(3/S(7) + 2*sqrt(6/S(5))/7) assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] re = rootof(x**5 - 5*x + 12, 0).evalf(n=20) assert re.epsilon_eq(Float("-1.84208596619025438271")) re, im = rootof(x**5 - 5*x + 12, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("-1.709561043370328882010")) re, im = rootof(x**5 - 5*x + 12, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("+1.709561043370328882010")) re, im = rootof(x**5 - 5*x + 12, 3).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("-0.719798681483861386681")) re, im = rootof(x**5 - 5*x + 12, 4).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("+0.719798681483861386681")) # issue 6393 assert str(rootof(x**5 + 2*x**4 + x**3 - 68719476736, 0).n(3)) == '147.' eq = (531441*x**11 + 3857868*x**10 + 13730229*x**9 + 32597882*x**8 + 55077472*x**7 + 60452000*x**6 + 32172064*x**5 - 4383808*x**4 - 11942912*x**3 - 1506304*x**2 + 1453312*x + 512) a, b = rootof(eq, 1).n(2).as_real_imag() c, d = rootof(eq, 2).n(2).as_real_imag() assert a == c assert b < d assert b == -d # issue 6451 r = rootof(legendre_poly(64, x), 7) assert r.n(2) == r.n(100).n(2) # issue 9019 r0 = rootof(x**2 + 1, 0, radicals=False) r1 = rootof(x**2 + 1, 1, radicals=False) assert r0.n(4) == Float(-1.0, 4) * I assert r1.n(4) == Float(1.0, 4) * I # make sure verification is used in case a max/min traps the "root" assert str(rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0).n(3)) == '-0.976' # watch out for UnboundLocalError c = CRootOf(90720*x**6 - 4032*x**4 + 84*x**2 - 1, 0) assert c._eval_evalf(2) # doesn't fail # watch out for imaginary parts that don't want to evaluate assert str(RootOf(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 + 39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 + 877969, 10).n(2)) == '-3.4*I' assert abs(RootOf(x**4 + 10*x**2 + 1, 0).n(2)) < 0.4 # check reset and args r = [RootOf(x**3 + x + 3, i) for i in range(3)] r[0]._reset() for ri in r: i = ri._get_interval() ri.n(2) assert i != ri._get_interval() ri._reset() assert i == ri._get_interval() assert i == i.func(*i.args) def test_CRootOf_evalf_caching_bug(): r = rootof(x**5 - 5*x + 12, 1) r.n() a = r._get_interval() r = rootof(x**5 - 5*x + 12, 1) r.n() b = r._get_interval() assert a == b def test_CRootOf_real_roots(): assert Poly(x**5 + x + 1).real_roots() == [rootof(x**3 - x**2 + 1, 0)] assert Poly(x**5 + x + 1).real_roots(radicals=False) == [rootof( x**3 - x**2 + 1, 0)] # https://github.com/sympy/sympy/issues/20902 p = Poly(-3*x**4 - 10*x**3 - 12*x**2 - 6*x - 1, x, domain='ZZ') assert CRootOf.real_roots(p) == [S(-1), S(-1), S(-1), S(-1)/3] def test_CRootOf_all_roots(): assert Poly(x**5 + x + 1).all_roots() == [ rootof(x**3 - x**2 + 1, 0), Rational(-1, 2) - sqrt(3)*I/2, Rational(-1, 2) + sqrt(3)*I/2, rootof(x**3 - x**2 + 1, 1), rootof(x**3 - x**2 + 1, 2), ] assert Poly(x**5 + x + 1).all_roots(radicals=False) == [ rootof(x**3 - x**2 + 1, 0), rootof(x**2 + x + 1, 0, radicals=False), rootof(x**2 + x + 1, 1, radicals=False), rootof(x**3 - x**2 + 1, 1), rootof(x**3 - x**2 + 1, 2), ] def test_CRootOf_eval_rational(): p = legendre_poly(4, x, polys=True) roots = [r.eval_rational(n=18) for r in p.real_roots()] for root in roots: assert isinstance(root, Rational) roots = [str(root.n(17)) for root in roots] assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] def test_CRootOf_lazy(): # irreducible poly with both real and complex roots: f = Poly(x**3 + 2*x + 2) # real root: CRootOf.clear_cache() r = CRootOf(f, 0) # Not yet in cache, after construction: assert r.poly not in rootoftools._reals_cache assert r.poly not in rootoftools._complexes_cache r.evalf() # In cache after evaluation: assert r.poly in rootoftools._reals_cache assert r.poly not in rootoftools._complexes_cache # complex root: CRootOf.clear_cache() r = CRootOf(f, 1) # Not yet in cache, after construction: assert r.poly not in rootoftools._reals_cache assert r.poly not in rootoftools._complexes_cache r.evalf() # In cache after evaluation: assert r.poly in rootoftools._reals_cache assert r.poly in rootoftools._complexes_cache # composite poly with both real and complex roots: f = Poly((x**2 - 2)*(x**2 + 1)) # real root: CRootOf.clear_cache() r = CRootOf(f, 0) # In cache immediately after construction: assert r.poly in rootoftools._reals_cache assert r.poly not in rootoftools._complexes_cache # complex root: CRootOf.clear_cache() r = CRootOf(f, 2) # In cache immediately after construction: assert r.poly in rootoftools._reals_cache assert r.poly in rootoftools._complexes_cache def test_RootSum___new__(): f = x**3 + x + 3 g = Lambda(r, log(r*x)) s = RootSum(f, g) assert isinstance(s, RootSum) is True assert RootSum(f**2, g) == 2*RootSum(f, g) assert RootSum((x - 7)*f**3, g) == log(7*x) + 3*RootSum(f, g) # issue 5571 assert hash(RootSum((x - 7)*f**3, g)) == hash(log(7*x) + 3*RootSum(f, g)) raises(MultivariatePolynomialError, lambda: RootSum(x**3 + x + y)) raises(ValueError, lambda: RootSum(x**2 + 3, lambda x: x)) assert RootSum(f, exp) == RootSum(f, Lambda(x, exp(x))) assert RootSum(f, log) == RootSum(f, Lambda(x, log(x))) assert isinstance(RootSum(f, auto=False), RootSum) is True assert RootSum(f) == 0 assert RootSum(f, Lambda(x, x)) == 0 assert RootSum(f, Lambda(x, x**2)) == -2 assert RootSum(f, Lambda(x, 1)) == 3 assert RootSum(f, Lambda(x, 2)) == 6 assert RootSum(f, auto=False).is_commutative is True assert RootSum(f, Lambda(x, 1/(x + x**2))) == Rational(11, 3) assert RootSum(f, Lambda(x, y/(x + x**2))) == Rational(11, 3)*y assert RootSum(x**2 - 1, Lambda(x, 3*x**2), x) == 6 assert RootSum(x**2 - y, Lambda(x, 3*x**2), x) == 6*y assert RootSum(x**2 - 1, Lambda(x, z*x**2), x) == 2*z assert RootSum(x**2 - y, Lambda(x, z*x**2), x) == 2*z*y assert RootSum( x**2 - 1, Lambda(x, exp(x)), quadratic=True) == exp(-1) + exp(1) assert RootSum(x**3 + a*x + a**3, tan, x) == \ RootSum(x**3 + x + 1, Lambda(x, tan(a*x))) assert RootSum(a**3*x**3 + a*x + 1, tan, x) == \ RootSum(x**3 + x + 1, Lambda(x, tan(x/a))) def test_RootSum_free_symbols(): assert RootSum(x**3 + x + 3, Lambda(r, exp(r))).free_symbols == set() assert RootSum(x**3 + x + 3, Lambda(r, exp(a*r))).free_symbols == {a} assert RootSum( x**3 + x + y, Lambda(r, exp(a*r)), x).free_symbols == {a, y} def test_RootSum___eq__(): f = Lambda(x, exp(x)) assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 1, f)) is True assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 1, f)) is True assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 2, f)) is False assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 2, f)) is False def test_RootSum_doit(): rs = RootSum(x**2 + 1, exp) assert isinstance(rs, RootSum) is True assert rs.doit() == exp(-I) + exp(I) rs = RootSum(x**2 + a, exp, x) assert isinstance(rs, RootSum) is True assert rs.doit() == exp(-sqrt(-a)) + exp(sqrt(-a)) def test_RootSum_evalf(): rs = RootSum(x**2 + 1, exp) assert rs.evalf(n=20, chop=True).epsilon_eq(Float("1.0806046117362794348")) assert rs.evalf(n=15, chop=True).epsilon_eq(Float("1.08060461173628")) rs = RootSum(x**2 + a, exp, x) assert rs.evalf() == rs def test_RootSum_diff(): f = x**3 + x + 3 g = Lambda(r, exp(r*x)) h = Lambda(r, r*exp(r*x)) assert RootSum(f, g).diff(x) == RootSum(f, h) def test_RootSum_subs(): f = x**3 + x + 3 g = Lambda(r, exp(r*x)) F = y**3 + y + 3 G = Lambda(r, exp(r*y)) assert RootSum(f, g).subs(y, 1) == RootSum(f, g) assert RootSum(f, g).subs(x, y) == RootSum(F, G) def test_RootSum_rational(): assert RootSum( z**5 - z + 1, Lambda(z, z/(x - z))) == (4*x - 5)/(x**5 - x + 1) f = 161*z**3 + 115*z**2 + 19*z + 1 g = Lambda(z, z*log( -3381*z**4/4 - 3381*z**3/4 - 625*z**2/2 - z*Rational(125, 2) - 5 + exp(x))) assert RootSum(f, g).diff(x) == -( (5*exp(2*x) - 6*exp(x) + 4)*exp(x)/(exp(3*x) - exp(2*x) + 1))/7 def test_RootSum_independent(): f = (x**3 - a)**2*(x**4 - b)**3 g = Lambda(x, 5*tan(x) + 7) h = Lambda(x, tan(x)) r0 = RootSum(x**3 - a, h, x) r1 = RootSum(x**4 - b, h, x) assert RootSum(f, g, x).as_ordered_terms() == [10*r0, 15*r1, 126] def test_issue_7876(): l1 = Poly(x**6 - x + 1, x).all_roots() l2 = [rootof(x**6 - x + 1, i) for i in range(6)] assert frozenset(l1) == frozenset(l2) def test_issue_8316(): f = Poly(7*x**8 - 9) assert len(f.all_roots()) == 8 f = Poly(7*x**8 - 10) assert len(f.all_roots()) == 8 def test__imag_count(): from sympy.polys.rootoftools import _imag_count_of_factor def imag_count(p): return sum([_imag_count_of_factor(f)*m for f, m in p.factor_list()[1]]) assert imag_count(Poly(x**6 + 10*x**2 + 1)) == 2 assert imag_count(Poly(x**2)) == 0 assert imag_count(Poly([1]*3 + [-1], x)) == 0 assert imag_count(Poly(x**3 + 1)) == 0 assert imag_count(Poly(x**2 + 1)) == 2 assert imag_count(Poly(x**2 - 1)) == 0 assert imag_count(Poly(x**4 - 1)) == 2 assert imag_count(Poly(x**4 + 1)) == 0 assert imag_count(Poly([1, 2, 3], x)) == 0 assert imag_count(Poly(x**3 + x + 1)) == 0 assert imag_count(Poly(x**4 + x + 1)) == 0 def q(r1, r2, p): return Poly(((x - r1)*(x - r2)).subs(x, x**p), x) assert imag_count(q(-1, -2, 2)) == 4 assert imag_count(q(-1, 2, 2)) == 2 assert imag_count(q(1, 2, 2)) == 0 assert imag_count(q(1, 2, 4)) == 4 assert imag_count(q(-1, 2, 4)) == 2 assert imag_count(q(-1, -2, 4)) == 0 def test_RootOf_is_imaginary(): r = RootOf(x**4 + 4*x**2 + 1, 1) i = r._get_interval() assert r.is_imaginary and i.ax*i.bx <= 0 def test_is_disjoint(): eq = x**3 + 5*x + 1 ir = rootof(eq, 0)._get_interval() ii = rootof(eq, 1)._get_interval() assert ir.is_disjoint(ii) assert ii.is_disjoint(ir) def test_pure_key_dict(): p = D() assert (x in p) is False assert (1 in p) is False p[x] = 1 assert x in p assert y in p assert p[y] == 1 raises(KeyError, lambda: p[1]) def dont(k): p[k] = 2 raises(ValueError, lambda: dont(1)) @slow def test_eval_approx_relative(): CRootOf.clear_cache() t = [CRootOf(x**3 + 10*x + 1, i) for i in range(3)] assert [i.eval_rational(1e-1) for i in t] == [ Rational(-21, 220), Rational(15, 256) - I*805/256, Rational(15, 256) + I*805/256] t[0]._reset() assert [i.eval_rational(1e-1, 1e-4) for i in t] == [ Rational(-21, 220), Rational(3275, 65536) - I*414645/131072, Rational(3275, 65536) + I*414645/131072] assert S(t[0]._get_interval().dx) < 1e-1 assert S(t[1]._get_interval().dx) < 1e-1 assert S(t[1]._get_interval().dy) < 1e-4 assert S(t[2]._get_interval().dx) < 1e-1 assert S(t[2]._get_interval().dy) < 1e-4 t[0]._reset() assert [i.eval_rational(1e-4, 1e-4) for i in t] == [ Rational(-2001, 20020), Rational(6545, 131072) - I*414645/131072, Rational(6545, 131072) + I*414645/131072] assert S(t[0]._get_interval().dx) < 1e-4 assert S(t[1]._get_interval().dx) < 1e-4 assert S(t[1]._get_interval().dy) < 1e-4 assert S(t[2]._get_interval().dx) < 1e-4 assert S(t[2]._get_interval().dy) < 1e-4 # in the following, the actual relative precision is # less than tested, but it should never be greater t[0]._reset() assert [i.eval_rational(n=2) for i in t] == [ Rational(-202201, 2024022), Rational(104755, 2097152) - I*6634255/2097152, Rational(104755, 2097152) + I*6634255/2097152] assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-2 assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-2 assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-2 assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-2 assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-2 t[0]._reset() assert [i.eval_rational(n=3) for i in t] == [ Rational(-202201, 2024022), Rational(1676045, 33554432) - I*106148135/33554432, Rational(1676045, 33554432) + I*106148135/33554432] assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-3 assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-3 assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-3 assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-3 assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-3 t[0]._reset() a = [i.eval_approx(2) for i in t] assert [str(i) for i in a] == [ '-0.10', '0.05 - 3.2*I', '0.05 + 3.2*I'] assert all(abs(((a[i] - t[i])/t[i]).n()) < 1e-2 for i in range(len(a))) def test_issue_15920(): r = rootof(x**5 - x + 1, 0) p = Integral(x, (x, 1, y)) assert unchanged(Eq, r, p) def test_issue_19113(): eq = y**3 - y + 1 # generator is a canonical x in RootOf assert str(Poly(eq).real_roots()) == '[CRootOf(x**3 - x + 1, 0)]' assert str(Poly(eq.subs(y, tan(y))).real_roots() ) == '[CRootOf(x**3 - x + 1, 0)]' assert str(Poly(eq.subs(y, tan(x))).real_roots() ) == '[CRootOf(x**3 - x + 1, 0)]'
b4392326bcc6a836aeec720f5d33a08b41962a39a30cbba0174c991fbef7eaf6
"""Tests for user-friendly public interface to polynomial functions. """ import pickle from sympy.polys.polytools import ( Poly, PurePoly, poly, parallel_poly_from_expr, degree, degree_list, total_degree, LC, LM, LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert, subresultants, resultant, discriminant, terms_gcd, cofactors, gcd, gcd_list, lcm, lcm_list, trunc, monic, content, primitive, compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf, factor_list, factor, intervals, refine_root, count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner, GroebnerBasis, is_zero_dimensional, _torational_factor_list, to_rational_coeffs) from sympy.polys.polyerrors import ( MultivariatePolynomialError, ExactQuotientFailed, PolificationFailed, ComputationFailed, UnificationFailed, RefinementFailed, GeneratorsNeeded, GeneratorsError, PolynomialError, CoercionFailed, DomainError, OptionError, FlagError) from sympy.polys.polyclasses import DMP from sympy.polys.fields import field from sympy.polys.domains import FF, ZZ, QQ, ZZ_I, QQ_I, RR, EX from sympy.polys.domains.realfield import RealField from sympy.polys.domains.complexfield import ComplexField from sympy.polys.orderings import lex, grlex, grevlex from sympy.core.add import Add from sympy.core.basic import _aresame from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import (Derivative, diff, expand) from sympy.core.mul import _keep_coeff, Mul from sympy.core.numbers import (Float, I, Integer, Rational, oo, pi) from sympy.core.power import Pow from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.complexes import (im, re) from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.hyperbolic import tanh from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import sin from sympy.matrices.dense import Matrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.polys.rootoftools import rootof from sympy.simplify.simplify import signsimp from sympy.utilities.iterables import iterable from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.testing.pytest import raises, warns_deprecated_sympy, warns from sympy.abc import a, b, c, d, p, q, t, w, x, y, z def _epsilon_eq(a, b): for u, v in zip(a, b): if abs(u - v) > 1e-10: return False return True def _strict_eq(a, b): if type(a) == type(b): if iterable(a): if len(a) == len(b): return all(_strict_eq(c, d) for c, d in zip(a, b)) else: return False else: return isinstance(a, Poly) and a.eq(b, strict=True) else: return False def test_Poly_mixed_operations(): p = Poly(x, x) with warns_deprecated_sympy(): p * exp(x) with warns_deprecated_sympy(): p + exp(x) with warns_deprecated_sympy(): p - exp(x) def test_Poly_from_dict(): K = FF(3) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {0: 1, 1: 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict({(0, 0): 1, (1, 1): 2}, gens=( x, y), domain=K).rep == DMP([[K(2), K(0)], [K(1)]], K) assert Poly.from_dict({0: 1, 1: 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict({(1,): sin(y)}, gens=x, composite=False) == \ Poly(sin(y)*x, x, domain='EX') assert Poly.from_dict({(1,): y}, gens=x, composite=False) == \ Poly(y*x, x, domain='EX') assert Poly.from_dict({(1, 1): 1}, gens=(x, y), composite=False) == \ Poly(x*y, x, y, domain='ZZ') assert Poly.from_dict({(1, 0): y}, gens=(x, z), composite=False) == \ Poly(y*x, x, z, domain='EX') def test_Poly_from_list(): K = FF(3) assert Poly.from_list([2, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([5, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([2, 1], gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([2, 1], gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([0, 1.0], gens=x).rep == DMP([RR(1.0)], RR) assert Poly.from_list([1.0, 0], gens=x).rep == DMP([RR(1.0), RR(0.0)], RR) raises(MultivariatePolynomialError, lambda: Poly.from_list([[]], gens=(x, y))) def test_Poly_from_poly(): f = Poly(x + 7, x, domain=ZZ) g = Poly(x + 2, x, modulus=3) h = Poly(x + y, x, y, domain=ZZ) K = FF(3) assert Poly.from_poly(f) == f assert Poly.from_poly(f, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=x) == f assert Poly.from_poly(f, gens=x, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, gens=x, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, gens=x, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=y) == Poly(x + 7, y, domain='ZZ[x]') raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=K)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=ZZ)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=QQ)) assert Poly.from_poly(f, gens=(x, y)) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=ZZ) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=QQ) == Poly(x + 7, x, y, domain='QQ') assert Poly.from_poly( f, gens=(x, y), modulus=3) == Poly(x + 7, x, y, domain='FF(3)') K = FF(2) assert Poly.from_poly(g) == g assert Poly.from_poly(g, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, domain=QQ)) assert Poly.from_poly(g, domain=K).rep == DMP([K(1), K(0)], K) assert Poly.from_poly(g, gens=x) == g assert Poly.from_poly(g, gens=x, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, gens=x, domain=QQ)) assert Poly.from_poly(g, gens=x, domain=K).rep == DMP([K(1), K(0)], K) K = FF(3) assert Poly.from_poly(h) == h assert Poly.from_poly( h, domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly(h, domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly(h, gens=x) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=ZZ)) assert Poly.from_poly( h, gens=x, domain=ZZ[y]) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=QQ)) assert Poly.from_poly( h, gens=x, domain=QQ[y]) == Poly(x + y, x, domain=QQ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, modulus=3)) assert Poly.from_poly(h, gens=y) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=ZZ)) assert Poly.from_poly( h, gens=y, domain=ZZ[x]) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=QQ)) assert Poly.from_poly( h, gens=y, domain=QQ[x]) == Poly(x + y, y, domain=QQ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, modulus=3)) assert Poly.from_poly(h, gens=(x, y)) == h assert Poly.from_poly( h, gens=(x, y), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(x, y), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(y, x)).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(y, x), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) def test_Poly_from_expr(): raises(GeneratorsNeeded, lambda: Poly.from_expr(S.Zero)) raises(GeneratorsNeeded, lambda: Poly.from_expr(S(7))) F3 = FF(3) assert Poly.from_expr(x + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + 5, x, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, y, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + y, x, y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, y, domain=ZZ).rep == DMP([[1], [5]], ZZ) assert Poly.from_expr(y + 5, x, y, domain=ZZ).rep == DMP([[1, 5]], ZZ) def test_poly_from_domain_element(): dom = ZZ[x] assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom) dom = dom.get_field() assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom) dom = QQ[x] assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom) dom = dom.get_field() assert Poly(dom(x+1), y, domain=dom).rep == DMP([dom(x+1)], dom) dom = ZZ.old_poly_ring(x) assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom) dom = dom.get_field() assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom) dom = QQ.old_poly_ring(x) assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom) dom = dom.get_field() assert Poly(dom([1, 1]), y, domain=dom).rep == DMP([dom([1, 1])], dom) dom = QQ.algebraic_field(I) assert Poly(dom([1, 1]), x, domain=dom).rep == DMP([dom([1, 1])], dom) def test_Poly__new__(): raises(GeneratorsError, lambda: Poly(x + 1, x, x)) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[x])) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[y])) raises(OptionError, lambda: Poly(x, x, symmetric=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, domain=QQ)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=False)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=False)) raises(NotImplementedError, lambda: Poly(x + 1, x, modulus=3, order='grlex')) raises(NotImplementedError, lambda: Poly(x + 1, x, order='grlex')) raises(GeneratorsNeeded, lambda: Poly({1: 2, 0: 1})) raises(GeneratorsNeeded, lambda: Poly([2, 1])) raises(GeneratorsNeeded, lambda: Poly((2, 1))) raises(GeneratorsNeeded, lambda: Poly(1)) f = a*x**2 + b*x + c assert Poly({2: a, 1: b, 0: c}, x) == f assert Poly(iter([a, b, c]), x) == f assert Poly([a, b, c], x) == f assert Poly((a, b, c), x) == f f = Poly({}, x, y, z) assert f.gens == (x, y, z) and f.as_expr() == 0 assert Poly(Poly(a*x + b*y, x, y), x) == Poly(a*x + b*y, x) assert Poly(3*x**2 + 2*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='ZZ')) assert Poly( 3*x**2/5 + x*Rational(2, 5) + 1, domain='QQ').all_coeffs() == [Rational(3, 5), Rational(2, 5), 1] assert _epsilon_eq( Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='RR').all_coeffs(), [0.6, 0.4, 1.0]) assert Poly(3.0*x**2 + 2.0*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3.0*x**2 + 2.0*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly( 3.0*x**2 + 2.0*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3.1*x**2 + 2.1*x + 1, domain='ZZ')) assert Poly(3.1*x**2 + 2.1*x + 1, domain='QQ').all_coeffs() == [Rational(31, 10), Rational(21, 10), 1] assert Poly(3.1*x**2 + 2.1*x + 1, domain='RR').all_coeffs() == [3.1, 2.1, 1.0] assert Poly({(2, 1): 1, (1, 2): 2, (1, 1): 3}, x, y) == \ Poly(x**2*y + 2*x*y**2 + 3*x*y, x, y) assert Poly(x**2 + 1, extension=I).get_domain() == QQ.algebraic_field(I) f = 3*x**5 - x**4 + x**3 - x** 2 + 65538 assert Poly(f, x, modulus=65537, symmetric=True) == \ Poly(3*x**5 - x**4 + x**3 - x** 2 + 1, x, modulus=65537, symmetric=True) assert Poly(f, x, modulus=65537, symmetric=False) == \ Poly(3*x**5 + 65536*x**4 + x**3 + 65536*x** 2 + 1, x, modulus=65537, symmetric=False) assert isinstance(Poly(x**2 + x + 1.0).get_domain(), RealField) assert isinstance(Poly(x**2 + x + I + 1.0).get_domain(), ComplexField) def test_Poly__args(): assert Poly(x**2 + 1).args == (x**2 + 1, x) def test_Poly__gens(): assert Poly((x - p)*(x - q), x).gens == (x,) assert Poly((x - p)*(x - q), p).gens == (p,) assert Poly((x - p)*(x - q), q).gens == (q,) assert Poly((x - p)*(x - q), x, p).gens == (x, p) assert Poly((x - p)*(x - q), x, q).gens == (x, q) assert Poly((x - p)*(x - q), x, p, q).gens == (x, p, q) assert Poly((x - p)*(x - q), p, x, q).gens == (p, x, q) assert Poly((x - p)*(x - q), p, q, x).gens == (p, q, x) assert Poly((x - p)*(x - q)).gens == (x, p, q) assert Poly((x - p)*(x - q), sort='x > p > q').gens == (x, p, q) assert Poly((x - p)*(x - q), sort='p > x > q').gens == (p, x, q) assert Poly((x - p)*(x - q), sort='p > q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), x, p, q, sort='p > q > x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p').gens == (p, x, q) assert Poly((x - p)*(x - q), wrt='q').gens == (q, x, p) assert Poly((x - p)*(x - q), wrt=x).gens == (x, p, q) assert Poly((x - p)*(x - q), wrt=p).gens == (p, x, q) assert Poly((x - p)*(x - q), wrt=q).gens == (q, x, p) assert Poly((x - p)*(x - q), x, p, q, wrt='p').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p', sort='q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), wrt='q', sort='p > x').gens == (q, p, x) def test_Poly_zero(): assert Poly(x).zero == Poly(0, x, domain=ZZ) assert Poly(x/2).zero == Poly(0, x, domain=QQ) def test_Poly_one(): assert Poly(x).one == Poly(1, x, domain=ZZ) assert Poly(x/2).one == Poly(1, x, domain=QQ) def test_Poly__unify(): raises(UnificationFailed, lambda: Poly(x)._unify(y)) F3 = FF(3) F5 = FF(5) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=3))[2:] == ( DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=5))[2:] == ( DMP([[F5(1)], []], F5), DMP([[F5(1), F5(0)]], F5)) assert Poly(y, x, y)._unify(Poly(x, x, modulus=3))[2:] == (DMP([[F3(1), F3(0)]], F3), DMP([[F3(1)], []], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, x, y))[2:] == (DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x + 1, x)._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], ZZ), DMP([1, 2], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x**2 + I, x, domain=ZZ_I).unify(Poly(x**2 + sqrt(2), x, extension=True)) == \ (Poly(x**2 + I, x, domain='QQ<sqrt(2) + I>'), Poly(x**2 + sqrt(2), x, domain='QQ<sqrt(2) + I>')) F, A, B = field("a,b", ZZ) assert Poly(a*x, x, domain='ZZ[a]')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) assert Poly(a*x, x, domain='ZZ(a)')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) raises(CoercionFailed, lambda: Poly(Poly(x**2 + x**2*z, y, field=True), domain='ZZ(x)')) f = Poly(t**2 + t/3 + x, t, domain='QQ(x)') g = Poly(t**2 + t/3 + x, t, domain='QQ[x]') assert f._unify(g)[2:] == (f.rep, f.rep) def test_Poly_free_symbols(): assert Poly(x**2 + 1).free_symbols == {x} assert Poly(x**2 + y*z).free_symbols == {x, y, z} assert Poly(x**2 + y*z, x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z)).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x, domain=EX).free_symbols == {x, y, z} assert Poly(1 + x + x**2, x, y, z).free_symbols == {x} assert Poly(x + sin(y), z).free_symbols == {x, y} def test_PurePoly_free_symbols(): assert PurePoly(x**2 + 1).free_symbols == set() assert PurePoly(x**2 + y*z).free_symbols == set() assert PurePoly(x**2 + y*z, x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z)).free_symbols == set() assert PurePoly(x**2 + sin(y*z), x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z), x, domain=EX).free_symbols == {y, z} def test_Poly__eq__(): assert (Poly(x, x) == Poly(x, x)) is True assert (Poly(x, x, domain=QQ) == Poly(x, x)) is False assert (Poly(x, x) == Poly(x, x, domain=QQ)) is False assert (Poly(x, x, domain=ZZ[a]) == Poly(x, x)) is False assert (Poly(x, x) == Poly(x, x, domain=ZZ[a])) is False assert (Poly(x*y, x, y) == Poly(x, x)) is False assert (Poly(x, x, y) == Poly(x, x)) is False assert (Poly(x, x) == Poly(x, x, y)) is False assert (Poly(x**2 + 1, x) == Poly(y**2 + 1, y)) is False assert (Poly(y**2 + 1, y) == Poly(x**2 + 1, x)) is False f = Poly(x, x, domain=ZZ) g = Poly(x, x, domain=QQ) assert f.eq(g) is False assert f.ne(g) is True assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True t0 = Symbol('t0') f = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='QQ[x,t0]') g = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='ZZ(x,t0)') assert (f == g) is False def test_PurePoly__eq__(): assert (PurePoly(x, x) == PurePoly(x, x)) is True assert (PurePoly(x, x, domain=QQ) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=QQ)) is True assert (PurePoly(x, x, domain=ZZ[a]) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=ZZ[a])) is True assert (PurePoly(x*y, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x) == PurePoly(x, x, y)) is False assert (PurePoly(x**2 + 1, x) == PurePoly(y**2 + 1, y)) is True assert (PurePoly(y**2 + 1, y) == PurePoly(x**2 + 1, x)) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(x, x, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(y, y, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True def test_PurePoly_Poly(): assert isinstance(PurePoly(Poly(x**2 + 1)), PurePoly) is True assert isinstance(Poly(PurePoly(x**2 + 1)), Poly) is True def test_Poly_get_domain(): assert Poly(2*x).get_domain() == ZZ assert Poly(2*x, domain='ZZ').get_domain() == ZZ assert Poly(2*x, domain='QQ').get_domain() == QQ assert Poly(x/2).get_domain() == QQ raises(CoercionFailed, lambda: Poly(x/2, domain='ZZ')) assert Poly(x/2, domain='QQ').get_domain() == QQ assert isinstance(Poly(0.2*x).get_domain(), RealField) def test_Poly_set_domain(): assert Poly(2*x + 1).set_domain(ZZ) == Poly(2*x + 1) assert Poly(2*x + 1).set_domain('ZZ') == Poly(2*x + 1) assert Poly(2*x + 1).set_domain(QQ) == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1).set_domain('QQ') == Poly(2*x + 1, domain='QQ') assert Poly(Rational(2, 10)*x + Rational(1, 10)).set_domain('RR') == Poly(0.2*x + 0.1) assert Poly(0.2*x + 0.1).set_domain('QQ') == Poly(Rational(2, 10)*x + Rational(1, 10)) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_domain(ZZ)) raises(CoercionFailed, lambda: Poly(x + 1, modulus=2).set_domain(QQ)) raises(GeneratorsError, lambda: Poly(x*y, x, y).set_domain(ZZ[y])) def test_Poly_get_modulus(): assert Poly(x**2 + 1, modulus=2).get_modulus() == 2 raises(PolynomialError, lambda: Poly(x**2 + 1).get_modulus()) def test_Poly_set_modulus(): assert Poly( x**2 + 1, modulus=2).set_modulus(7) == Poly(x**2 + 1, modulus=7) assert Poly( x**2 + 5, modulus=7).set_modulus(2) == Poly(x**2 + 1, modulus=2) assert Poly(x**2 + 1).set_modulus(2) == Poly(x**2 + 1, modulus=2) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_modulus(2)) def test_Poly_add_ground(): assert Poly(x + 1).add_ground(2) == Poly(x + 3) def test_Poly_sub_ground(): assert Poly(x + 1).sub_ground(2) == Poly(x - 1) def test_Poly_mul_ground(): assert Poly(x + 1).mul_ground(2) == Poly(2*x + 2) def test_Poly_quo_ground(): assert Poly(2*x + 4).quo_ground(2) == Poly(x + 2) assert Poly(2*x + 3).quo_ground(2) == Poly(x + 1) def test_Poly_exquo_ground(): assert Poly(2*x + 4).exquo_ground(2) == Poly(x + 2) raises(ExactQuotientFailed, lambda: Poly(2*x + 3).exquo_ground(2)) def test_Poly_abs(): assert Poly(-x + 1, x).abs() == abs(Poly(-x + 1, x)) == Poly(x + 1, x) def test_Poly_neg(): assert Poly(-x + 1, x).neg() == -Poly(-x + 1, x) == Poly(x - 1, x) def test_Poly_add(): assert Poly(0, x).add(Poly(0, x)) == Poly(0, x) assert Poly(0, x) + Poly(0, x) == Poly(0, x) assert Poly(1, x).add(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) + Poly(0, x) == Poly(1, x, y) assert Poly(0, x).add(Poly(1, x, y)) == Poly(1, x, y) assert Poly(0, x, y) + Poly(1, x, y) == Poly(1, x, y) assert Poly(1, x) + x == Poly(x + 1, x) with warns_deprecated_sympy(): Poly(1, x) + sin(x) assert Poly(x, x) + 1 == Poly(x + 1, x) assert 1 + Poly(x, x) == Poly(x + 1, x) def test_Poly_sub(): assert Poly(0, x).sub(Poly(0, x)) == Poly(0, x) assert Poly(0, x) - Poly(0, x) == Poly(0, x) assert Poly(1, x).sub(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) - Poly(0, x) == Poly(1, x, y) assert Poly(0, x).sub(Poly(1, x, y)) == Poly(-1, x, y) assert Poly(0, x, y) - Poly(1, x, y) == Poly(-1, x, y) assert Poly(1, x) - x == Poly(1 - x, x) with warns_deprecated_sympy(): Poly(1, x) - sin(x) assert Poly(x, x) - 1 == Poly(x - 1, x) assert 1 - Poly(x, x) == Poly(1 - x, x) def test_Poly_mul(): assert Poly(0, x).mul(Poly(0, x)) == Poly(0, x) assert Poly(0, x) * Poly(0, x) == Poly(0, x) assert Poly(2, x).mul(Poly(4, x)) == Poly(8, x) assert Poly(2, x, y) * Poly(4, x) == Poly(8, x, y) assert Poly(4, x).mul(Poly(2, x, y)) == Poly(8, x, y) assert Poly(4, x, y) * Poly(2, x, y) == Poly(8, x, y) assert Poly(1, x) * x == Poly(x, x) with warns_deprecated_sympy(): Poly(1, x) * sin(x) assert Poly(x, x) * 2 == Poly(2*x, x) assert 2 * Poly(x, x) == Poly(2*x, x) def test_issue_13079(): assert Poly(x)*x == Poly(x**2, x, domain='ZZ') assert x*Poly(x) == Poly(x**2, x, domain='ZZ') assert -2*Poly(x) == Poly(-2*x, x, domain='ZZ') assert S(-2)*Poly(x) == Poly(-2*x, x, domain='ZZ') assert Poly(x)*S(-2) == Poly(-2*x, x, domain='ZZ') def test_Poly_sqr(): assert Poly(x*y, x, y).sqr() == Poly(x**2*y**2, x, y) def test_Poly_pow(): assert Poly(x, x).pow(10) == Poly(x**10, x) assert Poly(x, x).pow(Integer(10)) == Poly(x**10, x) assert Poly(2*y, x, y).pow(4) == Poly(16*y**4, x, y) assert Poly(2*y, x, y).pow(Integer(4)) == Poly(16*y**4, x, y) assert Poly(7*x*y, x, y)**3 == Poly(343*x**3*y**3, x, y) raises(TypeError, lambda: Poly(x*y + 1, x, y)**(-1)) raises(TypeError, lambda: Poly(x*y + 1, x, y)**x) def test_Poly_divmod(): f, g = Poly(x**2), Poly(x) q, r = g, Poly(0, x) assert divmod(f, g) == (q, r) assert f // g == q assert f % g == r assert divmod(f, x) == (q, r) assert f // x == q assert f % x == r q, r = Poly(0, x), Poly(2, x) assert divmod(2, g) == (q, r) assert 2 // g == q assert 2 % g == r assert Poly(x)/Poly(x) == 1 assert Poly(x**2)/Poly(x) == x assert Poly(x)/Poly(x**2) == 1/x def test_Poly_eq_ne(): assert (Poly(x + y, x, y) == Poly(x + y, x, y)) is True assert (Poly(x + y, x) == Poly(x + y, x, y)) is False assert (Poly(x + y, x, y) == Poly(x + y, x)) is False assert (Poly(x + y, x) == Poly(x + y, x)) is True assert (Poly(x + y, y) == Poly(x + y, y)) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, y) == x + y) is True assert (Poly(x + y, x, y) != Poly(x + y, x, y)) is False assert (Poly(x + y, x) != Poly(x + y, x, y)) is True assert (Poly(x + y, x, y) != Poly(x + y, x)) is True assert (Poly(x + y, x) != Poly(x + y, x)) is False assert (Poly(x + y, y) != Poly(x + y, y)) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, y) != x + y) is False assert (Poly(x, x) == sin(x)) is False assert (Poly(x, x) != sin(x)) is True def test_Poly_nonzero(): assert not bool(Poly(0, x)) is True assert not bool(Poly(1, x)) is False def test_Poly_properties(): assert Poly(0, x).is_zero is True assert Poly(1, x).is_zero is False assert Poly(1, x).is_one is True assert Poly(2, x).is_one is False assert Poly(x - 1, x).is_sqf is True assert Poly((x - 1)**2, x).is_sqf is False assert Poly(x - 1, x).is_monic is True assert Poly(2*x - 1, x).is_monic is False assert Poly(3*x + 2, x).is_primitive is True assert Poly(4*x + 2, x).is_primitive is False assert Poly(1, x).is_ground is True assert Poly(x, x).is_ground is False assert Poly(x + y + z + 1).is_linear is True assert Poly(x*y*z + 1).is_linear is False assert Poly(x*y + z + 1).is_quadratic is True assert Poly(x*y*z + 1).is_quadratic is False assert Poly(x*y).is_monomial is True assert Poly(x*y + 1).is_monomial is False assert Poly(x**2 + x*y).is_homogeneous is True assert Poly(x**3 + x*y).is_homogeneous is False assert Poly(x).is_univariate is True assert Poly(x*y).is_univariate is False assert Poly(x*y).is_multivariate is True assert Poly(x).is_multivariate is False assert Poly( x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1).is_cyclotomic is False assert Poly( x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1).is_cyclotomic is True def test_Poly_is_irreducible(): assert Poly(x**2 + x + 1).is_irreducible is True assert Poly(x**2 + 2*x + 1).is_irreducible is False assert Poly(7*x + 3, modulus=11).is_irreducible is True assert Poly(7*x**2 + 3*x + 1, modulus=11).is_irreducible is False def test_Poly_subs(): assert Poly(x + 1).subs(x, 0) == 1 assert Poly(x + 1).subs(x, x) == Poly(x + 1) assert Poly(x + 1).subs(x, y) == Poly(y + 1) assert Poly(x*y, x).subs(y, x) == x**2 assert Poly(x*y, x).subs(x, y) == y**2 def test_Poly_replace(): assert Poly(x + 1).replace(x) == Poly(x + 1) assert Poly(x + 1).replace(y) == Poly(y + 1) raises(PolynomialError, lambda: Poly(x + y).replace(z)) assert Poly(x + 1).replace(x, x) == Poly(x + 1) assert Poly(x + 1).replace(x, y) == Poly(y + 1) assert Poly(x + y).replace(x, x) == Poly(x + y) assert Poly(x + y).replace(x, z) == Poly(z + y, z, y) assert Poly(x + y).replace(y, y) == Poly(x + y) assert Poly(x + y).replace(y, z) == Poly(x + z, x, z) assert Poly(x + y).replace(z, t) == Poly(x + y) raises(PolynomialError, lambda: Poly(x + y).replace(x, y)) assert Poly(x + y, x).replace(x, z) == Poly(z + y, z) assert Poly(x + y, y).replace(y, z) == Poly(x + z, z) raises(PolynomialError, lambda: Poly(x + y, x).replace(x, y)) raises(PolynomialError, lambda: Poly(x + y, y).replace(y, x)) def test_Poly_reorder(): raises(PolynomialError, lambda: Poly(x + y).reorder(x, z)) assert Poly(x + y, x, y).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, y, x).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, y, x).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, x, y).reorder(wrt=x) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(wrt=y) == Poly(x + y, y, x) def test_Poly_ltrim(): f = Poly(y**2 + y*z**2, x, y, z).ltrim(y) assert f.as_expr() == y**2 + y*z**2 and f.gens == (y, z) assert Poly(x*y - x, z, x, y).ltrim(1) == Poly(x*y - x, x, y) raises(PolynomialError, lambda: Poly(x*y**2 + y**2, x, y).ltrim(y)) raises(PolynomialError, lambda: Poly(x*y - x, x, y).ltrim(-1)) def test_Poly_has_only_gens(): assert Poly(x*y + 1, x, y, z).has_only_gens(x, y) is True assert Poly(x*y + z, x, y, z).has_only_gens(x, y) is False raises(GeneratorsError, lambda: Poly(x*y**2 + y**2, x, y).has_only_gens(t)) def test_Poly_to_ring(): assert Poly(2*x + 1, domain='ZZ').to_ring() == Poly(2*x + 1, domain='ZZ') assert Poly(2*x + 1, domain='QQ').to_ring() == Poly(2*x + 1, domain='ZZ') raises(CoercionFailed, lambda: Poly(x/2 + 1).to_ring()) raises(DomainError, lambda: Poly(2*x + 1, modulus=3).to_ring()) def test_Poly_to_field(): assert Poly(2*x + 1, domain='ZZ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1, domain='QQ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(x/2 + 1, domain='QQ').to_field() == Poly(x/2 + 1, domain='QQ') assert Poly(2*x + 1, modulus=3).to_field() == Poly(2*x + 1, modulus=3) assert Poly(2.0*x + 1.0).to_field() == Poly(2.0*x + 1.0) def test_Poly_to_exact(): assert Poly(2*x).to_exact() == Poly(2*x) assert Poly(x/2).to_exact() == Poly(x/2) assert Poly(0.1*x).to_exact() == Poly(x/10) def test_Poly_retract(): f = Poly(x**2 + 1, x, domain=QQ[y]) assert f.retract() == Poly(x**2 + 1, x, domain='ZZ') assert f.retract(field=True) == Poly(x**2 + 1, x, domain='QQ') assert Poly(0, x, y).retract() == Poly(0, x, y) def test_Poly_slice(): f = Poly(x**3 + 2*x**2 + 3*x + 4) assert f.slice(0, 0) == Poly(0, x) assert f.slice(0, 1) == Poly(4, x) assert f.slice(0, 2) == Poly(3*x + 4, x) assert f.slice(0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 0) == Poly(0, x) assert f.slice(x, 0, 1) == Poly(4, x) assert f.slice(x, 0, 2) == Poly(3*x + 4, x) assert f.slice(x, 0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) def test_Poly_coeffs(): assert Poly(0, x).coeffs() == [0] assert Poly(1, x).coeffs() == [1] assert Poly(2*x + 1, x).coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('lex') == [2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('grlex') == [1, 2] def test_Poly_monoms(): assert Poly(0, x).monoms() == [(0,)] assert Poly(1, x).monoms() == [(0,)] assert Poly(2*x + 1, x).monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).monoms() == [(4,), (1,), (0,)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('lex') == [(2, 3), (1, 7)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('grlex') == [(1, 7), (2, 3)] def test_Poly_terms(): assert Poly(0, x).terms() == [((0,), 0)] assert Poly(1, x).terms() == [((0,), 1)] assert Poly(2*x + 1, x).terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).terms() == [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).terms() == [((4,), 7), ((1,), 2), ((0,), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('lex') == [((2, 3), 2), ((1, 7), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('grlex') == [((1, 7), 1), ((2, 3), 2)] def test_Poly_all_coeffs(): assert Poly(0, x).all_coeffs() == [0] assert Poly(1, x).all_coeffs() == [1] assert Poly(2*x + 1, x).all_coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).all_coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).all_coeffs() == [7, 0, 0, 2, 1] def test_Poly_all_monoms(): assert Poly(0, x).all_monoms() == [(0,)] assert Poly(1, x).all_monoms() == [(0,)] assert Poly(2*x + 1, x).all_monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).all_monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).all_monoms() == [(4,), (3,), (2,), (1,), (0,)] def test_Poly_all_terms(): assert Poly(0, x).all_terms() == [((0,), 0)] assert Poly(1, x).all_terms() == [((0,), 1)] assert Poly(2*x + 1, x).all_terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).all_terms() == \ [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).all_terms() == \ [((4,), 7), ((3,), 0), ((2,), 0), ((1,), 2), ((0,), 1)] def test_Poly_termwise(): f = Poly(x**2 + 20*x + 400) g = Poly(x**2 + 2*x + 4) def func(monom, coeff): (k,) = monom return coeff//10**(2 - k) assert f.termwise(func) == g def func(monom, coeff): (k,) = monom return (k,), coeff//10**(2 - k) assert f.termwise(func) == g def test_Poly_length(): assert Poly(0, x).length() == 0 assert Poly(1, x).length() == 1 assert Poly(x, x).length() == 1 assert Poly(x + 1, x).length() == 2 assert Poly(x**2 + 1, x).length() == 2 assert Poly(x**2 + x + 1, x).length() == 3 def test_Poly_as_dict(): assert Poly(0, x).as_dict() == {} assert Poly(0, x, y, z).as_dict() == {} assert Poly(1, x).as_dict() == {(0,): 1} assert Poly(1, x, y, z).as_dict() == {(0, 0, 0): 1} assert Poly(x**2 + 3, x).as_dict() == {(2,): 1, (0,): 3} assert Poly(x**2 + 3, x, y, z).as_dict() == {(2, 0, 0): 1, (0, 0, 0): 3} assert Poly(3*x**2*y*z**3 + 4*x*y + 5*x*z).as_dict() == {(2, 1, 3): 3, (1, 1, 0): 4, (1, 0, 1): 5} def test_Poly_as_expr(): assert Poly(0, x).as_expr() == 0 assert Poly(0, x, y, z).as_expr() == 0 assert Poly(1, x).as_expr() == 1 assert Poly(1, x, y, z).as_expr() == 1 assert Poly(x**2 + 3, x).as_expr() == x**2 + 3 assert Poly(x**2 + 3, x, y, z).as_expr() == x**2 + 3 assert Poly( 3*x**2*y*z**3 + 4*x*y + 5*x*z).as_expr() == 3*x**2*y*z**3 + 4*x*y + 5*x*z f = Poly(x**2 + 2*x*y**2 - y, x, y) assert f.as_expr() == -y + x**2 + 2*x*y**2 assert f.as_expr({x: 5}) == 25 - y + 10*y**2 assert f.as_expr({y: 6}) == -6 + 72*x + x**2 assert f.as_expr({x: 5, y: 6}) == 379 assert f.as_expr(5, 6) == 379 raises(GeneratorsError, lambda: f.as_expr({z: 7})) def test_Poly_lift(): assert Poly(x**4 - I*x + 17*I, x, gaussian=True).lift() == \ Poly(x**16 + 2*x**10 + 578*x**8 + x**4 - 578*x**2 + 83521, x, domain='QQ') def test_Poly_deflate(): assert Poly(0, x).deflate() == ((1,), Poly(0, x)) assert Poly(1, x).deflate() == ((1,), Poly(1, x)) assert Poly(x, x).deflate() == ((1,), Poly(x, x)) assert Poly(x**2, x).deflate() == ((2,), Poly(x, x)) assert Poly(x**17, x).deflate() == ((17,), Poly(x, x)) assert Poly( x**2*y*z**11 + x**4*z**11).deflate() == ((2, 1, 11), Poly(x*y*z + x**2*z)) def test_Poly_inject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x) assert f.inject() == Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.inject(front=True) == Poly(y**3*x + y*x**2 + y*x + 1, y, x) def test_Poly_eject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.eject(x) == Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') assert f.eject(y) == Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]') ex = x + y + z + t + w g = Poly(ex, x, y, z, t, w) assert g.eject(x) == Poly(ex, y, z, t, w, domain='ZZ[x]') assert g.eject(x, y) == Poly(ex, z, t, w, domain='ZZ[x, y]') assert g.eject(x, y, z) == Poly(ex, t, w, domain='ZZ[x, y, z]') assert g.eject(w) == Poly(ex, x, y, z, t, domain='ZZ[w]') assert g.eject(t, w) == Poly(ex, x, y, z, domain='ZZ[t, w]') assert g.eject(z, t, w) == Poly(ex, x, y, domain='ZZ[z, t, w]') raises(DomainError, lambda: Poly(x*y, x, y, domain=ZZ[z]).eject(y)) raises(NotImplementedError, lambda: Poly(x*y, x, y, z).eject(y)) def test_Poly_exclude(): assert Poly(x, x, y).exclude() == Poly(x, x) assert Poly(x*y, x, y).exclude() == Poly(x*y, x, y) assert Poly(1, x, y).exclude() == Poly(1, x, y) def test_Poly__gen_to_level(): assert Poly(1, x, y)._gen_to_level(-2) == 0 assert Poly(1, x, y)._gen_to_level(-1) == 1 assert Poly(1, x, y)._gen_to_level( 0) == 0 assert Poly(1, x, y)._gen_to_level( 1) == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(-3)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level( 2)) assert Poly(1, x, y)._gen_to_level(x) == 0 assert Poly(1, x, y)._gen_to_level(y) == 1 assert Poly(1, x, y)._gen_to_level('x') == 0 assert Poly(1, x, y)._gen_to_level('y') == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(z)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level('z')) def test_Poly_degree(): assert Poly(0, x).degree() is -oo assert Poly(1, x).degree() == 0 assert Poly(x, x).degree() == 1 assert Poly(0, x).degree(gen=0) is -oo assert Poly(1, x).degree(gen=0) == 0 assert Poly(x, x).degree(gen=0) == 1 assert Poly(0, x).degree(gen=x) is -oo assert Poly(1, x).degree(gen=x) == 0 assert Poly(x, x).degree(gen=x) == 1 assert Poly(0, x).degree(gen='x') is -oo assert Poly(1, x).degree(gen='x') == 0 assert Poly(x, x).degree(gen='x') == 1 raises(PolynomialError, lambda: Poly(1, x).degree(gen=1)) raises(PolynomialError, lambda: Poly(1, x).degree(gen=y)) raises(PolynomialError, lambda: Poly(1, x).degree(gen='y')) assert Poly(1, x, y).degree() == 0 assert Poly(2*y, x, y).degree() == 0 assert Poly(x*y, x, y).degree() == 1 assert Poly(1, x, y).degree(gen=x) == 0 assert Poly(2*y, x, y).degree(gen=x) == 0 assert Poly(x*y, x, y).degree(gen=x) == 1 assert Poly(1, x, y).degree(gen=y) == 0 assert Poly(2*y, x, y).degree(gen=y) == 1 assert Poly(x*y, x, y).degree(gen=y) == 1 assert degree(0, x) is -oo assert degree(1, x) == 0 assert degree(x, x) == 1 assert degree(x*y**2, x) == 1 assert degree(x*y**2, y) == 2 assert degree(x*y**2, z) == 0 assert degree(pi) == 1 raises(TypeError, lambda: degree(y**2 + x**3)) raises(TypeError, lambda: degree(y**2 + x**3, 1)) raises(PolynomialError, lambda: degree(x, 1.1)) raises(PolynomialError, lambda: degree(x**2/(x**3 + 1), x)) assert degree(Poly(0,x),z) is -oo assert degree(Poly(1,x),z) == 0 assert degree(Poly(x**2+y**3,y)) == 3 assert degree(Poly(y**2 + x**3, y, x), 1) == 3 assert degree(Poly(y**2 + x**3, x), z) == 0 assert degree(Poly(y**2 + x**3 + z**4, x), z) == 4 def test_Poly_degree_list(): assert Poly(0, x).degree_list() == (-oo,) assert Poly(0, x, y).degree_list() == (-oo, -oo) assert Poly(0, x, y, z).degree_list() == (-oo, -oo, -oo) assert Poly(1, x).degree_list() == (0,) assert Poly(1, x, y).degree_list() == (0, 0) assert Poly(1, x, y, z).degree_list() == (0, 0, 0) assert Poly(x**2*y + x**3*z**2 + 1).degree_list() == (3, 1, 2) assert degree_list(1, x) == (0,) assert degree_list(x, x) == (1,) assert degree_list(x*y**2) == (1, 2) raises(ComputationFailed, lambda: degree_list(1)) def test_Poly_total_degree(): assert Poly(x**2*y + x**3*z**2 + 1).total_degree() == 5 assert Poly(x**2 + z**3).total_degree() == 3 assert Poly(x*y*z + z**4).total_degree() == 4 assert Poly(x**3 + x + 1).total_degree() == 3 assert total_degree(x*y + z**3) == 3 assert total_degree(x*y + z**3, x, y) == 2 assert total_degree(1) == 0 assert total_degree(Poly(y**2 + x**3 + z**4)) == 4 assert total_degree(Poly(y**2 + x**3 + z**4, x)) == 3 assert total_degree(Poly(y**2 + x**3 + z**4, x), z) == 4 assert total_degree(Poly(x**9 + x*z*y + x**3*z**2 + z**7,x), z) == 7 def test_Poly_homogenize(): assert Poly(x**2+y).homogenize(z) == Poly(x**2+y*z) assert Poly(x+y).homogenize(z) == Poly(x+y, x, y, z) assert Poly(x+y**2).homogenize(y) == Poly(x*y+y**2) def test_Poly_homogeneous_order(): assert Poly(0, x, y).homogeneous_order() is -oo assert Poly(1, x, y).homogeneous_order() == 0 assert Poly(x, x, y).homogeneous_order() == 1 assert Poly(x*y, x, y).homogeneous_order() == 2 assert Poly(x + 1, x, y).homogeneous_order() is None assert Poly(x*y + x, x, y).homogeneous_order() is None assert Poly(x**5 + 2*x**3*y**2 + 9*x*y**4).homogeneous_order() == 5 assert Poly(x**5 + 2*x**3*y**3 + 9*x*y**4).homogeneous_order() is None def test_Poly_LC(): assert Poly(0, x).LC() == 0 assert Poly(1, x).LC() == 1 assert Poly(2*x**2 + x, x).LC() == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('lex') == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('grlex') == 1 assert LC(x*y**7 + 2*x**2*y**3, order='lex') == 2 assert LC(x*y**7 + 2*x**2*y**3, order='grlex') == 1 def test_Poly_TC(): assert Poly(0, x).TC() == 0 assert Poly(1, x).TC() == 1 assert Poly(2*x**2 + x, x).TC() == 0 def test_Poly_EC(): assert Poly(0, x).EC() == 0 assert Poly(1, x).EC() == 1 assert Poly(2*x**2 + x, x).EC() == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('lex') == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('grlex') == 2 def test_Poly_coeff(): assert Poly(0, x).coeff_monomial(1) == 0 assert Poly(0, x).coeff_monomial(x) == 0 assert Poly(1, x).coeff_monomial(1) == 1 assert Poly(1, x).coeff_monomial(x) == 0 assert Poly(x**8, x).coeff_monomial(1) == 0 assert Poly(x**8, x).coeff_monomial(x**7) == 0 assert Poly(x**8, x).coeff_monomial(x**8) == 1 assert Poly(x**8, x).coeff_monomial(x**9) == 0 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(1) == 1 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(x*y**2) == 3 p = Poly(24*x*y*exp(8) + 23*x, x, y) assert p.coeff_monomial(x) == 23 assert p.coeff_monomial(y) == 0 assert p.coeff_monomial(x*y) == 24*exp(8) assert p.as_expr().coeff(x) == 24*y*exp(8) + 23 raises(NotImplementedError, lambda: p.coeff(x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(0)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x*y)) def test_Poly_nth(): assert Poly(0, x).nth(0) == 0 assert Poly(0, x).nth(1) == 0 assert Poly(1, x).nth(0) == 1 assert Poly(1, x).nth(1) == 0 assert Poly(x**8, x).nth(0) == 0 assert Poly(x**8, x).nth(7) == 0 assert Poly(x**8, x).nth(8) == 1 assert Poly(x**8, x).nth(9) == 0 assert Poly(3*x*y**2 + 1, x, y).nth(0, 0) == 1 assert Poly(3*x*y**2 + 1, x, y).nth(1, 2) == 3 raises(ValueError, lambda: Poly(x*y + 1, x, y).nth(1)) def test_Poly_LM(): assert Poly(0, x).LM() == (0,) assert Poly(1, x).LM() == (0,) assert Poly(2*x**2 + x, x).LM() == (2,) assert Poly(x*y**7 + 2*x**2*y**3).LM('lex') == (2, 3) assert Poly(x*y**7 + 2*x**2*y**3).LM('grlex') == (1, 7) assert LM(x*y**7 + 2*x**2*y**3, order='lex') == x**2*y**3 assert LM(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_LM_custom_order(): f = Poly(x**2*y**3*z + x**2*y*z**3 + x*y*z + 1) rev_lex = lambda monom: tuple(reversed(monom)) assert f.LM(order='lex') == (2, 3, 1) assert f.LM(order=rev_lex) == (2, 1, 3) def test_Poly_EM(): assert Poly(0, x).EM() == (0,) assert Poly(1, x).EM() == (0,) assert Poly(2*x**2 + x, x).EM() == (1,) assert Poly(x*y**7 + 2*x**2*y**3).EM('lex') == (1, 7) assert Poly(x*y**7 + 2*x**2*y**3).EM('grlex') == (2, 3) def test_Poly_LT(): assert Poly(0, x).LT() == ((0,), 0) assert Poly(1, x).LT() == ((0,), 1) assert Poly(2*x**2 + x, x).LT() == ((2,), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('lex') == ((2, 3), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('grlex') == ((1, 7), 1) assert LT(x*y**7 + 2*x**2*y**3, order='lex') == 2*x**2*y**3 assert LT(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_ET(): assert Poly(0, x).ET() == ((0,), 0) assert Poly(1, x).ET() == ((0,), 1) assert Poly(2*x**2 + x, x).ET() == ((1,), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('lex') == ((1, 7), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('grlex') == ((2, 3), 2) def test_Poly_max_norm(): assert Poly(-1, x).max_norm() == 1 assert Poly( 0, x).max_norm() == 0 assert Poly( 1, x).max_norm() == 1 def test_Poly_l1_norm(): assert Poly(-1, x).l1_norm() == 1 assert Poly( 0, x).l1_norm() == 0 assert Poly( 1, x).l1_norm() == 1 def test_Poly_clear_denoms(): coeff, poly = Poly(x + 2, x).clear_denoms() assert coeff == 1 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/2 + 1, x).clear_denoms() assert coeff == 2 and poly == Poly( x + 2, x, domain='QQ') and poly.get_domain() == QQ coeff, poly = Poly(x/2 + 1, x).clear_denoms(convert=True) assert coeff == 2 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/y + 1, x).clear_denoms(convert=True) assert coeff == y and poly == Poly( x + y, x, domain='ZZ[y]') and poly.get_domain() == ZZ[y] coeff, poly = Poly(x/3 + sqrt(2), x, domain='EX').clear_denoms() assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX coeff, poly = Poly( x/3 + sqrt(2), x, domain='EX').clear_denoms(convert=True) assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX def test_Poly_rat_clear_denoms(): f = Poly(x**2/y + 1, x) g = Poly(x**3 + y, x) assert f.rat_clear_denoms(g) == \ (Poly(x**2 + y, x), Poly(y*x**3 + y**2, x)) f = f.set_domain(EX) g = g.set_domain(EX) assert f.rat_clear_denoms(g) == (f, g) def test_issue_20427(): f = Poly(-117968192370600*18**(S(1)/3)/(217603955769048*(24201 + 253*sqrt(9165))**(S(1)/3) + 2273005839412*sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)) - 15720318185*2**(S(2)/3)*3**(S(1)/3)*(24201 + 253*sqrt(9165))**(S(2)/3)/(217603955769048*(24201 + 253*sqrt(9165))** (S(1)/3) + 2273005839412*sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)) + 15720318185*12**(S(1)/3)*(24201 + 253*sqrt(9165))**(S(2)/3)/( 217603955769048*(24201 + 253*sqrt(9165))**(S(1)/3) + 2273005839412* sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)) + 117968192370600*2**( S(1)/3)*3**(S(2)/3)/(217603955769048*(24201 + 253*sqrt(9165))**(S(1)/3) + 2273005839412*sqrt(9165)*(24201 + 253*sqrt(9165))**(S(1)/3)), x) assert f == Poly(0, x, domain='EX') def test_Poly_integrate(): assert Poly(x + 1).integrate() == Poly(x**2/2 + x) assert Poly(x + 1).integrate(x) == Poly(x**2/2 + x) assert Poly(x + 1).integrate((x, 1)) == Poly(x**2/2 + x) assert Poly(x*y + 1).integrate(x) == Poly(x**2*y/2 + x) assert Poly(x*y + 1).integrate(y) == Poly(x*y**2/2 + y) assert Poly(x*y + 1).integrate(x, x) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate(y, y) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate((x, 2)) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate((y, 2)) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate(x, y) == Poly(x**2*y**2/4 + x*y) assert Poly(x*y + 1).integrate(y, x) == Poly(x**2*y**2/4 + x*y) def test_Poly_diff(): assert Poly(x**2 + x).diff() == Poly(2*x + 1) assert Poly(x**2 + x).diff(x) == Poly(2*x + 1) assert Poly(x**2 + x).diff((x, 1)) == Poly(2*x + 1) assert Poly(x**2*y**2 + x*y).diff(x) == Poly(2*x*y**2 + y) assert Poly(x**2*y**2 + x*y).diff(y) == Poly(2*x**2*y + x) assert Poly(x**2*y**2 + x*y).diff(x, x) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff(y, y) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff((x, 2)) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff((y, 2)) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff(x, y) == Poly(4*x*y + 1) assert Poly(x**2*y**2 + x*y).diff(y, x) == Poly(4*x*y + 1) def test_issue_9585(): assert diff(Poly(x**2 + x)) == Poly(2*x + 1) assert diff(Poly(x**2 + x), x, evaluate=False) == \ Derivative(Poly(x**2 + x), x) assert Derivative(Poly(x**2 + x), x).doit() == Poly(2*x + 1) def test_Poly_eval(): assert Poly(0, x).eval(7) == 0 assert Poly(1, x).eval(7) == 1 assert Poly(x, x).eval(7) == 7 assert Poly(0, x).eval(0, 7) == 0 assert Poly(1, x).eval(0, 7) == 1 assert Poly(x, x).eval(0, 7) == 7 assert Poly(0, x).eval(x, 7) == 0 assert Poly(1, x).eval(x, 7) == 1 assert Poly(x, x).eval(x, 7) == 7 assert Poly(0, x).eval('x', 7) == 0 assert Poly(1, x).eval('x', 7) == 1 assert Poly(x, x).eval('x', 7) == 7 raises(PolynomialError, lambda: Poly(1, x).eval(1, 7)) raises(PolynomialError, lambda: Poly(1, x).eval(y, 7)) raises(PolynomialError, lambda: Poly(1, x).eval('y', 7)) assert Poly(123, x, y).eval(7) == Poly(123, y) assert Poly(2*y, x, y).eval(7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(7) == Poly(7*y, y) assert Poly(123, x, y).eval(x, 7) == Poly(123, y) assert Poly(2*y, x, y).eval(x, 7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(x, 7) == Poly(7*y, y) assert Poly(123, x, y).eval(y, 7) == Poly(123, x) assert Poly(2*y, x, y).eval(y, 7) == Poly(14, x) assert Poly(x*y, x, y).eval(y, 7) == Poly(7*x, x) assert Poly(x*y + y, x, y).eval({x: 7}) == Poly(8*y, y) assert Poly(x*y + y, x, y).eval({y: 7}) == Poly(7*x + 7, x) assert Poly(x*y + y, x, y).eval({x: 6, y: 7}) == 49 assert Poly(x*y + y, x, y).eval({x: 7, y: 6}) == 48 assert Poly(x*y + y, x, y).eval((6, 7)) == 49 assert Poly(x*y + y, x, y).eval([6, 7]) == 49 assert Poly(x + 1, domain='ZZ').eval(S.Half) == Rational(3, 2) assert Poly(x + 1, domain='ZZ').eval(sqrt(2)) == sqrt(2) + 1 raises(ValueError, lambda: Poly(x*y + y, x, y).eval((6, 7, 8))) raises(DomainError, lambda: Poly(x + 1, domain='ZZ').eval(S.Half, auto=False)) # issue 6344 alpha = Symbol('alpha') result = (2*alpha*z - 2*alpha + z**2 + 3)/(z**2 - 2*z + 1) f = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, domain='ZZ[alpha]') assert f.eval((z + 1)/(z - 1)) == result g = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, y, domain='ZZ[alpha]') assert g.eval((z + 1)/(z - 1)) == Poly(result, y, domain='ZZ(alpha,z)') def test_Poly___call__(): f = Poly(2*x*y + 3*x + y + 2*z) assert f(2) == Poly(5*y + 2*z + 6) assert f(2, 5) == Poly(2*z + 31) assert f(2, 5, 7) == 45 def test_parallel_poly_from_expr(): assert parallel_poly_from_expr( [x - 1, x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr([Poly( x - 1, x), Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly( x - 1, x), x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([x - 1, Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly(x - 1, x), Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr( [x - 1, x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr([Poly(x, x, y), Poly(y, x, y)], x, y, order='lex')[0] == \ [Poly(x, x, y, domain='ZZ'), Poly(y, x, y, domain='ZZ')] raises(PolificationFailed, lambda: parallel_poly_from_expr([0, 1])) def test_pdiv(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.pdiv(G) == (Q, R) assert F.prem(G) == R assert F.pquo(G) == Q assert F.pexquo(G) == Q assert pdiv(f, g) == (q, r) assert prem(f, g) == r assert pquo(f, g) == q assert pexquo(f, g) == q assert pdiv(f, g, x, y) == (q, r) assert prem(f, g, x, y) == r assert pquo(f, g, x, y) == q assert pexquo(f, g, x, y) == q assert pdiv(f, g, (x, y)) == (q, r) assert prem(f, g, (x, y)) == r assert pquo(f, g, (x, y)) == q assert pexquo(f, g, (x, y)) == q assert pdiv(F, G) == (Q, R) assert prem(F, G) == R assert pquo(F, G) == Q assert pexquo(F, G) == Q assert pdiv(f, g, polys=True) == (Q, R) assert prem(f, g, polys=True) == R assert pquo(f, g, polys=True) == Q assert pexquo(f, g, polys=True) == Q assert pdiv(F, G, polys=False) == (q, r) assert prem(F, G, polys=False) == r assert pquo(F, G, polys=False) == q assert pexquo(F, G, polys=False) == q raises(ComputationFailed, lambda: pdiv(4, 2)) raises(ComputationFailed, lambda: prem(4, 2)) raises(ComputationFailed, lambda: pquo(4, 2)) raises(ComputationFailed, lambda: pexquo(4, 2)) def test_div(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.div(G) == (Q, R) assert F.rem(G) == R assert F.quo(G) == Q assert F.exquo(G) == Q assert div(f, g) == (q, r) assert rem(f, g) == r assert quo(f, g) == q assert exquo(f, g) == q assert div(f, g, x, y) == (q, r) assert rem(f, g, x, y) == r assert quo(f, g, x, y) == q assert exquo(f, g, x, y) == q assert div(f, g, (x, y)) == (q, r) assert rem(f, g, (x, y)) == r assert quo(f, g, (x, y)) == q assert exquo(f, g, (x, y)) == q assert div(F, G) == (Q, R) assert rem(F, G) == R assert quo(F, G) == Q assert exquo(F, G) == Q assert div(f, g, polys=True) == (Q, R) assert rem(f, g, polys=True) == R assert quo(f, g, polys=True) == Q assert exquo(f, g, polys=True) == Q assert div(F, G, polys=False) == (q, r) assert rem(F, G, polys=False) == r assert quo(F, G, polys=False) == q assert exquo(F, G, polys=False) == q raises(ComputationFailed, lambda: div(4, 2)) raises(ComputationFailed, lambda: rem(4, 2)) raises(ComputationFailed, lambda: quo(4, 2)) raises(ComputationFailed, lambda: exquo(4, 2)) f, g = x**2 + 1, 2*x - 4 qz, rz = 0, x**2 + 1 qq, rq = x/2 + 1, 5 assert div(f, g) == (qq, rq) assert div(f, g, auto=True) == (qq, rq) assert div(f, g, auto=False) == (qz, rz) assert div(f, g, domain=ZZ) == (qz, rz) assert div(f, g, domain=QQ) == (qq, rq) assert div(f, g, domain=ZZ, auto=True) == (qq, rq) assert div(f, g, domain=ZZ, auto=False) == (qz, rz) assert div(f, g, domain=QQ, auto=True) == (qq, rq) assert div(f, g, domain=QQ, auto=False) == (qq, rq) assert rem(f, g) == rq assert rem(f, g, auto=True) == rq assert rem(f, g, auto=False) == rz assert rem(f, g, domain=ZZ) == rz assert rem(f, g, domain=QQ) == rq assert rem(f, g, domain=ZZ, auto=True) == rq assert rem(f, g, domain=ZZ, auto=False) == rz assert rem(f, g, domain=QQ, auto=True) == rq assert rem(f, g, domain=QQ, auto=False) == rq assert quo(f, g) == qq assert quo(f, g, auto=True) == qq assert quo(f, g, auto=False) == qz assert quo(f, g, domain=ZZ) == qz assert quo(f, g, domain=QQ) == qq assert quo(f, g, domain=ZZ, auto=True) == qq assert quo(f, g, domain=ZZ, auto=False) == qz assert quo(f, g, domain=QQ, auto=True) == qq assert quo(f, g, domain=QQ, auto=False) == qq f, g, q = x**2, 2*x, x/2 assert exquo(f, g) == q assert exquo(f, g, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, auto=False)) raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ)) assert exquo(f, g, domain=QQ) == q assert exquo(f, g, domain=ZZ, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ, auto=False)) assert exquo(f, g, domain=QQ, auto=True) == q assert exquo(f, g, domain=QQ, auto=False) == q f, g = Poly(x**2), Poly(x) q, r = f.div(g) assert q.get_domain().is_ZZ and r.get_domain().is_ZZ r = f.rem(g) assert r.get_domain().is_ZZ q = f.quo(g) assert q.get_domain().is_ZZ q = f.exquo(g) assert q.get_domain().is_ZZ f, g = Poly(x+y, x), Poly(2*x+y, x) q, r = f.div(g) assert q.get_domain().is_Frac and r.get_domain().is_Frac # https://github.com/sympy/sympy/issues/19579 p = Poly(2+3*I, x, domain=ZZ_I) q = Poly(1-I, x, domain=ZZ_I) assert p.div(q, auto=False) == \ (Poly(0, x, domain='ZZ_I'), Poly(2 + 3*I, x, domain='ZZ_I')) assert p.div(q, auto=True) == \ (Poly(-S(1)/2 + 5*I/2, x, domain='QQ_I'), Poly(0, x, domain='QQ_I')) def test_issue_7864(): q, r = div(a, .408248290463863*a) assert abs(q - 2.44948974278318) < 1e-14 assert r == 0 def test_gcdex(): f, g = 2*x, x**2 - 16 s, t, h = x/32, Rational(-1, 16), 1 F, G, S, T, H = [ Poly(u, x, domain='QQ') for u in (f, g, s, t, h) ] assert F.half_gcdex(G) == (S, H) assert F.gcdex(G) == (S, T, H) assert F.invert(G) == S assert half_gcdex(f, g) == (s, h) assert gcdex(f, g) == (s, t, h) assert invert(f, g) == s assert half_gcdex(f, g, x) == (s, h) assert gcdex(f, g, x) == (s, t, h) assert invert(f, g, x) == s assert half_gcdex(f, g, (x,)) == (s, h) assert gcdex(f, g, (x,)) == (s, t, h) assert invert(f, g, (x,)) == s assert half_gcdex(F, G) == (S, H) assert gcdex(F, G) == (S, T, H) assert invert(F, G) == S assert half_gcdex(f, g, polys=True) == (S, H) assert gcdex(f, g, polys=True) == (S, T, H) assert invert(f, g, polys=True) == S assert half_gcdex(F, G, polys=False) == (s, h) assert gcdex(F, G, polys=False) == (s, t, h) assert invert(F, G, polys=False) == s assert half_gcdex(100, 2004) == (-20, 4) assert gcdex(100, 2004) == (-20, 1, 4) assert invert(3, 7) == 5 raises(DomainError, lambda: half_gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: invert(x + 1, 2*x + 1, auto=False)) def test_revert(): f = Poly(1 - x**2/2 + x**4/24 - x**6/720) g = Poly(61*x**6/720 + 5*x**4/24 + x**2/2 + 1) assert f.revert(8) == g def test_subresultants(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2 F, G, H = Poly(f), Poly(g), Poly(h) assert F.subresultants(G) == [F, G, H] assert subresultants(f, g) == [f, g, h] assert subresultants(f, g, x) == [f, g, h] assert subresultants(f, g, (x,)) == [f, g, h] assert subresultants(F, G) == [F, G, H] assert subresultants(f, g, polys=True) == [F, G, H] assert subresultants(F, G, polys=False) == [f, g, h] raises(ComputationFailed, lambda: subresultants(4, 2)) def test_resultant(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 0 F, G = Poly(f), Poly(g) assert F.resultant(G) == h assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == h assert resultant(f, g, polys=True) == h assert resultant(F, G, polys=False) == h assert resultant(f, g, includePRS=True) == (h, [f, g, 2*x - 2]) f, g, h = x - a, x - b, a - b F, G, H = Poly(f), Poly(g), Poly(h) assert F.resultant(G) == H assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == H assert resultant(f, g, polys=True) == H assert resultant(F, G, polys=False) == h raises(ComputationFailed, lambda: resultant(4, 2)) def test_discriminant(): f, g = x**3 + 3*x**2 + 9*x - 13, -11664 F = Poly(f) assert F.discriminant() == g assert discriminant(f) == g assert discriminant(f, x) == g assert discriminant(f, (x,)) == g assert discriminant(F) == g assert discriminant(f, polys=True) == g assert discriminant(F, polys=False) == g f, g = a*x**2 + b*x + c, b**2 - 4*a*c F, G = Poly(f), Poly(g) assert F.discriminant() == G assert discriminant(f) == g assert discriminant(f, x, a, b, c) == g assert discriminant(f, (x, a, b, c)) == g assert discriminant(F) == G assert discriminant(f, polys=True) == G assert discriminant(F, polys=False) == g raises(ComputationFailed, lambda: discriminant(4)) def test_dispersion(): # We test only the API here. For more mathematical # tests see the dedicated test file. fp = poly((x + 1)*(x + 2), x) assert sorted(fp.dispersionset()) == [0, 1] assert fp.dispersion() == 1 fp = poly(x**4 - 3*x**2 + 1, x) gp = fp.shift(-3) assert sorted(fp.dispersionset(gp)) == [2, 3, 4] assert fp.dispersion(gp) == 4 def test_gcd_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert gcd_list(F) == x - 1 assert gcd_list(F, polys=True) == Poly(x - 1) assert gcd_list([]) == 0 assert gcd_list([1, 2]) == 1 assert gcd_list([4, 6, 8]) == 2 assert gcd_list([x*(y + 42) - x*y - x*42]) == 0 gcd = gcd_list([], x) assert gcd.is_Number and gcd is S.Zero gcd = gcd_list([], x, polys=True) assert gcd.is_Poly and gcd.is_zero a = sqrt(2) assert gcd_list([a, -a]) == gcd_list([-a, a]) == a raises(ComputationFailed, lambda: gcd_list([], polys=True)) def test_lcm_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert lcm_list(F) == x**5 - x**4 - 2*x**3 - x**2 + x + 2 assert lcm_list(F, polys=True) == Poly(x**5 - x**4 - 2*x**3 - x**2 + x + 2) assert lcm_list([]) == 1 assert lcm_list([1, 2]) == 2 assert lcm_list([4, 6, 8]) == 24 assert lcm_list([x*(y + 42) - x*y - x*42]) == 0 lcm = lcm_list([], x) assert lcm.is_Number and lcm is S.One lcm = lcm_list([], x, polys=True) assert lcm.is_Poly and lcm.is_one raises(ComputationFailed, lambda: lcm_list([], polys=True)) def test_gcd(): f, g = x**3 - 1, x**2 - 1 s, t = x**2 + x + 1, x + 1 h, r = x - 1, x**4 + x**3 - x - 1 F, G, S, T, H, R = [ Poly(u) for u in (f, g, s, t, h, r) ] assert F.cofactors(G) == (H, S, T) assert F.gcd(G) == H assert F.lcm(G) == R assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == r assert cofactors(f, g, x) == (h, s, t) assert gcd(f, g, x) == h assert lcm(f, g, x) == r assert cofactors(f, g, (x,)) == (h, s, t) assert gcd(f, g, (x,)) == h assert lcm(f, g, (x,)) == r assert cofactors(F, G) == (H, S, T) assert gcd(F, G) == H assert lcm(F, G) == R assert cofactors(f, g, polys=True) == (H, S, T) assert gcd(f, g, polys=True) == H assert lcm(f, g, polys=True) == R assert cofactors(F, G, polys=False) == (h, s, t) assert gcd(F, G, polys=False) == h assert lcm(F, G, polys=False) == r f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f assert cofactors(8, 6) == (2, 4, 3) assert gcd(8, 6) == 2 assert lcm(8, 6) == 24 f, g = x**2 - 3*x - 4, x**3 - 4*x**2 + x - 4 l = x**4 - 3*x**3 - 3*x**2 - 3*x - 4 h, s, t = x - 4, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11) == (h, s, t) assert gcd(f, g, modulus=11) == h assert lcm(f, g, modulus=11) == l f, g = x**2 + 8*x + 7, x**3 + 7*x**2 + x + 7 l = x**4 + 8*x**3 + 8*x**2 + 8*x + 7 h, s, t = x + 7, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11, symmetric=False) == (h, s, t) assert gcd(f, g, modulus=11, symmetric=False) == h assert lcm(f, g, modulus=11, symmetric=False) == l a, b = sqrt(2), -sqrt(2) assert gcd(a, b) == gcd(b, a) == sqrt(2) a, b = sqrt(-2), -sqrt(-2) assert gcd(a, b) == gcd(b, a) == sqrt(2) assert gcd(Poly(x - 2, x), Poly(I*x, x)) == Poly(1, x, domain=ZZ_I) raises(TypeError, lambda: gcd(x)) raises(TypeError, lambda: lcm(x)) def test_gcd_numbers_vs_polys(): assert isinstance(gcd(3, 9), Integer) assert isinstance(gcd(3*x, 9), Integer) assert gcd(3, 9) == 3 assert gcd(3*x, 9) == 3 assert isinstance(gcd(Rational(3, 2), Rational(9, 4)), Rational) assert isinstance(gcd(Rational(3, 2)*x, Rational(9, 4)), Rational) assert gcd(Rational(3, 2), Rational(9, 4)) == Rational(3, 4) assert gcd(Rational(3, 2)*x, Rational(9, 4)) == 1 assert isinstance(gcd(3.0, 9.0), Float) assert isinstance(gcd(3.0*x, 9.0), Float) assert gcd(3.0, 9.0) == 1.0 assert gcd(3.0*x, 9.0) == 1.0 # partial fix of 20597 assert gcd(Mul(2, 3, evaluate=False), 2) == 2 def test_terms_gcd(): assert terms_gcd(1) == 1 assert terms_gcd(1, x) == 1 assert terms_gcd(x - 1) == x - 1 assert terms_gcd(-x - 1) == -x - 1 assert terms_gcd(2*x + 3) == 2*x + 3 assert terms_gcd(6*x + 4) == Mul(2, 3*x + 2, evaluate=False) assert terms_gcd(x**3*y + x*y**3) == x*y*(x**2 + y**2) assert terms_gcd(2*x**3*y + 2*x*y**3) == 2*x*y*(x**2 + y**2) assert terms_gcd(x**3*y/2 + x*y**3/2) == x*y/2*(x**2 + y**2) assert terms_gcd(x**3*y + 2*x*y**3) == x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y + 4*x*y**3) == 2*x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y/3 + 4*x*y**3/5) == x*y*Rational(2, 15)*(5*x**2 + 6*y**2) assert terms_gcd(2.0*x**3*y + 4.1*x*y**3) == x*y*(2.0*x**2 + 4.1*y**2) assert _aresame(terms_gcd(2.0*x + 3), 2.0*x + 3) assert terms_gcd((3 + 3*x)*(x + x*y), expand=False) == \ (3*x + 3)*(x*y + x) assert terms_gcd((3 + 3*x)*(x + x*sin(3 + 3*y)), expand=False, deep=True) == \ 3*x*(x + 1)*(sin(Mul(3, y + 1, evaluate=False)) + 1) assert terms_gcd(sin(x + x*y), deep=True) == \ sin(x*(y + 1)) eq = Eq(2*x, 2*y + 2*z*y) assert terms_gcd(eq) == Eq(2*x, 2*y*(z + 1)) assert terms_gcd(eq, deep=True) == Eq(2*x, 2*y*(z + 1)) raises(TypeError, lambda: terms_gcd(x < 2)) def test_trunc(): f, g = x**5 + 2*x**4 + 3*x**3 + 4*x**2 + 5*x + 6, x**5 - x**4 + x**2 - x F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f, g = 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, -x**4 + x**3 - x + 1 F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f = Poly(x**2 + 2*x + 3, modulus=5) assert f.trunc(2) == Poly(x**2 + 1, modulus=5) def test_monic(): f, g = 2*x - 1, x - S.Half F, G = Poly(f, domain='QQ'), Poly(g) assert F.monic() == G assert monic(f) == g assert monic(f, x) == g assert monic(f, (x,)) == g assert monic(F) == G assert monic(f, polys=True) == G assert monic(F, polys=False) == g raises(ComputationFailed, lambda: monic(4)) assert monic(2*x**2 + 6*x + 4, auto=False) == x**2 + 3*x + 2 raises(ExactQuotientFailed, lambda: monic(2*x + 6*x + 1, auto=False)) assert monic(2.0*x**2 + 6.0*x + 4.0) == 1.0*x**2 + 3.0*x + 2.0 assert monic(2*x**2 + 3*x + 4, modulus=5) == x**2 - x + 2 def test_content(): f, F = 4*x + 2, Poly(4*x + 2) assert F.content() == 2 assert content(f) == 2 raises(ComputationFailed, lambda: content(4)) f = Poly(2*x, modulus=3) assert f.content() == 1 def test_primitive(): f, g = 4*x + 2, 2*x + 1 F, G = Poly(f), Poly(g) assert F.primitive() == (2, G) assert primitive(f) == (2, g) assert primitive(f, x) == (2, g) assert primitive(f, (x,)) == (2, g) assert primitive(F) == (2, G) assert primitive(f, polys=True) == (2, G) assert primitive(F, polys=False) == (2, g) raises(ComputationFailed, lambda: primitive(4)) f = Poly(2*x, modulus=3) g = Poly(2.0*x, domain=RR) assert f.primitive() == (1, f) assert g.primitive() == (1.0, g) assert primitive(S('-3*x/4 + y + 11/8')) == \ S('(1/8, -6*x + 8*y + 11)') def test_compose(): f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9 g = x**4 - 2*x + 9 h = x**3 + 5*x F, G, H = map(Poly, (f, g, h)) assert G.compose(H) == F assert compose(g, h) == f assert compose(g, h, x) == f assert compose(g, h, (x,)) == f assert compose(G, H) == F assert compose(g, h, polys=True) == F assert compose(G, H, polys=False) == f assert F.decompose() == [G, H] assert decompose(f) == [g, h] assert decompose(f, x) == [g, h] assert decompose(f, (x,)) == [g, h] assert decompose(F) == [G, H] assert decompose(f, polys=True) == [G, H] assert decompose(F, polys=False) == [g, h] raises(ComputationFailed, lambda: compose(4, 2)) raises(ComputationFailed, lambda: decompose(4)) assert compose(x**2 - y**2, x - y, x, y) == x**2 - 2*x*y assert compose(x**2 - y**2, x - y, y, x) == -y**2 + 2*x*y def test_shift(): assert Poly(x**2 - 2*x + 1, x).shift(2) == Poly(x**2 + 2*x + 1, x) def test_transform(): # Also test that 3-way unification is done correctly assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(4, x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - x/2 + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(3*x**2/2 + Rational(5, 2), x) == \ cancel((x - 1)**2*(x**2 - x/2 + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + S.Half), Poly(x - 1)) == \ Poly(Rational(9, 4), x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + S.Half)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - S.Half)) == \ Poly(Rational(9, 4), x) == \ cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - S.Half))) # Unify ZZ, QQ, and RR assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1.0), Poly(x - S.Half)) == \ Poly(Rational(9, 4), x, domain='RR') == \ cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1.0)/(x - S.Half))) raises(ValueError, lambda: Poly(x*y).transform(Poly(x + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(y - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x*y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(x*y - 1))) def test_sturm(): f, F = x, Poly(x, domain='QQ') g, G = 1, Poly(1, x, domain='QQ') assert F.sturm() == [F, G] assert sturm(f) == [f, g] assert sturm(f, x) == [f, g] assert sturm(f, (x,)) == [f, g] assert sturm(F) == [F, G] assert sturm(f, polys=True) == [F, G] assert sturm(F, polys=False) == [f, g] raises(ComputationFailed, lambda: sturm(4)) raises(DomainError, lambda: sturm(f, auto=False)) f = Poly(S(1024)/(15625*pi**8)*x**5 - S(4096)/(625*pi**8)*x**4 + S(32)/(15625*pi**4)*x**3 - S(128)/(625*pi**4)*x**2 + Rational(1, 62500)*x - Rational(1, 625), x, domain='ZZ(pi)') assert sturm(f) == \ [Poly(x**3 - 100*x**2 + pi**4/64*x - 25*pi**4/16, x, domain='ZZ(pi)'), Poly(3*x**2 - 200*x + pi**4/64, x, domain='ZZ(pi)'), Poly((Rational(20000, 9) - pi**4/96)*x + 25*pi**4/18, x, domain='ZZ(pi)'), Poly((-3686400000000*pi**4 - 11520000*pi**8 - 9*pi**12)/(26214400000000 - 245760000*pi**4 + 576*pi**8), x, domain='ZZ(pi)')] def test_gff(): f = x**5 + 2*x**4 - x**3 - 2*x**2 assert Poly(f).gff_list() == [(Poly(x), 1), (Poly(x + 2), 4)] assert gff_list(f) == [(x, 1), (x + 2, 4)] raises(NotImplementedError, lambda: gff(f)) f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5) assert Poly(f).gff_list() == [( Poly(x**2 - 5*x + 4), 1), (Poly(x**2 - 5*x + 4), 2), (Poly(x), 3)] assert gff_list(f) == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)] raises(NotImplementedError, lambda: gff(f)) def test_norm(): a, b = sqrt(2), sqrt(3) f = Poly(a*x + b*y, x, y, extension=(a, b)) assert f.norm() == Poly(4*x**4 - 12*x**2*y**2 + 9*y**4, x, y, domain='QQ') def test_sqf_norm(): assert sqf_norm(x**2 - 2, extension=sqrt(3)) == \ (1, x**2 - 2*sqrt(3)*x + 1, x**4 - 10*x**2 + 1) assert sqf_norm(x**2 - 3, extension=sqrt(2)) == \ (1, x**2 - 2*sqrt(2)*x - 1, x**4 - 10*x**2 + 1) assert Poly(x**2 - 2, extension=sqrt(3)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(3)*x + 1, x, extension=sqrt(3)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) assert Poly(x**2 - 3, extension=sqrt(2)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(2)*x - 1, x, extension=sqrt(2)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) def test_sqf(): f = x**5 - x**3 - x**2 + 1 g = x**3 + 2*x**2 + 2*x + 1 h = x - 1 p = x**4 + x**3 - x - 1 F, G, H, P = map(Poly, (f, g, h, p)) assert F.sqf_part() == P assert sqf_part(f) == p assert sqf_part(f, x) == p assert sqf_part(f, (x,)) == p assert sqf_part(F) == P assert sqf_part(f, polys=True) == P assert sqf_part(F, polys=False) == p assert F.sqf_list() == (1, [(G, 1), (H, 2)]) assert sqf_list(f) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, x) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, (x,)) == (1, [(g, 1), (h, 2)]) assert sqf_list(F) == (1, [(G, 1), (H, 2)]) assert sqf_list(f, polys=True) == (1, [(G, 1), (H, 2)]) assert sqf_list(F, polys=False) == (1, [(g, 1), (h, 2)]) assert F.sqf_list_include() == [(G, 1), (H, 2)] raises(ComputationFailed, lambda: sqf_part(4)) assert sqf(1) == 1 assert sqf_list(1) == (1, []) assert sqf((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert sqf(f) == g*h**2 assert sqf(f, x) == g*h**2 assert sqf(f, (x,)) == g*h**2 d = x**2 + y**2 assert sqf(f/d) == (g*h**2)/d assert sqf(f/d, x) == (g*h**2)/d assert sqf(f/d, (x,)) == (g*h**2)/d assert sqf(x - 1) == x - 1 assert sqf(-x - 1) == -x - 1 assert sqf(x - 1) == x - 1 assert sqf(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert sqf((6*x - 10)/(3*x - 6)) == Rational(2, 3)*((3*x - 5)/(x - 2)) assert sqf(Poly(x**2 - 2*x + 1)) == (x - 1)**2 f = 3 + x - x*(1 + x) + x**2 assert sqf(f) == 3 f = (x**2 + 2*x + 1)**20000000000 assert sqf(f) == (x + 1)**40000000000 assert sqf_list(f) == (1, [(x + 1, 40000000000)]) def test_factor(): f = x**5 - x**3 - x**2 + 1 u = x + 1 v = x - 1 w = x**2 + x + 1 F, U, V, W = map(Poly, (f, u, v, w)) assert F.factor_list() == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, x) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, (x,)) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(F) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f, polys=True) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(F, polys=False) == (1, [(u, 1), (v, 2), (w, 1)]) assert F.factor_list_include() == [(U, 1), (V, 2), (W, 1)] assert factor_list(1) == (1, []) assert factor_list(6) == (6, []) assert factor_list(sqrt(3), x) == (sqrt(3), []) assert factor_list((-1)**x, x) == (1, [(-1, x)]) assert factor_list((2*x)**y, x) == (1, [(2, y), (x, y)]) assert factor_list(sqrt(x*y), x) == (1, [(x*y, S.Half)]) assert factor(6) == 6 and factor(6).is_Integer assert factor_list(3*x) == (3, [(x, 1)]) assert factor_list(3*x**2) == (3, [(x, 2)]) assert factor(3*x) == 3*x assert factor(3*x**2) == 3*x**2 assert factor((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert factor(f) == u*v**2*w assert factor(f, x) == u*v**2*w assert factor(f, (x,)) == u*v**2*w g, p, q, r = x**2 - y**2, x - y, x + y, x**2 + 1 assert factor(f/g) == (u*v**2*w)/(p*q) assert factor(f/g, x) == (u*v**2*w)/(p*q) assert factor(f/g, (x,)) == (u*v**2*w)/(p*q) p = Symbol('p', positive=True) i = Symbol('i', integer=True) r = Symbol('r', real=True) assert factor(sqrt(x*y)).is_Pow is True assert factor(sqrt(3*x**2 - 3)) == sqrt(3)*sqrt((x - 1)*(x + 1)) assert factor(sqrt(3*x**2 + 3)) == sqrt(3)*sqrt(x**2 + 1) assert factor((y*x**2 - y)**i) == y**i*(x - 1)**i*(x + 1)**i assert factor((y*x**2 + y)**i) == y**i*(x**2 + 1)**i assert factor((y*x**2 - y)**t) == (y*(x - 1)*(x + 1))**t assert factor((y*x**2 + y)**t) == (y*(x**2 + 1))**t f = sqrt(expand((r**2 + 1)*(p + 1)*(p - 1)*(p - 2)**3)) g = sqrt((p - 2)**3*(p - 1))*sqrt(p + 1)*sqrt(r**2 + 1) assert factor(f) == g assert factor(g) == g g = (x - 1)**5*(r**2 + 1) f = sqrt(expand(g)) assert factor(f) == sqrt(g) f = Poly(sin(1)*x + 1, x, domain=EX) assert f.factor_list() == (1, [(f, 1)]) f = x**4 + 1 assert factor(f) == f assert factor(f, extension=I) == (x**2 - I)*(x**2 + I) assert factor(f, gaussian=True) == (x**2 - I)*(x**2 + I) assert factor( f, extension=sqrt(2)) == (x**2 + sqrt(2)*x + 1)*(x**2 - sqrt(2)*x + 1) assert factor(x**2 + 4*I*x - 4) == (x + 2*I)**2 f = x**2 + 2*I*x - 4 assert factor(f) == f f = 8192*x**2 + x*(22656 + 175232*I) - 921416 + 242313*I f_zzi = I*(x*(64 - 64*I) + 773 + 596*I)**2 f_qqi = 8192*(x + S(177)/128 + 1369*I/128)**2 assert factor(f) == f_zzi assert factor(f, domain=ZZ_I) == f_zzi assert factor(f, domain=QQ_I) == f_qqi f = x**2 + 2*sqrt(2)*x + 2 assert factor(f, extension=sqrt(2)) == (x + sqrt(2))**2 assert factor(f**3, extension=sqrt(2)) == (x + sqrt(2))**6 assert factor(x**2 - 2*y**2, extension=sqrt(2)) == \ (x + sqrt(2)*y)*(x - sqrt(2)*y) assert factor(2*x**2 - 4*y**2, extension=sqrt(2)) == \ 2*((x + sqrt(2)*y)*(x - sqrt(2)*y)) assert factor(x - 1) == x - 1 assert factor(-x - 1) == -x - 1 assert factor(x - 1) == x - 1 assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor(x**11 + x + 1, modulus=65537, symmetric=True) == \ (x**2 + x + 1)*(x**9 - x**8 + x**6 - x**5 + x**3 - x** 2 + 1) assert factor(x**11 + x + 1, modulus=65537, symmetric=False) == \ (x**2 + x + 1)*(x**9 + 65536*x**8 + x**6 + 65536*x**5 + x**3 + 65536*x** 2 + 1) f = x/pi + x*sin(x)/pi g = y/(pi**2 + 2*pi + 1) + y*sin(x)/(pi**2 + 2*pi + 1) assert factor(f) == x*(sin(x) + 1)/pi assert factor(g) == y*(sin(x) + 1)/(pi + 1)**2 assert factor(Eq( x**2 + 2*x + 1, x**3 + 1)) == Eq((x + 1)**2, (x + 1)*(x**2 - x + 1)) f = (x**2 - 1)/(x**2 + 4*x + 4) assert factor(f) == (x + 1)*(x - 1)/(x + 2)**2 assert factor(f, x) == (x + 1)*(x - 1)/(x + 2)**2 f = 3 + x - x*(1 + x) + x**2 assert factor(f) == 3 assert factor(f, x) == 3 assert factor(1/(x**2 + 2*x + 1/x) - 1) == -((1 - x + 2*x**2 + x**3)/(1 + 2*x**2 + x**3)) assert factor(f, expand=False) == f raises(PolynomialError, lambda: factor(f, x, expand=False)) raises(FlagError, lambda: factor(x**2 - 1, polys=True)) assert factor([x, Eq(x**2 - y**2, Tuple(x**2 - z**2, 1/x + 1/y))]) == \ [x, Eq((x - y)*(x + y), Tuple((x - z)*(x + z), (x + y)/x/y))] assert not isinstance( Poly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert isinstance( PurePoly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert factor(sqrt(-x)) == sqrt(-x) # issue 5917 e = (-2*x*(-x + 1)*(x - 1)*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)*(x**2*(x - 1) - x*(x - 1) - x) - (-2*x**2*(x - 1)**2 - x*(-x + 1)*(-x*(-x + 1) + x*(x - 1)))*(x**2*(x - 1)**4 - x*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2))) assert factor(e) == 0 # deep option assert factor(sin(x**2 + x) + x, deep=True) == sin(x*(x + 1)) + x assert factor(sin(x**2 + x)*x, deep=True) == sin(x*(x + 1))*x assert factor(sqrt(x**2)) == sqrt(x**2) # issue 13149 assert factor(expand((0.5*x+1)*(0.5*y+1))) == Mul(1.0, 0.5*x + 1.0, 0.5*y + 1.0, evaluate = False) assert factor(expand((0.5*x+0.5)**2)) == 0.25*(1.0*x + 1.0)**2 eq = x**2*y**2 + 11*x**2*y + 30*x**2 + 7*x*y**2 + 77*x*y + 210*x + 12*y**2 + 132*y + 360 assert factor(eq, x) == (x + 3)*(x + 4)*(y**2 + 11*y + 30) assert factor(eq, x, deep=True) == (x + 3)*(x + 4)*(y**2 + 11*y + 30) assert factor(eq, y, deep=True) == (y + 5)*(y + 6)*(x**2 + 7*x + 12) # fraction option f = 5*x + 3*exp(2 - 7*x) assert factor(f, deep=True) == factor(f, deep=True, fraction=True) assert factor(f, deep=True, fraction=False) == 5*x + 3*exp(2)*exp(-7*x) assert factor_list(x**3 - x*y**2, t, w, x) == ( 1, [(x, 1), (x - y, 1), (x + y, 1)]) def test_factor_large(): f = (x**2 + 4*x + 4)**10000000*(x**2 + 1)*(x**2 + 2*x + 1)**1234567 g = ((x**2 + 2*x + 1)**3000*y**2 + (x**2 + 2*x + 1)**3000*2*y + ( x**2 + 2*x + 1)**3000) assert factor(f) == (x + 2)**20000000*(x**2 + 1)*(x + 1)**2469134 assert factor(g) == (x + 1)**6000*(y + 1)**2 assert factor_list( f) == (1, [(x + 1, 2469134), (x + 2, 20000000), (x**2 + 1, 1)]) assert factor_list(g) == (1, [(y + 1, 2), (x + 1, 6000)]) f = (x**2 - y**2)**200000*(x**7 + 1) g = (x**2 + y**2)**200000*(x**7 + 1) assert factor(f) == \ (x + 1)*(x - y)**200000*(x + y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor(g, gaussian=True) == \ (x + 1)*(x - I*y)**200000*(x + I*y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor_list(f) == \ (1, [(x + 1, 1), (x - y, 200000), (x + y, 200000), (x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) assert factor_list(g, gaussian=True) == \ (1, [(x + 1, 1), (x - I*y, 200000), (x + I*y, 200000), ( x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) def test_factor_noeval(): assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor((6*x - 10)/(3*x - 6)) == Mul(Rational(2, 3), 3*x - 5, 1/(x - 2)) def test_intervals(): assert intervals(0) == [] assert intervals(1) == [] assert intervals(x, sqf=True) == [(0, 0)] assert intervals(x) == [((0, 0), 1)] assert intervals(x**128) == [((0, 0), 128)] assert intervals([x**2, x**4]) == [((0, 0), {0: 2, 1: 4})] f = Poly((x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257))) assert f.intervals(sqf=True) == [(-1, 0), (14, 15)] assert f.intervals() == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(fast=True, sqf=True) == [(-1, 0), (14, 15)] assert f.intervals(fast=True) == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(eps=Rational(1, 10)) == f.intervals(eps=0.1) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 100)) == f.intervals(eps=0.01) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 1000)) == f.intervals(eps=0.001) == \ [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 10000)) == f.intervals(eps=0.0001) == \ [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)] f = (x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257)) assert intervals(f, sqf=True) == [(-1, 0), (14, 15)] assert intervals(f) == [((-1, 0), 1), ((14, 15), 1)] assert intervals(f, eps=Rational(1, 10)) == intervals(f, eps=0.1) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 100)) == intervals(f, eps=0.01) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 1000)) == intervals(f, eps=0.001) == \ [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 10000)) == intervals(f, eps=0.0001) == \ [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)] f = Poly((x**2 - 2)*(x**2 - 3)**7*(x + 1)*(7*x + 3)**3) assert f.intervals() == \ [((-2, Rational(-3, 2)), 7), ((Rational(-3, 2), -1), 1), ((-1, -1), 1), ((-1, 0), 3), ((1, Rational(3, 2)), 1), ((Rational(3, 2), 2), 7)] assert intervals([x**5 - 200, x**5 - 201]) == \ [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})] assert intervals([x**5 - 200, x**5 - 201], fast=True) == \ [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})] assert intervals([x**2 - 200, x**2 - 201]) == \ [((Rational(-71, 5), Rational(-85, 6)), {1: 1}), ((Rational(-85, 6), -14), {0: 1}), ((14, Rational(85, 6)), {0: 1}), ((Rational(85, 6), Rational(71, 5)), {1: 1})] assert intervals([x + 1, x + 2, x - 1, x + 1, 1, x - 1, x - 1, (x - 2)**2]) == \ [((-2, -2), {1: 1}), ((-1, -1), {0: 1, 3: 1}), ((1, 1), {2: 1, 5: 1, 6: 1}), ((2, 2), {7: 2})] f, g, h = x**2 - 2, x**4 - 4*x**2 + 4, x - 1 assert intervals(f, inf=Rational(7, 4), sqf=True) == [] assert intervals(f, inf=Rational(7, 5), sqf=True) == [(Rational(7, 5), Rational(3, 2))] assert intervals(f, sup=Rational(7, 4), sqf=True) == [(-2, -1), (1, Rational(3, 2))] assert intervals(f, sup=Rational(7, 5), sqf=True) == [(-2, -1)] assert intervals(g, inf=Rational(7, 4)) == [] assert intervals(g, inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), 2)] assert intervals(g, sup=Rational(7, 4)) == [((-2, -1), 2), ((1, Rational(3, 2)), 2)] assert intervals(g, sup=Rational(7, 5)) == [((-2, -1), 2)] assert intervals([g, h], inf=Rational(7, 4)) == [] assert intervals([g, h], inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), {0: 2})] assert intervals([g, h], sup=S( 7)/4) == [((-2, -1), {0: 2}), ((1, 1), {1: 1}), ((1, Rational(3, 2)), {0: 2})] assert intervals( [g, h], sup=Rational(7, 5)) == [((-2, -1), {0: 2}), ((1, 1), {1: 1})] assert intervals([x + 2, x**2 - 2]) == \ [((-2, -2), {0: 1}), ((-2, -1), {1: 1}), ((1, 2), {1: 1})] assert intervals([x + 2, x**2 - 2], strict=True) == \ [((-2, -2), {0: 1}), ((Rational(-3, 2), -1), {1: 1}), ((1, 2), {1: 1})] f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20 assert intervals(f) == [] real_part, complex_part = intervals(f, all=True, sqf=True) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) assert complex_part == [(Rational(-40, 7) - I*40/7, 0), (Rational(-40, 7), I*40/7), (I*Rational(-40, 7), Rational(40, 7)), (0, Rational(40, 7) + I*40/7)] real_part, complex_part = intervals(f, all=True, sqf=True, eps=Rational(1, 10)) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) raises(ValueError, lambda: intervals(x**2 - 2, eps=10**-100000)) raises(ValueError, lambda: Poly(x**2 - 2).intervals(eps=10**-100000)) raises( ValueError, lambda: intervals([x**2 - 2, x**2 - 3], eps=10**-100000)) def test_refine_root(): f = Poly(x**2 - 2) assert f.refine_root(1, 2, steps=0) == (1, 2) assert f.refine_root(-2, -1, steps=0) == (-2, -1) assert f.refine_root(1, 2, steps=None) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=None) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, steps=1) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=1) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, steps=1, fast=True) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=1, fast=True) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert f.refine_root(1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12)) raises(PolynomialError, lambda: (f**2).refine_root(1, 2, check_sqf=True)) raises(RefinementFailed, lambda: (f**2).refine_root(1, 2)) raises(RefinementFailed, lambda: (f**2).refine_root(2, 3)) f = x**2 - 2 assert refine_root(f, 1, 2, steps=1) == (1, Rational(3, 2)) assert refine_root(f, -2, -1, steps=1) == (Rational(-3, 2), -1) assert refine_root(f, 1, 2, steps=1, fast=True) == (1, Rational(3, 2)) assert refine_root(f, -2, -1, steps=1, fast=True) == (Rational(-3, 2), -1) assert refine_root(f, 1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert refine_root(f, 1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12)) raises(PolynomialError, lambda: refine_root(1, 7, 8, eps=Rational(1, 100))) raises(ValueError, lambda: Poly(f).refine_root(1, 2, eps=10**-100000)) raises(ValueError, lambda: refine_root(f, 1, 2, eps=10**-100000)) def test_count_roots(): assert count_roots(x**2 - 2) == 2 assert count_roots(x**2 - 2, inf=-oo) == 2 assert count_roots(x**2 - 2, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-oo, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-2) == 2 assert count_roots(x**2 - 2, inf=-1) == 1 assert count_roots(x**2 - 2, sup=1) == 1 assert count_roots(x**2 - 2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 + 2) == 0 assert count_roots(x**2 + 2, inf=-2*I) == 2 assert count_roots(x**2 + 2, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=-2*I, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=0) == 0 assert count_roots(x**2 + 2, sup=0) == 0 assert count_roots(x**2 + 2, inf=-I) == 1 assert count_roots(x**2 + 2, sup=+I) == 1 assert count_roots(x**2 + 2, inf=+I/2, sup=+I) == 0 assert count_roots(x**2 + 2, inf=-I, sup=-I/2) == 0 raises(PolynomialError, lambda: count_roots(1)) def test_Poly_root(): f = Poly(2*x**3 - 7*x**2 + 4*x + 4) assert f.root(0) == Rational(-1, 2) assert f.root(1) == 2 assert f.root(2) == 2 raises(IndexError, lambda: f.root(3)) assert Poly(x**5 + x + 1).root(0) == rootof(x**3 - x**2 + 1, 0) def test_real_roots(): assert real_roots(x) == [0] assert real_roots(x, multiple=False) == [(0, 1)] assert real_roots(x**3) == [0, 0, 0] assert real_roots(x**3, multiple=False) == [(0, 3)] assert real_roots(x*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0] assert real_roots(x*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 1)] assert real_roots( x**3*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0, 0, 0] assert real_roots(x**3*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 3)] f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).real_roots() == [Rational(-1, 2), 2, 2] assert Poly(g).real_roots() == [rootof(g, 0)] def test_all_roots(): f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).all_roots() == [Rational(-1, 2), 2, 2] assert Poly(g).all_roots() == [rootof(g, 0), rootof(g, 1), rootof(g, 2)] def test_nroots(): assert Poly(0, x).nroots() == [] assert Poly(1, x).nroots() == [] assert Poly(x**2 - 1, x).nroots() == [-1.0, 1.0] assert Poly(x**2 + 1, x).nroots() == [-1.0*I, 1.0*I] roots = Poly(x**2 - 1, x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2 + 1, x).nroots() assert roots == [-1.0*I, 1.0*I] roots = Poly(x**2/3 - Rational(1, 3), x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2/3 + Rational(1, 3), x).nroots() assert roots == [-1.0*I, 1.0*I] assert Poly(x**2 + 2*I, x).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly( x**2 + 2*I, x, extension=I).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly(0.2*x + 0.1).nroots() == [-0.5] roots = nroots(x**5 + x + 1, n=5) eps = Float("1e-5") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.true assert im(roots[0]) == 0.0 assert re(roots[1]) == Float(-0.5, 5) assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.true assert re(roots[2]) == Float(-0.5, 5) assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.true assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.true assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.true eps = Float("1e-6") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.false assert im(roots[0]) == 0.0 assert re(roots[1]) == Float(-0.5, 5) assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.false assert re(roots[2]) == Float(-0.5, 5) assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.false assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.false assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.false raises(DomainError, lambda: Poly(x + y, x).nroots()) raises(MultivariatePolynomialError, lambda: Poly(x + y).nroots()) assert nroots(x**2 - 1) == [-1.0, 1.0] roots = nroots(x**2 - 1) assert roots == [-1.0, 1.0] assert nroots(x + I) == [-1.0*I] assert nroots(x + 2*I) == [-2.0*I] raises(PolynomialError, lambda: nroots(0)) # issue 8296 f = Poly(x**4 - 1) assert f.nroots(2) == [w.n(2) for w in f.all_roots()] assert str(Poly(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 + 39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 + 877969).nroots(2)) == ('[-1.7 - 1.9*I, -1.7 + 1.9*I, -1.7 ' '- 2.5*I, -1.7 + 2.5*I, -1.0*I, 1.0*I, -1.7*I, 1.7*I, -2.8*I, ' '2.8*I, -3.4*I, 3.4*I, 1.7 - 1.9*I, 1.7 + 1.9*I, 1.7 - 2.5*I, ' '1.7 + 2.5*I]') assert str(Poly(1e-15*x**2 -1).nroots()) == ('[-31622776.6016838, 31622776.6016838]') def test_ground_roots(): f = x**6 - 4*x**4 + 4*x**3 - x**2 assert Poly(f).ground_roots() == {S.One: 2, S.Zero: 2} assert ground_roots(f) == {S.One: 2, S.Zero: 2} def test_nth_power_roots_poly(): f = x**4 - x**2 + 1 f_2 = (x**2 - x + 1)**2 f_3 = (x**2 + 1)**2 f_4 = (x**2 + x + 1)**2 f_12 = (x - 1)**4 assert nth_power_roots_poly(f, 1) == f raises(ValueError, lambda: nth_power_roots_poly(f, 0)) raises(ValueError, lambda: nth_power_roots_poly(f, x)) assert factor(nth_power_roots_poly(f, 2)) == f_2 assert factor(nth_power_roots_poly(f, 3)) == f_3 assert factor(nth_power_roots_poly(f, 4)) == f_4 assert factor(nth_power_roots_poly(f, 12)) == f_12 raises(MultivariatePolynomialError, lambda: nth_power_roots_poly( x + y, 2, x, y)) def test_same_root(): f = Poly(x**4 + x**3 + x**2 + x + 1) eq = f.same_root r0 = exp(2 * I * pi / 5) assert [i for i, r in enumerate(f.all_roots()) if eq(r, r0)] == [3] raises(PolynomialError, lambda: Poly(x + 1, domain=QQ).same_root(0, 0)) raises(DomainError, lambda: Poly(x**2 + 1, domain=FF(7)).same_root(0, 0)) raises(DomainError, lambda: Poly(x ** 2 + 1, domain=ZZ_I).same_root(0, 0)) raises(DomainError, lambda: Poly(y * x**2 + 1, domain=ZZ[y]).same_root(0, 0)) raises(MultivariatePolynomialError, lambda: Poly(x * y + 1, domain=ZZ).same_root(0, 0)) def test_torational_factor_list(): p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))})) assert _torational_factor_list(p, x) == (-2, [ (-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)]) p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + 2**Rational(1, 4))})) assert _torational_factor_list(p, x) is None def test_cancel(): assert cancel(0) == 0 assert cancel(7) == 7 assert cancel(x) == x assert cancel(oo) is oo assert cancel((2, 3)) == (1, 2, 3) assert cancel((1, 0), x) == (1, 1, 0) assert cancel((0, 1), x) == (1, 0, 1) f, g, p, q = 4*x**2 - 4, 2*x - 2, 2*x + 2, 1 F, G, P, Q = [ Poly(u, x) for u in (f, g, p, q) ] assert F.cancel(G) == (1, P, Q) assert cancel((f, g)) == (1, p, q) assert cancel((f, g), x) == (1, p, q) assert cancel((f, g), (x,)) == (1, p, q) assert cancel((F, G)) == (1, P, Q) assert cancel((f, g), polys=True) == (1, P, Q) assert cancel((F, G), polys=False) == (1, p, q) f = (x**2 - 2)/(x + sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x - sqrt(2) f = (x**2 - 2)/(x - sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x + sqrt(2) assert cancel((x**2/4 - 1, x/2 - 1)) == (1, x + 2, 2) # assert cancel((x**2/4 - 1, x/2 - 1)) == (S.Half, x + 2, 1) assert cancel((x**2 - y)/(x - y)) == 1/(x - y)*(x**2 - y) assert cancel((x**2 - y**2)/(x - y), x) == x + y assert cancel((x**2 - y**2)/(x - y), y) == x + y assert cancel((x**2 - y**2)/(x - y)) == x + y assert cancel((x**3 - 1)/(x**2 - 1)) == (x**2 + x + 1)/(x + 1) assert cancel((x**3/2 - S.Half)/(x**2 - 1)) == (x**2 + x + 1)/(2*x + 2) assert cancel((exp(2*x) + 2*exp(x) + 1)/(exp(x) + 1)) == exp(x) + 1 f = Poly(x**2 - a**2, x) g = Poly(x - a, x) F = Poly(x + a, x, domain='ZZ[a]') G = Poly(1, x, domain='ZZ[a]') assert cancel((f, g)) == (1, F, G) f = x**3 + (sqrt(2) - 2)*x**2 - (2*sqrt(2) + 3)*x - 3*sqrt(2) g = x**2 - 2 assert cancel((f, g), extension=True) == (1, x**2 - 2*x - 3, x - sqrt(2)) f = Poly(-2*x + 3, x) g = Poly(-x**9 + x**8 + x**6 - x**5 + 2*x**2 - 3*x + 1, x) assert cancel((f, g)) == (1, -f, -g) f = Poly(y, y, domain='ZZ(x)') g = Poly(1, y, domain='ZZ[x]') assert f.cancel( g) == (1, Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) assert f.cancel(g, include=True) == ( Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) f = Poly(5*x*y + x, y, domain='ZZ(x)') g = Poly(2*x**2*y, y, domain='ZZ(x)') assert f.cancel(g, include=True) == ( Poly(5*y + 1, y, domain='ZZ(x)'), Poly(2*x*y, y, domain='ZZ(x)')) f = -(-2*x - 4*y + 0.005*(z - y)**2)/((z - y)*(-z + y + 2)) assert cancel(f).is_Mul == True P = tanh(x - 3.0) Q = tanh(x + 3.0) f = ((-2*P**2 + 2)*(-P**2 + 1)*Q**2/2 + (-2*P**2 + 2)*(-2*Q**2 + 2)*P*Q - (-2*P**2 + 2)*P**2*Q**2 + (-2*Q**2 + 2)*(-Q**2 + 1)*P**2/2 - (-2*Q**2 + 2)*P**2*Q**2)/(2*sqrt(P**2*Q**2 + 0.0001)) \ + (-(-2*P**2 + 2)*P*Q**2/2 - (-2*Q**2 + 2)*P**2*Q/2)*((-2*P**2 + 2)*P*Q**2/2 + (-2*Q**2 + 2)*P**2*Q/2)/(2*(P**2*Q**2 + 0.0001)**Rational(3, 2)) assert cancel(f).is_Mul == True # issue 7022 A = Symbol('A', commutative=False) p1 = Piecewise((A*(x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p2 = Piecewise((A*(x - 1), x > 1), (1/x, True)) assert cancel(p1) == p2 assert cancel(2*p1) == 2*p2 assert cancel(1 + p1) == 1 + p2 assert cancel((x**2 - 1)/(x + 1)*p1) == (x - 1)*p2 assert cancel((x**2 - 1)/(x + 1) + p1) == (x - 1) + p2 p3 = Piecewise(((x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p4 = Piecewise(((x - 1), x > 1), (1/x, True)) assert cancel(p3) == p4 assert cancel(2*p3) == 2*p4 assert cancel(1 + p3) == 1 + p4 assert cancel((x**2 - 1)/(x + 1)*p3) == (x - 1)*p4 assert cancel((x**2 - 1)/(x + 1) + p3) == (x - 1) + p4 # issue 4077 q = S('''(2*1*(x - 1/x)/(x*(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x)) - 2*1*((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))*((-x + 1/x)*((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))/(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x) + 1)*((x - 1/x)/((x - 1/x)**2) - ((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))**2/(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x) - 1/(x - 1/x))*(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x)/x - 1/x)*(((-x + 1/x)/((x*(x - 1/x)**2)) + 1/(x*(x - 1/x)))*((-(x - 1/x)/(x*(x - 1/x)) - 1/x)*((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))/(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x) - 1 + (x - 1/x)/(x - 1/x))/((x*((x - 1/x)/((x - 1/x)**2) - ((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))**2/(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x) - 1/(x - 1/x))*(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x))) + ((x - 1/x)/((x*(x - 1/x))) + 1/x)/((x*(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x))) + 1/x)/(2*x + 2*((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))*((-(x - 1/x)/(x*(x - 1/x)) - 1/x)*((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))/(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x) - 1 + (x - 1/x)/(x - 1/x))/((x*((x - 1/x)/((x - 1/x)**2) - ((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))**2/(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x) - 1/(x - 1/x))*(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x))) - 2*((x - 1/x)/((x*(x - 1/x))) + 1/x)/(x*(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x)) - 2/x) - ((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))*((-x + 1/x)*((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))/(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x) + 1)/(x*((x - 1/x)/((x - 1/x)**2) - ((x - 1/x)/((x*(x - 1/x)**2)) - 1/(x*(x - 1/x)))**2/(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x) - 1/(x - 1/x))*(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x)) + (x - 1/x)/((x*(2*x - (-x + 1/x)/(x**2*(x - 1/x)**2) - 1/(x**2*(x - 1/x)) - 2/x))) - 1/x''', evaluate=False) assert cancel(q, _signsimp=False) is S.NaN assert q.subs(x, 2) is S.NaN assert signsimp(q) is S.NaN # issue 9363 M = MatrixSymbol('M', 5, 5) assert cancel(M[0,0] + 7) == M[0,0] + 7 expr = sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2] / z assert cancel(expr) == (z*sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2]) / z assert cancel((x**2 + 1)/(x - I)) == x + I def test_reduced(): f = 2*x**4 + y**2 - x**2 + y**3 G = [x**3 - x, y**3 - y] Q = [2*x, 1] r = x**2 + y**2 + y assert reduced(f, G) == (Q, r) assert reduced(f, G, x, y) == (Q, r) H = groebner(G) assert H.reduce(f) == (Q, r) Q = [Poly(2*x, x, y), Poly(1, x, y)] r = Poly(x**2 + y**2 + y, x, y) assert _strict_eq(reduced(f, G, polys=True), (Q, r)) assert _strict_eq(reduced(f, G, x, y, polys=True), (Q, r)) H = groebner(G, polys=True) assert _strict_eq(H.reduce(f), (Q, r)) f = 2*x**3 + y**3 + 3*y G = groebner([x**2 + y**2 - 1, x*y - 2]) Q = [x**2 - x*y**3/2 + x*y/2 + y**6/4 - y**4/2 + y**2/4, -y**5/4 + y**3/2 + y*Rational(3, 4)] r = 0 assert reduced(f, G) == (Q, r) assert G.reduce(f) == (Q, r) assert reduced(f, G, auto=False)[1] != 0 assert G.reduce(f, auto=False)[1] != 0 assert G.contains(f) is True assert G.contains(f + 1) is False assert reduced(1, [1], x) == ([1], 0) raises(ComputationFailed, lambda: reduced(1, [1])) def test_groebner(): assert groebner([], x, y, z) == [] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex') == [1 + x**2, -1 + y**4] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex') == [-1 + y**4, z**3, 1 + x**2] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex', polys=True) == \ [Poly(1 + x**2, x, y), Poly(-1 + y**4, x, y)] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex', polys=True) == \ [Poly(-1 + y**4, x, y, z), Poly(z**3, x, y, z), Poly(1 + x**2, x, y, z)] assert groebner([x**3 - 1, x**2 - 1]) == [x - 1] assert groebner([Eq(x**3, 1), Eq(x**2, 1)]) == [x - 1] F = [3*x**2 + y*z - 5*x - 1, 2*x + 3*x*y + y**2, x - 3*y + x*z - 2*z**2] f = z**9 - x**2*y**3 - 3*x*y**2*z + 11*y*z**2 + x**2*z**2 - 5 G = groebner(F, x, y, z, modulus=7, symmetric=False) assert G == [1 + x + y + 3*z + 2*z**2 + 2*z**3 + 6*z**4 + z**5, 1 + 3*y + y**2 + 6*z**2 + 3*z**3 + 3*z**4 + 3*z**5 + 4*z**6, 1 + 4*y + 4*z + y*z + 4*z**3 + z**4 + z**6, 6 + 6*z + z**2 + 4*z**3 + 3*z**4 + 6*z**5 + 3*z**6 + z**7] Q, r = reduced(f, G, x, y, z, modulus=7, symmetric=False, polys=True) assert sum([ q*g for q, g in zip(Q, G.polys)], r) == Poly(f, modulus=7) F = [x*y - 2*y, 2*y**2 - x**2] assert groebner(F, x, y, order='grevlex') == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner(F, y, x, order='grevlex') == \ [x**3 - 2*x**2, -x**2 + 2*y**2, x*y - 2*y] assert groebner(F, order='grevlex', field=True) == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner([1], x) == [1] assert groebner([x**2 + 2.0*y], x, y) == [1.0*x**2 + 2.0*y] raises(ComputationFailed, lambda: groebner([1])) assert groebner([x**2 - 1, x**3 + 1], method='buchberger') == [x + 1] assert groebner([x**2 - 1, x**3 + 1], method='f5b') == [x + 1] raises(ValueError, lambda: groebner([x, y], method='unknown')) def test_fglm(): F = [a + b + c + d, a*b + a*d + b*c + b*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1] G = groebner(F, a, b, c, d, order=grlex) B = [ 4*a + 3*d**9 - 4*d**5 - 3*d, 4*b + 4*c - 3*d**9 + 4*d**5 + 7*d, 4*c**2 + 3*d**10 - 4*d**6 - 3*d**2, 4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d, d**12 - d**8 - d**4 + 1, ] assert groebner(F, a, b, c, d, order=lex) == B assert G.fglm(lex) == B F = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, -72*t*x**7 - 252*t*x**6 + 192*t*x**5 + 1260*t*x**4 + 312*t*x**3 - 404*t*x**2 - 576*t*x + \ 108*t - 72*x**7 - 256*x**6 + 192*x**5 + 1280*x**4 + 312*x**3 - 576*x + 96] G = groebner(F, t, x, order=grlex) B = [ 203577793572507451707*t + 627982239411707112*x**7 - 666924143779443762*x**6 - \ 10874593056632447619*x**5 + 5119998792707079562*x**4 + 72917161949456066376*x**3 + \ 20362663855832380362*x**2 - 142079311455258371571*x + 183756699868981873194, 9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, ] assert groebner(F, t, x, order=lex) == B assert G.fglm(lex) == B F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1] G = groebner(F, x, y, order=lex) B = [ x**2 - x - 3*y + 1, y**2 - 2*x + y - 1, ] assert groebner(F, x, y, order=grlex) == B assert G.fglm(grlex) == B def test_is_zero_dimensional(): assert is_zero_dimensional([x, y], x, y) is True assert is_zero_dimensional([x**3 + y**2], x, y) is False assert is_zero_dimensional([x, y, z], x, y, z) is True assert is_zero_dimensional([x, y, z], x, y, z, t) is False F = [x*y - z, y*z - x, x*y - y] assert is_zero_dimensional(F, x, y, z) is True F = [x**2 - 2*x*z + 5, x*y**2 + y*z**3, 3*y**2 - 8*z**2] assert is_zero_dimensional(F, x, y, z) is True def test_GroebnerBasis(): F = [x*y - 2*y, 2*y**2 - x**2] G = groebner(F, x, y, order='grevlex') H = [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] P = [ Poly(h, x, y) for h in H ] assert groebner(F + [0], x, y, order='grevlex') == G assert isinstance(G, GroebnerBasis) is True assert len(G) == 3 assert G[0] == H[0] and not G[0].is_Poly assert G[1] == H[1] and not G[1].is_Poly assert G[2] == H[2] and not G[2].is_Poly assert G[1:] == H[1:] and not any(g.is_Poly for g in G[1:]) assert G[:2] == H[:2] and not any(g.is_Poly for g in G[1:]) assert G.exprs == H assert G.polys == P assert G.gens == (x, y) assert G.domain == ZZ assert G.order == grevlex assert G == H assert G == tuple(H) assert G == P assert G == tuple(P) assert G != [] G = groebner(F, x, y, order='grevlex', polys=True) assert G[0] == P[0] and G[0].is_Poly assert G[1] == P[1] and G[1].is_Poly assert G[2] == P[2] and G[2].is_Poly assert G[1:] == P[1:] and all(g.is_Poly for g in G[1:]) assert G[:2] == P[:2] and all(g.is_Poly for g in G[1:]) def test_poly(): assert poly(x) == Poly(x, x) assert poly(y) == Poly(y, y) assert poly(x + y) == Poly(x + y, x, y) assert poly(x + sin(x)) == Poly(x + sin(x), x, sin(x)) assert poly(x + y, wrt=y) == Poly(x + y, y, x) assert poly(x + sin(x), wrt=sin(x)) == Poly(x + sin(x), sin(x), x) assert poly(x*y + 2*x*z**2 + 17) == Poly(x*y + 2*x*z**2 + 17, x, y, z) assert poly(2*(y + z)**2 - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - 1, y, z) assert poly( x*(y + z)**2 - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - 1, x, y, z) assert poly(2*x*( y + z)**2 - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*x*z**2 - 1, x, y, z) assert poly(2*( y + z)**2 - x - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - x - 1, x, y, z) assert poly(x*( y + z)**2 - x - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - x - 1, x, y, z) assert poly(2*x*(y + z)**2 - x - 1) == Poly(2*x*y**2 + 4*x*y*z + 2* x*z**2 - x - 1, x, y, z) assert poly(x*y + (x + y)**2 + (x + z)**2) == \ Poly(2*x*z + 3*x*y + y**2 + z**2 + 2*x**2, x, y, z) assert poly(x*y*(x + y)*(x + z)**2) == \ Poly(x**3*y**2 + x*y**2*z**2 + y*x**2*z**2 + 2*z*x**2* y**2 + 2*y*z*x**3 + y*x**4, x, y, z) assert poly(Poly(x + y + z, y, x, z)) == Poly(x + y + z, y, x, z) assert poly((x + y)**2, x) == Poly(x**2 + 2*x*y + y**2, x, domain=ZZ[y]) assert poly((x + y)**2, y) == Poly(x**2 + 2*x*y + y**2, y, domain=ZZ[x]) assert poly(1, x) == Poly(1, x) raises(GeneratorsNeeded, lambda: poly(1)) # issue 6184 assert poly(x + y, x, y) == Poly(x + y, x, y) assert poly(x + y, y, x) == Poly(x + y, y, x) def test_keep_coeff(): u = Mul(2, x + 1, evaluate=False) assert _keep_coeff(S.One, x) == x assert _keep_coeff(S.NegativeOne, x) == -x assert _keep_coeff(S(1.0), x) == 1.0*x assert _keep_coeff(S(-1.0), x) == -1.0*x assert _keep_coeff(S.One, 2*x) == 2*x assert _keep_coeff(S(2), x/2) == x assert _keep_coeff(S(2), sin(x)) == 2*sin(x) assert _keep_coeff(S(2), x + 1) == u assert _keep_coeff(x, 1/x) == 1 assert _keep_coeff(x + 1, S(2)) == u assert _keep_coeff(S.Half, S.One) == S.Half p = Pow(2, 3, evaluate=False) assert _keep_coeff(S(-1), p) == Mul(-1, p, evaluate=False) a = Add(2, p, evaluate=False) assert _keep_coeff(S.Half, a, clear=True ) == Mul(S.Half, a, evaluate=False) assert _keep_coeff(S.Half, a, clear=False ) == Add(1, Mul(S.Half, p, evaluate=False), evaluate=False) def test_poly_matching_consistency(): # Test for this issue: # https://github.com/sympy/sympy/issues/5514 assert I * Poly(x, x) == Poly(I*x, x) assert Poly(x, x) * I == Poly(I*x, x) def test_issue_5786(): assert expand(factor(expand( (x - I*y)*(z - I*t)), extension=[I])) == -I*t*x - t*y + x*z - I*y*z def test_noncommutative(): class foo(Expr): is_commutative=False e = x/(x + x*y) c = 1/( 1 + y) assert cancel(foo(e)) == foo(c) assert cancel(e + foo(e)) == c + foo(c) assert cancel(e*foo(c)) == c*foo(c) def test_to_rational_coeffs(): assert to_rational_coeffs( Poly(x**3 + y*x**2 + sqrt(y), x, domain='EX')) is None # issue 21268 assert to_rational_coeffs( Poly(y**3 + sqrt(2)*y**2*sin(x) + 1, y)) is None assert to_rational_coeffs(Poly(x, y)) is None assert to_rational_coeffs(Poly(sqrt(2)*y)) is None def test_factor_terms(): # issue 7067 assert factor_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)]) assert sqf_list(x*(x + y)) == (1, [(x**2 + x*y, 1)]) def test_as_list(): # issue 14496 assert Poly(x**3 + 2, x, domain='ZZ').as_list() == [1, 0, 0, 2] assert Poly(x**2 + y + 1, x, y, domain='ZZ').as_list() == [[1], [], [1, 1]] assert Poly(x**2 + y + 1, x, y, z, domain='ZZ').as_list() == \ [[[1]], [[]], [[1], [1]]] def test_issue_11198(): assert factor_list(sqrt(2)*x) == (sqrt(2), [(x, 1)]) assert factor_list(sqrt(2)*sin(x), sin(x)) == (sqrt(2), [(sin(x), 1)]) def test_Poly_precision(): # Make sure Poly doesn't lose precision p = Poly(pi.evalf(100)*x) assert p.as_expr() == pi.evalf(100)*x def test_issue_12400(): # Correction of check for negative exponents assert poly(1/(1+sqrt(2)), x) == \ Poly(1/(1+sqrt(2)), x, domain='EX') def test_issue_14364(): assert gcd(S(6)*(1 + sqrt(3))/5, S(3)*(1 + sqrt(3))/10) == Rational(3, 10) * (1 + sqrt(3)) assert gcd(sqrt(5)*Rational(4, 7), sqrt(5)*Rational(2, 3)) == sqrt(5)*Rational(2, 21) assert lcm(Rational(2, 3)*sqrt(3), Rational(5, 6)*sqrt(3)) == S(10)*sqrt(3)/3 assert lcm(3*sqrt(3), 4/sqrt(3)) == 12*sqrt(3) assert lcm(S(5)*(1 + 2**Rational(1, 3))/6, S(3)*(1 + 2**Rational(1, 3))/8) == Rational(15, 2) * (1 + 2**Rational(1, 3)) assert gcd(Rational(2, 3)*sqrt(3), Rational(5, 6)/sqrt(3)) == sqrt(3)/18 assert gcd(S(4)*sqrt(13)/7, S(3)*sqrt(13)/14) == sqrt(13)/14 # gcd_list and lcm_list assert gcd([S(2)*sqrt(47)/7, S(6)*sqrt(47)/5, S(8)*sqrt(47)/5]) == sqrt(47)*Rational(2, 35) assert gcd([S(6)*(1 + sqrt(7))/5, S(2)*(1 + sqrt(7))/7, S(4)*(1 + sqrt(7))/13]) == (1 + sqrt(7))*Rational(2, 455) assert lcm((Rational(7, 2)/sqrt(15), Rational(5, 6)/sqrt(15), Rational(5, 8)/sqrt(15))) == Rational(35, 2)/sqrt(15) assert lcm([S(5)*(2 + 2**Rational(5, 7))/6, S(7)*(2 + 2**Rational(5, 7))/2, S(13)*(2 + 2**Rational(5, 7))/4]) == Rational(455, 2) * (2 + 2**Rational(5, 7)) def test_issue_15669(): x = Symbol("x", positive=True) expr = (16*x**3/(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**2 - 2*2**Rational(4, 5)*x*(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**Rational(3, 5) + 10*x) assert factor(expr, deep=True) == x*(x**2 + 2) def test_issue_17988(): x = Symbol('x') p = poly(x - 1) with warns_deprecated_sympy(): M = Matrix([[poly(x + 1), poly(x + 1)]]) with warns(SymPyDeprecationWarning, test_stacklevel=False): assert p * M == M * p == Matrix([[poly(x**2 - 1), poly(x**2 - 1)]]) def test_issue_18205(): assert cancel((2 + I)*(3 - I)) == 7 + I assert cancel((2 + I)*(2 - I)) == 5 def test_issue_8695(): p = (x**2 + 1) * (x - 1)**2 * (x - 2)**3 * (x - 3)**3 result = (1, [(x**2 + 1, 1), (x - 1, 2), (x**2 - 5*x + 6, 3)]) assert sqf_list(p) == result def test_issue_19113(): eq = sin(x)**3 - sin(x) + 1 raises(PolynomialError, lambda: refine_root(eq, 1, 2, 1e-2)) raises(PolynomialError, lambda: count_roots(eq, -1, 1)) raises(PolynomialError, lambda: real_roots(eq)) raises(PolynomialError, lambda: nroots(eq)) raises(PolynomialError, lambda: ground_roots(eq)) raises(PolynomialError, lambda: nth_power_roots_poly(eq, 2)) def test_issue_19360(): f = 2*x**2 - 2*sqrt(2)*x*y + y**2 assert factor(f, extension=sqrt(2)) == 2*(x - (sqrt(2)*y/2))**2 f = -I*t*x - t*y + x*z - I*y*z assert factor(f, extension=I) == (x - I*y)*(-I*t + z) def test_poly_copy_equals_original(): poly = Poly(x + y, x, y, z) copy = poly.copy() assert poly == copy, ( "Copied polynomial not equal to original.") assert poly.gens == copy.gens, ( "Copied polynomial has different generators than original.") def test_deserialized_poly_equals_original(): poly = Poly(x + y, x, y, z) deserialized = pickle.loads(pickle.dumps(poly)) assert poly == deserialized, ( "Deserialized polynomial not equal to original.") assert poly.gens == deserialized.gens, ( "Deserialized polynomial has different generators than original.") def test_issue_20389(): result = degree(x * (x + 1) - x ** 2 - x, x) assert result == -oo def test_issue_20985(): from sympy.core.symbol import symbols w, R = symbols('w R') poly = Poly(1.0 + I*w/R, w, 1/R) assert poly.degree() == S(1)
f5f9961436a5f281b7958c3e300f7c129a200ebb03f80e88c608e138f57eecf2
from __future__ import annotations from math import floor as mfloor from sympy.polys.domains import ZZ, QQ from sympy.polys.matrices.exceptions import DMRankError, DMShapeError, DMValueError, DMDomainError linear_dependent_error = "input matrix contains linearly dependent rows" def ddm_lll(x, delta=QQ(3, 4)): if QQ(1, 4) >= delta or delta >= QQ(1, 1): raise DMValueError("delta must lie in range (0.25, 1)") if x.shape[0] > x.shape[1]: raise DMShapeError("input matrix must have shape (m, n) with m <= n") if x.domain != ZZ: raise DMDomainError("input matrix domain must be ZZ") m = x.shape[0] n = x.shape[1] k = 1 y = x.copy() y_star = x.zeros((m, n), QQ) mu = x.zeros((m, m), QQ) g_star = [QQ(0, 1) for _ in range(m)] half = QQ(1, 2) def closest_integer(x): return ZZ(mfloor(x + half)) def lovasz_condition(k: int) -> bool: return g_star[k] >= ((delta - mu[k][k - 1] ** 2) * g_star[k - 1]) def mu_small(k: int, j: int) -> bool: return abs(mu[k][j]) <= half def dot_rows(x, y, rows: tuple[int, int]): return sum([x[rows[0]][z] * y[rows[1]][z] for z in range(x.shape[1])]) def reduce_row(mu, y, rows: tuple[int, int]): r = closest_integer(mu[rows[0]][rows[1]]) y[rows[0]] = [y[rows[0]][z] - r * y[rows[1]][z] for z in range(n)] for j in range(rows[1]): mu[rows[0]][j] -= r * mu[rows[1]][j] mu[rows[0]][rows[1]] -= r for i in range(m): y_star[i] = [QQ.convert_from(z, ZZ) for z in y[i]] for j in range(i): row_dot = dot_rows(y, y_star, (i, j)) try: mu[i][j] = row_dot / g_star[j] except ZeroDivisionError: raise DMRankError(linear_dependent_error) y_star[i] = [y_star[i][z] - mu[i][j] * y_star[j][z] for z in range(n)] g_star[i] = dot_rows(y_star, y_star, (i, i)) while k < m: if not mu_small(k, k - 1): reduce_row(mu, y, (k, k - 1)) if lovasz_condition(k): for l in range(k - 2, -1, -1): if not mu_small(k, l): reduce_row(mu, y, (k, l)) k += 1 else: nu = mu[k][k - 1] alpha = g_star[k] + nu ** 2 * g_star[k - 1] try: beta = g_star[k - 1] / alpha except ZeroDivisionError: raise DMRankError(linear_dependent_error) mu[k][k - 1] = nu * beta g_star[k] = g_star[k] * beta g_star[k - 1] = alpha y[k], y[k - 1] = y[k - 1], y[k] mu[k][:k - 1], mu[k - 1][:k - 1] = mu[k - 1][:k - 1], mu[k][:k - 1] for i in range(k + 1, m): xi = mu[i][k] mu[i][k] = mu[i][k - 1] - nu * xi mu[i][k - 1] = mu[k][k - 1] * mu[i][k] + xi k = max(k - 1, 1) assert all([lovasz_condition(i) for i in range(1, m)]) assert all([mu_small(i, j) for i in range(m) for j in range(i)]) return y
9242610bcc843240718cc007ed4ed86a23b3d35f4c0b9ba40e0966693d113b87
""" Module for the DomainMatrix class. A DomainMatrix represents a matrix with elements that are in a particular Domain. Each DomainMatrix internally wraps a DDM which is used for the lower-level operations. The idea is that the DomainMatrix class provides the convenience routines for converting between Expr and the poly domains as well as unifying matrices with different domains. """ from functools import reduce from typing import Union as tUnion, Tuple as tTuple from sympy.core.sympify import _sympify from ..domains import Domain from ..constructor import construct_domain from .exceptions import (DMNonSquareMatrixError, DMShapeError, DMDomainError, DMFormatError, DMBadInputError, DMNotAField) from .ddm import DDM from .sdm import SDM from .domainscalar import DomainScalar from sympy.polys.domains import ZZ, EXRAW, QQ def DM(rows, domain): """Convenient alias for DomainMatrix.from_list Examples ======= >>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> DM([[1, 2], [3, 4]], ZZ) DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) See also ======= DomainMatrix.from_list """ return DomainMatrix.from_list(rows, domain) class DomainMatrix: r""" Associate Matrix with :py:class:`~.Domain` Explanation =========== DomainMatrix uses :py:class:`~.Domain` for its internal representation which makes it faster than the SymPy Matrix class (currently) for many common operations, but this advantage makes it not entirely compatible with Matrix. DomainMatrix are analogous to numpy arrays with "dtype". In the DomainMatrix, each element has a domain such as :ref:`ZZ` or :ref:`QQ(a)`. Examples ======== Creating a DomainMatrix from the existing Matrix class: >>> from sympy import Matrix >>> from sympy.polys.matrices import DomainMatrix >>> Matrix1 = Matrix([ ... [1, 2], ... [3, 4]]) >>> A = DomainMatrix.from_Matrix(Matrix1) >>> A DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ) Directly forming a DomainMatrix: >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) See Also ======== DDM SDM Domain Poly """ rep: tUnion[SDM, DDM] shape: tTuple[int, int] domain: Domain def __new__(cls, rows, shape, domain, *, fmt=None): """ Creates a :py:class:`~.DomainMatrix`. Parameters ========== rows : Represents elements of DomainMatrix as list of lists shape : Represents dimension of DomainMatrix domain : Represents :py:class:`~.Domain` of DomainMatrix Raises ====== TypeError If any of rows, shape and domain are not provided """ if isinstance(rows, (DDM, SDM)): raise TypeError("Use from_rep to initialise from SDM/DDM") elif isinstance(rows, list): rep = DDM(rows, shape, domain) elif isinstance(rows, dict): rep = SDM(rows, shape, domain) else: msg = "Input should be list-of-lists or dict-of-dicts" raise TypeError(msg) if fmt is not None: if fmt == 'sparse': rep = rep.to_sdm() elif fmt == 'dense': rep = rep.to_ddm() else: raise ValueError("fmt should be 'sparse' or 'dense'") return cls.from_rep(rep) def __getnewargs__(self): rep = self.rep if isinstance(rep, DDM): arg = list(rep) elif isinstance(rep, SDM): arg = dict(rep) else: raise RuntimeError # pragma: no cover return arg, self.shape, self.domain def __getitem__(self, key): i, j = key m, n = self.shape if not (isinstance(i, slice) or isinstance(j, slice)): return DomainScalar(self.rep.getitem(i, j), self.domain) if not isinstance(i, slice): if not -m <= i < m: raise IndexError("Row index out of range") i = i % m i = slice(i, i+1) if not isinstance(j, slice): if not -n <= j < n: raise IndexError("Column index out of range") j = j % n j = slice(j, j+1) return self.from_rep(self.rep.extract_slice(i, j)) def getitem_sympy(self, i, j): return self.domain.to_sympy(self.rep.getitem(i, j)) def extract(self, rowslist, colslist): return self.from_rep(self.rep.extract(rowslist, colslist)) def __setitem__(self, key, value): i, j = key if not self.domain.of_type(value): raise TypeError if isinstance(i, int) and isinstance(j, int): self.rep.setitem(i, j, value) else: raise NotImplementedError @classmethod def from_rep(cls, rep): """Create a new DomainMatrix efficiently from DDM/SDM. Examples ======== Create a :py:class:`~.DomainMatrix` with an dense internal representation as :py:class:`~.DDM`: >>> from sympy.polys.domains import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.ddm import DDM >>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> dM = DomainMatrix.from_rep(drep) >>> dM DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) Create a :py:class:`~.DomainMatrix` with a sparse internal representation as :py:class:`~.SDM`: >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import ZZ >>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ) >>> dM = DomainMatrix.from_rep(drep) >>> dM DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ) Parameters ========== rep: SDM or DDM The internal sparse or dense representation of the matrix. Returns ======= DomainMatrix A :py:class:`~.DomainMatrix` wrapping *rep*. Notes ===== This takes ownership of rep as its internal representation. If rep is being mutated elsewhere then a copy should be provided to ``from_rep``. Only minimal verification or checking is done on *rep* as this is supposed to be an efficient internal routine. """ if not isinstance(rep, (DDM, SDM)): raise TypeError("rep should be of type DDM or SDM") self = super().__new__(cls) self.rep = rep self.shape = rep.shape self.domain = rep.domain return self @classmethod def from_list(cls, rows, domain): r""" Convert a list of lists into a DomainMatrix Parameters ========== rows: list of lists Each element of the inner lists should be either the single arg, or tuple of args, that would be passed to the domain constructor in order to form an element of the domain. See examples. Returns ======= DomainMatrix containing elements defined in rows Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import FF, QQ, ZZ >>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ) >>> A DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ) >>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7)) >>> B DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7)) >>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ) >>> C DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ) See Also ======== from_list_sympy """ nrows = len(rows) ncols = 0 if not nrows else len(rows[0]) conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e) domain_rows = [[conv(e) for e in row] for row in rows] return DomainMatrix(domain_rows, (nrows, ncols), domain) @classmethod def from_list_sympy(cls, nrows, ncols, rows, **kwargs): r""" Convert a list of lists of Expr into a DomainMatrix using construct_domain Parameters ========== nrows: number of rows ncols: number of columns rows: list of lists Returns ======= DomainMatrix containing elements of rows Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.abc import x, y, z >>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]]) >>> A DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z]) See Also ======== sympy.polys.constructor.construct_domain, from_dict_sympy """ assert len(rows) == nrows assert all(len(row) == ncols for row in rows) items_sympy = [_sympify(item) for row in rows for item in row] domain, items_domain = cls.get_domain(items_sympy, **kwargs) domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)] return DomainMatrix(domain_rows, (nrows, ncols), domain) @classmethod def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs): """ Parameters ========== nrows: number of rows ncols: number of cols elemsdict: dict of dicts containing non-zero elements of the DomainMatrix Returns ======= DomainMatrix containing elements of elemsdict Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.abc import x,y,z >>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}} >>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict) >>> A DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z]) See Also ======== from_list_sympy """ if not all(0 <= r < nrows for r in elemsdict): raise DMBadInputError("Row out of range") if not all(0 <= c < ncols for row in elemsdict.values() for c in row): raise DMBadInputError("Column out of range") items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()] domain, items_domain = cls.get_domain(items_sympy, **kwargs) idx = 0 items_dict = {} for i, row in elemsdict.items(): items_dict[i] = {} for j in row: items_dict[i][j] = items_domain[idx] idx += 1 return DomainMatrix(items_dict, (nrows, ncols), domain) @classmethod def from_Matrix(cls, M, fmt='sparse',**kwargs): r""" Convert Matrix to DomainMatrix Parameters ========== M: Matrix Returns ======= Returns DomainMatrix with identical elements as M Examples ======== >>> from sympy import Matrix >>> from sympy.polys.matrices import DomainMatrix >>> M = Matrix([ ... [1.0, 3.4], ... [2.4, 1]]) >>> A = DomainMatrix.from_Matrix(M) >>> A DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR) We can keep internal representation as ddm using fmt='dense' >>> from sympy import Matrix, QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense') >>> A.rep [[1/2, 3/4], [0, 0]] See Also ======== Matrix """ if fmt == 'dense': return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs) return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs) @classmethod def get_domain(cls, items_sympy, **kwargs): K, items_K = construct_domain(items_sympy, **kwargs) return K, items_K def copy(self): return self.from_rep(self.rep.copy()) def convert_to(self, K): r""" Change the domain of DomainMatrix to desired domain or field Parameters ========== K : Represents the desired domain or field. Alternatively, ``None`` may be passed, in which case this method just returns a copy of this DomainMatrix. Returns ======= DomainMatrix DomainMatrix with the desired domain or field Examples ======== >>> from sympy import ZZ, ZZ_I >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.convert_to(ZZ_I) DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I) """ if K is None: return self.copy() return self.from_rep(self.rep.convert_to(K)) def to_sympy(self): return self.convert_to(EXRAW) def to_field(self): r""" Returns a DomainMatrix with the appropriate field Returns ======= DomainMatrix DomainMatrix with the appropriate field Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.to_field() DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ) """ K = self.domain.get_field() return self.convert_to(K) def to_sparse(self): """ Return a sparse DomainMatrix representation of *self*. Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ) >>> A.rep [[1, 0], [0, 2]] >>> B = A.to_sparse() >>> B.rep {0: {0: 1}, 1: {1: 2}} """ if self.rep.fmt == 'sparse': return self return self.from_rep(SDM.from_ddm(self.rep)) def to_dense(self): """ Return a dense DomainMatrix representation of *self*. Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ) >>> A.rep {0: {0: 1}, 1: {1: 2}} >>> B = A.to_dense() >>> B.rep [[1, 0], [0, 2]] """ if self.rep.fmt == 'dense': return self return self.from_rep(SDM.to_ddm(self.rep)) @classmethod def _unify_domain(cls, *matrices): """Convert matrices to a common domain""" domains = {matrix.domain for matrix in matrices} if len(domains) == 1: return matrices domain = reduce(lambda x, y: x.unify(y), domains) return tuple(matrix.convert_to(domain) for matrix in matrices) @classmethod def _unify_fmt(cls, *matrices, fmt=None): """Convert matrices to the same format. If all matrices have the same format, then return unmodified. Otherwise convert both to the preferred format given as *fmt* which should be 'dense' or 'sparse'. """ formats = {matrix.rep.fmt for matrix in matrices} if len(formats) == 1: return matrices if fmt == 'sparse': return tuple(matrix.to_sparse() for matrix in matrices) elif fmt == 'dense': return tuple(matrix.to_dense() for matrix in matrices) else: raise ValueError("fmt should be 'sparse' or 'dense'") def unify(self, *others, fmt=None): """ Unifies the domains and the format of self and other matrices. Parameters ========== others : DomainMatrix fmt: string 'dense', 'sparse' or `None` (default) The preferred format to convert to if self and other are not already in the same format. If `None` or not specified then no conversion if performed. Returns ======= Tuple[DomainMatrix] Matrices with unified domain and format Examples ======== Unify the domain of DomainMatrix that have different domains: >>> from sympy import ZZ, QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) >>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ) >>> Aq, Bq = A.unify(B) >>> Aq DomainMatrix([[1, 2]], (1, 2), QQ) >>> Bq DomainMatrix([[1/2, 2]], (1, 2), QQ) Unify the format (dense or sparse): >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) >>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ) >>> B.rep {0: {0: 1}} >>> A2, B2 = A.unify(B, fmt='dense') >>> B2.rep [[1, 0], [0, 0]] See Also ======== convert_to, to_dense, to_sparse """ matrices = (self,) + others matrices = DomainMatrix._unify_domain(*matrices) if fmt is not None: matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt) return matrices def to_Matrix(self): r""" Convert DomainMatrix to Matrix Returns ======= Matrix MutableDenseMatrix for the DomainMatrix Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.to_Matrix() Matrix([ [1, 2], [3, 4]]) See Also ======== from_Matrix """ from sympy.matrices.dense import MutableDenseMatrix elemlist = self.rep.to_list() elements_sympy = [self.domain.to_sympy(e) for row in elemlist for e in row] return MutableDenseMatrix(*self.shape, elements_sympy) def to_list(self): return self.rep.to_list() def to_list_flat(self): return self.rep.to_list_flat() def to_dok(self): return self.rep.to_dok() def __repr__(self): return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain) def transpose(self): """Matrix transpose of ``self``""" return self.from_rep(self.rep.transpose()) def flat(self): rows, cols = self.shape return [self[i,j].element for i in range(rows) for j in range(cols)] @property def is_zero_matrix(self): return self.rep.is_zero_matrix() @property def is_upper(self): """ Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square. """ return self.rep.is_upper() @property def is_lower(self): """ Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square. """ return self.rep.is_lower() @property def is_square(self): return self.shape[0] == self.shape[1] def rank(self): rref, pivots = self.rref() return len(pivots) def hstack(A, *B): r"""Horizontally stack the given matrices. Parameters ========== B: DomainMatrix Matrices to stack horizontally. Returns ======= DomainMatrix DomainMatrix by stacking horizontally. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.hstack(B) DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ) >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.hstack(B, C) DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ) See Also ======== unify """ A, *B = A.unify(*B, fmt='dense') return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B))) def vstack(A, *B): r"""Vertically stack the given matrices. Parameters ========== B: DomainMatrix Matrices to stack vertically. Returns ======= DomainMatrix DomainMatrix by stacking vertically. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.vstack(B) DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ) >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.vstack(B, C) DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ) See Also ======== unify """ A, *B = A.unify(*B, fmt='dense') return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B))) def applyfunc(self, func, domain=None): if domain is None: domain = self.domain return self.from_rep(self.rep.applyfunc(func, domain)) def __add__(A, B): if not isinstance(B, DomainMatrix): return NotImplemented A, B = A.unify(B, fmt='dense') return A.add(B) def __sub__(A, B): if not isinstance(B, DomainMatrix): return NotImplemented A, B = A.unify(B, fmt='dense') return A.sub(B) def __neg__(A): return A.neg() def __mul__(A, B): """A * B""" if isinstance(B, DomainMatrix): A, B = A.unify(B, fmt='dense') return A.matmul(B) elif B in A.domain: return A.scalarmul(B) elif isinstance(B, DomainScalar): A, B = A.unify(B) return A.scalarmul(B.element) else: return NotImplemented def __rmul__(A, B): if B in A.domain: return A.rscalarmul(B) elif isinstance(B, DomainScalar): A, B = A.unify(B) return A.rscalarmul(B.element) else: return NotImplemented def __pow__(A, n): """A ** n""" if not isinstance(n, int): return NotImplemented return A.pow(n) def _check(a, op, b, ashape, bshape): if a.domain != b.domain: msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain) raise DMDomainError(msg) if ashape != bshape: msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape) raise DMShapeError(msg) if a.rep.fmt != b.rep.fmt: msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt) raise DMFormatError(msg) def add(A, B): r""" Adds two DomainMatrix matrices of the same Domain Parameters ========== A, B: DomainMatrix matrices to add Returns ======= DomainMatrix DomainMatrix after Addition Raises ====== DMShapeError If the dimensions of the two DomainMatrix are not equal ValueError If the domain of the two DomainMatrix are not same Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(4), ZZ(3)], ... [ZZ(2), ZZ(1)]], (2, 2), ZZ) >>> A.add(B) DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ) See Also ======== sub, matmul """ A._check('+', B, A.shape, B.shape) return A.from_rep(A.rep.add(B.rep)) def sub(A, B): r""" Subtracts two DomainMatrix matrices of the same Domain Parameters ========== A, B: DomainMatrix matrices to subtract Returns ======= DomainMatrix DomainMatrix after Subtraction Raises ====== DMShapeError If the dimensions of the two DomainMatrix are not equal ValueError If the domain of the two DomainMatrix are not same Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(4), ZZ(3)], ... [ZZ(2), ZZ(1)]], (2, 2), ZZ) >>> A.sub(B) DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ) See Also ======== add, matmul """ A._check('-', B, A.shape, B.shape) return A.from_rep(A.rep.sub(B.rep)) def neg(A): r""" Returns the negative of DomainMatrix Parameters ========== A : Represents a DomainMatrix Returns ======= DomainMatrix DomainMatrix after Negation Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.neg() DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ) """ return A.from_rep(A.rep.neg()) def mul(A, b): r""" Performs term by term multiplication for the second DomainMatrix w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are list of DomainMatrix matrices created after term by term multiplication. Parameters ========== A, B: DomainMatrix matrices to multiply term-wise Returns ======= DomainMatrix DomainMatrix after term by term multiplication Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.mul(B) DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ), DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)], [DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ), DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]], (2, 2), ZZ) See Also ======== matmul """ return A.from_rep(A.rep.mul(b)) def rmul(A, b): return A.from_rep(A.rep.rmul(b)) def matmul(A, B): r""" Performs matrix multiplication of two DomainMatrix matrices Parameters ========== A, B: DomainMatrix to multiply Returns ======= DomainMatrix DomainMatrix after multiplication Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.matmul(B) DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ) See Also ======== mul, pow, add, sub """ A._check('*', B, A.shape[1], B.shape[0]) return A.from_rep(A.rep.matmul(B.rep)) def _scalarmul(A, lamda, reverse): if lamda == A.domain.zero: return DomainMatrix.zeros(A.shape, A.domain) elif lamda == A.domain.one: return A.copy() elif reverse: return A.rmul(lamda) else: return A.mul(lamda) def scalarmul(A, lamda): return A._scalarmul(lamda, reverse=False) def rscalarmul(A, lamda): return A._scalarmul(lamda, reverse=True) def mul_elementwise(A, B): assert A.domain == B.domain return A.from_rep(A.rep.mul_elementwise(B.rep)) def __truediv__(A, lamda): """ Method for Scalar Division""" if isinstance(lamda, int) or ZZ.of_type(lamda): lamda = DomainScalar(ZZ(lamda), ZZ) if not isinstance(lamda, DomainScalar): return NotImplemented A, lamda = A.to_field().unify(lamda) if lamda.element == lamda.domain.zero: raise ZeroDivisionError if lamda.element == lamda.domain.one: return A.to_field() return A.mul(1 / lamda.element) def pow(A, n): r""" Computes A**n Parameters ========== A : DomainMatrix n : exponent for A Returns ======= DomainMatrix DomainMatrix on computing A**n Raises ====== NotImplementedError if n is negative. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.pow(2) DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ) See Also ======== matmul """ nrows, ncols = A.shape if nrows != ncols: raise DMNonSquareMatrixError('Power of a nonsquare matrix') if n < 0: raise NotImplementedError('Negative powers') elif n == 0: return A.eye(nrows, A.domain) elif n == 1: return A elif n % 2 == 1: return A * A**(n - 1) else: sqrtAn = A ** (n // 2) return sqrtAn * sqrtAn def scc(self): """Compute the strongly connected components of a DomainMatrix Explanation =========== A square matrix can be considered as the adjacency matrix for a directed graph where the row and column indices are the vertices. In this graph if there is an edge from vertex ``i`` to vertex ``j`` if ``M[i, j]`` is nonzero. This routine computes the strongly connected components of that graph which are subsets of the rows and columns that are connected by some nonzero element of the matrix. The strongly connected components are useful because many operations such as the determinant can be computed by working with the submatrices corresponding to each component. Examples ======== Find the strongly connected components of a matrix: >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)], ... [ZZ(0), ZZ(3), ZZ(0)], ... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ) >>> M.scc() [[1], [0, 2]] Compute the determinant from the components: >>> MM = M.to_Matrix() >>> MM Matrix([ [1, 0, 2], [0, 3, 0], [4, 6, 5]]) >>> MM[[1], [1]] Matrix([[3]]) >>> MM[[0, 2], [0, 2]] Matrix([ [1, 2], [4, 5]]) >>> MM.det() -9 >>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det() -9 The components are given in reverse topological order and represent a permutation of the rows and columns that will bring the matrix into block lower-triangular form: >>> MM[[1, 0, 2], [1, 0, 2]] Matrix([ [3, 0, 0], [0, 1, 2], [6, 4, 5]]) Returns ======= List of lists of integers Each list represents a strongly connected component. See also ======== sympy.matrices.matrices.MatrixBase.strongly_connected_components sympy.utilities.iterables.strongly_connected_components """ rows, cols = self.shape assert rows == cols return self.rep.scc() def rref(self): r""" Returns reduced-row echelon form and list of pivots for the DomainMatrix Returns ======= (DomainMatrix, list) reduced-row echelon form and list of pivots for the DomainMatrix Raises ====== ValueError If the domain of DomainMatrix not a Field Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(2), QQ(-1), QQ(0)], ... [QQ(-1), QQ(2), QQ(-1)], ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ) >>> rref_matrix, rref_pivots = A.rref() >>> rref_matrix DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ) >>> rref_pivots (0, 1, 2) See Also ======== convert_to, lu """ if not self.domain.is_Field: raise DMNotAField('Not a field') rref_ddm, pivots = self.rep.rref() return self.from_rep(rref_ddm), tuple(pivots) def columnspace(self): r""" Returns the columnspace for the DomainMatrix Returns ======= DomainMatrix The columns of this matrix form a basis for the columnspace. Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.columnspace() DomainMatrix([[1], [2]], (2, 1), QQ) """ if not self.domain.is_Field: raise DMNotAField('Not a field') rref, pivots = self.rref() rows, cols = self.shape return self.extract(range(rows), pivots) def rowspace(self): r""" Returns the rowspace for the DomainMatrix Returns ======= DomainMatrix The rows of this matrix form a basis for the rowspace. Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.rowspace() DomainMatrix([[1, -1]], (1, 2), QQ) """ if not self.domain.is_Field: raise DMNotAField('Not a field') rref, pivots = self.rref() rows, cols = self.shape return self.extract(range(len(pivots)), range(cols)) def nullspace(self): r""" Returns the nullspace for the DomainMatrix Returns ======= DomainMatrix The rows of this matrix form a basis for the nullspace. Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.nullspace() DomainMatrix([[1, 1]], (1, 2), QQ) """ if not self.domain.is_Field: raise DMNotAField('Not a field') return self.from_rep(self.rep.nullspace()[0]) def inv(self): r""" Finds the inverse of the DomainMatrix if exists Returns ======= DomainMatrix DomainMatrix after inverse Raises ====== ValueError If the domain of DomainMatrix not a Field DMNonSquareMatrixError If the DomainMatrix is not a not Square DomainMatrix Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(2), QQ(-1), QQ(0)], ... [QQ(-1), QQ(2), QQ(-1)], ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ) >>> A.inv() DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ) See Also ======== neg """ if not self.domain.is_Field: raise DMNotAField('Not a field') m, n = self.shape if m != n: raise DMNonSquareMatrixError inv = self.rep.inv() return self.from_rep(inv) def det(self): r""" Returns the determinant of a Square DomainMatrix Returns ======= S.Complexes determinant of Square DomainMatrix Raises ====== ValueError If the domain of DomainMatrix not a Field Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.det() -2 """ m, n = self.shape if m != n: raise DMNonSquareMatrixError return self.rep.det() def lu(self): r""" Returns Lower and Upper decomposition of the DomainMatrix Returns ======= (L, U, exchange) L, U are Lower and Upper decomposition of the DomainMatrix, exchange is the list of indices of rows exchanged in the decomposition. Raises ====== ValueError If the domain of DomainMatrix not a Field Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.lu() (DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ), []) See Also ======== lu_solve """ if not self.domain.is_Field: raise DMNotAField('Not a field') L, U, swaps = self.rep.lu() return self.from_rep(L), self.from_rep(U), swaps def lu_solve(self, rhs): r""" Solver for DomainMatrix x in the A*x = B Parameters ========== rhs : DomainMatrix B Returns ======= DomainMatrix x in A*x = B Raises ====== DMShapeError If the DomainMatrix A and rhs have different number of rows ValueError If the domain of DomainMatrix A not a Field Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(2)], ... [QQ(3), QQ(4)]], (2, 2), QQ) >>> B = DomainMatrix([ ... [QQ(1), QQ(1)], ... [QQ(0), QQ(1)]], (2, 2), QQ) >>> A.lu_solve(B) DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ) See Also ======== lu """ if self.shape[0] != rhs.shape[0]: raise DMShapeError("Shape") if not self.domain.is_Field: raise DMNotAField('Not a field') sol = self.rep.lu_solve(rhs.rep) return self.from_rep(sol) def _solve(A, b): # XXX: Not sure about this method or its signature. It is just created # because it is needed by the holonomic module. if A.shape[0] != b.shape[0]: raise DMShapeError("Shape") if A.domain != b.domain or not A.domain.is_Field: raise DMNotAField('Not a field') Aaug = A.hstack(b) Arref, pivots = Aaug.rref() particular = Arref.from_rep(Arref.rep.particular()) nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace() nullspace = Arref.from_rep(nullspace_rep) return particular, nullspace def charpoly(self): r""" Returns the coefficients of the characteristic polynomial of the DomainMatrix. These elements will be domain elements. The domain of the elements will be same as domain of the DomainMatrix. Returns ======= list coefficients of the characteristic polynomial Raises ====== DMNonSquareMatrixError If the DomainMatrix is not a not Square DomainMatrix Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.charpoly() [1, -5, -2] """ m, n = self.shape if m != n: raise DMNonSquareMatrixError("not square") return self.rep.charpoly() @classmethod def eye(cls, shape, domain): r""" Return identity matrix of size n Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.eye(3, QQ) DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ) """ if isinstance(shape, int): shape = (shape, shape) return cls.from_rep(SDM.eye(shape, domain)) @classmethod def diag(cls, diagonal, domain, shape=None): r""" Return diagonal matrix with entries from ``diagonal``. Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import ZZ >>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ) DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ) """ if shape is None: N = len(diagonal) shape = (N, N) return cls.from_rep(SDM.diag(diagonal, domain, shape)) @classmethod def zeros(cls, shape, domain, *, fmt='sparse'): """Returns a zero DomainMatrix of size shape, belonging to the specified domain Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.zeros((2, 3), QQ) DomainMatrix({}, (2, 3), QQ) """ return cls.from_rep(SDM.zeros(shape, domain)) @classmethod def ones(cls, shape, domain): """Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.ones((2,3), QQ) DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ) """ return cls.from_rep(DDM.ones(shape, domain)) def __eq__(A, B): r""" Checks for two DomainMatrix matrices to be equal or not Parameters ========== A, B: DomainMatrix to check equality Returns ======= Boolean True for equal, else False Raises ====== NotImplementedError If B is not a DomainMatrix Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.__eq__(A) True >>> A.__eq__(B) False """ if not isinstance(A, type(B)): return NotImplemented return A.domain == B.domain and A.rep == B.rep def unify_eq(A, B): if A.shape != B.shape: return False if A.domain != B.domain: A, B = A.unify(B) return A == B def lll(A, delta=QQ(3, 4)) -> 'DomainMatrix': """ Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm. See [1]_ and [2]_. Parameters ========== delta : QQ, optional The Lovász parameter. Must be in the interval (0.25, 1), with larger values producing a more reduced basis. The default is 0.75 for historical reasons. Returns ======= The reduced basis as a DomainMatrix over ZZ. Throws ====== DMValueError: if delta is not in the range (0.25, 1) DMShapeError: if the matrix is not of shape (m, n) with m <= n DMDomainError: if the matrix domain is not ZZ DMRankError: if the matrix contains linearly dependent rows Examples ======== >>> from sympy.polys.domains import ZZ, QQ >>> from sympy.polys.matrices import DM >>> x = DM([[1, 0, 0, 0, -20160], ... [0, 1, 0, 0, 33768], ... [0, 0, 1, 0, 39578], ... [0, 0, 0, 1, 47757]], ZZ) >>> y = DM([[10, -3, -2, 8, -4], ... [3, -9, 8, 1, -11], ... [-3, 13, -9, -3, -9], ... [-12, -7, -11, 9, -1]], ZZ) >>> assert x.lll(delta=QQ(5, 6)) == y Notes ===== The implementation is derived from the Maple code given in Figures 4.3 and 4.4 of [3]_ (pp.68-69). It uses the efficient method of only calculating state updates as they are required. References ========== .. [1] https://en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm .. [2] https://web.cs.elte.hu/~lovasz/scans/lll.pdf .. [3] Murray R. Bremner, "Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications" """ return DomainMatrix.from_rep(A.rep.lll(delta=delta))
6b2dcbbf6d57dd0aaccf2b0137bd7176bf4a190b82e640c197dd1ad928f1ea93
""" Module to define exceptions to be used in sympy.polys.matrices modules and classes. Ideally all exceptions raised in these modules would be defined and documented here and not e.g. imported from matrices. Also ideally generic exceptions like ValueError/TypeError would not be raised anywhere. """ class DMError(Exception): """Base class for errors raised by DomainMatrix""" pass class DMBadInputError(DMError): """list of lists is inconsistent with shape""" pass class DMDomainError(DMError): """domains do not match""" pass class DMNotAField(DMDomainError): """domain is not a field""" pass class DMFormatError(DMError): """mixed dense/sparse not supported""" pass class DMNonInvertibleMatrixError(DMError): """The matrix in not invertible""" pass class DMRankError(DMError): """matrix does not have expected rank""" pass class DMShapeError(DMError): """shapes are inconsistent""" pass class DMNonSquareMatrixError(DMShapeError): """The matrix is not square""" pass class DMValueError(DMError): """The value passed is invalid""" pass __all__ = [ 'DMError', 'DMBadInputError', 'DMDomainError', 'DMFormatError', 'DMRankError', 'DMShapeError', 'DMNotAField', 'DMNonInvertibleMatrixError', 'DMNonSquareMatrixError', 'DMValueError' ]
a6c826bbfe5ec54dfdf9bc234ba1bcc1c2e815eb2533efc5597a4f7412bde07b
""" Module for the SDM class. """ from operator import add, neg, pos, sub, mul from collections import defaultdict from sympy.utilities.iterables import _strongly_connected_components from .exceptions import DMBadInputError, DMDomainError, DMShapeError from .ddm import DDM from .lll import ddm_lll from sympy.polys.domains import QQ class SDM(dict): r"""Sparse matrix based on polys domain elements This is a dict subclass and is a wrapper for a dict of dicts that supports basic matrix arithmetic +, -, *, **. In order to create a new :py:class:`~.SDM`, a dict of dicts mapping non-zero elements to their corresponding row and column in the matrix is needed. We also need to specify the shape and :py:class:`~.Domain` of our :py:class:`~.SDM` object. We declare a 2x2 :py:class:`~.SDM` matrix belonging to QQ domain as shown below. The 2x2 Matrix in the example is .. math:: A = \left[\begin{array}{ccc} 0 & \frac{1}{2} \\ 0 & 0 \end{array} \right] >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> elemsdict = {0:{1:QQ(1, 2)}} >>> A = SDM(elemsdict, (2, 2), QQ) >>> A {0: {1: 1/2}} We can manipulate :py:class:`~.SDM` the same way as a Matrix class >>> from sympy import ZZ >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ) >>> A + B {0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}} Multiplication >>> A*B {0: {1: 8}, 1: {0: 3}} >>> A*ZZ(2) {0: {1: 4}, 1: {0: 2}} """ fmt = 'sparse' def __init__(self, elemsdict, shape, domain): super().__init__(elemsdict) self.shape = self.rows, self.cols = m, n = shape self.domain = domain if not all(0 <= r < m for r in self): raise DMBadInputError("Row out of range") if not all(0 <= c < n for row in self.values() for c in row): raise DMBadInputError("Column out of range") def getitem(self, i, j): try: return self[i][j] except KeyError: m, n = self.shape if -m <= i < m and -n <= j < n: try: return self[i % m][j % n] except KeyError: return self.domain.zero else: raise IndexError("index out of range") def setitem(self, i, j, value): m, n = self.shape if not (-m <= i < m and -n <= j < n): raise IndexError("index out of range") i, j = i % m, j % n if value: try: self[i][j] = value except KeyError: self[i] = {j: value} else: rowi = self.get(i, None) if rowi is not None: try: del rowi[j] except KeyError: pass else: if not rowi: del self[i] def extract_slice(self, slice1, slice2): m, n = self.shape ri = range(m)[slice1] ci = range(n)[slice2] sdm = {} for i, row in self.items(): if i in ri: row = {ci.index(j): e for j, e in row.items() if j in ci} if row: sdm[ri.index(i)] = row return self.new(sdm, (len(ri), len(ci)), self.domain) def extract(self, rows, cols): if not (self and rows and cols): return self.zeros((len(rows), len(cols)), self.domain) m, n = self.shape if not (-m <= min(rows) <= max(rows) < m): raise IndexError('Row index out of range') if not (-n <= min(cols) <= max(cols) < n): raise IndexError('Column index out of range') # rows and cols can contain duplicates e.g. M[[1, 2, 2], [0, 1]] # Build a map from row/col in self to list of rows/cols in output rowmap = defaultdict(list) colmap = defaultdict(list) for i2, i1 in enumerate(rows): rowmap[i1 % m].append(i2) for j2, j1 in enumerate(cols): colmap[j1 % n].append(j2) # Used to efficiently skip zero rows/cols rowset = set(rowmap) colset = set(colmap) sdm1 = self sdm2 = {} for i1 in rowset & set(sdm1): row1 = sdm1[i1] row2 = {} for j1 in colset & set(row1): row1_j1 = row1[j1] for j2 in colmap[j1]: row2[j2] = row1_j1 if row2: for i2 in rowmap[i1]: sdm2[i2] = row2.copy() return self.new(sdm2, (len(rows), len(cols)), self.domain) def __str__(self): rowsstr = [] for i, row in self.items(): elemsstr = ', '.join('%s: %s' % (j, elem) for j, elem in row.items()) rowsstr.append('%s: {%s}' % (i, elemsstr)) return '{%s}' % ', '.join(rowsstr) def __repr__(self): cls = type(self).__name__ rows = dict.__repr__(self) return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain) @classmethod def new(cls, sdm, shape, domain): """ Parameters ========== sdm: A dict of dicts for non-zero elements in SDM shape: tuple representing dimension of SDM domain: Represents :py:class:`~.Domain` of SDM Returns ======= An :py:class:`~.SDM` object Examples ======== >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> elemsdict = {0:{1: QQ(2)}} >>> A = SDM.new(elemsdict, (2, 2), QQ) >>> A {0: {1: 2}} """ return cls(sdm, shape, domain) def copy(A): """ Returns the copy of a :py:class:`~.SDM` object Examples ======== >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> elemsdict = {0:{1:QQ(2)}, 1:{}} >>> A = SDM(elemsdict, (2, 2), QQ) >>> B = A.copy() >>> B {0: {1: 2}, 1: {}} """ Ac = {i: Ai.copy() for i, Ai in A.items()} return A.new(Ac, A.shape, A.domain) @classmethod def from_list(cls, ddm, shape, domain): """ Parameters ========== ddm: list of lists containing domain elements shape: Dimensions of :py:class:`~.SDM` matrix domain: Represents :py:class:`~.Domain` of :py:class:`~.SDM` object Returns ======= :py:class:`~.SDM` containing elements of ddm Examples ======== >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> ddm = [[QQ(1, 2), QQ(0)], [QQ(0), QQ(3, 4)]] >>> A = SDM.from_list(ddm, (2, 2), QQ) >>> A {0: {0: 1/2}, 1: {1: 3/4}} """ m, n = shape if not (len(ddm) == m and all(len(row) == n for row in ddm)): raise DMBadInputError("Inconsistent row-list/shape") getrow = lambda i: {j:ddm[i][j] for j in range(n) if ddm[i][j]} irows = ((i, getrow(i)) for i in range(m)) sdm = {i: row for i, row in irows if row} return cls(sdm, shape, domain) @classmethod def from_ddm(cls, ddm): """ converts object of :py:class:`~.DDM` to :py:class:`~.SDM` Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> ddm = DDM( [[QQ(1, 2), 0], [0, QQ(3, 4)]], (2, 2), QQ) >>> A = SDM.from_ddm(ddm) >>> A {0: {0: 1/2}, 1: {1: 3/4}} """ return cls.from_list(ddm, ddm.shape, ddm.domain) def to_list(M): """ Converts a :py:class:`~.SDM` object to a list Examples ======== >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> elemsdict = {0:{1:QQ(2)}, 1:{}} >>> A = SDM(elemsdict, (2, 2), QQ) >>> A.to_list() [[0, 2], [0, 0]] """ m, n = M.shape zero = M.domain.zero ddm = [[zero] * n for _ in range(m)] for i, row in M.items(): for j, e in row.items(): ddm[i][j] = e return ddm def to_list_flat(M): m, n = M.shape zero = M.domain.zero flat = [zero] * (m * n) for i, row in M.items(): for j, e in row.items(): flat[i*n + j] = e return flat def to_dok(M): return {(i, j): e for i, row in M.items() for j, e in row.items()} def to_ddm(M): """ Convert a :py:class:`~.SDM` object to a :py:class:`~.DDM` object Examples ======== >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ) >>> A.to_ddm() [[0, 2], [0, 0]] """ return DDM(M.to_list(), M.shape, M.domain) def to_sdm(M): return M @classmethod def zeros(cls, shape, domain): r""" Returns a :py:class:`~.SDM` of size shape, belonging to the specified domain In the example below we declare a matrix A where, .. math:: A := \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM.zeros((2, 3), QQ) >>> A {} """ return cls({}, shape, domain) @classmethod def ones(cls, shape, domain): one = domain.one m, n = shape row = dict(zip(range(n), [one]*n)) sdm = {i: row.copy() for i in range(m)} return cls(sdm, shape, domain) @classmethod def eye(cls, shape, domain): """ Returns a identity :py:class:`~.SDM` matrix of dimensions size x size, belonging to the specified domain Examples ======== >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> I = SDM.eye((2, 2), QQ) >>> I {0: {0: 1}, 1: {1: 1}} """ rows, cols = shape one = domain.one sdm = {i: {i: one} for i in range(min(rows, cols))} return cls(sdm, shape, domain) @classmethod def diag(cls, diagonal, domain, shape): sdm = {i: {i: v} for i, v in enumerate(diagonal) if v} return cls(sdm, shape, domain) def transpose(M): """ Returns the transpose of a :py:class:`~.SDM` matrix Examples ======== >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import QQ >>> A = SDM({0:{1:QQ(2)}, 1:{}}, (2, 2), QQ) >>> A.transpose() {1: {0: 2}} """ MT = sdm_transpose(M) return M.new(MT, M.shape[::-1], M.domain) def __add__(A, B): if not isinstance(B, SDM): return NotImplemented return A.add(B) def __sub__(A, B): if not isinstance(B, SDM): return NotImplemented return A.sub(B) def __neg__(A): return A.neg() def __mul__(A, B): """A * B""" if isinstance(B, SDM): return A.matmul(B) elif B in A.domain: return A.mul(B) else: return NotImplemented def __rmul__(a, b): if b in a.domain: return a.rmul(b) else: return NotImplemented def matmul(A, B): """ Performs matrix multiplication of two SDM matrices Parameters ========== A, B: SDM to multiply Returns ======= SDM SDM after multiplication Raises ====== DomainError If domain of A does not match with that of B Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> B = SDM({0:{0:ZZ(2), 1:ZZ(3)}, 1:{0:ZZ(4)}}, (2, 2), ZZ) >>> A.matmul(B) {0: {0: 8}, 1: {0: 2, 1: 3}} """ if A.domain != B.domain: raise DMDomainError m, n = A.shape n2, o = B.shape if n != n2: raise DMShapeError C = sdm_matmul(A, B, A.domain, m, o) return A.new(C, (m, o), A.domain) def mul(A, b): """ Multiplies each element of A with a scalar b Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> A.mul(ZZ(3)) {0: {1: 6}, 1: {0: 3}} """ Csdm = unop_dict(A, lambda aij: aij*b) return A.new(Csdm, A.shape, A.domain) def rmul(A, b): Csdm = unop_dict(A, lambda aij: b*aij) return A.new(Csdm, A.shape, A.domain) def mul_elementwise(A, B): if A.domain != B.domain: raise DMDomainError if A.shape != B.shape: raise DMShapeError zero = A.domain.zero fzero = lambda e: zero Csdm = binop_dict(A, B, mul, fzero, fzero) return A.new(Csdm, A.shape, A.domain) def add(A, B): """ Adds two :py:class:`~.SDM` matrices Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ) >>> A.add(B) {0: {0: 3, 1: 2}, 1: {0: 1, 1: 4}} """ Csdm = binop_dict(A, B, add, pos, pos) return A.new(Csdm, A.shape, A.domain) def sub(A, B): """ Subtracts two :py:class:`~.SDM` matrices Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> B = SDM({0:{0: ZZ(3)}, 1:{1:ZZ(4)}}, (2, 2), ZZ) >>> A.sub(B) {0: {0: -3, 1: 2}, 1: {0: 1, 1: -4}} """ Csdm = binop_dict(A, B, sub, pos, neg) return A.new(Csdm, A.shape, A.domain) def neg(A): """ Returns the negative of a :py:class:`~.SDM` matrix Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> A.neg() {0: {1: -2}, 1: {0: -1}} """ Csdm = unop_dict(A, neg) return A.new(Csdm, A.shape, A.domain) def convert_to(A, K): """ Converts the :py:class:`~.Domain` of a :py:class:`~.SDM` matrix to K Examples ======== >>> from sympy import ZZ, QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{1: ZZ(2)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) >>> A.convert_to(QQ) {0: {1: 2}, 1: {0: 1}} """ Kold = A.domain if K == Kold: return A.copy() Ak = unop_dict(A, lambda e: K.convert_from(e, Kold)) return A.new(Ak, A.shape, K) def scc(A): """Strongly connected components of a square matrix *A*. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0: ZZ(2)}, 1:{1:ZZ(1)}}, (2, 2), ZZ) >>> A.scc() [[0], [1]] See also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.scc """ rows, cols = A.shape assert rows == cols V = range(rows) Emap = {v: list(A.get(v, [])) for v in V} return _strongly_connected_components(V, Emap) def rref(A): """ Returns reduced-row echelon form and list of pivots for the :py:class:`~.SDM` Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(2), 1:QQ(4)}}, (2, 2), QQ) >>> A.rref() ({0: {0: 1, 1: 2}}, [0]) """ B, pivots, _ = sdm_irref(A) return A.new(B, A.shape, A.domain), pivots def inv(A): """ Returns inverse of a matrix A Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> A.inv() {0: {0: -2, 1: 1}, 1: {0: 3/2, 1: -1/2}} """ return A.from_ddm(A.to_ddm().inv()) def det(A): """ Returns determinant of A Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> A.det() -2 """ return A.to_ddm().det() def lu(A): """ Returns LU decomposition for a matrix A Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> A.lu() ({0: {0: 1}, 1: {0: 3, 1: 1}}, {0: {0: 1, 1: 2}, 1: {1: -2}}, []) """ L, U, swaps = A.to_ddm().lu() return A.from_ddm(L), A.from_ddm(U), swaps def lu_solve(A, b): """ Uses LU decomposition to solve Ax = b, Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> b = SDM({0:{0:QQ(1)}, 1:{0:QQ(2)}}, (2, 1), QQ) >>> A.lu_solve(b) {1: {0: 1/2}} """ return A.from_ddm(A.to_ddm().lu_solve(b.to_ddm())) def nullspace(A): """ Returns nullspace for a :py:class:`~.SDM` matrix A Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0: QQ(2), 1: QQ(4)}}, (2, 2), QQ) >>> A.nullspace() ({0: {0: -2, 1: 1}}, [1]) """ ncols = A.shape[1] one = A.domain.one B, pivots, nzcols = sdm_irref(A) K, nonpivots = sdm_nullspace_from_rref(B, one, ncols, pivots, nzcols) K = dict(enumerate(K)) shape = (len(K), ncols) return A.new(K, shape, A.domain), nonpivots def particular(A): ncols = A.shape[1] B, pivots, nzcols = sdm_irref(A) P = sdm_particular_from_rref(B, ncols, pivots) rep = {0:P} if P else {} return A.new(rep, (1, ncols-1), A.domain) def hstack(A, *B): """Horizontally stacks :py:class:`~.SDM` matrices. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ) >>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ) >>> A.hstack(B) {0: {0: 1, 1: 2, 2: 5, 3: 6}, 1: {0: 3, 1: 4, 2: 7, 3: 8}} >>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ) >>> A.hstack(B, C) {0: {0: 1, 1: 2, 2: 5, 3: 6, 4: 9, 5: 10}, 1: {0: 3, 1: 4, 2: 7, 3: 8, 4: 11, 5: 12}} """ Anew = dict(A.copy()) rows, cols = A.shape domain = A.domain for Bk in B: Bkrows, Bkcols = Bk.shape assert Bkrows == rows assert Bk.domain == domain for i, Bki in Bk.items(): Ai = Anew.get(i, None) if Ai is None: Anew[i] = Ai = {} for j, Bkij in Bki.items(): Ai[j + cols] = Bkij cols += Bkcols return A.new(Anew, (rows, cols), A.domain) def vstack(A, *B): """Vertically stacks :py:class:`~.SDM` matrices. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import SDM >>> A = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ) >>> B = SDM({0: {0: ZZ(5), 1: ZZ(6)}, 1: {0: ZZ(7), 1: ZZ(8)}}, (2, 2), ZZ) >>> A.vstack(B) {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}} >>> C = SDM({0: {0: ZZ(9), 1: ZZ(10)}, 1: {0: ZZ(11), 1: ZZ(12)}}, (2, 2), ZZ) >>> A.vstack(B, C) {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}, 2: {0: 5, 1: 6}, 3: {0: 7, 1: 8}, 4: {0: 9, 1: 10}, 5: {0: 11, 1: 12}} """ Anew = dict(A.copy()) rows, cols = A.shape domain = A.domain for Bk in B: Bkrows, Bkcols = Bk.shape assert Bkcols == cols assert Bk.domain == domain for i, Bki in Bk.items(): Anew[i + rows] = Bki rows += Bkrows return A.new(Anew, (rows, cols), A.domain) def applyfunc(self, func, domain): sdm = {i: {j: func(e) for j, e in row.items()} for i, row in self.items()} return self.new(sdm, self.shape, domain) def charpoly(A): """ Returns the coefficients of the characteristic polynomial of the :py:class:`~.SDM` matrix. These elements will be domain elements. The domain of the elements will be same as domain of the :py:class:`~.SDM`. Examples ======== >>> from sympy import QQ, Symbol >>> from sympy.polys.matrices.sdm import SDM >>> from sympy.polys import Poly >>> A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) >>> A.charpoly() [1, -5, -2] We can create a polynomial using the coefficients using :py:class:`~.Poly` >>> x = Symbol('x') >>> p = Poly(A.charpoly(), x, domain=A.domain) >>> p Poly(x**2 - 5*x - 2, x, domain='QQ') """ return A.to_ddm().charpoly() def is_zero_matrix(self): """ Says whether this matrix has all zero entries. """ return not self def is_upper(self): """ Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square. """ return all(i <= j for i, row in self.items() for j in row) def is_lower(self): """ Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square. """ return all(i >= j for i, row in self.items() for j in row) def lll(A, delta=QQ(3, 4)) -> 'SDM': return A.from_ddm(ddm_lll(A.to_ddm(), delta)) def binop_dict(A, B, fab, fa, fb): Anz, Bnz = set(A), set(B) C = {} for i in Anz & Bnz: Ai, Bi = A[i], B[i] Ci = {} Anzi, Bnzi = set(Ai), set(Bi) for j in Anzi & Bnzi: Cij = fab(Ai[j], Bi[j]) if Cij: Ci[j] = Cij for j in Anzi - Bnzi: Cij = fa(Ai[j]) if Cij: Ci[j] = Cij for j in Bnzi - Anzi: Cij = fb(Bi[j]) if Cij: Ci[j] = Cij if Ci: C[i] = Ci for i in Anz - Bnz: Ai = A[i] Ci = {} for j, Aij in Ai.items(): Cij = fa(Aij) if Cij: Ci[j] = Cij if Ci: C[i] = Ci for i in Bnz - Anz: Bi = B[i] Ci = {} for j, Bij in Bi.items(): Cij = fb(Bij) if Cij: Ci[j] = Cij if Ci: C[i] = Ci return C def unop_dict(A, f): B = {} for i, Ai in A.items(): Bi = {} for j, Aij in Ai.items(): Bij = f(Aij) if Bij: Bi[j] = Bij if Bi: B[i] = Bi return B def sdm_transpose(M): MT = {} for i, Mi in M.items(): for j, Mij in Mi.items(): try: MT[j][i] = Mij except KeyError: MT[j] = {i: Mij} return MT def sdm_matmul(A, B, K, m, o): # # Should be fast if A and B are very sparse. # Consider e.g. A = B = eye(1000). # # The idea here is that we compute C = A*B in terms of the rows of C and # B since the dict of dicts representation naturally stores the matrix as # rows. The ith row of C (Ci) is equal to the sum of Aik * Bk where Bk is # the kth row of B. The algorithm below loops over each nonzero element # Aik of A and if the corresponding row Bj is nonzero then we do # Ci += Aik * Bk. # To make this more efficient we don't need to loop over all elements Aik. # Instead for each row Ai we compute the intersection of the nonzero # columns in Ai with the nonzero rows in B. That gives the k such that # Aik and Bk are both nonzero. In Python the intersection of two sets # of int can be computed very efficiently. # if K.is_EXRAW: return sdm_matmul_exraw(A, B, K, m, o) C = {} B_knz = set(B) for i, Ai in A.items(): Ci = {} Ai_knz = set(Ai) for k in Ai_knz & B_knz: Aik = Ai[k] for j, Bkj in B[k].items(): Cij = Ci.get(j, None) if Cij is not None: Cij = Cij + Aik * Bkj if Cij: Ci[j] = Cij else: Ci.pop(j) else: Cij = Aik * Bkj if Cij: Ci[j] = Cij if Ci: C[i] = Ci return C def sdm_matmul_exraw(A, B, K, m, o): # # Like sdm_matmul above except that: # # - Handles cases like 0*oo -> nan (sdm_matmul skips multipication by zero) # - Uses K.sum (Add(*items)) for efficient addition of Expr # zero = K.zero C = {} B_knz = set(B) for i, Ai in A.items(): Ci_list = defaultdict(list) Ai_knz = set(Ai) # Nonzero row/column pair for k in Ai_knz & B_knz: Aik = Ai[k] if zero * Aik == zero: # This is the main inner loop: for j, Bkj in B[k].items(): Ci_list[j].append(Aik * Bkj) else: for j in range(o): Ci_list[j].append(Aik * B[k].get(j, zero)) # Zero row in B, check for infinities in A for k in Ai_knz - B_knz: zAik = zero * Ai[k] if zAik != zero: for j in range(o): Ci_list[j].append(zAik) # Add terms using K.sum (Add(*terms)) for efficiency Ci = {} for j, Cij_list in Ci_list.items(): Cij = K.sum(Cij_list) if Cij: Ci[j] = Cij if Ci: C[i] = Ci # Find all infinities in B for k, Bk in B.items(): for j, Bkj in Bk.items(): if zero * Bkj != zero: for i in range(m): Aik = A.get(i, {}).get(k, zero) # If Aik is not zero then this was handled above if Aik == zero: Ci = C.get(i, {}) Cij = Ci.get(j, zero) + Aik * Bkj if Cij != zero: Ci[j] = Cij else: # pragma: no cover # Not sure how we could get here but let's raise an # exception just in case. raise RuntimeError C[i] = Ci return C def sdm_irref(A): """RREF and pivots of a sparse matrix *A*. Compute the reduced row echelon form (RREF) of the matrix *A* and return a list of the pivot columns. This routine does not work in place and leaves the original matrix *A* unmodified. Examples ======== This routine works with a dict of dicts sparse representation of a matrix: >>> from sympy import QQ >>> from sympy.polys.matrices.sdm import sdm_irref >>> A = {0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}} >>> Arref, pivots, _ = sdm_irref(A) >>> Arref {0: {0: 1}, 1: {1: 1}} >>> pivots [0, 1] The analogous calculation with :py:class:`~.Matrix` would be >>> from sympy import Matrix >>> M = Matrix([[1, 2], [3, 4]]) >>> Mrref, pivots = M.rref() >>> Mrref Matrix([ [1, 0], [0, 1]]) >>> pivots (0, 1) Notes ===== The cost of this algorithm is determined purely by the nonzero elements of the matrix. No part of the cost of any step in this algorithm depends on the number of rows or columns in the matrix. No step depends even on the number of nonzero rows apart from the primary loop over those rows. The implementation is much faster than ddm_rref for sparse matrices. In fact at the time of writing it is also (slightly) faster than the dense implementation even if the input is a fully dense matrix so it seems to be faster in all cases. The elements of the matrix should support exact division with ``/``. For example elements of any domain that is a field (e.g. ``QQ``) should be fine. No attempt is made to handle inexact arithmetic. """ # # Any zeros in the matrix are not stored at all so an element is zero if # its row dict has no index at that key. A row is entirely zero if its # row index is not in the outer dict. Since rref reorders the rows and # removes zero rows we can completely discard the row indices. The first # step then copies the row dicts into a list sorted by the index of the # first nonzero column in each row. # # The algorithm then processes each row Ai one at a time. Previously seen # rows are used to cancel their pivot columns from Ai. Then a pivot from # Ai is chosen and is cancelled from all previously seen rows. At this # point Ai joins the previously seen rows. Once all rows are seen all # elimination has occurred and the rows are sorted by pivot column index. # # The previously seen rows are stored in two separate groups. The reduced # group consists of all rows that have been reduced to a single nonzero # element (the pivot). There is no need to attempt any further reduction # with these. Rows that still have other nonzeros need to be considered # when Ai is cancelled from the previously seen rows. # # A dict nonzerocolumns is used to map from a column index to a set of # previously seen rows that still have a nonzero element in that column. # This means that we can cancel the pivot from Ai into the previously seen # rows without needing to loop over each row that might have a zero in # that column. # # Row dicts sorted by index of first nonzero column # (Maybe sorting is not needed/useful.) Arows = sorted((Ai.copy() for Ai in A.values()), key=min) # Each processed row has an associated pivot column. # pivot_row_map maps from the pivot column index to the row dict. # This means that we can represent a set of rows purely as a set of their # pivot indices. pivot_row_map = {} # Set of pivot indices for rows that are fully reduced to a single nonzero. reduced_pivots = set() # Set of pivot indices for rows not fully reduced nonreduced_pivots = set() # Map from column index to a set of pivot indices representing the rows # that have a nonzero at that column. nonzero_columns = defaultdict(set) while Arows: # Select pivot element and row Ai = Arows.pop() # Nonzero columns from fully reduced pivot rows can be removed Ai = {j: Aij for j, Aij in Ai.items() if j not in reduced_pivots} # Others require full row cancellation for j in nonreduced_pivots & set(Ai): Aj = pivot_row_map[j] Aij = Ai[j] Ainz = set(Ai) Ajnz = set(Aj) for k in Ajnz - Ainz: Ai[k] = - Aij * Aj[k] Ai.pop(j) Ainz.remove(j) for k in Ajnz & Ainz: Aik = Ai[k] - Aij * Aj[k] if Aik: Ai[k] = Aik else: Ai.pop(k) # We have now cancelled previously seen pivots from Ai. # If it is zero then discard it. if not Ai: continue # Choose a pivot from Ai: j = min(Ai) Aij = Ai[j] pivot_row_map[j] = Ai Ainz = set(Ai) # Normalise the pivot row to make the pivot 1. # # This approach is slow for some domains. Cross cancellation might be # better for e.g. QQ(x) with division delayed to the final steps. Aijinv = Aij**-1 for l in Ai: Ai[l] *= Aijinv # Use Aij to cancel column j from all previously seen rows for k in nonzero_columns.pop(j, ()): Ak = pivot_row_map[k] Akj = Ak[j] Aknz = set(Ak) for l in Ainz - Aknz: Ak[l] = - Akj * Ai[l] nonzero_columns[l].add(k) Ak.pop(j) Aknz.remove(j) for l in Ainz & Aknz: Akl = Ak[l] - Akj * Ai[l] if Akl: Ak[l] = Akl else: # Drop nonzero elements Ak.pop(l) if l != j: nonzero_columns[l].remove(k) if len(Ak) == 1: reduced_pivots.add(k) nonreduced_pivots.remove(k) if len(Ai) == 1: reduced_pivots.add(j) else: nonreduced_pivots.add(j) for l in Ai: if l != j: nonzero_columns[l].add(j) # All done! pivots = sorted(reduced_pivots | nonreduced_pivots) pivot2row = {p: n for n, p in enumerate(pivots)} nonzero_columns = {c: set(pivot2row[p] for p in s) for c, s in nonzero_columns.items()} rows = [pivot_row_map[i] for i in pivots] rref = dict(enumerate(rows)) return rref, pivots, nonzero_columns def sdm_nullspace_from_rref(A, one, ncols, pivots, nonzero_cols): """Get nullspace from A which is in RREF""" nonpivots = sorted(set(range(ncols)) - set(pivots)) K = [] for j in nonpivots: Kj = {j:one} for i in nonzero_cols.get(j, ()): Kj[pivots[i]] = -A[i][j] K.append(Kj) return K, nonpivots def sdm_particular_from_rref(A, ncols, pivots): """Get a particular solution from A which is in RREF""" P = {} for i, j in enumerate(pivots): Ain = A[i].get(ncols-1, None) if Ain is not None: P[j] = Ain / A[i][j] return P
2dc158d4e004bc8697cdd4e80fce15bd4fc3666370452899b773c0fba602c0c4
""" Module for the ddm_* routines for operating on a matrix in list of lists matrix representation. These routines are used internally by the DDM class which also provides a friendlier interface for them. The idea here is to implement core matrix routines in a way that can be applied to any simple list representation without the need to use any particular matrix class. For example we can compute the RREF of a matrix like: >>> from sympy.polys.matrices.dense import ddm_irref >>> M = [[1, 2, 3], [4, 5, 6]] >>> pivots = ddm_irref(M) >>> M [[1.0, 0.0, -1.0], [0, 1.0, 2.0]] These are lower-level routines that work mostly in place.The routines at this level should not need to know what the domain of the elements is but should ideally document what operations they will use and what functions they need to be provided with. The next-level up is the DDM class which uses these routines but wraps them up with an interface that handles copying etc and keeps track of the Domain of the elements of the matrix: >>> from sympy.polys.domains import QQ >>> from sympy.polys.matrices.ddm import DDM >>> M = DDM([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ) >>> M [[1, 2, 3], [4, 5, 6]] >>> Mrref, pivots = M.rref() >>> Mrref [[1, 0, -1], [0, 1, 2]] """ from __future__ import annotations from operator import mul from .exceptions import ( DMShapeError, DMNonInvertibleMatrixError, DMNonSquareMatrixError, ) from typing import Sequence, TypeVar from sympy.polys.matrices._typing import RingElement T = TypeVar('T') R = TypeVar('R', bound=RingElement) def ddm_transpose(matrix: Sequence[Sequence[T]]) -> list[list[T]]: """matrix transpose""" return list(map(list, zip(*matrix))) def ddm_iadd(a: list[list[R]], b: Sequence[Sequence[R]]) -> None: """a += b""" for ai, bi in zip(a, b): for j, bij in enumerate(bi): ai[j] += bij def ddm_isub(a: list[list[R]], b: Sequence[Sequence[R]]) -> None: """a -= b""" for ai, bi in zip(a, b): for j, bij in enumerate(bi): ai[j] -= bij def ddm_ineg(a: list[list[R]]) -> None: """a <-- -a""" for ai in a: for j, aij in enumerate(ai): ai[j] = -aij def ddm_imul(a: list[list[R]], b: R) -> None: for ai in a: for j, aij in enumerate(ai): ai[j] = aij * b def ddm_irmul(a: list[list[R]], b: R) -> None: for ai in a: for j, aij in enumerate(ai): ai[j] = b * aij def ddm_imatmul( a: list[list[R]], b: Sequence[Sequence[R]], c: Sequence[Sequence[R]] ) -> None: """a += b @ c""" cT = list(zip(*c)) for bi, ai in zip(b, a): for j, cTj in enumerate(cT): ai[j] = sum(map(mul, bi, cTj), ai[j]) def ddm_irref(a, _partial_pivot=False): """a <-- rref(a)""" # a is (m x n) m = len(a) if not m: return [] n = len(a[0]) i = 0 pivots = [] for j in range(n): # Proper pivoting should be used for all domains for performance # reasons but it is only strictly needed for RR and CC (and possibly # other domains like RR(x)). This path is used by DDM.rref() if the # domain is RR or CC. It uses partial (row) pivoting based on the # absolute value of the pivot candidates. if _partial_pivot: ip = max(range(i, m), key=lambda ip: abs(a[ip][j])) a[i], a[ip] = a[ip], a[i] # pivot aij = a[i][j] # zero-pivot if not aij: for ip in range(i+1, m): aij = a[ip][j] # row-swap if aij: a[i], a[ip] = a[ip], a[i] break else: # next column continue # normalise row ai = a[i] aijinv = aij**-1 for l in range(j, n): ai[l] *= aijinv # ai[j] = one # eliminate above and below to the right for k, ak in enumerate(a): if k == i or not ak[j]: continue akj = ak[j] ak[j] -= akj # ak[j] = zero for l in range(j+1, n): ak[l] -= akj * ai[l] # next row pivots.append(j) i += 1 # no more rows? if i >= m: break return pivots def ddm_idet(a, K): """a <-- echelon(a); return det""" # Bareiss algorithm # https://www.math.usm.edu/perry/Research/Thesis_DRL.pdf # a is (m x n) m = len(a) if not m: return K.one n = len(a[0]) exquo = K.exquo # uf keeps track of the sign change from row swaps uf = K.one for k in range(n-1): if not a[k][k]: for i in range(k+1, n): if a[i][k]: a[k], a[i] = a[i], a[k] uf = -uf break else: return K.zero akkm1 = a[k-1][k-1] if k else K.one for i in range(k+1, n): for j in range(k+1, n): a[i][j] = exquo(a[i][j]*a[k][k] - a[i][k]*a[k][j], akkm1) return uf * a[-1][-1] def ddm_iinv(ainv, a, K): if not K.is_Field: raise ValueError('Not a field') # a is (m x n) m = len(a) if not m: return n = len(a[0]) if m != n: raise DMNonSquareMatrixError eye = [[K.one if i==j else K.zero for j in range(n)] for i in range(n)] Aaug = [row + eyerow for row, eyerow in zip(a, eye)] pivots = ddm_irref(Aaug) if pivots != list(range(n)): raise DMNonInvertibleMatrixError('Matrix det == 0; not invertible.') ainv[:] = [row[n:] for row in Aaug] def ddm_ilu_split(L, U, K): """L, U <-- LU(U)""" m = len(U) if not m: return [] n = len(U[0]) swaps = ddm_ilu(U) zeros = [K.zero] * min(m, n) for i in range(1, m): j = min(i, n) L[i][:j] = U[i][:j] U[i][:j] = zeros[:j] return swaps def ddm_ilu(a): """a <-- LU(a)""" m = len(a) if not m: return [] n = len(a[0]) swaps = [] for i in range(min(m, n)): if not a[i][i]: for ip in range(i+1, m): if a[ip][i]: swaps.append((i, ip)) a[i], a[ip] = a[ip], a[i] break else: # M = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]]) continue for j in range(i+1, m): l_ji = a[j][i] / a[i][i] a[j][i] = l_ji for k in range(i+1, n): a[j][k] -= l_ji * a[i][k] return swaps def ddm_ilu_solve(x, L, U, swaps, b): """x <-- solve(L*U*x = swaps(b))""" m = len(U) if not m: return n = len(U[0]) m2 = len(b) if not m2: raise DMShapeError("Shape mismtch") o = len(b[0]) if m != m2: raise DMShapeError("Shape mismtch") if m < n: raise NotImplementedError("Underdetermined") if swaps: b = [row[:] for row in b] for i1, i2 in swaps: b[i1], b[i2] = b[i2], b[i1] # solve Ly = b y = [[None] * o for _ in range(m)] for k in range(o): for i in range(m): rhs = b[i][k] for j in range(i): rhs -= L[i][j] * y[j][k] y[i][k] = rhs if m > n: for i in range(n, m): for j in range(o): if y[i][j]: raise DMNonInvertibleMatrixError # Solve Ux = y for k in range(o): for i in reversed(range(n)): if not U[i][i]: raise DMNonInvertibleMatrixError rhs = y[i][k] for j in range(i+1, n): rhs -= U[i][j] * x[j][k] x[i][k] = rhs / U[i][i] def ddm_berk(M, K): m = len(M) if not m: return [[K.one]] n = len(M[0]) if m != n: raise DMShapeError("Not square") if n == 1: return [[K.one], [-M[0][0]]] a = M[0][0] R = [M[0][1:]] C = [[row[0]] for row in M[1:]] A = [row[1:] for row in M[1:]] q = ddm_berk(A, K) T = [[K.zero] * n for _ in range(n+1)] for i in range(n): T[i][i] = K.one T[i+1][i] = -a for i in range(2, n+1): if i == 2: AnC = C else: C = AnC AnC = [[K.zero] for row in C] ddm_imatmul(AnC, A, C) RAnC = [[K.zero]] ddm_imatmul(RAnC, R, AnC) for j in range(0, n+1-i): T[i+j][j] = -RAnC[0][0] qout = [[K.zero] for _ in range(n+1)] ddm_imatmul(qout, T, q) return qout
64cc4ef36ba9ae4f650aae029472fea60ebfc0e9a69cba33834b10849ae36db9
from typing import TypeVar, Protocol T = TypeVar('T') class RingElement(Protocol): def __add__(self: T, other: T, /) -> T: ... def __sub__(self: T, other: T, /) -> T: ... def __mul__(self: T, other: T, /) -> T: ... def __pow__(self: T, other: int, /) -> T: ... def __neg__(self: T, /) -> T: ...
59d6904a2124e7a33b911122f2e04f2fda8e1ce86188b60f1374d05a8b661a6c
""" Module for the DDM class. The DDM class is an internal representation used by DomainMatrix. The letters DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using elements from a polynomial Domain (e.g. ZZ, QQ, ...) in a dense-matrix representation. Basic usage: >>> from sympy import ZZ, QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> A.shape (2, 2) >>> A [[0, 1], [-1, 0]] >>> type(A) <class 'sympy.polys.matrices.ddm.DDM'> >>> A @ A [[-1, 0], [0, -1]] The ddm_* functions are designed to operate on DDM as well as on an ordinary list of lists: >>> from sympy.polys.matrices.dense import ddm_idet >>> ddm_idet(A, QQ) 1 >>> ddm_idet([[0, 1], [-1, 0]], QQ) 1 >>> A [[-1, 0], [0, -1]] Note that ddm_idet modifies the input matrix in-place. It is recommended to use the DDM.det method as a friendlier interface to this instead which takes care of copying the matrix: >>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> B.det() 1 Normally DDM would not be used directly and is just part of the internal representation of DomainMatrix which adds further functionality including e.g. unifying domains. The dense format used by DDM is a list of lists of elements e.g. the 2x2 identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass of list and its list items are plain lists. Elements are accessed as e.g. ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the jth column of that row. Subclassing list makes e.g. iteration and indexing very efficient. We do not override __getitem__ because it would lose that benefit. The core routines are implemented by the ddm_* functions defined in dense.py. Those functions are intended to be able to operate on a raw list-of-lists representation of matrices with most functions operating in-place. The DDM class takes care of copying etc and also stores a Domain object associated with its elements. This makes it possible to implement things like A + B with domain checking and also shape checking so that the list of lists representation is friendlier. """ from itertools import chain from .exceptions import DMBadInputError, DMShapeError, DMDomainError from .dense import ( ddm_transpose, ddm_iadd, ddm_isub, ddm_ineg, ddm_imul, ddm_irmul, ddm_imatmul, ddm_irref, ddm_idet, ddm_iinv, ddm_ilu_split, ddm_ilu_solve, ddm_berk, ) from sympy.polys.domains import QQ from .lll import ddm_lll class DDM(list): """Dense matrix based on polys domain elements This is a list subclass and is a wrapper for a list of lists that supports basic matrix arithmetic +, -, *, **. """ fmt = 'dense' def __init__(self, rowslist, shape, domain): super().__init__(rowslist) self.shape = self.rows, self.cols = m, n = shape self.domain = domain if not (len(self) == m and all(len(row) == n for row in self)): raise DMBadInputError("Inconsistent row-list/shape") def getitem(self, i, j): return self[i][j] def setitem(self, i, j, value): self[i][j] = value def extract_slice(self, slice1, slice2): ddm = [row[slice2] for row in self[slice1]] rows = len(ddm) cols = len(ddm[0]) if ddm else len(range(self.shape[1])[slice2]) return DDM(ddm, (rows, cols), self.domain) def extract(self, rows, cols): ddm = [] for i in rows: rowi = self[i] ddm.append([rowi[j] for j in cols]) return DDM(ddm, (len(rows), len(cols)), self.domain) def to_list(self): return list(self) def to_list_flat(self): flat = [] for row in self: flat.extend(row) return flat def flatiter(self): return chain.from_iterable(self) def flat(self): items = [] for row in self: items.extend(row) return items def to_dok(self): return {(i, j): e for i, row in enumerate(self) for j, e in enumerate(row)} def to_ddm(self): return self def to_sdm(self): return SDM.from_list(self, self.shape, self.domain) def convert_to(self, K): Kold = self.domain if K == Kold: return self.copy() rows = ([K.convert_from(e, Kold) for e in row] for row in self) return DDM(rows, self.shape, K) def __str__(self): rowsstr = ['[%s]' % ', '.join(map(str, row)) for row in self] return '[%s]' % ', '.join(rowsstr) def __repr__(self): cls = type(self).__name__ rows = list.__repr__(self) return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain) def __eq__(self, other): if not isinstance(other, DDM): return False return (super().__eq__(other) and self.domain == other.domain) def __ne__(self, other): return not self.__eq__(other) @classmethod def zeros(cls, shape, domain): z = domain.zero m, n = shape rowslist = ([z] * n for _ in range(m)) return DDM(rowslist, shape, domain) @classmethod def ones(cls, shape, domain): one = domain.one m, n = shape rowlist = ([one] * n for _ in range(m)) return DDM(rowlist, shape, domain) @classmethod def eye(cls, size, domain): one = domain.one ddm = cls.zeros((size, size), domain) for i in range(size): ddm[i][i] = one return ddm def copy(self): copyrows = (row[:] for row in self) return DDM(copyrows, self.shape, self.domain) def transpose(self): rows, cols = self.shape if rows: ddmT = ddm_transpose(self) else: ddmT = [[]] * cols return DDM(ddmT, (cols, rows), self.domain) def __add__(a, b): if not isinstance(b, DDM): return NotImplemented return a.add(b) def __sub__(a, b): if not isinstance(b, DDM): return NotImplemented return a.sub(b) def __neg__(a): return a.neg() def __mul__(a, b): if b in a.domain: return a.mul(b) else: return NotImplemented def __rmul__(a, b): if b in a.domain: return a.mul(b) else: return NotImplemented def __matmul__(a, b): if isinstance(b, DDM): return a.matmul(b) else: return NotImplemented @classmethod def _check(cls, a, op, b, ashape, bshape): if a.domain != b.domain: msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain) raise DMDomainError(msg) if ashape != bshape: msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape) raise DMShapeError(msg) def add(a, b): """a + b""" a._check(a, '+', b, a.shape, b.shape) c = a.copy() ddm_iadd(c, b) return c def sub(a, b): """a - b""" a._check(a, '-', b, a.shape, b.shape) c = a.copy() ddm_isub(c, b) return c def neg(a): """-a""" b = a.copy() ddm_ineg(b) return b def mul(a, b): c = a.copy() ddm_imul(c, b) return c def rmul(a, b): c = a.copy() ddm_irmul(c, b) return c def matmul(a, b): """a @ b (matrix product)""" m, o = a.shape o2, n = b.shape a._check(a, '*', b, o, o2) c = a.zeros((m, n), a.domain) ddm_imatmul(c, a, b) return c def mul_elementwise(a, b): assert a.shape == b.shape assert a.domain == b.domain c = [[aij * bij for aij, bij in zip(ai, bi)] for ai, bi in zip(a, b)] return DDM(c, a.shape, a.domain) def hstack(A, *B): """Horizontally stacks :py:class:`~.DDM` matrices. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.hstack(B) [[1, 2, 5, 6], [3, 4, 7, 8]] >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.hstack(B, C) [[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]] """ Anew = list(A.copy()) rows, cols = A.shape domain = A.domain for Bk in B: Bkrows, Bkcols = Bk.shape assert Bkrows == rows assert Bk.domain == domain cols += Bkcols for i, Bki in enumerate(Bk): Anew[i].extend(Bki) return DDM(Anew, (rows, cols), A.domain) def vstack(A, *B): """Vertically stacks :py:class:`~.DDM` matrices. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.vstack(B) [[1, 2], [3, 4], [5, 6], [7, 8]] >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.vstack(B, C) [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]] """ Anew = list(A.copy()) rows, cols = A.shape domain = A.domain for Bk in B: Bkrows, Bkcols = Bk.shape assert Bkcols == cols assert Bk.domain == domain rows += Bkrows Anew.extend(Bk.copy()) return DDM(Anew, (rows, cols), A.domain) def applyfunc(self, func, domain): elements = (list(map(func, row)) for row in self) return DDM(elements, self.shape, domain) def scc(a): """Strongly connected components of a square matrix *a*. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.scc() [[0], [1]] See also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.scc """ return a.to_sdm().scc() def rref(a): """Reduced-row echelon form of a and list of pivots""" b = a.copy() K = a.domain partial_pivot = K.is_RealField or K.is_ComplexField pivots = ddm_irref(b, _partial_pivot=partial_pivot) return b, pivots def nullspace(a): rref, pivots = a.rref() rows, cols = a.shape domain = a.domain basis = [] nonpivots = [] for i in range(cols): if i in pivots: continue nonpivots.append(i) vec = [domain.one if i == j else domain.zero for j in range(cols)] for ii, jj in enumerate(pivots): vec[jj] -= rref[ii][i] basis.append(vec) return DDM(basis, (len(basis), cols), domain), nonpivots def particular(a): return a.to_sdm().particular().to_ddm() def det(a): """Determinant of a""" m, n = a.shape if m != n: raise DMShapeError("Determinant of non-square matrix") b = a.copy() K = b.domain deta = ddm_idet(b, K) return deta def inv(a): """Inverse of a""" m, n = a.shape if m != n: raise DMShapeError("Determinant of non-square matrix") ainv = a.copy() K = a.domain ddm_iinv(ainv, a, K) return ainv def lu(a): """L, U decomposition of a""" m, n = a.shape K = a.domain U = a.copy() L = a.eye(m, K) swaps = ddm_ilu_split(L, U, K) return L, U, swaps def lu_solve(a, b): """x where a*x = b""" m, n = a.shape m2, o = b.shape a._check(a, 'lu_solve', b, m, m2) L, U, swaps = a.lu() x = a.zeros((n, o), a.domain) ddm_ilu_solve(x, L, U, swaps, b) return x def charpoly(a): """Coefficients of characteristic polynomial of a""" K = a.domain m, n = a.shape if m != n: raise DMShapeError("Charpoly of non-square matrix") vec = ddm_berk(a, K) coeffs = [vec[i][0] for i in range(n+1)] return coeffs def is_zero_matrix(self): """ Says whether this matrix has all zero entries. """ zero = self.domain.zero return all(Mij == zero for Mij in self.flatiter()) def is_upper(self): """ Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square. """ zero = self.domain.zero return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[:i]) def is_lower(self): """ Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square. """ zero = self.domain.zero return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[i+1:]) def lll(A, delta=QQ(3, 4)) -> 'DDM': return ddm_lll(A, delta) from .sdm import SDM
cba704355488379614785f8f71c33801337505d85da9b953357348a4330acca1
from sympy.polys.domains import ZZ, QQ from sympy.polys.matrices import DM from sympy.polys.matrices.domainmatrix import DomainMatrix from sympy.polys.matrices.exceptions import DMRankError, DMValueError, DMShapeError, DMDomainError from sympy.polys.matrices.lll import ddm_lll from sympy.testing.pytest import raises def test_lll(): normal_test_data = [ ( DM([[1, 0, 0, 0, -20160], [0, 1, 0, 0, 33768], [0, 0, 1, 0, 39578], [0, 0, 0, 1, 47757]], ZZ), DM([[10, -3, -2, 8, -4], [3, -9, 8, 1, -11], [-3, 13, -9, -3, -9], [-12, -7, -11, 9, -1]], ZZ) ), ( DM([[20, 52, 3456], [14, 31, -1], [34, -442, 0]], ZZ), DM([[14, 31, -1], [188, -101, -11], [236, 13, 3443]], ZZ) ), ( DM([[34, -1, -86, 12], [-54, 34, 55, 678], [23, 3498, 234, 6783], [87, 49, 665, 11]], ZZ), DM([[34, -1, -86, 12], [291, 43, 149, 83], [-54, 34, 55, 678], [-189, 3077, -184, -223]], ZZ) ) ] delta = QQ(5, 6) for basis_dm, reduced_dm in normal_test_data: assert ddm_lll(basis_dm.rep, delta=delta) == reduced_dm.rep assert basis_dm.rep.lll(delta=delta) == reduced_dm.rep assert basis_dm.rep.to_sdm().lll(delta=delta) == reduced_dm.rep.to_sdm() assert basis_dm.lll(delta=delta) == reduced_dm def test_lll_linear_dependent(): linear_dependent_test_data = [ DM([[0, -1, -2, -3], [1, 0, -1, -2], [2, 1, 0, -1], [3, 2, 1, 0]], ZZ), DM([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [1, 2, 3, 6]], ZZ), DM([[3, -5, 1], [4, 6, 0], [10, -4, 2]], ZZ) ] for not_basis in linear_dependent_test_data: raises(DMRankError, lambda: ddm_lll(not_basis.rep)) raises(DMRankError, lambda: not_basis.rep.lll()) raises(DMRankError, lambda: not_basis.rep.to_sdm().lll()) raises(DMRankError, lambda: not_basis.lll()) def test_lll_wrong_delta(): dummy_matrix = DomainMatrix.ones((3, 3), ZZ) for wrong_delta in [QQ(-1, 4), QQ(0, 1), QQ(1, 4), QQ(1, 1), QQ(100, 1)]: raises(DMValueError, lambda: ddm_lll(dummy_matrix.rep, delta=wrong_delta)) raises(DMValueError, lambda: dummy_matrix.rep.lll(delta=wrong_delta)) raises(DMValueError, lambda: dummy_matrix.rep.to_sdm().lll(delta=wrong_delta)) raises(DMValueError, lambda: dummy_matrix.lll(delta=wrong_delta)) def test_lll_wrong_shape(): wrong_shape_matrix = DomainMatrix.ones((4, 3), ZZ) raises(DMShapeError, lambda: ddm_lll(wrong_shape_matrix.rep)) raises(DMShapeError, lambda: wrong_shape_matrix.rep.lll()) raises(DMShapeError, lambda: wrong_shape_matrix.rep.to_sdm().lll()) raises(DMShapeError, lambda: wrong_shape_matrix.lll()) def test_lll_wrong_domain(): wrong_domain_matrix = DomainMatrix.ones((3, 3), QQ) raises(DMDomainError, lambda: ddm_lll(wrong_domain_matrix.rep)) raises(DMDomainError, lambda: wrong_domain_matrix.rep.lll()) raises(DMDomainError, lambda: wrong_domain_matrix.rep.to_sdm().lll()) raises(DMDomainError, lambda: wrong_domain_matrix.lll())
60eebbce29ac1153b4eca1b22c95535566bdefde5f6865c9a0515c7762b86b37
from sympy.core.basic import Basic from sympy.core.numbers import (I, Rational, pi) from sympy.core.parameters import evaluate from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane from sympy.geometry.entity import rotate, scale, translate, GeometryEntity from sympy.matrices import Matrix from sympy.utilities.iterables import subsets, permutations, cartes from sympy.utilities.misc import Undecidable from sympy.testing.pytest import raises, warns def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = S.Half p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) line = Line(Point(1, 0), slope=1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert -p2 == Point(-y1, -y2) raises(TypeError, lambda: Point(1)) raises(ValueError, lambda: Point([1])) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2*I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert p1.origin == Point(0, 0) assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) raises(TypeError, lambda: Point.distance(p1, 0)) raises(TypeError, lambda: Point.distance(p1, GeometryEntity())) # distance should be symmetric assert p1.distance(line) == line.distance(p1) assert p4.distance(line) == line.distance(p4) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 raises(ValueError, lambda: Point.canberra_distance(p3, p3)) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warns(UserWarning, test_stacklevel=False): assert Point.is_collinear(p3, Point(p3, dim=4)) assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] assert p3.intersection(line) == [] with warns(UserWarning, test_stacklevel=False): assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)] x_pos = Symbol('x', positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False assert p1.is_scalar_multiple(p1) assert p1.is_scalar_multiple(2*p1) assert not p1.is_scalar_multiple(p2) assert Point.is_scalar_multiple(Point(1, 1), (-1, -1)) assert Point.is_scalar_multiple(Point(0, 0), (0, -1)) # test when is_scalar_multiple can't be determined raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1))) assert Point(0, 1).orthogonal_direction == Point(1, 0) assert Point(1, 0).orthogonal_direction == Point(0, 1) assert p1.is_zero is None assert p3.is_zero assert p4.is_zero is False assert p1.is_nonzero is None assert p3.is_nonzero is False assert p4.is_nonzero assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) assert 5 * p4 == Point(5, 5) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = S.Half, Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2), evaluate=False) raises(ValueError, lambda: Point(1, 2) + 1) # test project assert Point.project((0, 1), (1, 0)) == Point(0, 0) assert Point.project((1, 1), (1, 0)) == Point(1, 0) raises(ValueError, lambda: Point.project(p1, Point(0, 0))) # test transformations p = Point(1, 0) assert p.rotate(pi/2) == Point(0, 1) assert p.rotate(pi/2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # test __contains__ assert 0 in Point(0, 0, 0, 0) assert 1 not in Point(0, 0, 0, 0) # test affine_rank assert Point.affine_rank() == -1 def test_point3D(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) x3 = Symbol('x3', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) y3 = Symbol('y3', real=True) half = S.Half p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2, half + half*x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) Point3D.are_collinear(p3) assert Point3D.are_collinear(p3, p4) assert Point3D.are_collinear(p3, p4, p1_1, p1_2) assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.are_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) assert 5 * p4 == Point3D(5, 5, 5) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Test coordinate properties assert p1.coordinates == (x1, x2, x3) assert p2.coordinates == (y1, y2, y3) assert p3.coordinates == (0, 0, 0) assert p4.coordinates == (1, 1, 1) assert p5.coordinates == (0, 1, 2) assert p5.x == 0 assert p5.y == 1 assert p5.z == 2 # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b, c = S.Half, Rational(1, 3), Rational(1, 4) assert Point3D(a, b, c).evalf(2) == \ Point(a.n(2), b.n(2), c.n(2), evaluate=False) raises(ValueError, lambda: Point3D(1, 2, 3) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2) # Test __new__ assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float # Test length property returns correctly assert p.length == 0 assert p1_1.length == 0 assert p1_2.length == 0 # Test are_colinear type error raises(TypeError, lambda: Point3D.are_collinear(p, x)) # Test are_coplanar assert Point.are_coplanar() assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0)) assert Point.are_coplanar((1, 2, 0), (1, 2, 3)) with warns(UserWarning, test_stacklevel=False): raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3))) assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3)) assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False planar2 = Point3D(1, -1, 1) planar3 = Point3D(-1, 1, 1) assert Point3D.are_coplanar(p, planar2, planar3) == True assert Point3D.are_coplanar(p, planar2, planar3, p3) == False assert Point.are_coplanar(p, planar2) planar2 = Point3D(1, 1, 2) planar3 = Point3D(1, 1, 3) assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)) assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)]) # all 2D points are coplanar assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True # Test Intersection assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)] # Test Scale assert planar2.scale(1, 1, 1) == planar2 assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1) assert planar2.scale(1, 1, 1, p3) == planar2 # Test Transform identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) assert p.transform(identity) == p trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) assert p.transform(trans) == Point3D(2, 2, 2) raises(ValueError, lambda: p.transform(p)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # Test Equals assert p.equals(x1) == False # Test __sub__ p_4d = Point(0, 0, 0, 1) with warns(UserWarning, test_stacklevel=False): assert p - p_4d == Point(1, 1, 1, -1) p_4d3d = Point(0, 0, 1, 0) with warns(UserWarning, test_stacklevel=False): assert p - p_4d3d == Point(1, 1, 0, 0) def test_Point2D(): # Test Distance p1 = Point2D(1, 5) p2 = Point2D(4, 2.5) p3 = (6, 3) assert p1.distance(p2) == sqrt(61)/2 assert p2.distance(p3) == sqrt(17)/2 # Test coordinates assert p1.x == 1 assert p1.y == 5 assert p2.x == 4 assert p2.y == S(5)/2 assert p1.coordinates == (1, 5) assert p2.coordinates == (4, S(5)/2) # test bounds assert p1.bounds == (1, 5, 1, 5) def test_issue_9214(): p1 = Point3D(4, -2, 6) p2 = Point3D(1, 2, 3) p3 = Point3D(7, 2, 3) assert Point3D.are_collinear(p1, p2, p3) is False def test_issue_11617(): p1 = Point3D(1,0,2) p2 = Point2D(2,0) with warns(UserWarning, test_stacklevel=False): assert p1.distance(p2) == sqrt(5) def test_transform(): p = Point(1, 1) assert p.transform(rotate(pi/2)) == Point(-1, 1) assert p.transform(scale(3, 2)) == Point(3, 2) assert p.transform(translate(1, 2)) == Point(2, 3) assert Point(1, 1).scale(2, 3, (4, 5)) == \ Point(-2, -7) assert Point(1, 1).translate(4, 5) == \ Point(5, 6) def test_concyclic_doctest_bug(): p1, p2 = Point(-1, 0), Point(1, 0) p3, p4 = Point(0, 1), Point(-1, 2) assert Point.is_concyclic(p1, p2, p3) assert not Point.is_concyclic(p1, p2, p3, p4) def test_arguments(): """Functions accepting `Point` objects in `geometry` should also accept tuples and lists and automatically convert them to points.""" singles2d = ((1,2), [1,2], Point(1,2)) singles2d2 = ((1,3), [1,3], Point(1,3)) doubles2d = cartes(singles2d, singles2d2) p2d = Point2D(1,2) singles3d = ((1,2,3), [1,2,3], Point(1,2,3)) doubles3d = subsets(singles3d, 2) p3d = Point3D(1,2,3) singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4)) doubles4d = subsets(singles4d, 2) p4d = Point(1,2,3,4) # test 2D test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__'] test_double = ['is_concyclic', 'is_collinear'] for p in singles2d: Point2D(p) for func in test_single: for p in singles2d: getattr(p2d, func)(p) for func in test_double: for p in doubles2d: getattr(p2d, func)(*p) # test 3D test_double = ['is_collinear'] for p in singles3d: Point3D(p) for func in test_single: for p in singles3d: getattr(p3d, func)(p) for func in test_double: for p in doubles3d: getattr(p3d, func)(*p) # test 4D test_double = ['is_collinear'] for p in singles4d: Point(p) for func in test_single: for p in singles4d: getattr(p4d, func)(p) for func in test_double: for p in doubles4d: getattr(p4d, func)(*p) # test evaluate=False for ops x = Symbol('x') a = Point(0, 1) assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False) a = Point(0, 1) assert a/10.0 == Point(0, 0.1, evaluate=False) a = Point(0, 1) assert a*10.0 == Point(0.0, 10.0, evaluate=False) # test evaluate=False when changing dimensions u = Point(.1, .2, evaluate=False) u4 = Point(u, dim=4, on_morph='ignore') assert u4.args == (.1, .2, 0, 0) assert all(i.is_Float for i in u4.args[:2]) # and even when *not* changing dimensions assert all(i.is_Float for i in Point(u).args) # never raise error if creating an origin assert Point(dim=3, on_morph='error') # raise error with unmatched dimension raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error')) # test unknown on_morph raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown')) # test invalid expressions raises(TypeError, lambda: Point(Basic(), Basic())) def test_unit(): assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2) def test_dot(): raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1)))) def test__normalize_dimension(): assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [ Point(1, 2), Point(3, 4)] assert Point._normalize_dimension( Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [ Point(1, 2, 0), Point(3, 4, 0)] def test_issue_22684(): # Used to give an error with evaluate(False): Point(1, 2) def test_direction_cosine(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1] assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1] assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0] assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3] assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0] assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3] assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1] assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
3bb6205716b6d494e19d23d1e2486e2d71aae3bc44f2e858c9d0fe2c6d692344
# -*- coding: utf-8 -*- import sys import builtins import types from sympy.assumptions import Q from sympy.core import Symbol, Function, Float, Rational, Integer, I, Mul, Pow, Eq from sympy.functions import exp, factorial, factorial2, sin, Min, Max from sympy.logic import And from sympy.series import Limit from sympy.testing.pytest import raises, skip from sympy.parsing.sympy_parser import ( parse_expr, standard_transformations, rationalize, TokenError, split_symbols, implicit_multiplication, convert_equals_signs, convert_xor, function_exponentiation, lambda_notation, auto_symbol, repeated_decimals, implicit_multiplication_application, auto_number, factorial_notation, implicit_application, _transformation, T ) def test_sympy_parser(): x = Symbol('x') inputs = { '2*x': 2 * x, '3.00': Float(3), '22/7': Rational(22, 7), '2+3j': 2 + 3*I, 'exp(x)': exp(x), 'x!': factorial(x), 'x!!': factorial2(x), '(x + 1)! - 1': factorial(x + 1) - 1, '3.[3]': Rational(10, 3), '.0[3]': Rational(1, 30), '3.2[3]': Rational(97, 30), '1.3[12]': Rational(433, 330), '1 + 3.[3]': Rational(13, 3), '1 + .0[3]': Rational(31, 30), '1 + 3.2[3]': Rational(127, 30), '.[0011]': Rational(1, 909), '0.1[00102] + 1': Rational(366697, 333330), '1.[0191]': Rational(10190, 9999), '10!': 3628800, '-(2)': -Integer(2), '[-1, -2, 3]': [Integer(-1), Integer(-2), Integer(3)], 'Symbol("x").free_symbols': x.free_symbols, "S('S(3).n(n=3)')": Float(3, 3), 'factorint(12, visual=True)': Mul( Pow(2, 2, evaluate=False), Pow(3, 1, evaluate=False), evaluate=False), 'Limit(sin(x), x, 0, dir="-")': Limit(sin(x), x, 0, dir='-'), 'Q.even(x)': Q.even(x), } for text, result in inputs.items(): assert parse_expr(text) == result raises(TypeError, lambda: parse_expr('x', standard_transformations)) raises(TypeError, lambda: parse_expr('x', transformations=lambda x,y: 1)) raises(TypeError, lambda: parse_expr('x', transformations=(lambda x,y: 1,))) raises(TypeError, lambda: parse_expr('x', transformations=((),))) raises(TypeError, lambda: parse_expr('x', {}, [], [])) raises(TypeError, lambda: parse_expr('x', [], [], {})) raises(TypeError, lambda: parse_expr('x', [], [], {})) def test_rationalize(): inputs = { '0.123': Rational(123, 1000) } transformations = standard_transformations + (rationalize,) for text, result in inputs.items(): assert parse_expr(text, transformations=transformations) == result def test_factorial_fail(): inputs = ['x!!!', 'x!!!!', '(!)'] for text in inputs: try: parse_expr(text) assert False except TokenError: assert True def test_repeated_fail(): inputs = ['1[1]', '.1e1[1]', '0x1[1]', '1.1j[1]', '1.1[1 + 1]', '0.1[[1]]', '0x1.1[1]'] # All are valid Python, so only raise TypeError for invalid indexing for text in inputs: raises(TypeError, lambda: parse_expr(text)) inputs = ['0.1[', '0.1[1', '0.1[]'] for text in inputs: raises((TokenError, SyntaxError), lambda: parse_expr(text)) def test_repeated_dot_only(): assert parse_expr('.[1]') == Rational(1, 9) assert parse_expr('1 + .[1]') == Rational(10, 9) def test_local_dict(): local_dict = { 'my_function': lambda x: x + 2 } inputs = { 'my_function(2)': Integer(4) } for text, result in inputs.items(): assert parse_expr(text, local_dict=local_dict) == result def test_local_dict_split_implmult(): t = standard_transformations + (split_symbols, implicit_multiplication,) w = Symbol('w', real=True) y = Symbol('y') assert parse_expr('yx', local_dict={'x':w}, transformations=t) == y*w def test_local_dict_symbol_to_fcn(): x = Symbol('x') d = {'foo': Function('bar')} assert parse_expr('foo(x)', local_dict=d) == d['foo'](x) d = {'foo': Symbol('baz')} raises(TypeError, lambda: parse_expr('foo(x)', local_dict=d)) def test_global_dict(): global_dict = { 'Symbol': Symbol } inputs = { 'Q & S': And(Symbol('Q'), Symbol('S')) } for text, result in inputs.items(): assert parse_expr(text, global_dict=global_dict) == result def test_no_globals(): # Replicate creating the default global_dict: default_globals = {} exec('from sympy import *', default_globals) builtins_dict = vars(builtins) for name, obj in builtins_dict.items(): if isinstance(obj, types.BuiltinFunctionType): default_globals[name] = obj default_globals['max'] = Max default_globals['min'] = Min # Need to include Symbol or parse_expr will not work: default_globals.pop('Symbol') global_dict = {'Symbol':Symbol} for name in default_globals: obj = parse_expr(name, global_dict=global_dict) assert obj == Symbol(name) def test_issue_2515(): raises(TokenError, lambda: parse_expr('(()')) raises(TokenError, lambda: parse_expr('"""')) def test_issue_7663(): x = Symbol('x') e = '2*(x+1)' assert parse_expr(e, evaluate=0) == parse_expr(e, evaluate=False) assert parse_expr(e, evaluate=0).equals(2*(x+1)) def test_recursive_evaluate_false_10560(): inputs = { '4*-3' : '4*-3', '-4*3' : '(-4)*3', "-2*x*y": '(-2)*x*y', "x*-4*x": "x*(-4)*x" } for text, result in inputs.items(): assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False) def test_function_evaluate_false(): inputs = [ 'Abs(0)', 'im(0)', 're(0)', 'sign(0)', 'arg(0)', 'conjugate(0)', 'acos(0)', 'acot(0)', 'acsc(0)', 'asec(0)', 'asin(0)', 'atan(0)', 'acosh(0)', 'acoth(0)', 'acsch(0)', 'asech(0)', 'asinh(0)', 'atanh(0)', 'cos(0)', 'cot(0)', 'csc(0)', 'sec(0)', 'sin(0)', 'tan(0)', 'cosh(0)', 'coth(0)', 'csch(0)', 'sech(0)', 'sinh(0)', 'tanh(0)', 'exp(0)', 'log(0)', 'sqrt(0)', ] for case in inputs: expr = parse_expr(case, evaluate=False) assert case == str(expr) != str(expr.doit()) assert str(parse_expr('ln(0)', evaluate=False)) == 'log(0)' assert str(parse_expr('cbrt(0)', evaluate=False)) == '0**(1/3)' def test_issue_10773(): inputs = { '-10/5': '(-10)/5', '-10/-5' : '(-10)/(-5)', } for text, result in inputs.items(): assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False) def test_split_symbols(): transformations = standard_transformations + \ (split_symbols, implicit_multiplication,) x = Symbol('x') y = Symbol('y') xy = Symbol('xy') assert parse_expr("xy") == xy assert parse_expr("xy", transformations=transformations) == x*y def test_split_symbols_function(): transformations = standard_transformations + \ (split_symbols, implicit_multiplication,) x = Symbol('x') y = Symbol('y') a = Symbol('a') f = Function('f') assert parse_expr("ay(x+1)", transformations=transformations) == a*y*(x+1) assert parse_expr("af(x+1)", transformations=transformations, local_dict={'f':f}) == a*f(x+1) def test_functional_exponent(): t = standard_transformations + (convert_xor, function_exponentiation) x = Symbol('x') y = Symbol('y') a = Symbol('a') yfcn = Function('y') assert parse_expr("sin^2(x)", transformations=t) == (sin(x))**2 assert parse_expr("sin^y(x)", transformations=t) == (sin(x))**y assert parse_expr("exp^y(x)", transformations=t) == (exp(x))**y assert parse_expr("E^y(x)", transformations=t) == exp(yfcn(x)) assert parse_expr("a^y(x)", transformations=t) == a**(yfcn(x)) def test_match_parentheses_implicit_multiplication(): transformations = standard_transformations + \ (implicit_multiplication,) raises(TokenError, lambda: parse_expr('(1,2),(3,4]',transformations=transformations)) def test_convert_equals_signs(): transformations = standard_transformations + \ (convert_equals_signs, ) x = Symbol('x') y = Symbol('y') assert parse_expr("1*2=x", transformations=transformations) == Eq(2, x) assert parse_expr("y = x", transformations=transformations) == Eq(y, x) assert parse_expr("(2*y = x) = False", transformations=transformations) == Eq(Eq(2*y, x), False) def test_parse_function_issue_3539(): x = Symbol('x') f = Function('f') assert parse_expr('f(x)') == f(x) def test_split_symbols_numeric(): transformations = ( standard_transformations + (implicit_multiplication_application,)) n = Symbol('n') expr1 = parse_expr('2**n * 3**n') expr2 = parse_expr('2**n3**n', transformations=transformations) assert expr1 == expr2 == 2**n*3**n expr1 = parse_expr('n12n34', transformations=transformations) assert expr1 == n*12*n*34 def test_unicode_names(): assert parse_expr('α') == Symbol('α') def test_python3_features(): # Make sure the tokenizer can handle Python 3-only features if sys.version_info < (3, 8): skip("test_python3_features requires Python 3.8 or newer") assert parse_expr("123_456") == 123456 assert parse_expr("1.2[3_4]") == parse_expr("1.2[34]") == Rational(611, 495) assert parse_expr("1.2[012_012]") == parse_expr("1.2[012012]") == Rational(400, 333) assert parse_expr('.[3_4]') == parse_expr('.[34]') == Rational(34, 99) assert parse_expr('.1[3_4]') == parse_expr('.1[34]') == Rational(133, 990) assert parse_expr('123_123.123_123[3_4]') == parse_expr('123123.123123[34]') == Rational(12189189189211, 99000000) def test_issue_19501(): x = Symbol('x') eq = parse_expr('E**x(1+x)', local_dict={'x': x}, transformations=( standard_transformations + (implicit_multiplication_application,))) assert eq.free_symbols == {x} def test_parsing_definitions(): from sympy.abc import x assert len(_transformation) == 12 # if this changes, extend below assert _transformation[0] == lambda_notation assert _transformation[1] == auto_symbol assert _transformation[2] == repeated_decimals assert _transformation[3] == auto_number assert _transformation[4] == factorial_notation assert _transformation[5] == implicit_multiplication_application assert _transformation[6] == convert_xor assert _transformation[7] == implicit_application assert _transformation[8] == implicit_multiplication assert _transformation[9] == convert_equals_signs assert _transformation[10] == function_exponentiation assert _transformation[11] == rationalize assert T[:5] == T[0,1,2,3,4] == standard_transformations t = _transformation assert T[-1, 0] == (t[len(t) - 1], t[0]) assert T[:5, 8] == standard_transformations + (t[8],) assert parse_expr('0.3x^2', transformations='all') == 3*x**2/10 assert parse_expr('sin 3x', transformations='implicit') == sin(3*x) def test_builtins(): cases = [ ('abs(x)', 'Abs(x)'), ('max(x, y)', 'Max(x, y)'), ('min(x, y)', 'Min(x, y)'), ('pow(x, y)', 'Pow(x, y)'), ] for built_in_func_call, sympy_func_call in cases: assert parse_expr(built_in_func_call) == parse_expr(sympy_func_call) assert str(parse_expr('pow(38, -1, 97)')) == '23' def test_issue_22822(): raises(ValueError, lambda: parse_expr('x', {'': 1})) data = {'some_parameter': None} assert parse_expr('some_parameter is None', data) is True
d69c6552ae033cf811745a0b3fca4160222d2363dc4bef8a78cf033a8d38295f
from .lti import (TransferFunction, Series, MIMOSeries, Parallel, MIMOParallel, Feedback, MIMOFeedback, TransferFunctionMatrix, bilinear) from .control_plots import (pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data, step_response_plot, impulse_response_numerical_data, impulse_response_plot, ramp_response_numerical_data, ramp_response_plot, bode_magnitude_numerical_data, bode_phase_numerical_data, bode_magnitude_plot, bode_phase_plot, bode_plot) __all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel', 'MIMOParallel', 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix','bilinear', 'pole_zero_numerical_data', 'pole_zero_plot', 'step_response_numerical_data', 'step_response_plot', 'impulse_response_numerical_data', 'impulse_response_plot', 'ramp_response_numerical_data', 'ramp_response_plot', 'bode_magnitude_numerical_data', 'bode_phase_numerical_data', 'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']
7da95f61b2f178d557c1dda499b5f30d3daa3eae8c9ad0aa3d61f5a4523cc4ad
from typing import Type from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.evalf import EvalfMixin from sympy.core.expr import Expr from sympy.core.function import expand from sympy.core.logic import fuzzy_and from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol from sympy.core.sympify import sympify, _sympify from sympy.matrices import ImmutableMatrix, eye from sympy.matrices.expressions import MatMul, MatAdd from sympy.polys import Poly, rootof from sympy.polys.polyroots import roots from sympy.polys.polytools import (cancel, degree) from sympy.series import limit from mpmath.libmp.libmpf import prec_to_dps __all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel', 'MIMOParallel', 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix', 'bilinear'] def _roots(poly, var): """ like roots, but works on higher-order polynomials. """ r = roots(poly, var, multiple=True) n = degree(poly) if len(r) != n: r = [rootof(poly, var, k) for k in range(n)] return r def bilinear(tf, sample_per): """ Returns falling coeffs of H(z) from numerator and denominator. H(z) is the corresponding discretized transfer function, discretized with the bilinear transform method. H(z) is obtained from the continuous transfer function H(s) by substituting s(z) = 2/T * (z-1)/(z+1) into H(s), where T is the sample period. Coefficients are falling, i.e. H(z) = (az+b)/(cz+d) is returned as [a, b], [c, d]. Examples ======== >>> from sympy.physics.control.lti import TransferFunction, bilinear >>> from sympy.abc import s, L, R, T >>> tf = TransferFunction(1, s*L + R, s) >>> numZ, denZ = bilinear(tf, T) >>> numZ [T, T] >>> denZ [2*L + R*T, -2*L + R*T] """ z = Symbol('z') # discrete variable z T = sample_per # and sample period T s = tf.var np = tf.num.as_poly(s).all_coeffs() dp = tf.den.as_poly(s).all_coeffs() # The next line results from multiplying H(z) with (z+1)^N/(z+1)^N N = max(len(np), len(dp)) - 1 num = Add(*[ T**(N-i)*2**i*c*(z-1)**i*(z+1)**(N-i) for c, i in zip(np[::-1], range(len(np))) ]) den = Add(*[ T**(N-i)*2**i*c*(z-1)**i*(z+1)**(N-i) for c, i in zip(dp[::-1], range(len(dp))) ]) num_coefs = num.as_poly(z).all_coeffs() den_coefs = den.as_poly(z).all_coeffs() return num_coefs, den_coefs class LinearTimeInvariant(Basic, EvalfMixin): """A common class for all the Linear Time-Invariant Dynamical Systems.""" _clstype: Type # Users should not directly interact with this class. def __new__(cls, *system, **kwargs): if cls is LinearTimeInvariant: raise NotImplementedError('The LTICommon class is not meant to be used directly.') return super(LinearTimeInvariant, cls).__new__(cls, *system, **kwargs) @classmethod def _check_args(cls, args): if not args: raise ValueError("Atleast 1 argument must be passed.") if not all(isinstance(arg, cls._clstype) for arg in args): raise TypeError(f"All arguments must be of type {cls._clstype}.") var_set = {arg.var for arg in args} if len(var_set) != 1: raise ValueError("All transfer functions should use the same complex variable" f" of the Laplace transform. {len(var_set)} different values found.") @property def is_SISO(self): """Returns `True` if the passed LTI system is SISO else returns False.""" return self._is_SISO class SISOLinearTimeInvariant(LinearTimeInvariant): """A common class for all the SISO Linear Time-Invariant Dynamical Systems.""" # Users should not directly interact with this class. _is_SISO = True class MIMOLinearTimeInvariant(LinearTimeInvariant): """A common class for all the MIMO Linear Time-Invariant Dynamical Systems.""" # Users should not directly interact with this class. _is_SISO = False SISOLinearTimeInvariant._clstype = SISOLinearTimeInvariant MIMOLinearTimeInvariant._clstype = MIMOLinearTimeInvariant def _check_other_SISO(func): def wrapper(*args, **kwargs): if not isinstance(args[-1], SISOLinearTimeInvariant): return NotImplemented else: return func(*args, **kwargs) return wrapper def _check_other_MIMO(func): def wrapper(*args, **kwargs): if not isinstance(args[-1], MIMOLinearTimeInvariant): return NotImplemented else: return func(*args, **kwargs) return wrapper class TransferFunction(SISOLinearTimeInvariant): r""" A class for representing LTI (Linear, time-invariant) systems that can be strictly described by ratio of polynomials in the Laplace transform complex variable. The arguments are ``num``, ``den``, and ``var``, where ``num`` and ``den`` are numerator and denominator polynomials of the ``TransferFunction`` respectively, and the third argument is a complex variable of the Laplace transform used by these polynomials of the transfer function. ``num`` and ``den`` can be either polynomials or numbers, whereas ``var`` has to be a :py:class:`~.Symbol`. Explanation =========== Generally, a dynamical system representing a physical model can be described in terms of Linear Ordinary Differential Equations like - $\small{b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y= a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x}$ Here, $x$ is the input signal and $y$ is the output signal and superscript on both is the order of derivative (not exponent). Derivative is taken with respect to the independent variable, $t$. Also, generally $m$ is greater than $n$. It is not feasible to analyse the properties of such systems in their native form therefore, we use mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform of both the sides in the equation (at zero initial conditions), we get - $\small{\mathcal{L}[b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y]= \mathcal{L}[a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x]}$ Using the linearity property of Laplace transform and also considering zero initial conditions (i.e. $\small{y(0^{-}) = 0}$, $\small{y'(0^{-}) = 0}$ and so on), the equation above gets translated to - $\small{b_{m}\mathcal{L}[y^{\left(m\right)}]+\dots+b_{1}\mathcal{L}[y^{\left(1\right)}]+b_{0}\mathcal{L}[y]= a_{n}\mathcal{L}[x^{\left(n\right)}]+\dots+a_{1}\mathcal{L}[x^{\left(1\right)}]+a_{0}\mathcal{L}[x]}$ Now, applying Derivative property of Laplace transform, $\small{b_{m}s^{m}\mathcal{L}[y]+\dots+b_{1}s\mathcal{L}[y]+b_{0}\mathcal{L}[y]= a_{n}s^{n}\mathcal{L}[x]+\dots+a_{1}s\mathcal{L}[x]+a_{0}\mathcal{L}[x]}$ Here, the superscript on $s$ is **exponent**. Note that the zero initial conditions assumption, mentioned above, is very important and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above cannot be reached. Collecting $\mathcal{L}[y]$ and $\mathcal{L}[x]$ terms from both the sides and taking the ratio $\frac{ \mathcal{L}\left\{y\right\} }{ \mathcal{L}\left\{x\right\} }$, we get the typical rational form of transfer function. The numerator of the transfer function is, therefore, the Laplace transform of the output signal (The signals are represented as functions of time) and similarly, the denominator of the transfer function is the Laplace transform of the input signal. It is also a convention to denote the input and output signal's Laplace transform with capital alphabets like shown below. $H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} }$ $s$, also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the equivalent variable $t$, in the time domain. Transfer functions are sometimes also referred to as the Laplace transform of the system's impulse response. Transfer function, $H$, is represented as a rational function in $s$ like, $H(s) =\ \frac{a_{n}s^{n}+a_{n-1}s^{n-1}+\dots+a_{1}s+a_{0}}{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots+b_{1}s+b_{0}}$ Parameters ========== num : Expr, Number The numerator polynomial of the transfer function. den : Expr, Number The denominator polynomial of the transfer function. var : Symbol Complex variable of the Laplace transform used by the polynomials of the transfer function. Raises ====== TypeError When ``var`` is not a Symbol or when ``num`` or ``den`` is not a number or a polynomial. ValueError When ``den`` is zero. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(s + a, s**2 + s + 1, s) >>> tf1 TransferFunction(a + s, s**2 + s + 1, s) >>> tf1.num a + s >>> tf1.den s**2 + s + 1 >>> tf1.var s >>> tf1.args (a + s, s**2 + s + 1, s) Any complex variable can be used for ``var``. >>> tf2 = TransferFunction(a*p**3 - a*p**2 + s*p, p + a**2, p) >>> tf2 TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) >>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf3 TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p) To negate a transfer function the ``-`` operator can be prepended: >>> tf4 = TransferFunction(-a + s, p**2 + s, p) >>> -tf4 TransferFunction(a - s, p**2 + s, p) >>> tf5 = TransferFunction(s**4 - 2*s**3 + 5*s + 4, s + 4, s) >>> -tf5 TransferFunction(-s**4 + 2*s**3 - 5*s - 4, s + 4, s) You can use a float or an integer (or other constants) as numerator and denominator: >>> tf6 = TransferFunction(1/2, 4, s) >>> tf6.num 0.500000000000000 >>> tf6.den 4 >>> tf6.var s >>> tf6.args (0.5, 4, s) You can take the integer power of a transfer function using the ``**`` operator: >>> tf7 = TransferFunction(s + a, s - a, s) >>> tf7**3 TransferFunction((a + s)**3, (-a + s)**3, s) >>> tf7**0 TransferFunction(1, 1, s) >>> tf8 = TransferFunction(p + 4, p - 3, p) >>> tf8**-1 TransferFunction(p - 3, p + 4, p) Addition, subtraction, and multiplication of transfer functions can form unevaluated ``Series`` or ``Parallel`` objects. >>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s) >>> tf10 = TransferFunction(s - p, s + 3, s) >>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s) >>> tf12 = TransferFunction(1 - s, s**2 + 4, s) >>> tf9 + tf10 Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) >>> tf10 - tf11 Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s)) >>> tf9 * tf10 Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) >>> tf10 - (tf9 + tf12) Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s)) >>> tf10 - (tf9 * tf12) Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, 1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s))) >>> tf11 * tf10 * tf9 Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p + s, s + 3, s), TransferFunction(s + 1, s**2 + s + 1, s)) >>> tf9 * tf11 + tf10 * tf12 Parallel(Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)), Series(TransferFunction(-p + s, s + 3, s), TransferFunction(1 - s, s**2 + 4, s))) >>> (tf9 + tf12) * (tf10 + tf11) Series(Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)), Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s))) These unevaluated ``Series`` or ``Parallel`` objects can convert into the resultant transfer function using ``.doit()`` method or by ``.rewrite(TransferFunction)``. >>> ((tf9 + tf10) * tf12).doit() TransferFunction((1 - s)*((-p + s)*(s**2 + s + 1) + (s + 1)*(s + 3)), (s + 3)*(s**2 + 4)*(s**2 + s + 1), s) >>> (tf9 * tf10 - tf11 * tf12).rewrite(TransferFunction) TransferFunction(-(1 - s)*(s + 3)*(s**2 + s + 1)*(4*s**2 + 2*s - 4) + (-p + s)*(s - 1)*(s + 1)*(s**2 + 4), (s - 1)*(s + 3)*(s**2 + 4)*(s**2 + s + 1), s) See Also ======== Feedback, Series, Parallel References ========== .. [1] https://en.wikipedia.org/wiki/Transfer_function .. [2] https://en.wikipedia.org/wiki/Laplace_transform """ def __new__(cls, num, den, var): num, den = _sympify(num), _sympify(den) if not isinstance(var, Symbol): raise TypeError("Variable input must be a Symbol.") if den == 0: raise ValueError("TransferFunction cannot have a zero denominator.") if (((isinstance(num, Expr) and num.has(Symbol)) or num.is_number) and ((isinstance(den, Expr) and den.has(Symbol)) or den.is_number)): obj = super(TransferFunction, cls).__new__(cls, num, den, var) obj._num = num obj._den = den obj._var = var return obj else: raise TypeError("Unsupported type for numerator or denominator of TransferFunction.") @classmethod def from_rational_expression(cls, expr, var=None): r""" Creates a new ``TransferFunction`` efficiently from a rational expression. Parameters ========== expr : Expr, Number The rational expression representing the ``TransferFunction``. var : Symbol, optional Complex variable of the Laplace transform used by the polynomials of the transfer function. Raises ====== ValueError When ``expr`` is of type ``Number`` and optional parameter ``var`` is not passed. When ``expr`` has more than one variables and an optional parameter ``var`` is not passed. ZeroDivisionError When denominator of ``expr`` is zero or it has ``ComplexInfinity`` in its numerator. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> expr1 = (s + 5)/(3*s**2 + 2*s + 1) >>> tf1 = TransferFunction.from_rational_expression(expr1) >>> tf1 TransferFunction(s + 5, 3*s**2 + 2*s + 1, s) >>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2) # Expr with more than one variables >>> tf2 = TransferFunction.from_rational_expression(expr2, p) >>> tf2 TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) In case of conflict between two or more variables in a expression, SymPy will raise a ``ValueError``, if ``var`` is not passed by the user. >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1)) Traceback (most recent call last): ... ValueError: Conflicting values found for positional argument `var` ({a, s}). Specify it manually. This can be corrected by specifying the ``var`` parameter manually. >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s) >>> tf TransferFunction(a*s + a, s**2 + s + 1, s) ``var`` also need to be specified when ``expr`` is a ``Number`` >>> tf3 = TransferFunction.from_rational_expression(10, s) >>> tf3 TransferFunction(10, 1, s) """ expr = _sympify(expr) if var is None: _free_symbols = expr.free_symbols _len_free_symbols = len(_free_symbols) if _len_free_symbols == 1: var = list(_free_symbols)[0] elif _len_free_symbols == 0: raise ValueError("Positional argument `var` not found in the TransferFunction defined. Specify it manually.") else: raise ValueError("Conflicting values found for positional argument `var` ({}). Specify it manually.".format(_free_symbols)) _num, _den = expr.as_numer_denom() if _den == 0 or _num.has(S.ComplexInfinity): raise ZeroDivisionError("TransferFunction cannot have a zero denominator.") return cls(_num, _den, var) @property def num(self): """ Returns the numerator polynomial of the transfer function. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s) >>> G1.num p*s + s**2 + 3 >>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p) >>> G2.num (p - 3)*(p + 5) """ return self._num @property def den(self): """ Returns the denominator polynomial of the transfer function. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s) >>> G1.den p**3 - 2*p + 4 >>> G2 = TransferFunction(3, 4, s) >>> G2.den 4 """ return self._den @property def var(self): """ Returns the complex variable of the Laplace transform used by the polynomials of the transfer function. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G1.var p >>> G2 = TransferFunction(0, s - 5, s) >>> G2.var s """ return self._var def _eval_subs(self, old, new): arg_num = self.num.subs(old, new) arg_den = self.den.subs(old, new) argnew = TransferFunction(arg_num, arg_den, self.var) return self if old == self.var else argnew def _eval_evalf(self, prec): return TransferFunction( self.num._eval_evalf(prec), self.den._eval_evalf(prec), self.var) def _eval_simplify(self, **kwargs): tf = cancel(Mul(self.num, 1/self.den, evaluate=False), expand=False).as_numer_denom() num_, den_ = tf[0], tf[1] return TransferFunction(num_, den_, self.var) def expand(self): """ Returns the transfer function with numerator and denominator in expanded form. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s) >>> G1.expand() TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s) >>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p) >>> G2.expand() TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p) """ return TransferFunction(expand(self.num), expand(self.den), self.var) def dc_gain(self): """ Computes the gain of the response as the frequency approaches zero. The DC gain is infinite for systems with pure integrators. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(s + 3, s**2 - 9, s) >>> tf1.dc_gain() -1/3 >>> tf2 = TransferFunction(p**2, p - 3 + p**3, p) >>> tf2.dc_gain() 0 >>> tf3 = TransferFunction(a*p**2 - b, s + b, s) >>> tf3.dc_gain() (a*p**2 - b)/b >>> tf4 = TransferFunction(1, s, s) >>> tf4.dc_gain() oo """ m = Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) return limit(m, self.var, 0) def poles(self): """ Returns the poles of a transfer function. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf1.poles() [-5, 1] >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) >>> tf2.poles() [I, I, -I, -I] >>> tf3 = TransferFunction(s**2, a*s + p, s) >>> tf3.poles() [-p/a] """ return _roots(Poly(self.den, self.var), self.var) def zeros(self): """ Returns the zeros of a transfer function. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf1.zeros() [-3, 1] >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) >>> tf2.zeros() [1, 1] >>> tf3 = TransferFunction(s**2, a*s + p, s) >>> tf3.zeros() [0, 0] """ return _roots(Poly(self.num, self.var), self.var) def is_stable(self): """ Returns True if the transfer function is asymptotically stable; else False. This would not check the marginal or conditional stability of the system. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy import symbols >>> from sympy.physics.control.lti import TransferFunction >>> q, r = symbols('q, r', negative=True) >>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s) >>> tf1.is_stable() True >>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s) >>> tf2.is_stable() False >>> tf3 = TransferFunction(4, q*s - r, s) >>> tf3.is_stable() False >>> tf4 = TransferFunction(p + 1, a*p - s**2, p) >>> tf4.is_stable() is None # Not enough info about the symbols to determine stability True """ return fuzzy_and(pole.as_real_imag()[0].is_negative for pole in self.poles()) def __add__(self, other): if isinstance(other, (TransferFunction, Series)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") return Parallel(self, other) elif isinstance(other, Parallel): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") arg_list = list(other.args) return Parallel(self, *arg_list) else: raise ValueError("TransferFunction cannot be added with {}.". format(type(other))) def __radd__(self, other): return self + other def __sub__(self, other): if isinstance(other, (TransferFunction, Series)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") return Parallel(self, -other) elif isinstance(other, Parallel): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") arg_list = [-i for i in list(other.args)] return Parallel(self, *arg_list) else: raise ValueError("{} cannot be subtracted from a TransferFunction." .format(type(other))) def __rsub__(self, other): return -self + other def __mul__(self, other): if isinstance(other, (TransferFunction, Parallel)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") return Series(self, other) elif isinstance(other, Series): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") arg_list = list(other.args) return Series(self, *arg_list) else: raise ValueError("TransferFunction cannot be multiplied with {}." .format(type(other))) __rmul__ = __mul__ def __truediv__(self, other): if (isinstance(other, Parallel) and len(other.args) == 2 and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], (Series, TransferFunction))): if not self.var == other.var: raise ValueError("Both TransferFunction and Parallel should use the" " same complex variable of the Laplace transform.") if other.args[1] == self: # plant and controller with unit feedback. return Feedback(self, other.args[0]) other_arg_list = list(other.args[1].args) if isinstance(other.args[1], Series) else other.args[1] if other_arg_list == other.args[1]: return Feedback(self, other_arg_list) elif self in other_arg_list: other_arg_list.remove(self) else: return Feedback(self, Series(*other_arg_list)) if len(other_arg_list) == 1: return Feedback(self, *other_arg_list) else: return Feedback(self, Series(*other_arg_list)) else: raise ValueError("TransferFunction cannot be divided by {}.". format(type(other))) __rtruediv__ = __truediv__ def __pow__(self, p): p = sympify(p) if not p.is_Integer: raise ValueError("Exponent must be an integer.") if p is S.Zero: return TransferFunction(1, 1, self.var) elif p > 0: num_, den_ = self.num**p, self.den**p else: p = abs(p) num_, den_ = self.den**p, self.num**p return TransferFunction(num_, den_, self.var) def __neg__(self): return TransferFunction(-self.num, self.den, self.var) @property def is_proper(self): """ Returns True if degree of the numerator polynomial is less than or equal to degree of the denominator polynomial, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf1.is_proper False >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p) >>> tf2.is_proper True """ return degree(self.num, self.var) <= degree(self.den, self.var) @property def is_strictly_proper(self): """ Returns True if degree of the numerator polynomial is strictly less than degree of the denominator polynomial, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf1.is_strictly_proper False >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf2.is_strictly_proper True """ return degree(self.num, self.var) < degree(self.den, self.var) @property def is_biproper(self): """ Returns True if degree of the numerator polynomial is equal to degree of the denominator polynomial, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf1.is_biproper True >>> tf2 = TransferFunction(p**2, p + a, p) >>> tf2.is_biproper False """ return degree(self.num, self.var) == degree(self.den, self.var) def to_expr(self): """ Converts a ``TransferFunction`` object to SymPy Expr. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> from sympy import Expr >>> tf1 = TransferFunction(s, a*s**2 + 1, s) >>> tf1.to_expr() s/(a*s**2 + 1) >>> isinstance(_, Expr) True >>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p) >>> tf2.to_expr() 1/((b - p)*(3*b + p)) >>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s) >>> tf3.to_expr() ((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1))) """ if self.num != 1: return Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) else: return Pow(self.den, -1, evaluate=False) def _flatten_args(args, _cls): temp_args = [] for arg in args: if isinstance(arg, _cls): temp_args.extend(arg.args) else: temp_args.append(arg) return tuple(temp_args) def _dummify_args(_arg, var): dummy_dict = {} dummy_arg_list = [] for arg in _arg: _s = Dummy() dummy_dict[_s] = var dummy_arg = arg.subs({var: _s}) dummy_arg_list.append(dummy_arg) return dummy_arg_list, dummy_dict class Series(SISOLinearTimeInvariant): r""" A class for representing a series configuration of SISO systems. Parameters ========== args : SISOLinearTimeInvariant SISO systems in a series configuration. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``Series(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, SISO in this case. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(p**2, p + s, s) >>> S1 = Series(tf1, tf2) >>> S1 Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) >>> S1.var s >>> S2 = Series(tf2, Parallel(tf3, -tf1)) >>> S2 Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) >>> S2.var s >>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3)) >>> S3 Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) >>> S3.var s You can get the resultant transfer function by using ``.doit()`` method: >>> S3 = Series(tf1, tf2, -tf3) >>> S3.doit() TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) >>> S4 = Series(tf2, Parallel(tf1, -tf3)) >>> S4.doit() TransferFunction((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) Notes ===== All the transfer functions should use the same complex variable ``var`` of the Laplace transform. See Also ======== MIMOSeries, Parallel, TransferFunction, Feedback """ def __new__(cls, *args, evaluate=False): args = _flatten_args(args, Series) cls._check_args(args) obj = super().__new__(cls, *args) return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the transfer functions. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> Series(G1, G2).var p >>> Series(-G3, Parallel(G1, G2)).var p """ return self.args[0].var def doit(self, **hints): """ Returns the resultant transfer function obtained after evaluating the transfer functions in series configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> Series(tf2, tf1).doit() TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s) >>> Series(-tf1, -tf2).doit() TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s) """ _num_arg = (arg.doit().num for arg in self.args) _den_arg = (arg.doit().den for arg in self.args) res_num = Mul(*_num_arg, evaluate=True) res_den = Mul(*_den_arg, evaluate=True) return TransferFunction(res_num, res_den, self.var) def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): return self.doit() @_check_other_SISO def __add__(self, other): if isinstance(other, Parallel): arg_list = list(other.args) return Parallel(self, *arg_list) return Parallel(self, other) __radd__ = __add__ @_check_other_SISO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_SISO def __mul__(self, other): arg_list = list(self.args) return Series(*arg_list, other) def __truediv__(self, other): if (isinstance(other, Parallel) and len(other.args) == 2 and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], Series)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") self_arg_list = set(list(self.args)) other_arg_list = set(list(other.args[1].args)) res = list(self_arg_list ^ other_arg_list) if len(res) == 0: return Feedback(self, other.args[0]) elif len(res) == 1: return Feedback(self, *res) else: return Feedback(self, Series(*res)) else: raise ValueError("This transfer function expression is invalid.") def __neg__(self): return Series(TransferFunction(-1, 1, self.var), self) def to_expr(self): """Returns the equivalent ``Expr`` object.""" return Mul(*(arg.to_expr() for arg in self.args), evaluate=False) @property def is_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> S1 = Series(-tf2, tf1) >>> S1.is_proper False >>> S2 = Series(tf1, tf2, tf3) >>> S2.is_proper True """ return self.doit().is_proper @property def is_strictly_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is strictly less than degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**2 + 5*s + 6, s) >>> tf3 = TransferFunction(1, s**2 + s + 1, s) >>> S1 = Series(tf1, tf2) >>> S1.is_strictly_proper False >>> S2 = Series(tf1, tf2, tf3) >>> S2.is_strictly_proper True """ return self.doit().is_strictly_proper @property def is_biproper(self): r""" Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(p, s**2, s) >>> tf3 = TransferFunction(s**2, 1, s) >>> S1 = Series(tf1, -tf2) >>> S1.is_biproper False >>> S2 = Series(tf2, tf3) >>> S2.is_biproper True """ return self.doit().is_biproper def _mat_mul_compatible(*args): """To check whether shapes are compatible for matrix mul.""" return all(args[i].num_outputs == args[i+1].num_inputs for i in range(len(args)-1)) class MIMOSeries(MIMOLinearTimeInvariant): r""" A class for representing a series configuration of MIMO systems. Parameters ========== args : MIMOLinearTimeInvariant MIMO systems in a series configuration. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``MIMOSeries(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. ``num_outputs`` of the MIMO system is not equal to the ``num_inputs`` of its adjacent MIMO system. (Matrix multiplication constraint, basically) TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import MIMOSeries, TransferFunctionMatrix >>> from sympy import Matrix, pprint >>> mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input >>> mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs >>> mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs >>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s) >>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s) >>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s) >>> MIMOSeries(tfm_c, tfm_b, tfm_a) MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s), TransferFunction(s, 1, s)), (TransferFunction(5, s, s), TransferFunction(1, 1, s)))), TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1, 6*s**2, s)),)), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),), (TransferFunction(5, 1, s),)))) >>> pprint(_, use_unicode=False) # For Better Visualization [5*s] [1 s] [---] [5 1 ] [- -] [ 1 ] [- ----] [1 1] [ ] *[1 2] *[ ] [ 5 ] [ 6*s ]{t} [5 1] [ - ] [- -] [ 1 ]{t} [s 1]{t} >>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit() TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s), TransferFunction(150*s**4 + 5*s, 6*s**2, s)), (TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3 + 5, 6*s**2, s)))) >>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2 Inputs -Series Equivalent-> 2 Outputs). [ 4 4 ] [150*s + 25*s 150*s + 5*s] [------------- ------------] [ 3 2 ] [ 6*s 6*s ] [ ] [ 3 3 ] [ 150*s + 25 150*s + 5 ] [ ----------- ---------- ] [ 3 2 ] [ 6*s 6*s ]{t} Notes ===== All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform. ``MIMOSeries(A, B)`` is not equivalent to ``A*B``. It is always in the reverse order, that is ``B*A``. See Also ======== Series, MIMOParallel """ def __new__(cls, *args, evaluate=False): cls._check_args(args) if _mat_mul_compatible(*args): obj = super().__new__(cls, *args) else: raise ValueError("Number of input signals do not match the number" " of output signals of adjacent systems for some args.") return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the transfer functions. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]]) >>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]]) >>> MIMOSeries(tfm_2, tfm_1).var p """ return self.args[0].var @property def num_inputs(self): """Returns the number of input signals of the series system.""" return self.args[0].num_inputs @property def num_outputs(self): """Returns the number of output signals of the series system.""" return self.args[-1].num_outputs @property def shape(self): """Returns the shape of the equivalent MIMO system.""" return self.num_outputs, self.num_inputs def doit(self, cancel=False, **kwargs): """ Returns the resultant transfer function matrix obtained after evaluating the MIMO systems arranged in a series configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]]) >>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]]) >>> MIMOSeries(tfm2, tfm1).doit() TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)*(a*p**2 + b*s)**2*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6)**2, (-p + s)*(s**4 + 5*s + 6)**3, s), TransferFunction(2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s)))) """ _arg = (arg.doit()._expr_mat for arg in reversed(self.args)) if cancel: res = MatMul(*_arg, evaluate=True) return TransferFunctionMatrix.from_Matrix(res, self.var) _dummy_args, _dummy_dict = _dummify_args(_arg, self.var) res = MatMul(*_dummy_args, evaluate=True) temp_tfm = TransferFunctionMatrix.from_Matrix(res, self.var) return temp_tfm.subs(_dummy_dict) def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): return self.doit() @_check_other_MIMO def __add__(self, other): if isinstance(other, MIMOParallel): arg_list = list(other.args) return MIMOParallel(self, *arg_list) return MIMOParallel(self, other) __radd__ = __add__ @_check_other_MIMO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_MIMO def __mul__(self, other): if isinstance(other, MIMOSeries): self_arg_list = list(self.args) other_arg_list = list(other.args) return MIMOSeries(*other_arg_list, *self_arg_list) # A*B = MIMOSeries(B, A) arg_list = list(self.args) return MIMOSeries(other, *arg_list) def __neg__(self): arg_list = list(self.args) arg_list[0] = -arg_list[0] return MIMOSeries(*arg_list) class Parallel(SISOLinearTimeInvariant): r""" A class for representing a parallel configuration of SISO systems. Parameters ========== args : SISOLinearTimeInvariant SISO systems in a parallel arrangement. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``Parallel(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(p**2, p + s, s) >>> P1 = Parallel(tf1, tf2) >>> P1 Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) >>> P1.var s >>> P2 = Parallel(tf2, Series(tf3, -tf1)) >>> P2 Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Series(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) >>> P2.var s >>> P3 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) >>> P3 Parallel(Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) >>> P3.var s You can get the resultant transfer function by using ``.doit()`` method: >>> Parallel(tf1, tf2, -tf3).doit() TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) >>> Parallel(tf2, Series(tf1, -tf3)).doit() TransferFunction(-p**2*(a*p**2 + b*s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) Notes ===== All the transfer functions should use the same complex variable ``var`` of the Laplace transform. See Also ======== Series, TransferFunction, Feedback """ def __new__(cls, *args, evaluate=False): args = _flatten_args(args, Parallel) cls._check_args(args) obj = super().__new__(cls, *args) return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the transfer functions. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> Parallel(G1, G2).var p >>> Parallel(-G3, Series(G1, G2)).var p """ return self.args[0].var def doit(self, **hints): """ Returns the resultant transfer function obtained after evaluating the transfer functions in parallel configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> Parallel(tf2, tf1).doit() TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) >>> Parallel(-tf1, -tf2).doit() TransferFunction((2 - s**3)*(-p + s) + (-a*p**2 - b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) """ _arg = (arg.doit().to_expr() for arg in self.args) res = Add(*_arg).as_numer_denom() return TransferFunction(*res, self.var) def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): return self.doit() @_check_other_SISO def __add__(self, other): self_arg_list = list(self.args) return Parallel(*self_arg_list, other) __radd__ = __add__ @_check_other_SISO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_SISO def __mul__(self, other): if isinstance(other, Series): arg_list = list(other.args) return Series(self, *arg_list) return Series(self, other) def __neg__(self): return Series(TransferFunction(-1, 1, self.var), self) def to_expr(self): """Returns the equivalent ``Expr`` object.""" return Add(*(arg.to_expr() for arg in self.args), evaluate=False) @property def is_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(-tf2, tf1) >>> P1.is_proper False >>> P2 = Parallel(tf2, tf3) >>> P2.is_proper True """ return self.doit().is_proper @property def is_strictly_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is strictly less than degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(tf1, tf2) >>> P1.is_strictly_proper False >>> P2 = Parallel(tf2, tf3) >>> P2.is_strictly_proper True """ return self.doit().is_strictly_proper @property def is_biproper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(p**2, p + s, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(tf1, -tf2) >>> P1.is_biproper True >>> P2 = Parallel(tf2, tf3) >>> P2.is_biproper False """ return self.doit().is_biproper class MIMOParallel(MIMOLinearTimeInvariant): r""" A class for representing a parallel configuration of MIMO systems. Parameters ========== args : MIMOLinearTimeInvariant MIMO Systems in a parallel arrangement. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``MIMOParallel(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. All MIMO systems passed do not have same shape. TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel >>> from sympy import Matrix, pprint >>> expr_1 = 1/s >>> expr_2 = s/(s**2-1) >>> expr_3 = (2 + s)/(s**2 - 1) >>> expr_4 = 5 >>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s) >>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s) >>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s) >>> MIMOParallel(tfm_a, tfm_b, tfm_c) MIMOParallel(TransferFunctionMatrix(((TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)), (TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)))), TransferFunctionMatrix(((TransferFunction(s, s**2 - 1, s), TransferFunction(1, s, s)), (TransferFunction(5, 1, s), TransferFunction(s + 2, s**2 - 1, s)))), TransferFunctionMatrix(((TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)), (TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s))))) >>> pprint(_, use_unicode=False) # For Better Visualization [ 1 s ] [ s 1 ] [s + 2 5 ] [ - ------] [------ - ] [------ - ] [ s 2 ] [ 2 s ] [ 2 1 ] [ s - 1] [s - 1 ] [s - 1 ] [ ] + [ ] + [ ] [s + 2 5 ] [ 5 s + 2 ] [ 1 s ] [------ - ] [ - ------] [ - ------] [ 2 1 ] [ 1 2 ] [ s 2 ] [s - 1 ]{t} [ s - 1]{t} [ s - 1]{t} >>> MIMOParallel(tfm_a, tfm_b, tfm_c).doit() TransferFunctionMatrix(((TransferFunction(s**2 + s*(2*s + 2) - 1, s*(s**2 - 1), s), TransferFunction(2*s**2 + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s)), (TransferFunction(s**2 + s*(s + 2) + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s), TransferFunction(5*s**2 + 2*s - 3, s**2 - 1, s)))) >>> pprint(_, use_unicode=False) [ 2 2 / 2 \ ] [ s + s*(2*s + 2) - 1 2*s + 5*s*\s - 1/ - 1] [ -------------------- -----------------------] [ / 2 \ / 2 \ ] [ s*\s - 1/ s*\s - 1/ ] [ ] [ 2 / 2 \ 2 ] [s + s*(s + 2) + 5*s*\s - 1/ - 1 5*s + 2*s - 3 ] [--------------------------------- -------------- ] [ / 2 \ 2 ] [ s*\s - 1/ s - 1 ]{t} Notes ===== All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform. See Also ======== Parallel, MIMOSeries """ def __new__(cls, *args, evaluate=False): args = _flatten_args(args, MIMOParallel) cls._check_args(args) if any(arg.shape != args[0].shape for arg in args): raise TypeError("Shape of all the args is not equal.") obj = super().__new__(cls, *args) return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the systems. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOParallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> G4 = TransferFunction(p**2, p**2 - 1, p) >>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]]) >>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]]) >>> MIMOParallel(tfm_a, tfm_b).var p """ return self.args[0].var @property def num_inputs(self): """Returns the number of input signals of the parallel system.""" return self.args[0].num_inputs @property def num_outputs(self): """Returns the number of output signals of the parallel system.""" return self.args[0].num_outputs @property def shape(self): """Returns the shape of the equivalent MIMO system.""" return self.num_outputs, self.num_inputs def doit(self, **hints): """ Returns the resultant transfer function matrix obtained after evaluating the MIMO systems arranged in a parallel configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) >>> MIMOParallel(tfm_1, tfm_2).doit() TransferFunctionMatrix(((TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)))) """ _arg = (arg.doit()._expr_mat for arg in self.args) res = MatAdd(*_arg, evaluate=True) return TransferFunctionMatrix.from_Matrix(res, self.var) def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): return self.doit() @_check_other_MIMO def __add__(self, other): self_arg_list = list(self.args) return MIMOParallel(*self_arg_list, other) __radd__ = __add__ @_check_other_MIMO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_MIMO def __mul__(self, other): if isinstance(other, MIMOSeries): arg_list = list(other.args) return MIMOSeries(*arg_list, self) return MIMOSeries(other, self) def __neg__(self): arg_list = [-arg for arg in list(self.args)] return MIMOParallel(*arg_list) class Feedback(SISOLinearTimeInvariant): r""" A class for representing closed-loop feedback interconnection between two SISO input/output systems. The first argument, ``sys1``, is the feedforward part of the closed-loop system or in simple words, the dynamical model representing the process to be controlled. The second argument, ``sys2``, is the feedback system and controls the fed back signal to ``sys1``. Both ``sys1`` and ``sys2`` can either be ``Series`` or ``TransferFunction`` objects. Parameters ========== sys1 : Series, TransferFunction The feedforward path system. sys2 : Series, TransferFunction, optional The feedback path system (often a feedback controller). It is the model sitting on the feedback path. If not specified explicitly, the sys2 is assumed to be unit (1.0) transfer function. sign : int, optional The sign of feedback. Can either be ``1`` (for positive feedback) or ``-1`` (for negative feedback). Default value is `-1`. Raises ====== ValueError When ``sys1`` and ``sys2`` are not using the same complex variable of the Laplace transform. When a combination of ``sys1`` and ``sys2`` yields zero denominator. TypeError When either ``sys1`` or ``sys2`` is not a ``Series`` or a ``TransferFunction`` object. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1 Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) >>> F1.var s >>> F1.args (TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) You can get the feedforward and feedback path systems by using ``.sys1`` and ``.sys2`` respectively. >>> F1.sys1 TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> F1.sys2 TransferFunction(5*s - 10, s + 7, s) You can get the resultant closed loop transfer function obtained by negative feedback interconnection using ``.doit()`` method. >>> F1.doit() TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) >>> C = TransferFunction(5*s + 10, s + 10, s) >>> F2 = Feedback(G*C, TransferFunction(1, 1, s)) >>> F2.doit() TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s + 10)*((s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1))*(s**2 + 2*s + 3), s) To negate a ``Feedback`` object, the ``-`` operator can be prepended: >>> -F1 Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s), TransferFunction(10 - 5*s, s + 7, s), -1) >>> -F2 Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)), TransferFunction(-1, 1, s), -1) See Also ======== MIMOFeedback, Series, Parallel """ def __new__(cls, sys1, sys2=None, sign=-1): if not sys2: sys2 = TransferFunction(1, 1, sys1.var) if not (isinstance(sys1, (TransferFunction, Series)) and isinstance(sys2, (TransferFunction, Series))): raise TypeError("Unsupported type for `sys1` or `sys2` of Feedback.") if sign not in [-1, 1]: raise ValueError("Unsupported type for feedback. `sign` arg should " "either be 1 (positive feedback loop) or -1 (negative feedback loop).") if Mul(sys1.to_expr(), sys2.to_expr()).simplify() == sign: raise ValueError("The equivalent system will have zero denominator.") if sys1.var != sys2.var: raise ValueError("Both `sys1` and `sys2` should be using the" " same complex variable.") return super().__new__(cls, sys1, sys2, _sympify(sign)) @property def sys1(self): """ Returns the feedforward system of the feedback interconnection. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.sys1 TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.sys1 TransferFunction(1, 1, p) """ return self.args[0] @property def sys2(self): """ Returns the feedback controller of the feedback interconnection. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.sys2 TransferFunction(5*s - 10, s + 7, s) >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.sys2 Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p), TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p)) """ return self.args[1] @property def var(self): """ Returns the complex variable of the Laplace transform used by all the transfer functions involved in the feedback interconnection. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.var s >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.var p """ return self.sys1.var @property def sign(self): """ Returns the type of MIMO Feedback model. ``1`` for Positive and ``-1`` for Negative. """ return self.args[2] @property def sensitivity(self): """ Returns the sensitivity function of the feedback loop. Sensitivity of a Feedback system is the ratio of change in the open loop gain to the change in the closed loop gain. .. note:: This method would not return the complementary sensitivity function. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - p, p + 2, p) >>> F_1 = Feedback(P, C) >>> F_1.sensitivity 1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1) """ return 1/(1 - self.sign*self.sys1.to_expr()*self.sys2.to_expr()) def doit(self, cancel=False, expand=False, **hints): """ Returns the resultant transfer function obtained by the feedback interconnection. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.doit() TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) >>> F2 = Feedback(G, TransferFunction(1, 1, s)) >>> F2.doit() TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s) Use kwarg ``expand=True`` to expand the resultant transfer function. Use ``cancel=True`` to cancel out the common terms in numerator and denominator. >>> F2.doit(cancel=True, expand=True) TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s) >>> F2.doit(expand=True) TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s) """ arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1] # F_n and F_d are resultant TFs of num and den of Feedback. F_n, unit = self.sys1.doit(), TransferFunction(1, 1, self.sys1.var) if self.sign == -1: F_d = Parallel(unit, Series(self.sys2, *arg_list)).doit() else: F_d = Parallel(unit, -Series(self.sys2, *arg_list)).doit() _resultant_tf = TransferFunction(F_n.num * F_d.den, F_n.den * F_d.num, F_n.var) if cancel: _resultant_tf = _resultant_tf.simplify() if expand: _resultant_tf = _resultant_tf.expand() return _resultant_tf def _eval_rewrite_as_TransferFunction(self, num, den, sign, **kwargs): return self.doit() def __neg__(self): return Feedback(-self.sys1, -self.sys2, self.sign) def _is_invertible(a, b, sign): """ Checks whether a given pair of MIMO systems passed is invertible or not. """ _mat = eye(a.num_outputs) - sign*(a.doit()._expr_mat)*(b.doit()._expr_mat) _det = _mat.det() return _det != 0 class MIMOFeedback(MIMOLinearTimeInvariant): r""" A class for representing closed-loop feedback interconnection between two MIMO input/output systems. Parameters ========== sys1 : MIMOSeries, TransferFunctionMatrix The MIMO system placed on the feedforward path. sys2 : MIMOSeries, TransferFunctionMatrix The system placed on the feedback path (often a feedback controller). sign : int, optional The sign of feedback. Can either be ``1`` (for positive feedback) or ``-1`` (for negative feedback). Default value is `-1`. Raises ====== ValueError When ``sys1`` and ``sys2`` are not using the same complex variable of the Laplace transform. Forward path model should have an equal number of inputs/outputs to the feedback path outputs/inputs. When product of ``sys1`` and ``sys2`` is not a square matrix. When the equivalent MIMO system is not invertible. TypeError When either ``sys1`` or ``sys2`` is not a ``MIMOSeries`` or a ``TransferFunctionMatrix`` object. Examples ======== >>> from sympy import Matrix, pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOFeedback >>> plant_mat = Matrix([[1, 1/s], [0, 1]]) >>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain >>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s) >>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s) >>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default) >>> pprint(feedback, use_unicode=False) / [1 1] [10 0 ] \-1 [1 1] | [- -] [-- - ] | [- -] | [1 s] [1 1 ] | [1 s] |I + [ ] *[ ] | * [ ] | [0 1] [0 10] | [0 1] | [- -] [- --] | [- -] \ [1 1]{t} [1 1 ]{t}/ [1 1]{t} To get the equivalent system matrix, use either ``doit`` or ``rewrite`` method. >>> pprint(feedback.doit(), use_unicode=False) [1 1 ] [-- -----] [11 121*s] [ ] [0 1 ] [- -- ] [1 11 ]{t} To negate the ``MIMOFeedback`` object, use ``-`` operator. >>> neg_feedback = -feedback >>> pprint(neg_feedback.doit(), use_unicode=False) [-1 -1 ] [--- -----] [ 11 121*s] [ ] [ 0 -1 ] [ - --- ] [ 1 11 ]{t} See Also ======== Feedback, MIMOSeries, MIMOParallel """ def __new__(cls, sys1, sys2, sign=-1): if not (isinstance(sys1, (TransferFunctionMatrix, MIMOSeries)) and isinstance(sys2, (TransferFunctionMatrix, MIMOSeries))): raise TypeError("Unsupported type for `sys1` or `sys2` of MIMO Feedback.") if sys1.num_inputs != sys2.num_outputs or \ sys1.num_outputs != sys2.num_inputs: raise ValueError("Product of `sys1` and `sys2` " "must yield a square matrix.") if sign not in (-1, 1): raise ValueError("Unsupported type for feedback. `sign` arg should " "either be 1 (positive feedback loop) or -1 (negative feedback loop).") if not _is_invertible(sys1, sys2, sign): raise ValueError("Non-Invertible system inputted.") if sys1.var != sys2.var: raise ValueError("Both `sys1` and `sys2` should be using the" " same complex variable.") return super().__new__(cls, sys1, sys2, _sympify(sign)) @property def sys1(self): r""" Returns the system placed on the feedforward path of the MIMO feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> F_1.sys1 TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [s + s + 1 1 ] [---------- - ] [ 2 s ] [s - s + 1 ] [ ] [ 2 ] [ 1 s + s + 1] [ - ----------] [ s 2 ] [ s - s + 1]{t} """ return self.args[0] @property def sys2(self): r""" Returns the feedback controller of the MIMO feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2, s**3 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2) >>> F_1.sys2 TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [ s 1] [---------- -] [ 3 1] [s - s + 1 ] [ ] [ 1 1] [ - -] [ 1 s]{t} """ return self.args[1] @property def var(self): r""" Returns the complex variable of the Laplace transform used by all the transfer functions involved in the MIMO feedback loop. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_1.var p """ return self.sys1.var @property def sign(self): r""" Returns the type of feedback interconnection of two models. ``1`` for Positive and ``-1`` for Negative. """ return self.args[2] @property def sensitivity(self): r""" Returns the sensitivity function matrix of the feedback loop. Sensitivity of a closed-loop system is the ratio of change in the open loop gain to the change in the closed loop gain. .. note:: This method would not return the complementary sensitivity function. Examples ======== >>> from sympy import pprint >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback >>> pprint(F_1.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ] [---------------------------- -----------------------------] [ 4 3 2 5 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p] [ ] [ 4 3 2 3 2 ] [ p - p - p + p 3*p - 6*p + 4*p - 1 ] [ -------------------------- -------------------------- ] [ 4 3 2 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ] >>> pprint(F_2.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1] [------------------------ --------------------------] [ 4 3 5 4 2 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ] [ ] [ 4 3 2 4 3 ] [ p - p - p + p 2*p - 3*p + 2*p - 1 ] [ ------------------- --------------------- ] [ 4 3 4 3 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ] """ _sys1_mat = self.sys1.doit()._expr_mat _sys2_mat = self.sys2.doit()._expr_mat return (eye(self.sys1.num_inputs) - \ self.sign*_sys1_mat*_sys2_mat).inv() def doit(self, cancel=True, expand=False, **hints): r""" Returns the resultant transfer function matrix obtained by the feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s, 1 - s, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(5, 1, s) >>> tf4 = TransferFunction(s - 1, s, s) >>> tf5 = TransferFunction(0, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> pprint(F_1, use_unicode=False) / [ s 1 ] [5 0] \-1 [ s 1 ] | [----- - ] [- -] | [----- - ] | [1 - s s ] [1 1] | [1 - s s ] |I - [ ] *[ ] | * [ ] | [ 5 s - 1] [0 0] | [ 5 s - 1] | [ - -----] [- -] | [ - -----] \ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t} >>> pprint(F_1.doit(), use_unicode=False) [ -s s - 1 ] [------- ----------- ] [6*s - 1 s*(6*s - 1) ] [ ] [5*s - 5 (s - 1)*(6*s + 24)] [------- ------------------] [6*s - 1 s*(6*s - 1) ]{t} If the user wants the resultant ``TransferFunctionMatrix`` object without canceling the common factors then the ``cancel`` kwarg should be passed ``False``. >>> pprint(F_1.doit(cancel=False), use_unicode=False) [ 25*s*(1 - s) 25 - 25*s ] [ -------------------- -------------- ] [ 25*(1 - 6*s)*(1 - s) 25*s*(1 - 6*s) ] [ ] [s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)] [----------------------------------- -----------------------------------] [ (1 - s)*(6*s - 1) 2 ] [ s *(6*s - 1) ]{t} If the user wants the expanded form of the resultant transfer function matrix, the ``expand`` kwarg should be passed as ``True``. >>> pprint(F_1.doit(expand=True), use_unicode=False) [ -s s - 1 ] [------- -------- ] [6*s - 1 2 ] [ 6*s - s ] [ ] [ 2 ] [5*s - 5 6*s + 18*s - 24] [------- ----------------] [6*s - 1 2 ] [ 6*s - s ]{t} """ _mat = self.sensitivity * self.sys1.doit()._expr_mat _resultant_tfm = _to_TFM(_mat, self.var) if cancel: _resultant_tfm = _resultant_tfm.simplify() if expand: _resultant_tfm = _resultant_tfm.expand() return _resultant_tfm def _eval_rewrite_as_TransferFunctionMatrix(self, sys1, sys2, sign, **kwargs): return self.doit() def __neg__(self): return MIMOFeedback(-self.sys1, -self.sys2, self.sign) def _to_TFM(mat, var): """Private method to convert ImmutableMatrix to TransferFunctionMatrix efficiently""" to_tf = lambda expr: TransferFunction.from_rational_expression(expr, var) arg = [[to_tf(expr) for expr in row] for row in mat.tolist()] return TransferFunctionMatrix(arg) class TransferFunctionMatrix(MIMOLinearTimeInvariant): r""" A class for representing the MIMO (multiple-input and multiple-output) generalization of the SISO (single-input and single-output) transfer function. It is a matrix of transfer functions (``TransferFunction``, SISO-``Series`` or SISO-``Parallel``). There is only one argument, ``arg`` which is also the compulsory argument. ``arg`` is expected to be strictly of the type list of lists which holds the transfer functions or reducible to transfer functions. Parameters ========== arg : Nested ``List`` (strictly). Users are expected to input a nested list of ``TransferFunction``, ``Series`` and/or ``Parallel`` objects. Examples ======== .. note:: ``pprint()`` can be used for better visualization of ``TransferFunctionMatrix`` objects. >>> from sympy.abc import s, p, a >>> from sympy import pprint >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel >>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s) >>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s) >>> tf_3 = TransferFunction(3, s + 2, s) >>> tf_4 = TransferFunction(-a + p, 9*s - 9, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),))) >>> tfm_1.var s >>> tfm_1.num_inputs 1 >>> tfm_1.num_outputs 3 >>> tfm_1.shape (3, 1) >>> tfm_1.args (((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),) >>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]]) >>> tfm_2 TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) >>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization [ a + s -3 ] [ ---------- ----- ] [ 2 s + 2 ] [ s + s + 1 ] [ ] [ 4 ] [p - 3*p + 2 -a - s ] [------------ ---------- ] [ p + s 2 ] [ s + s + 1 ] [ ] [ 4 ] [ 3 - p + 3*p - 2] [ ----- --------------] [ s + 2 p + s ]{t} TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions >>> tfm_2.transpose() TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) >>> pprint(_, use_unicode=False) [ 4 ] [ a + s p - 3*p + 2 3 ] [---------- ------------ ----- ] [ 2 p + s s + 2 ] [s + s + 1 ] [ ] [ 4 ] [ -3 -a - s - p + 3*p - 2] [ ----- ---------- --------------] [ s + 2 2 p + s ] [ s + s + 1 ]{t} >>> tf_5 = TransferFunction(5, s, s) >>> tf_6 = TransferFunction(5*s, (2 + s**2), s) >>> tf_7 = TransferFunction(5, (s*(2 + s**2)), s) >>> tf_8 = TransferFunction(5, 1, s) >>> tfm_3 = TransferFunctionMatrix([[tf_5, tf_6], [tf_7, tf_8]]) >>> tfm_3 TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s)))) >>> pprint(tfm_3, use_unicode=False) [ 5 5*s ] [ - ------] [ s 2 ] [ s + 2] [ ] [ 5 5 ] [---------- - ] [ / 2 \ 1 ] [s*\s + 2/ ]{t} >>> tfm_3.var s >>> tfm_3.shape (2, 2) >>> tfm_3.num_outputs 2 >>> tfm_3.num_inputs 2 >>> tfm_3.args (((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))),) To access the ``TransferFunction`` at any index in the ``TransferFunctionMatrix``, use the index notation. >>> tfm_3[1, 0] # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes TransferFunction(5, s*(s**2 + 2), s) >>> tfm_3[0, 0] # gives the TransferFunction present at 1st Row and 1st Col. TransferFunction(5, s, s) >>> tfm_3[:, 0] # gives the first column TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),))) >>> pprint(_, use_unicode=False) [ 5 ] [ - ] [ s ] [ ] [ 5 ] [----------] [ / 2 \] [s*\s + 2/]{t} >>> tfm_3[0, :] # gives the first row TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)),)) >>> pprint(_, use_unicode=False) [5 5*s ] [- ------] [s 2 ] [ s + 2]{t} To negate a transfer function matrix, ``-`` operator can be prepended: >>> tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]]) >>> -tfm_4 TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(-3, s + 2, s),))) >>> tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]]) >>> -tfm_5 TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)), (TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s)))) ``subs()`` returns the ``TransferFunctionMatrix`` object with the value substituted in the expression. This will not mutate your original ``TransferFunctionMatrix``. >>> tfm_2.subs(p, 2) # substituting p everywhere in tfm_2 with 2. TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) >>> pprint(_, use_unicode=False) [ a + s -3 ] [---------- ----- ] [ 2 s + 2 ] [s + s + 1 ] [ ] [ 12 -a - s ] [ ----- ----------] [ s + 2 2 ] [ s + s + 1] [ ] [ 3 -12 ] [ ----- ----- ] [ s + 2 s + 2 ]{t} >>> pprint(tfm_2, use_unicode=False) # State of tfm_2 is unchanged after substitution [ a + s -3 ] [ ---------- ----- ] [ 2 s + 2 ] [ s + s + 1 ] [ ] [ 4 ] [p - 3*p + 2 -a - s ] [------------ ---------- ] [ p + s 2 ] [ s + s + 1 ] [ ] [ 4 ] [ 3 - p + 3*p - 2] [ ----- --------------] [ s + 2 p + s ]{t} ``subs()`` also supports multiple substitutions. >>> tfm_2.subs({p: 2, a: 1}) # substituting p with 2 and a with 1 TransferFunctionMatrix(((TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) >>> pprint(_, use_unicode=False) [ s + 1 -3 ] [---------- ----- ] [ 2 s + 2 ] [s + s + 1 ] [ ] [ 12 -s - 1 ] [ ----- ----------] [ s + 2 2 ] [ s + s + 1] [ ] [ 3 -12 ] [ ----- ----- ] [ s + 2 s + 2 ]{t} Users can reduce the ``Series`` and ``Parallel`` elements of the matrix to ``TransferFunction`` by using ``doit()``. >>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]]) >>> tfm_6 TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s))),)) >>> pprint(tfm_6, use_unicode=False) [ -a + p 3 -a + p 3 ] [-------*----- ------- + -----] [9*s - 9 s + 2 9*s - 9 s + 2]{t} >>> tfm_6.doit() TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), s)),)) >>> pprint(_, use_unicode=False) [ -3*a + 3*p 27*s + (-a + p)*(s + 2) - 27] [----------------- ----------------------------] [(s + 2)*(9*s - 9) (s + 2)*(9*s - 9) ]{t} >>> tf_9 = TransferFunction(1, s, s) >>> tf_10 = TransferFunction(1, s**2, s) >>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, Parallel(tf_9, tf_10)]]) >>> tfm_7 TransferFunctionMatrix(((Series(TransferFunction(1, s, s), TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), TransferFunction(1, s**2, s))))) >>> pprint(tfm_7, use_unicode=False) [ 1 1 ] [---- - ] [ 2 s ] [s*s ] [ ] [ 1 1 1] [ -- -- + -] [ 2 2 s] [ s s ]{t} >>> tfm_7.doit() TransferFunctionMatrix(((TransferFunction(1, s**3, s), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), TransferFunction(s**2 + s, s**3, s)))) >>> pprint(_, use_unicode=False) [1 1 ] [-- - ] [ 3 s ] [s ] [ ] [ 2 ] [1 s + s] [-- ------] [ 2 3 ] [s s ]{t} Addition, subtraction, and multiplication of transfer function matrices can form unevaluated ``Series`` or ``Parallel`` objects. - For addition and subtraction: All the transfer function matrices must have the same shape. - For multiplication (C = A * B): The number of inputs of the first transfer function matrix (A) must be equal to the number of outputs of the second transfer function matrix (B). Also, use pretty-printing (``pprint``) to analyse better. >>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]]) >>> tfm_9 = TransferFunctionMatrix([[-tf_3]]) >>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]]) >>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]]) >>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]]) >>> tfm_8 + tfm_10 MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),)))) >>> pprint(_, use_unicode=False) [ 3 ] [ a + s ] [ ----- ] [ ---------- ] [ s + 2 ] [ 2 ] [ ] [ s + s + 1 ] [ 4 ] [ ] [p - 3*p + 2] [ 4 ] [------------] + [p - 3*p + 2] [ p + s ] [------------] [ ] [ p + s ] [ -a - s ] [ ] [ ---------- ] [ -a + p ] [ 2 ] [ ------- ] [ s + s + 1 ]{t} [ 9*s - 9 ]{t} >>> -tfm_10 - tfm_8 MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a - p, 9*s - 9, s),))), TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),)))) >>> pprint(_, use_unicode=False) [ -a - s ] [ -3 ] [ ---------- ] [ ----- ] [ 2 ] [ s + 2 ] [ s + s + 1 ] [ ] [ ] [ 4 ] [ 4 ] [- p + 3*p - 2] [- p + 3*p - 2] + [--------------] [--------------] [ p + s ] [ p + s ] [ ] [ ] [ a + s ] [ a - p ] [ ---------- ] [ ------- ] [ 2 ] [ 9*s - 9 ]{t} [ s + s + 1 ]{t} >>> tfm_12 * tfm_8 MIMOSeries(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) >>> pprint(_, use_unicode=False) [ 3 ] [ ----- ] [ -a + p -a - s 3 ] [ s + 2 ] [ ------- ---------- -----] [ ] [ 9*s - 9 2 s + 2] [ 4 ] [ s + s + 1 ] [p - 3*p + 2] [ ] *[------------] [ 4 ] [ p + s ] [- p + 3*p - 2 a - p -3 ] [ ] [-------------- ------- -----] [ -a - s ] [ p + s 9*s - 9 s + 2]{t} [ ---------- ] [ 2 ] [ s + s + 1 ]{t} >>> tfm_12 * tfm_8 * tfm_9 MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) >>> pprint(_, use_unicode=False) [ 3 ] [ ----- ] [ -a + p -a - s 3 ] [ s + 2 ] [ ------- ---------- -----] [ ] [ 9*s - 9 2 s + 2] [ 4 ] [ s + s + 1 ] [p - 3*p + 2] [ -3 ] [ ] *[------------] *[-----] [ 4 ] [ p + s ] [s + 2]{t} [- p + 3*p - 2 a - p -3 ] [ ] [-------------- ------- -----] [ -a - s ] [ p + s 9*s - 9 s + 2]{t} [ ---------- ] [ 2 ] [ s + s + 1 ]{t} >>> tfm_10 + tfm_8*tfm_9 MIMOParallel(TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))), MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))))) >>> pprint(_, use_unicode=False) [ a + s ] [ 3 ] [ ---------- ] [ ----- ] [ 2 ] [ s + 2 ] [ s + s + 1 ] [ ] [ ] [ 4 ] [ 4 ] [p - 3*p + 2] [ -3 ] [p - 3*p + 2] + [------------] *[-----] [------------] [ p + s ] [s + 2]{t} [ p + s ] [ ] [ ] [ -a - s ] [ -a + p ] [ ---------- ] [ ------- ] [ 2 ] [ 9*s - 9 ]{t} [ s + s + 1 ]{t} These unevaluated ``Series`` or ``Parallel`` objects can convert into the resultant transfer function matrix using ``.doit()`` method or by ``.rewrite(TransferFunctionMatrix)``. >>> (-tfm_8 + tfm_10 + tfm_8*tfm_9).doit() TransferFunctionMatrix(((TransferFunction((a + s)*(s + 2)**3 - 3*(s + 2)**2*(s**2 + s + 1) - 9*(s + 2)*(s**2 + s + 1), (s + 2)**3*(s**2 + s + 1), s),), (TransferFunction((p + s)*(-3*p**4 + 9*p - 6), (p + s)**2*(s + 2), s),), (TransferFunction((-a + p)*(s + 2)*(s**2 + s + 1)**2 + (a + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + (3*a + 3*s)*(9*s - 9)*(s**2 + s + 1), (s + 2)*(9*s - 9)*(s**2 + s + 1)**2, s),))) >>> (-tfm_12 * -tfm_8 * -tfm_9).rewrite(TransferFunctionMatrix) TransferFunctionMatrix(((TransferFunction(3*(-3*a + 3*p)*(p + s)*(s + 2)*(s**2 + s + 1)**2 + 3*(-3*a - 3*s)*(p + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + 3*(a + s)*(s + 2)**2*(9*s - 9)*(-p**4 + 3*p - 2)*(s**2 + s + 1), (p + s)*(s + 2)**3*(9*s - 9)*(s**2 + s + 1)**2, s),), (TransferFunction(3*(-a + p)*(p + s)*(s + 2)**2*(-p**4 + 3*p - 2)*(s**2 + s + 1) + 3*(3*a + 3*s)*(p + s)**2*(s + 2)*(9*s - 9) + 3*(p + s)*(s + 2)*(9*s - 9)*(-3*p**4 + 9*p - 6)*(s**2 + s + 1), (p + s)**2*(s + 2)**3*(9*s - 9)*(s**2 + s + 1), s),))) See Also ======== TransferFunction, MIMOSeries, MIMOParallel, Feedback """ def __new__(cls, arg): expr_mat_arg = [] try: var = arg[0][0].var except TypeError: raise ValueError("`arg` param in TransferFunctionMatrix should " "strictly be a nested list containing TransferFunction objects.") for row_index, row in enumerate(arg): temp = [] for col_index, element in enumerate(row): if not isinstance(element, SISOLinearTimeInvariant): raise TypeError("Each element is expected to be of type `SISOLinearTimeInvariant`.") if var != element.var: raise ValueError("Conflicting value(s) found for `var`. All TransferFunction instances in " "TransferFunctionMatrix should use the same complex variable in Laplace domain.") temp.append(element.to_expr()) expr_mat_arg.append(temp) if isinstance(arg, (tuple, list, Tuple)): # Making nested Tuple (sympy.core.containers.Tuple) from nested list or nested Python tuple arg = Tuple(*(Tuple(*r, sympify=False) for r in arg), sympify=False) obj = super(TransferFunctionMatrix, cls).__new__(cls, arg) obj._expr_mat = ImmutableMatrix(expr_mat_arg) return obj @classmethod def from_Matrix(cls, matrix, var): """ Creates a new ``TransferFunctionMatrix`` efficiently from a SymPy Matrix of ``Expr`` objects. Parameters ========== matrix : ``ImmutableMatrix`` having ``Expr``/``Number`` elements. var : Symbol Complex variable of the Laplace transform which will be used by the all the ``TransferFunction`` objects in the ``TransferFunctionMatrix``. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix >>> from sympy import Matrix, pprint >>> M = Matrix([[s, 1/s], [1/(s+1), s]]) >>> M_tf = TransferFunctionMatrix.from_Matrix(M, s) >>> pprint(M_tf, use_unicode=False) [ s 1] [ - -] [ 1 s] [ ] [ 1 s] [----- -] [s + 1 1]{t} >>> M_tf.elem_poles() [[[], [0]], [[-1], []]] >>> M_tf.elem_zeros() [[[0], []], [[], [0]]] """ return _to_TFM(matrix, var) @property def var(self): """ Returns the complex variable used by all the transfer functions or ``Series``/``Parallel`` objects in a transfer function matrix. Examples ======== >>> from sympy.abc import p, s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> G4 = TransferFunction(s + 1, s**2 + s + 1, s) >>> S1 = Series(G1, G2) >>> S2 = Series(-G3, Parallel(G2, -G1)) >>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]]) >>> tfm1.var p >>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]]) >>> tfm2.var p >>> tfm3 = TransferFunctionMatrix([[G4]]) >>> tfm3.var s """ return self.args[0][0][0].var @property def num_inputs(self): """ Returns the number of inputs of the system. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> G1 = TransferFunction(s + 3, s**2 - 3, s) >>> G2 = TransferFunction(4, s**2, s) >>> G3 = TransferFunction(p**2 + s**2, p - 3, s) >>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]]) >>> tfm_1.num_inputs 3 See Also ======== num_outputs """ return self._expr_mat.shape[1] @property def num_outputs(self): """ Returns the number of outputs of the system. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix >>> from sympy import Matrix >>> M_1 = Matrix([[s], [1/s]]) >>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s) >>> print(TFM) TransferFunctionMatrix(((TransferFunction(s, 1, s),), (TransferFunction(1, s, s),))) >>> TFM.num_outputs 2 See Also ======== num_inputs """ return self._expr_mat.shape[0] @property def shape(self): """ Returns the shape of the transfer function matrix, that is, ``(# of outputs, # of inputs)``. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p) >>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p) >>> tf3 = TransferFunction(3, 4, p) >>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]]) >>> tfm1.shape (1, 2) >>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]]) >>> tfm2.shape (2, 2) """ return self._expr_mat.shape def __neg__(self): neg = -self._expr_mat return _to_TFM(neg, self.var) @_check_other_MIMO def __add__(self, other): if not isinstance(other, MIMOParallel): return MIMOParallel(self, other) other_arg_list = list(other.args) return MIMOParallel(self, *other_arg_list) @_check_other_MIMO def __sub__(self, other): return self + (-other) @_check_other_MIMO def __mul__(self, other): if not isinstance(other, MIMOSeries): return MIMOSeries(other, self) other_arg_list = list(other.args) return MIMOSeries(*other_arg_list, self) def __getitem__(self, key): trunc = self._expr_mat.__getitem__(key) if isinstance(trunc, ImmutableMatrix): return _to_TFM(trunc, self.var) return TransferFunction.from_rational_expression(trunc, self.var) def transpose(self): """Returns the transpose of the ``TransferFunctionMatrix`` (switched input and output layers).""" transposed_mat = self._expr_mat.transpose() return _to_TFM(transposed_mat, self.var) def elem_poles(self): """ Returns the poles of each element of the ``TransferFunctionMatrix``. .. note:: Actual poles of a MIMO system are NOT the poles of individual elements. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf_1 = TransferFunction(3, (s + 1), s) >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) >>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s)))) >>> tfm_1.elem_poles() [[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]] See Also ======== elem_zeros """ return [[element.poles() for element in row] for row in self.doit().args[0]] def elem_zeros(self): """ Returns the zeros of each element of the ``TransferFunctionMatrix``. .. note:: Actual zeros of a MIMO system are NOT the zeros of individual elements. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf_1 = TransferFunction(3, (s + 1), s) >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) >>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)))) >>> tfm_1.elem_zeros() [[[], [-6]], [[-3], [4, 5]]] See Also ======== elem_poles """ return [[element.zeros() for element in row] for row in self.doit().args[0]] def _flat(self): """Returns flattened list of args in TransferFunctionMatrix""" return [elem for tup in self.args[0] for elem in tup] def _eval_evalf(self, prec): """Calls evalf() on each transfer function in the transfer function matrix""" dps = prec_to_dps(prec) mat = self._expr_mat.applyfunc(lambda a: a.evalf(n=dps)) return _to_TFM(mat, self.var) def _eval_simplify(self, **kwargs): """Simplifies the transfer function matrix""" simp_mat = self._expr_mat.applyfunc(lambda a: cancel(a, expand=False)) return _to_TFM(simp_mat, self.var) def expand(self, **hints): """Expands the transfer function matrix""" expand_mat = self._expr_mat.expand(**hints) return _to_TFM(expand_mat, self.var)
436e5e803854b3ec6b961e68cb86419673aa179a49b50d52468dbcaf99e7b9d6
from sympy.core.numbers import I, pi from sympy.functions.elementary.exponential import (exp, log) from sympy.polys.partfrac import apart from sympy.core.symbol import Dummy from sympy.external import import_module from sympy.functions import arg, Abs from sympy.integrals.laplace import _fast_inverse_laplace from sympy.physics.control.lti import SISOLinearTimeInvariant from sympy.plotting.plot import LineOver1DRangeSeries from sympy.polys.polytools import Poly from sympy.printing.latex import latex __all__ = ['pole_zero_numerical_data', 'pole_zero_plot', 'step_response_numerical_data', 'step_response_plot', 'impulse_response_numerical_data', 'impulse_response_plot', 'ramp_response_numerical_data', 'ramp_response_plot', 'bode_magnitude_numerical_data', 'bode_phase_numerical_data', 'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot'] matplotlib = import_module( 'matplotlib', import_kwargs={'fromlist': ['pyplot']}, catch=(RuntimeError,)) numpy = import_module('numpy') if matplotlib: plt = matplotlib.pyplot if numpy: np = numpy # Matplotlib already has numpy as a compulsory dependency. No need to install it separately. def _check_system(system): """Function to check whether the dynamical system passed for plots is compatible or not.""" if not isinstance(system, SISOLinearTimeInvariant): raise NotImplementedError("Only SISO LTI systems are currently supported.") sys = system.to_expr() len_free_symbols = len(sys.free_symbols) if len_free_symbols > 1: raise ValueError("Extra degree of freedom found. Make sure" " that there are no free symbols in the dynamical system other" " than the variable of Laplace transform.") if sys.has(exp): # Should test that exp is not part of a constant, in which case # no exception is required, compare exp(s) with s*exp(1) raise NotImplementedError("Time delay terms are not supported.") def pole_zero_numerical_data(system): """ Returns the numerical data of poles and zeros of the system. It is internally used by ``pole_zero_plot`` to get the data for plotting poles and zeros. Users can use this data to further analyse the dynamics of the system or plot using a different backend/plotting-module. Parameters ========== system : SISOLinearTimeInvariant The system for which the pole-zero data is to be computed. Returns ======= tuple : (zeros, poles) zeros = Zeros of the system. NumPy array of complex numbers. poles = Poles of the system. NumPy array of complex numbers. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import pole_zero_numerical_data >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s) >>> pole_zero_numerical_data(tf1) # doctest: +SKIP ([-0.+1.j 0.-1.j], [-2. +0.j -0.5+0.8660254j -0.5-0.8660254j -1. +0.j ]) See Also ======== pole_zero_plot """ _check_system(system) system = system.doit() # Get the equivalent TransferFunction object. num_poly = Poly(system.num, system.var).all_coeffs() den_poly = Poly(system.den, system.var).all_coeffs() num_poly = np.array(num_poly, dtype=np.complex128) den_poly = np.array(den_poly, dtype=np.complex128) zeros = np.roots(num_poly) poles = np.roots(den_poly) return zeros, poles def pole_zero_plot(system, pole_color='blue', pole_markersize=10, zero_color='orange', zero_markersize=7, grid=True, show_axes=True, show=True, **kwargs): r""" Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system. A Pole-Zero plot is a graphical representation of a system's poles and zeros. It is plotted on a complex plane, with circular markers representing the system's zeros and 'x' shaped markers representing the system's poles. Parameters ========== system : SISOLinearTimeInvariant type systems The system for which the pole-zero plot is to be computed. pole_color : str, tuple, optional The color of the pole points on the plot. Default color is blue. The color can be provided as a matplotlib color string, or a 3-tuple of floats each in the 0-1 range. pole_markersize : Number, optional The size of the markers used to mark the poles in the plot. Default pole markersize is 10. zero_color : str, tuple, optional The color of the zero points on the plot. Default color is orange. The color can be provided as a matplotlib color string, or a 3-tuple of floats each in the 0-1 range. zero_markersize : Number, optional The size of the markers used to mark the zeros in the plot. Default zero markersize is 7. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import pole_zero_plot >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s) >>> pole_zero_plot(tf1) # doctest: +SKIP See Also ======== pole_zero_numerical_data References ========== .. [1] https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot """ zeros, poles = pole_zero_numerical_data(system) zero_real = np.real(zeros) zero_imag = np.imag(zeros) pole_real = np.real(poles) pole_imag = np.imag(poles) plt.plot(pole_real, pole_imag, 'x', mfc='none', markersize=pole_markersize, color=pole_color) plt.plot(zero_real, zero_imag, 'o', markersize=zero_markersize, color=zero_color) plt.xlabel('Real Axis') plt.ylabel('Imaginary Axis') plt.title(f'Poles and Zeros of ${latex(system)}$', pad=20) if grid: plt.grid() if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def step_response_numerical_data(system, prec=8, lower_limit=0, upper_limit=10, **kwargs): """ Returns the numerical values of the points in the step response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly sampled response, then ``adaptive`` kwarg should be passed ``False`` and ``nb_of_points`` must be passed as additional kwargs. Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries` for more details. Parameters ========== system : SISOLinearTimeInvariant The system for which the unit step response data is to be computed. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. kwargs : Additional keyword arguments are passed to the underlying :class:`sympy.plotting.plot.LineOver1DRangeSeries` class. Returns ======= tuple : (x, y) x = Time-axis values of the points in the step response. NumPy array. y = Amplitude-axis values of the points in the step response. NumPy array. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. When ``lower_limit`` parameter is less than 0. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import step_response_numerical_data >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s) >>> step_response_numerical_data(tf1) # doctest: +SKIP ([0.0, 0.025413462339411542, 0.0484508722725343, ... , 9.670250533855183, 9.844291913708725, 10.0], [0.0, 0.023844582399907256, 0.042894276802320226, ..., 6.828770759094287e-12, 6.456457160755703e-12]) See Also ======== step_response_plot """ if lower_limit < 0: raise ValueError("Lower limit of time must be greater " "than or equal to zero.") _check_system(system) _x = Dummy("x") expr = system.to_expr()/(system.var) expr = apart(expr, system.var, full=True) _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec) return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit), **kwargs).get_points() def step_response_plot(system, color='b', prec=8, lower_limit=0, upper_limit=10, show_axes=False, grid=True, show=True, **kwargs): r""" Returns the unit step response of a continuous-time system. It is the response of the system when the input signal is a step function. Parameters ========== system : SISOLinearTimeInvariant type The LTI SISO system for which the Step Response is to be computed. color : str, tuple, optional The color of the line. Default is Blue. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import step_response_plot >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s) >>> step_response_plot(tf1) # doctest: +SKIP See Also ======== impulse_response_plot, ramp_response_plot References ========== .. [1] https://www.mathworks.com/help/control/ref/lti.step.html """ x, y = step_response_numerical_data(system, prec=prec, lower_limit=lower_limit, upper_limit=upper_limit, **kwargs) plt.plot(x, y, color=color) plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title(f'Unit Step Response of ${latex(system)}$', pad=20) if grid: plt.grid() if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def impulse_response_numerical_data(system, prec=8, lower_limit=0, upper_limit=10, **kwargs): """ Returns the numerical values of the points in the impulse response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly sampled response, then ``adaptive`` kwarg should be passed ``False`` and ``nb_of_points`` must be passed as additional kwargs. Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries` for more details. Parameters ========== system : SISOLinearTimeInvariant The system for which the impulse response data is to be computed. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. kwargs : Additional keyword arguments are passed to the underlying :class:`sympy.plotting.plot.LineOver1DRangeSeries` class. Returns ======= tuple : (x, y) x = Time-axis values of the points in the impulse response. NumPy array. y = Amplitude-axis values of the points in the impulse response. NumPy array. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. When ``lower_limit`` parameter is less than 0. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import impulse_response_numerical_data >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s) >>> impulse_response_numerical_data(tf1) # doctest: +SKIP ([0.0, 0.06616480200395854,... , 9.854500743565858, 10.0], [0.9999999799999999, 0.7042848373025861,...,7.170748906965121e-13, -5.1901263495547205e-12]) See Also ======== impulse_response_plot """ if lower_limit < 0: raise ValueError("Lower limit of time must be greater " "than or equal to zero.") _check_system(system) _x = Dummy("x") expr = system.to_expr() expr = apart(expr, system.var, full=True) _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec) return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit), **kwargs).get_points() def impulse_response_plot(system, color='b', prec=8, lower_limit=0, upper_limit=10, show_axes=False, grid=True, show=True, **kwargs): r""" Returns the unit impulse response (Input is the Dirac-Delta Function) of a continuous-time system. Parameters ========== system : SISOLinearTimeInvariant type The LTI SISO system for which the Impulse Response is to be computed. color : str, tuple, optional The color of the line. Default is Blue. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import impulse_response_plot >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s) >>> impulse_response_plot(tf1) # doctest: +SKIP See Also ======== step_response_plot, ramp_response_plot References ========== .. [1] https://www.mathworks.com/help/control/ref/lti.impulse.html """ x, y = impulse_response_numerical_data(system, prec=prec, lower_limit=lower_limit, upper_limit=upper_limit, **kwargs) plt.plot(x, y, color=color) plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title(f'Impulse Response of ${latex(system)}$', pad=20) if grid: plt.grid() if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def ramp_response_numerical_data(system, slope=1, prec=8, lower_limit=0, upper_limit=10, **kwargs): """ Returns the numerical values of the points in the ramp response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly sampled response, then ``adaptive`` kwarg should be passed ``False`` and ``nb_of_points`` must be passed as additional kwargs. Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries` for more details. Parameters ========== system : SISOLinearTimeInvariant The system for which the ramp response data is to be computed. slope : Number, optional The slope of the input ramp function. Defaults to 1. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. kwargs : Additional keyword arguments are passed to the underlying :class:`sympy.plotting.plot.LineOver1DRangeSeries` class. Returns ======= tuple : (x, y) x = Time-axis values of the points in the ramp response plot. NumPy array. y = Amplitude-axis values of the points in the ramp response plot. NumPy array. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. When ``lower_limit`` parameter is less than 0. When ``slope`` is negative. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import ramp_response_numerical_data >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s) >>> ramp_response_numerical_data(tf1) # doctest: +SKIP (([0.0, 0.12166980856813935,..., 9.861246379582118, 10.0], [1.4504508011325967e-09, 0.006046440489058766,..., 0.12499999999568202, 0.12499999999661349])) See Also ======== ramp_response_plot """ if slope < 0: raise ValueError("Slope must be greater than or equal" " to zero.") if lower_limit < 0: raise ValueError("Lower limit of time must be greater " "than or equal to zero.") _check_system(system) _x = Dummy("x") expr = (slope*system.to_expr())/((system.var)**2) expr = apart(expr, system.var, full=True) _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec) return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit), **kwargs).get_points() def ramp_response_plot(system, slope=1, color='b', prec=8, lower_limit=0, upper_limit=10, show_axes=False, grid=True, show=True, **kwargs): r""" Returns the ramp response of a continuous-time system. Ramp function is defined as the straight line passing through origin ($f(x) = mx$). The slope of the ramp function can be varied by the user and the default value is 1. Parameters ========== system : SISOLinearTimeInvariant type The LTI SISO system for which the Ramp Response is to be computed. slope : Number, optional The slope of the input ramp function. Defaults to 1. color : str, tuple, optional The color of the line. Default is Blue. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import ramp_response_plot >>> tf1 = TransferFunction(s, (s+4)*(s+8), s) >>> ramp_response_plot(tf1, upper_limit=2) # doctest: +SKIP See Also ======== step_response_plot, ramp_response_plot References ========== .. [1] https://en.wikipedia.org/wiki/Ramp_function """ x, y = ramp_response_numerical_data(system, slope=slope, prec=prec, lower_limit=lower_limit, upper_limit=upper_limit, **kwargs) plt.plot(x, y, color=color) plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title(f'Ramp Response of ${latex(system)}$ [Slope = {slope}]', pad=20) if grid: plt.grid() if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def bode_magnitude_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', **kwargs): """ Returns the numerical data of the Bode magnitude plot of the system. It is internally used by ``bode_magnitude_plot`` to get the data for plotting Bode magnitude plot. Users can use this data to further analyse the dynamics of the system or plot using a different backend/plotting-module. Parameters ========== system : SISOLinearTimeInvariant The system for which the data is to be computed. initial_exp : Number, optional The initial exponent of 10 of the semilog plot. Defaults to -5. final_exp : Number, optional The final exponent of 10 of the semilog plot. Defaults to 5. freq_unit : string, optional User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units. Returns ======= tuple : (x, y) x = x-axis values of the Bode magnitude plot. y = y-axis values of the Bode magnitude plot. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. When incorrect frequency units are given as input. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import bode_magnitude_numerical_data >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s) >>> bode_magnitude_numerical_data(tf1) # doctest: +SKIP ([1e-05, 1.5148378120533502e-05,..., 68437.36188804005, 100000.0], [-6.020599914256786, -6.0205999155219505,..., -193.4117304087953, -200.00000000260573]) See Also ======== bode_magnitude_plot, bode_phase_numerical_data """ _check_system(system) expr = system.to_expr() freq_units = ('rad/sec', 'Hz') if freq_unit not in freq_units: raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.') _w = Dummy("w", real=True) if freq_unit == 'Hz': repl = I*_w*2*pi else: repl = I*_w w_expr = expr.subs({system.var: repl}) mag = 20*log(Abs(w_expr), 10) x, y = LineOver1DRangeSeries(mag, (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points() return x, y def bode_magnitude_plot(system, initial_exp=-5, final_exp=5, color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', **kwargs): r""" Returns the Bode magnitude plot of a continuous-time system. See ``bode_plot`` for all the parameters. """ x, y = bode_magnitude_numerical_data(system, initial_exp=initial_exp, final_exp=final_exp, freq_unit=freq_unit) plt.plot(x, y, color=color, **kwargs) plt.xscale('log') plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit) plt.ylabel('Magnitude (dB)') plt.title(f'Bode Plot (Magnitude) of ${latex(system)}$', pad=20) if grid: plt.grid(True) if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def bode_phase_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', phase_unit='rad', **kwargs): """ Returns the numerical data of the Bode phase plot of the system. It is internally used by ``bode_phase_plot`` to get the data for plotting Bode phase plot. Users can use this data to further analyse the dynamics of the system or plot using a different backend/plotting-module. Parameters ========== system : SISOLinearTimeInvariant The system for which the Bode phase plot data is to be computed. initial_exp : Number, optional The initial exponent of 10 of the semilog plot. Defaults to -5. final_exp : Number, optional The final exponent of 10 of the semilog plot. Defaults to 5. freq_unit : string, optional User can choose between ``'rad/sec'`` (radians/second) and '``'Hz'`` (Hertz) as frequency units. phase_unit : string, optional User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units. Returns ======= tuple : (x, y) x = x-axis values of the Bode phase plot. y = y-axis values of the Bode phase plot. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. When incorrect frequency or phase units are given as input. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import bode_phase_numerical_data >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s) >>> bode_phase_numerical_data(tf1) # doctest: +SKIP ([1e-05, 1.4472354033813751e-05, 2.035581932165858e-05,..., 47577.3248186011, 67884.09326036123, 100000.0], [-2.5000000000291665e-05, -3.6180885085e-05, -5.08895483066e-05,...,-3.1415085799262523, -3.14155265358979]) See Also ======== bode_magnitude_plot, bode_phase_numerical_data """ _check_system(system) expr = system.to_expr() freq_units = ('rad/sec', 'Hz') phase_units = ('rad', 'deg') if freq_unit not in freq_units: raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.') if phase_unit not in phase_units: raise ValueError('Only "rad" and "deg" are accepted phase units.') _w = Dummy("w", real=True) if freq_unit == 'Hz': repl = I*_w*2*pi else: repl = I*_w w_expr = expr.subs({system.var: repl}) if phase_unit == 'deg': phase = arg(w_expr)*180/pi else: phase = arg(w_expr) x, y = LineOver1DRangeSeries(phase, (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points() return x, y def bode_phase_plot(system, initial_exp=-5, final_exp=5, color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs): r""" Returns the Bode phase plot of a continuous-time system. See ``bode_plot`` for all the parameters. """ x, y = bode_phase_numerical_data(system, initial_exp=initial_exp, final_exp=final_exp, freq_unit=freq_unit, phase_unit=phase_unit) plt.plot(x, y, color=color, **kwargs) plt.xscale('log') plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit) plt.ylabel('Phase (%s)' % phase_unit) plt.title(f'Bode Plot (Phase) of ${latex(system)}$', pad=20) if grid: plt.grid(True) if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def bode_plot(system, initial_exp=-5, final_exp=5, grid=True, show_axes=False, show=True, freq_unit='rad/sec', phase_unit='rad', **kwargs): r""" Returns the Bode phase and magnitude plots of a continuous-time system. Parameters ========== system : SISOLinearTimeInvariant type The LTI SISO system for which the Bode Plot is to be computed. initial_exp : Number, optional The initial exponent of 10 of the semilog plot. Defaults to -5. final_exp : Number, optional The final exponent of 10 of the semilog plot. Defaults to 5. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. freq_unit : string, optional User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units. phase_unit : string, optional User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import bode_plot >>> tf1 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s) >>> bode_plot(tf1, initial_exp=0.2, final_exp=0.7) # doctest: +SKIP See Also ======== bode_magnitude_plot, bode_phase_plot """ plt.subplot(211) mag = bode_magnitude_plot(system, initial_exp=initial_exp, final_exp=final_exp, show=False, grid=grid, show_axes=show_axes, freq_unit=freq_unit, **kwargs) mag.title(f'Bode Plot of ${latex(system)}$', pad=20) mag.xlabel(None) plt.subplot(212) bode_phase_plot(system, initial_exp=initial_exp, final_exp=final_exp, show=False, grid=grid, show_axes=show_axes, freq_unit=freq_unit, phase_unit=phase_unit, **kwargs).title(None) if show: plt.show() return return plt
661fe38b927461e032d807b3b1070757d5b689c5a869add9c136df8c2090989a
from collections import deque from sympy.core.random import randint from sympy.external import import_module from sympy.core.basic import Basic from sympy.core.mul import Mul from sympy.core.numbers import Number, equal_valued from sympy.core.power import Pow from sympy.core.singleton import S from sympy.physics.quantum.represent import represent from sympy.physics.quantum.dagger import Dagger __all__ = [ # Public interfaces 'generate_gate_rules', 'generate_equivalent_ids', 'GateIdentity', 'bfs_identity_search', 'random_identity_search', # "Private" functions 'is_scalar_sparse_matrix', 'is_scalar_nonsparse_matrix', 'is_degenerate', 'is_reducible', ] np = import_module('numpy') scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) def is_scalar_sparse_matrix(circuit, nqubits, identity_only, eps=1e-11): """Checks if a given scipy.sparse matrix is a scalar matrix. A scalar matrix is such that B = bI, where B is the scalar matrix, b is some scalar multiple, and I is the identity matrix. A scalar matrix would have only the element b along it's main diagonal and zeroes elsewhere. Parameters ========== circuit : Gate tuple Sequence of quantum gates representing a quantum circuit nqubits : int Number of qubits in the circuit identity_only : bool Check for only identity matrices eps : number The tolerance value for zeroing out elements in the matrix. Values in the range [-eps, +eps] will be changed to a zero. """ if not np or not scipy: pass matrix = represent(Mul(*circuit), nqubits=nqubits, format='scipy.sparse') # In some cases, represent returns a 1D scalar value in place # of a multi-dimensional scalar matrix if (isinstance(matrix, int)): return matrix == 1 if identity_only else True # If represent returns a matrix, check if the matrix is diagonal # and if every item along the diagonal is the same else: # Due to floating pointing operations, must zero out # elements that are "very" small in the dense matrix # See parameter for default value. # Get the ndarray version of the dense matrix dense_matrix = matrix.todense().getA() # Since complex values can't be compared, must split # the matrix into real and imaginary components # Find the real values in between -eps and eps bool_real = np.logical_and(dense_matrix.real > -eps, dense_matrix.real < eps) # Find the imaginary values between -eps and eps bool_imag = np.logical_and(dense_matrix.imag > -eps, dense_matrix.imag < eps) # Replaces values between -eps and eps with 0 corrected_real = np.where(bool_real, 0.0, dense_matrix.real) corrected_imag = np.where(bool_imag, 0.0, dense_matrix.imag) # Convert the matrix with real values into imaginary values corrected_imag = corrected_imag * complex(1j) # Recombine the real and imaginary components corrected_dense = corrected_real + corrected_imag # Check if it's diagonal row_indices = corrected_dense.nonzero()[0] col_indices = corrected_dense.nonzero()[1] # Check if the rows indices and columns indices are the same # If they match, then matrix only contains elements along diagonal bool_indices = row_indices == col_indices is_diagonal = bool_indices.all() first_element = corrected_dense[0][0] # If the first element is a zero, then can't rescale matrix # and definitely not diagonal if (first_element == 0.0 + 0.0j): return False # The dimensions of the dense matrix should still # be 2^nqubits if there are elements all along the # the main diagonal trace_of_corrected = (corrected_dense/first_element).trace() expected_trace = pow(2, nqubits) has_correct_trace = trace_of_corrected == expected_trace # If only looking for identity matrices # first element must be a 1 real_is_one = abs(first_element.real - 1.0) < eps imag_is_zero = abs(first_element.imag) < eps is_one = real_is_one and imag_is_zero is_identity = is_one if identity_only else True return bool(is_diagonal and has_correct_trace and is_identity) def is_scalar_nonsparse_matrix(circuit, nqubits, identity_only, eps=None): """Checks if a given circuit, in matrix form, is equivalent to a scalar value. Parameters ========== circuit : Gate tuple Sequence of quantum gates representing a quantum circuit nqubits : int Number of qubits in the circuit identity_only : bool Check for only identity matrices eps : number This argument is ignored. It is just for signature compatibility with is_scalar_sparse_matrix. Note: Used in situations when is_scalar_sparse_matrix has bugs """ matrix = represent(Mul(*circuit), nqubits=nqubits) # In some cases, represent returns a 1D scalar value in place # of a multi-dimensional scalar matrix if (isinstance(matrix, Number)): return matrix == 1 if identity_only else True # If represent returns a matrix, check if the matrix is diagonal # and if every item along the diagonal is the same else: # Added up the diagonal elements matrix_trace = matrix.trace() # Divide the trace by the first element in the matrix # if matrix is not required to be the identity matrix adjusted_matrix_trace = (matrix_trace/matrix[0] if not identity_only else matrix_trace) is_identity = equal_valued(matrix[0], 1) if identity_only else True has_correct_trace = adjusted_matrix_trace == pow(2, nqubits) # The matrix is scalar if it's diagonal and the adjusted trace # value is equal to 2^nqubits return bool( matrix.is_diagonal() and has_correct_trace and is_identity) if np and scipy: is_scalar_matrix = is_scalar_sparse_matrix else: is_scalar_matrix = is_scalar_nonsparse_matrix def _get_min_qubits(a_gate): if isinstance(a_gate, Pow): return a_gate.base.min_qubits else: return a_gate.min_qubits def ll_op(left, right): """Perform a LL operation. A LL operation multiplies both left and right circuits with the dagger of the left circuit's leftmost gate, and the dagger is multiplied on the left side of both circuits. If a LL is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a LL is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a LL operation: >>> from sympy.physics.quantum.identitysearch import ll_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> ll_op((x, y, z), ()) ((Y(0), Z(0)), (X(0),)) >>> ll_op((y, z), (x,)) ((Z(0),), (Y(0), X(0))) """ if (len(left) > 0): ll_gate = left[0] ll_gate_is_unitary = is_scalar_matrix( (Dagger(ll_gate), ll_gate), _get_min_qubits(ll_gate), True) if (len(left) > 0 and ll_gate_is_unitary): # Get the new left side w/o the leftmost gate new_left = left[1:len(left)] # Add the leftmost gate to the left position on the right side new_right = (Dagger(ll_gate),) + right # Return the new gate rule return (new_left, new_right) return None def lr_op(left, right): """Perform a LR operation. A LR operation multiplies both left and right circuits with the dagger of the left circuit's rightmost gate, and the dagger is multiplied on the right side of both circuits. If a LR is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a LR is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a LR operation: >>> from sympy.physics.quantum.identitysearch import lr_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> lr_op((x, y, z), ()) ((X(0), Y(0)), (Z(0),)) >>> lr_op((x, y), (z,)) ((X(0),), (Z(0), Y(0))) """ if (len(left) > 0): lr_gate = left[len(left) - 1] lr_gate_is_unitary = is_scalar_matrix( (Dagger(lr_gate), lr_gate), _get_min_qubits(lr_gate), True) if (len(left) > 0 and lr_gate_is_unitary): # Get the new left side w/o the rightmost gate new_left = left[0:len(left) - 1] # Add the rightmost gate to the right position on the right side new_right = right + (Dagger(lr_gate),) # Return the new gate rule return (new_left, new_right) return None def rl_op(left, right): """Perform a RL operation. A RL operation multiplies both left and right circuits with the dagger of the right circuit's leftmost gate, and the dagger is multiplied on the left side of both circuits. If a RL is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a RL is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a RL operation: >>> from sympy.physics.quantum.identitysearch import rl_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> rl_op((x,), (y, z)) ((Y(0), X(0)), (Z(0),)) >>> rl_op((x, y), (z,)) ((Z(0), X(0), Y(0)), ()) """ if (len(right) > 0): rl_gate = right[0] rl_gate_is_unitary = is_scalar_matrix( (Dagger(rl_gate), rl_gate), _get_min_qubits(rl_gate), True) if (len(right) > 0 and rl_gate_is_unitary): # Get the new right side w/o the leftmost gate new_right = right[1:len(right)] # Add the leftmost gate to the left position on the left side new_left = (Dagger(rl_gate),) + left # Return the new gate rule return (new_left, new_right) return None def rr_op(left, right): """Perform a RR operation. A RR operation multiplies both left and right circuits with the dagger of the right circuit's rightmost gate, and the dagger is multiplied on the right side of both circuits. If a RR is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a RR is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a RR operation: >>> from sympy.physics.quantum.identitysearch import rr_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> rr_op((x, y), (z,)) ((X(0), Y(0), Z(0)), ()) >>> rr_op((x,), (y, z)) ((X(0), Z(0)), (Y(0),)) """ if (len(right) > 0): rr_gate = right[len(right) - 1] rr_gate_is_unitary = is_scalar_matrix( (Dagger(rr_gate), rr_gate), _get_min_qubits(rr_gate), True) if (len(right) > 0 and rr_gate_is_unitary): # Get the new right side w/o the rightmost gate new_right = right[0:len(right) - 1] # Add the rightmost gate to the right position on the right side new_left = left + (Dagger(rr_gate),) # Return the new gate rule return (new_left, new_right) return None def generate_gate_rules(gate_seq, return_as_muls=False): """Returns a set of gate rules. Each gate rules is represented as a 2-tuple of tuples or Muls. An empty tuple represents an arbitrary scalar value. This function uses the four operations (LL, LR, RL, RR) to generate the gate rules. A gate rule is an expression such as ABC = D or AB = CD, where A, B, C, and D are gates. Each value on either side of the equal sign represents a circuit. The four operations allow one to find a set of equivalent circuits from a gate identity. The letters denoting the operation tell the user what activities to perform on each expression. The first letter indicates which side of the equal sign to focus on. The second letter indicates which gate to focus on given the side. Once this information is determined, the inverse of the gate is multiplied on both circuits to create a new gate rule. For example, given the identity, ABCD = 1, a LL operation means look at the left value and multiply both left sides by the inverse of the leftmost gate A. If A is Hermitian, the inverse of A is still A. The resulting new rule is BCD = A. The following is a summary of the four operations. Assume that in the examples, all gates are Hermitian. LL : left circuit, left multiply ABCD = E -> AABCD = AE -> BCD = AE LR : left circuit, right multiply ABCD = E -> ABCDD = ED -> ABC = ED RL : right circuit, left multiply ABC = ED -> EABC = EED -> EABC = D RR : right circuit, right multiply AB = CD -> ABD = CDD -> ABD = C The number of gate rules generated is n*(n+1), where n is the number of gates in the sequence (unproven). Parameters ========== gate_seq : Gate tuple, Mul, or Number A variable length tuple or Mul of Gates whose product is equal to a scalar matrix return_as_muls : bool True to return a set of Muls; False to return a set of tuples Examples ======== Find the gate rules of the current circuit using tuples: >>> from sympy.physics.quantum.identitysearch import generate_gate_rules >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> generate_gate_rules((x, x)) {((X(0),), (X(0),)), ((X(0), X(0)), ())} >>> generate_gate_rules((x, y, z)) {((), (X(0), Z(0), Y(0))), ((), (Y(0), X(0), Z(0))), ((), (Z(0), Y(0), X(0))), ((X(0),), (Z(0), Y(0))), ((Y(0),), (X(0), Z(0))), ((Z(0),), (Y(0), X(0))), ((X(0), Y(0)), (Z(0),)), ((Y(0), Z(0)), (X(0),)), ((Z(0), X(0)), (Y(0),)), ((X(0), Y(0), Z(0)), ()), ((Y(0), Z(0), X(0)), ()), ((Z(0), X(0), Y(0)), ())} Find the gate rules of the current circuit using Muls: >>> generate_gate_rules(x*x, return_as_muls=True) {(1, 1)} >>> generate_gate_rules(x*y*z, return_as_muls=True) {(1, X(0)*Z(0)*Y(0)), (1, Y(0)*X(0)*Z(0)), (1, Z(0)*Y(0)*X(0)), (X(0)*Y(0), Z(0)), (Y(0)*Z(0), X(0)), (Z(0)*X(0), Y(0)), (X(0)*Y(0)*Z(0), 1), (Y(0)*Z(0)*X(0), 1), (Z(0)*X(0)*Y(0), 1), (X(0), Z(0)*Y(0)), (Y(0), X(0)*Z(0)), (Z(0), Y(0)*X(0))} """ if isinstance(gate_seq, Number): if return_as_muls: return {(S.One, S.One)} else: return {((), ())} elif isinstance(gate_seq, Mul): gate_seq = gate_seq.args # Each item in queue is a 3-tuple: # i) first item is the left side of an equality # ii) second item is the right side of an equality # iii) third item is the number of operations performed # The argument, gate_seq, will start on the left side, and # the right side will be empty, implying the presence of an # identity. queue = deque() # A set of gate rules rules = set() # Maximum number of operations to perform max_ops = len(gate_seq) def process_new_rule(new_rule, ops): if new_rule is not None: new_left, new_right = new_rule if new_rule not in rules and (new_right, new_left) not in rules: rules.add(new_rule) # If haven't reached the max limit on operations if ops + 1 < max_ops: queue.append(new_rule + (ops + 1,)) queue.append((gate_seq, (), 0)) rules.add((gate_seq, ())) while len(queue) > 0: left, right, ops = queue.popleft() # Do a LL new_rule = ll_op(left, right) process_new_rule(new_rule, ops) # Do a LR new_rule = lr_op(left, right) process_new_rule(new_rule, ops) # Do a RL new_rule = rl_op(left, right) process_new_rule(new_rule, ops) # Do a RR new_rule = rr_op(left, right) process_new_rule(new_rule, ops) if return_as_muls: # Convert each rule as tuples into a rule as muls mul_rules = set() for rule in rules: left, right = rule mul_rules.add((Mul(*left), Mul(*right))) rules = mul_rules return rules def generate_equivalent_ids(gate_seq, return_as_muls=False): """Returns a set of equivalent gate identities. A gate identity is a quantum circuit such that the product of the gates in the circuit is equal to a scalar value. For example, XYZ = i, where X, Y, Z are the Pauli gates and i is the imaginary value, is considered a gate identity. This function uses the four operations (LL, LR, RL, RR) to generate the gate rules and, subsequently, to locate equivalent gate identities. Note that all equivalent identities are reachable in n operations from the starting gate identity, where n is the number of gates in the sequence. The max number of gate identities is 2n, where n is the number of gates in the sequence (unproven). Parameters ========== gate_seq : Gate tuple, Mul, or Number A variable length tuple or Mul of Gates whose product is equal to a scalar matrix. return_as_muls: bool True to return as Muls; False to return as tuples Examples ======== Find equivalent gate identities from the current circuit with tuples: >>> from sympy.physics.quantum.identitysearch import generate_equivalent_ids >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> generate_equivalent_ids((x, x)) {(X(0), X(0))} >>> generate_equivalent_ids((x, y, z)) {(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)), (Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))} Find equivalent gate identities from the current circuit with Muls: >>> generate_equivalent_ids(x*x, return_as_muls=True) {1} >>> generate_equivalent_ids(x*y*z, return_as_muls=True) {X(0)*Y(0)*Z(0), X(0)*Z(0)*Y(0), Y(0)*X(0)*Z(0), Y(0)*Z(0)*X(0), Z(0)*X(0)*Y(0), Z(0)*Y(0)*X(0)} """ if isinstance(gate_seq, Number): return {S.One} elif isinstance(gate_seq, Mul): gate_seq = gate_seq.args # Filter through the gate rules and keep the rules # with an empty tuple either on the left or right side # A set of equivalent gate identities eq_ids = set() gate_rules = generate_gate_rules(gate_seq) for rule in gate_rules: l, r = rule if l == (): eq_ids.add(r) elif r == (): eq_ids.add(l) if return_as_muls: convert_to_mul = lambda id_seq: Mul(*id_seq) eq_ids = set(map(convert_to_mul, eq_ids)) return eq_ids class GateIdentity(Basic): """Wrapper class for circuits that reduce to a scalar value. A gate identity is a quantum circuit such that the product of the gates in the circuit is equal to a scalar value. For example, XYZ = i, where X, Y, Z are the Pauli gates and i is the imaginary value, is considered a gate identity. Parameters ========== args : Gate tuple A variable length tuple of Gates that form an identity. Examples ======== Create a GateIdentity and look at its attributes: >>> from sympy.physics.quantum.identitysearch import GateIdentity >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> an_identity = GateIdentity(x, y, z) >>> an_identity.circuit X(0)*Y(0)*Z(0) >>> an_identity.equivalent_ids {(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)), (Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))} """ def __new__(cls, *args): # args should be a tuple - a variable length argument list obj = Basic.__new__(cls, *args) obj._circuit = Mul(*args) obj._rules = generate_gate_rules(args) obj._eq_ids = generate_equivalent_ids(args) return obj @property def circuit(self): return self._circuit @property def gate_rules(self): return self._rules @property def equivalent_ids(self): return self._eq_ids @property def sequence(self): return self.args def __str__(self): """Returns the string of gates in a tuple.""" return str(self.circuit) def is_degenerate(identity_set, gate_identity): """Checks if a gate identity is a permutation of another identity. Parameters ========== identity_set : set A Python set with GateIdentity objects. gate_identity : GateIdentity The GateIdentity to check for existence in the set. Examples ======== Check if the identity is a permutation of another identity: >>> from sympy.physics.quantum.identitysearch import ( ... GateIdentity, is_degenerate) >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> an_identity = GateIdentity(x, y, z) >>> id_set = {an_identity} >>> another_id = (y, z, x) >>> is_degenerate(id_set, another_id) True >>> another_id = (x, x) >>> is_degenerate(id_set, another_id) False """ # For now, just iteratively go through the set and check if the current # gate_identity is a permutation of an identity in the set for an_id in identity_set: if (gate_identity in an_id.equivalent_ids): return True return False def is_reducible(circuit, nqubits, begin, end): """Determines if a circuit is reducible by checking if its subcircuits are scalar values. Parameters ========== circuit : Gate tuple A tuple of Gates representing a circuit. The circuit to check if a gate identity is contained in a subcircuit. nqubits : int The number of qubits the circuit operates on. begin : int The leftmost gate in the circuit to include in a subcircuit. end : int The rightmost gate in the circuit to include in a subcircuit. Examples ======== Check if the circuit can be reduced: >>> from sympy.physics.quantum.identitysearch import is_reducible >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> is_reducible((x, y, z), 1, 0, 3) True Check if an interval in the circuit can be reduced: >>> is_reducible((x, y, z), 1, 1, 3) False >>> is_reducible((x, y, y), 1, 1, 3) True """ current_circuit = () # Start from the gate at "end" and go down to almost the gate at "begin" for ndx in reversed(range(begin, end)): next_gate = circuit[ndx] current_circuit = (next_gate,) + current_circuit # If a circuit as a matrix is equivalent to a scalar value if (is_scalar_matrix(current_circuit, nqubits, False)): return True return False def bfs_identity_search(gate_list, nqubits, max_depth=None, identity_only=False): """Constructs a set of gate identities from the list of possible gates. Performs a breadth first search over the space of gate identities. This allows the finding of the shortest gate identities first. Parameters ========== gate_list : list, Gate A list of Gates from which to search for gate identities. nqubits : int The number of qubits the quantum circuit operates on. max_depth : int The longest quantum circuit to construct from gate_list. identity_only : bool True to search for gate identities that reduce to identity; False to search for gate identities that reduce to a scalar. Examples ======== Find a list of gate identities: >>> from sympy.physics.quantum.identitysearch import bfs_identity_search >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> bfs_identity_search([x], 1, max_depth=2) {GateIdentity(X(0), X(0))} >>> bfs_identity_search([x, y, z], 1) {GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)), GateIdentity(Z(0), Z(0)), GateIdentity(X(0), Y(0), Z(0))} Find a list of identities that only equal to 1: >>> bfs_identity_search([x, y, z], 1, identity_only=True) {GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)), GateIdentity(Z(0), Z(0))} """ if max_depth is None or max_depth <= 0: max_depth = len(gate_list) id_only = identity_only # Start with an empty sequence (implicitly contains an IdentityGate) queue = deque([()]) # Create an empty set of gate identities ids = set() # Begin searching for gate identities in given space. while (len(queue) > 0): current_circuit = queue.popleft() for next_gate in gate_list: new_circuit = current_circuit + (next_gate,) # Determines if a (strict) subcircuit is a scalar matrix circuit_reducible = is_reducible(new_circuit, nqubits, 1, len(new_circuit)) # In many cases when the matrix is a scalar value, # the evaluated matrix will actually be an integer if (is_scalar_matrix(new_circuit, nqubits, id_only) and not is_degenerate(ids, new_circuit) and not circuit_reducible): ids.add(GateIdentity(*new_circuit)) elif (len(new_circuit) < max_depth and not circuit_reducible): queue.append(new_circuit) return ids def random_identity_search(gate_list, numgates, nqubits): """Randomly selects numgates from gate_list and checks if it is a gate identity. If the circuit is a gate identity, the circuit is returned; Otherwise, None is returned. """ gate_size = len(gate_list) circuit = () for i in range(numgates): next_gate = gate_list[randint(0, gate_size - 1)] circuit = circuit + (next_gate,) is_scalar = is_scalar_matrix(circuit, nqubits, False) return circuit if is_scalar else None
21256dc6642340bdbc9de01cbf22c30fa409b4b0053f0a2d081780acf983b857
"""Dirac notation for states.""" from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.numbers import oo, equal_valued from sympy.core.singleton import S from sympy.functions.elementary.complexes import conjugate from sympy.functions.elementary.miscellaneous import sqrt from sympy.integrals.integrals import integrate from sympy.printing.pretty.stringpict import stringPict from sympy.physics.quantum.qexpr import QExpr, dispatch_method __all__ = [ 'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState', 'TimeDepBra', 'TimeDepKet', 'OrthogonalKet', 'OrthogonalBra', 'OrthogonalState', 'Wavefunction' ] #----------------------------------------------------------------------------- # States, bras and kets. #----------------------------------------------------------------------------- # ASCII brackets _lbracket = "<" _rbracket = ">" _straight_bracket = "|" # Unicode brackets # MATHEMATICAL ANGLE BRACKETS _lbracket_ucode = "\N{MATHEMATICAL LEFT ANGLE BRACKET}" _rbracket_ucode = "\N{MATHEMATICAL RIGHT ANGLE BRACKET}" # LIGHT VERTICAL BAR _straight_bracket_ucode = "\N{LIGHT VERTICAL BAR}" # Other options for unicode printing of <, > and | for Dirac notation. # LEFT-POINTING ANGLE BRACKET # _lbracket = "\u2329" # _rbracket = "\u232A" # LEFT ANGLE BRACKET # _lbracket = "\u3008" # _rbracket = "\u3009" # VERTICAL LINE # _straight_bracket = "\u007C" class StateBase(QExpr): """Abstract base class for general abstract states in quantum mechanics. All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint and label. This is an abstract base class and you should not instantiate it directly, instead use State. """ @classmethod def _operators_to_state(self, ops, **options): """ Returns the eigenstate instance for the passed operators. This method should be overridden in subclasses. It will handle being passed either an Operator instance or set of Operator instances. It should return the corresponding state INSTANCE or simply raise a NotImplementedError. See cartesian.py for an example. """ raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!") def _state_to_operators(self, op_classes, **options): """ Returns the operators which this state instance is an eigenstate of. This method should be overridden in subclasses. It will be called on state instances and be passed the operator classes that we wish to make into instances. The state instance will then transform the classes appropriately, or raise a NotImplementedError if it cannot return operator instances. See cartesian.py for examples, """ raise NotImplementedError( "Cannot map this state to operators. Method not implemented!") @property def operators(self): """Return the operator(s) that this state is an eigenstate of""" from .operatorset import state_to_operators # import internally to avoid circular import errors return state_to_operators(self) def _enumerate_state(self, num_states, **options): raise NotImplementedError("Cannot enumerate this state!") def _represent_default_basis(self, **options): return self._represent(basis=self.operators) #------------------------------------------------------------------------- # Dagger/dual #------------------------------------------------------------------------- @property def dual(self): """Return the dual state of this one.""" return self.dual_class()._new_rawargs(self.hilbert_space, *self.args) @classmethod def dual_class(self): """Return the class used to construct the dual.""" raise NotImplementedError( 'dual_class must be implemented in a subclass' ) def _eval_adjoint(self): """Compute the dagger of this state using the dual.""" return self.dual #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _pretty_brackets(self, height, use_unicode=True): # Return pretty printed brackets for the state # Ideally, this could be done by pform.parens but it does not support the angled < and > # Setup for unicode vs ascii if use_unicode: lbracket, rbracket = getattr(self, 'lbracket_ucode', ""), getattr(self, 'rbracket_ucode', "") slash, bslash, vert = '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}', \ '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}', \ '\N{BOX DRAWINGS LIGHT VERTICAL}' else: lbracket, rbracket = getattr(self, 'lbracket', ""), getattr(self, 'rbracket', "") slash, bslash, vert = '/', '\\', '|' # If height is 1, just return brackets if height == 1: return stringPict(lbracket), stringPict(rbracket) # Make height even height += (height % 2) brackets = [] for bracket in lbracket, rbracket: # Create left bracket if bracket in {_lbracket, _lbracket_ucode}: bracket_args = [ ' ' * (height//2 - i - 1) + slash for i in range(height // 2)] bracket_args.extend( [' ' * i + bslash for i in range(height // 2)]) # Create right bracket elif bracket in {_rbracket, _rbracket_ucode}: bracket_args = [ ' ' * i + bslash for i in range(height // 2)] bracket_args.extend([ ' ' * ( height//2 - i - 1) + slash for i in range(height // 2)]) # Create straight bracket elif bracket in {_straight_bracket, _straight_bracket_ucode}: bracket_args = [vert] * height else: raise ValueError(bracket) brackets.append( stringPict('\n'.join(bracket_args), baseline=height//2)) return brackets def _sympystr(self, printer, *args): contents = self._print_contents(printer, *args) return '%s%s%s' % (getattr(self, 'lbracket', ""), contents, getattr(self, 'rbracket', "")) def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm # Get brackets pform = self._print_contents_pretty(printer, *args) lbracket, rbracket = self._pretty_brackets( pform.height(), printer._use_unicode) # Put together state pform = prettyForm(*pform.left(lbracket)) pform = prettyForm(*pform.right(rbracket)) return pform def _latex(self, printer, *args): contents = self._print_contents_latex(printer, *args) # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. return '{%s%s%s}' % (getattr(self, 'lbracket_latex', ""), contents, getattr(self, 'rbracket_latex', "")) class KetBase(StateBase): """Base class for Kets. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Ket. """ lbracket = _straight_bracket rbracket = _rbracket lbracket_ucode = _straight_bracket_ucode rbracket_ucode = _rbracket_ucode lbracket_latex = r'\left|' rbracket_latex = r'\right\rangle ' @classmethod def default_args(self): return ("psi",) @classmethod def dual_class(self): return BraBase def __mul__(self, other): """KetBase*other""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, BraBase): return OuterProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*KetBase""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, BraBase): return InnerProduct(other, self) else: return Expr.__rmul__(self, other) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_innerproduct(self, bra, **hints): """Evaluate the inner product between this ket and a bra. This is called to compute <bra|ket>, where the ket is ``self``. This method will dispatch to sub-methods having the format:: ``def _eval_innerproduct_BraClass(self, **hints):`` Subclasses should define these methods (one for each BraClass) to teach the ket how to take inner products with bras. """ return dispatch_method(self, '_eval_innerproduct', bra, **hints) def _apply_from_right_to(self, op, **options): """Apply an Operator to this Ket as Operator*Ket This method will dispatch to methods having the format:: ``def _apply_from_right_to_OperatorName(op, **options):`` Subclasses should define these methods (one for each OperatorName) to teach the Ket how to implement OperatorName*Ket Parameters ========== op : Operator The Operator that is acting on the Ket as op*Ket options : dict A dict of key/value pairs that control how the operator is applied to the Ket. """ return dispatch_method(self, '_apply_from_right_to', op, **options) class BraBase(StateBase): """Base class for Bras. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Bra. """ lbracket = _lbracket rbracket = _straight_bracket lbracket_ucode = _lbracket_ucode rbracket_ucode = _straight_bracket_ucode lbracket_latex = r'\left\langle ' rbracket_latex = r'\right|' @classmethod def _operators_to_state(self, ops, **options): state = self.dual_class()._operators_to_state(ops, **options) return state.dual def _state_to_operators(self, op_classes, **options): return self.dual._state_to_operators(op_classes, **options) def _enumerate_state(self, num_states, **options): dual_states = self.dual._enumerate_state(num_states, **options) return [x.dual for x in dual_states] @classmethod def default_args(self): return self.dual_class().default_args() @classmethod def dual_class(self): return KetBase def __mul__(self, other): """BraBase*other""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, KetBase): return InnerProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*BraBase""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, KetBase): return OuterProduct(other, self) else: return Expr.__rmul__(self, other) def _represent(self, **options): """A default represent that uses the Ket's version.""" from sympy.physics.quantum.dagger import Dagger return Dagger(self.dual._represent(**options)) class State(StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class Ket(State, KetBase): """A general time-independent Ket in quantum mechanics. Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class and its subclasses will be the main classes that users will use for expressing Kets in Dirac notation [1]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Ket and looking at its properties:: >>> from sympy.physics.quantum import Ket >>> from sympy import symbols, I >>> k = Ket('psi') >>> k |psi> >>> k.hilbert_space H >>> k.is_commutative False >>> k.label (psi,) Ket's know about their associated bra:: >>> k.dual <psi| >>> k.dual_class() <class 'sympy.physics.quantum.state.Bra'> Take a linear combination of two kets:: >>> k0 = Ket(0) >>> k1 = Ket(1) >>> 2*I*k0 - 4*k1 2*I*|0> - 4*|1> Compound labels are passed as tuples:: >>> n, m = symbols('n,m') >>> k = Ket(n,m) >>> k |nm> References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Bra class Bra(State, BraBase): """A general time-independent Bra in quantum mechanics. Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This class and its subclasses will be the main classes that users will use for expressing Bras in Dirac notation. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Bra and look at its properties:: >>> from sympy.physics.quantum import Bra >>> from sympy import symbols, I >>> b = Bra('psi') >>> b <psi| >>> b.hilbert_space H >>> b.is_commutative False Bra's know about their dual Ket's:: >>> b.dual |psi> >>> b.dual_class() <class 'sympy.physics.quantum.state.Ket'> Like Kets, Bras can have compound labels and be manipulated in a similar manner:: >>> n, m = symbols('n,m') >>> b = Bra(n,m) - I*Bra(m,n) >>> b -I*<mn| + <nm| Symbols in a Bra can be substituted using ``.subs``:: >>> b.subs(n,m) <mm| - I*<mm| References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Ket #----------------------------------------------------------------------------- # Time dependent states, bras and kets. #----------------------------------------------------------------------------- class TimeDepState(StateBase): """Base class for a general time-dependent quantum state. This class is used as a base class for any time-dependent state. The main difference between this class and the time-independent state is that this class takes a second argument that is the time in addition to the usual label argument. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. """ #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def default_args(self): return ("psi", "t") #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def label(self): """The label of the state.""" return self.args[:-1] @property def time(self): """The time of the state.""" return self.args[-1] #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print_time(self, printer, *args): return printer._print(self.time, *args) _print_time_repr = _print_time _print_time_latex = _print_time def _print_time_pretty(self, printer, *args): pform = printer._print(self.time, *args) return pform def _print_contents(self, printer, *args): label = self._print_label(printer, *args) time = self._print_time(printer, *args) return '%s;%s' % (label, time) def _print_label_repr(self, printer, *args): label = self._print_sequence(self.label, ',', printer, *args) time = self._print_time_repr(printer, *args) return '%s,%s' % (label, time) def _print_contents_pretty(self, printer, *args): label = self._print_label_pretty(printer, *args) time = self._print_time_pretty(printer, *args) return printer._print_seq((label, time), delimiter=';') def _print_contents_latex(self, printer, *args): label = self._print_sequence( self.label, self._label_separator, printer, *args) time = self._print_time_latex(printer, *args) return '%s;%s' % (label, time) class TimeDepKet(TimeDepState, KetBase): """General time-dependent Ket in quantum mechanics. This inherits from ``TimeDepState`` and ``KetBase`` and is the main class that should be used for Kets that vary with time. Its dual is a ``TimeDepBra``. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== Create a TimeDepKet and look at its attributes:: >>> from sympy.physics.quantum import TimeDepKet >>> k = TimeDepKet('psi', 't') >>> k |psi;t> >>> k.time t >>> k.label (psi,) >>> k.hilbert_space H TimeDepKets know about their dual bra:: >>> k.dual <psi;t| >>> k.dual_class() <class 'sympy.physics.quantum.state.TimeDepBra'> """ @classmethod def dual_class(self): return TimeDepBra class TimeDepBra(TimeDepState, BraBase): """General time-dependent Bra in quantum mechanics. This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== >>> from sympy.physics.quantum import TimeDepBra >>> b = TimeDepBra('psi', 't') >>> b <psi;t| >>> b.time t >>> b.label (psi,) >>> b.hilbert_space H >>> b.dual |psi;t> """ @classmethod def dual_class(self): return TimeDepKet class OrthogonalState(State, StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class OrthogonalKet(OrthogonalState, KetBase): """Orthogonal Ket in quantum mechanics. The inner product of two states with different labels will give zero, states with the same label will give one. >>> from sympy.physics.quantum import OrthogonalBra, OrthogonalKet >>> from sympy.abc import m, n >>> (OrthogonalBra(n)*OrthogonalKet(n)).doit() 1 >>> (OrthogonalBra(n)*OrthogonalKet(n+1)).doit() 0 >>> (OrthogonalBra(n)*OrthogonalKet(m)).doit() <n|m> """ @classmethod def dual_class(self): return OrthogonalBra def _eval_innerproduct(self, bra, **hints): if len(self.args) != len(bra.args): raise ValueError('Cannot multiply a ket that has a different number of labels.') for arg, bra_arg in zip(self.args, bra.args): diff = arg - bra_arg diff = diff.expand() is_zero = diff.is_zero if is_zero is False: return S.Zero # i.e. Integer(0) if is_zero is None: return None return S.One # i.e. Integer(1) class OrthogonalBra(OrthogonalState, BraBase): """Orthogonal Bra in quantum mechanics. """ @classmethod def dual_class(self): return OrthogonalKet class Wavefunction(Function): """Class for representations in continuous bases This class takes an expression and coordinates in its constructor. It can be used to easily calculate normalizations and probabilities. Parameters ========== expr : Expr The expression representing the functional form of the w.f. coords : Symbol or tuple The coordinates to be integrated over, and their bounds Examples ======== Particle in a box, specifying bounds in the more primitive way of using Piecewise: >>> from sympy import Symbol, Piecewise, pi, N >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = Symbol('x', real=True) >>> n = 1 >>> L = 1 >>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) >>> f = Wavefunction(g, x) >>> f.norm 1 >>> f.is_normalized True >>> p = f.prob() >>> p(0) 0 >>> p(L) 0 >>> p(0.5) 2 >>> p(0.85*L) 2*sin(0.85*pi)**2 >>> N(p(0.85*L)) 0.412214747707527 Additionally, you can specify the bounds of the function and the indices in a more compact way: >>> from sympy import symbols, pi, diff >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> f(L+1) 0 >>> f(L-1) sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L) >>> f(-1) 0 >>> f(0.85) sqrt(2)*sin(0.85*pi*n/L)/sqrt(L) >>> f(0.85, n=1, L=1) sqrt(2)*sin(0.85*pi) >>> f.is_commutative False All arguments are automatically sympified, so you can define the variables as strings rather than symbols: >>> expr = x**2 >>> f = Wavefunction(expr, 'x') >>> type(f.variables[0]) <class 'sympy.core.symbol.Symbol'> Derivatives of Wavefunctions will return Wavefunctions: >>> diff(f, x) Wavefunction(2*x, x) """ #Any passed tuples for coordinates and their bounds need to be #converted to Tuples before Function's constructor is called, to #avoid errors from calling is_Float in the constructor def __new__(cls, *args, **options): new_args = [None for i in args] ct = 0 for arg in args: if isinstance(arg, tuple): new_args[ct] = Tuple(*arg) else: new_args[ct] = arg ct += 1 return super().__new__(cls, *new_args, **options) def __call__(self, *args, **options): var = self.variables if len(args) != len(var): raise NotImplementedError( "Incorrect number of arguments to function!") ct = 0 #If the passed value is outside the specified bounds, return 0 for v in var: lower, upper = self.limits[v] #Do the comparison to limits only if the passed symbol is actually #a symbol present in the limits; #Had problems with a comparison of x > L if isinstance(args[ct], Expr) and \ not (lower in args[ct].free_symbols or upper in args[ct].free_symbols): continue if (args[ct] < lower) == True or (args[ct] > upper) == True: return S.Zero ct += 1 expr = self.expr #Allows user to make a call like f(2, 4, m=1, n=1) for symbol in list(expr.free_symbols): if str(symbol) in options.keys(): val = options[str(symbol)] expr = expr.subs(symbol, val) return expr.subs(zip(var, args)) def _eval_derivative(self, symbol): expr = self.expr deriv = expr._eval_derivative(symbol) return Wavefunction(deriv, *self.args[1:]) def _eval_conjugate(self): return Wavefunction(conjugate(self.expr), *self.args[1:]) def _eval_transpose(self): return self @property def free_symbols(self): return self.expr.free_symbols @property def is_commutative(self): """ Override Function's is_commutative so that order is preserved in represented expressions """ return False @classmethod def eval(self, *args): return None @property def variables(self): """ Return the coordinates which the wavefunction depends on Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x,y = symbols('x,y') >>> f = Wavefunction(x*y, x, y) >>> f.variables (x, y) >>> g = Wavefunction(x*y, x) >>> g.variables (x,) """ var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]] return tuple(var) @property def limits(self): """ Return the limits of the coordinates which the w.f. depends on If no limits are specified, defaults to ``(-oo, oo)``. Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, (x, 0, 1)) >>> f.limits {x: (0, 1)} >>> f = Wavefunction(x**2, x) >>> f.limits {x: (-oo, oo)} >>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2)) >>> f.limits {x: (-oo, oo), y: (-1, 2)} """ limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo) for g in self._args[1:]] return dict(zip(self.variables, tuple(limits))) @property def expr(self): """ Return the expression which is the functional form of the Wavefunction Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, x) >>> f.expr x**2 """ return self._args[0] @property def is_normalized(self): """ Returns true if the Wavefunction is properly normalized Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.is_normalized True """ return equal_valued(self.norm, 1) @property # type: ignore @cacheit def norm(self): """ Return the normalization of the specified functional form. This function integrates over the coordinates of the Wavefunction, with the bounds specified. Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm sqrt(2)*sqrt(L)/2 """ exp = self.expr*conjugate(self.expr) var = self.variables limits = self.limits for v in var: curr_limits = limits[v] exp = integrate(exp, (v, curr_limits[0], curr_limits[1])) return sqrt(exp) def normalize(self): """ Return a normalized version of the Wavefunction Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = symbols('x', real=True) >>> L = symbols('L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.normalize() Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L)) """ const = self.norm if const is oo: raise NotImplementedError("The function is not normalizable!") else: return Wavefunction((const)**(-1)*self.expr, *self.args[1:]) def prob(self): r""" Return the absolute magnitude of the w.f., `|\psi(x)|^2` Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', real=True) >>> n = symbols('n', integer=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.prob() Wavefunction(sin(pi*n*x/L)**2, x) """ return Wavefunction(self.expr*conjugate(self.expr), *self.variables)
cf13e8873ba8e07fef7aaa3f2e4c2cd6637998ab9f2a52b9259ae0a714170013
"""Quantum mechanical operators. TODO: * Fix early 0 in apply_operators. * Debug and test apply_operators. * Get cse working with classes in this file. * Doctests and documentation of special methods for InnerProduct, Commutator, AntiCommutator, represent, apply_operators. """ from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.function import (Derivative, expand) from sympy.core.mul import Mul from sympy.core.numbers import oo from sympy.core.singleton import S from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.qexpr import QExpr, dispatch_method from sympy.matrices import eye __all__ = [ 'Operator', 'HermitianOperator', 'UnitaryOperator', 'IdentityOperator', 'OuterProduct', 'DifferentialOperator' ] #----------------------------------------------------------------------------- # Operators and outer products #----------------------------------------------------------------------------- class Operator(QExpr): """Base class for non-commuting quantum operators. An operator maps between quantum states [1]_. In quantum mechanics, observables (including, but not limited to, measured physical values) are represented as Hermitian operators [2]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== Create an operator and examine its attributes:: >>> from sympy.physics.quantum import Operator >>> from sympy import I >>> A = Operator('A') >>> A A >>> A.hilbert_space H >>> A.label (A,) >>> A.is_commutative False Create another operator and do some arithmetic operations:: >>> B = Operator('B') >>> C = 2*A*A + I*B >>> C 2*A**2 + I*B Operators do not commute:: >>> A.is_commutative False >>> B.is_commutative False >>> A*B == B*A False Polymonials of operators respect the commutation properties:: >>> e = (A+B)**3 >>> e.expand() A*B*A + A*B**2 + A**2*B + A**3 + B*A*B + B*A**2 + B**2*A + B**3 Operator inverses are handle symbolically:: >>> A.inv() A**(-1) >>> A*A.inv() 1 References ========== .. [1] https://en.wikipedia.org/wiki/Operator_%28physics%29 .. [2] https://en.wikipedia.org/wiki/Observable """ @classmethod def default_args(self): return ("O",) #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- _label_separator = ',' def _print_operator_name(self, printer, *args): return self.__class__.__name__ _print_operator_name_latex = _print_operator_name def _print_operator_name_pretty(self, printer, *args): return prettyForm(self.__class__.__name__) def _print_contents(self, printer, *args): if len(self.label) == 1: return self._print_label(printer, *args) else: return '%s(%s)' % ( self._print_operator_name(printer, *args), self._print_label(printer, *args) ) def _print_contents_pretty(self, printer, *args): if len(self.label) == 1: return self._print_label_pretty(printer, *args) else: pform = self._print_operator_name_pretty(printer, *args) label_pform = self._print_label_pretty(printer, *args) label_pform = prettyForm( *label_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(label_pform)) return pform def _print_contents_latex(self, printer, *args): if len(self.label) == 1: return self._print_label_latex(printer, *args) else: return r'%s\left(%s\right)' % ( self._print_operator_name_latex(printer, *args), self._print_label_latex(printer, *args) ) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_commutator(self, other, **options): """Evaluate [self, other] if known, return None if not known.""" return dispatch_method(self, '_eval_commutator', other, **options) def _eval_anticommutator(self, other, **options): """Evaluate [self, other] if known.""" return dispatch_method(self, '_eval_anticommutator', other, **options) #------------------------------------------------------------------------- # Operator application #------------------------------------------------------------------------- def _apply_operator(self, ket, **options): return dispatch_method(self, '_apply_operator', ket, **options) def matrix_element(self, *args): raise NotImplementedError('matrix_elements is not defined') def inverse(self): return self._eval_inverse() inv = inverse def _eval_inverse(self): return self**(-1) def __mul__(self, other): if isinstance(other, IdentityOperator): return self return Mul(self, other) class HermitianOperator(Operator): """A Hermitian operator that satisfies H == Dagger(H). Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== >>> from sympy.physics.quantum import Dagger, HermitianOperator >>> H = HermitianOperator('H') >>> Dagger(H) H """ is_hermitian = True def _eval_inverse(self): if isinstance(self, UnitaryOperator): return self else: return Operator._eval_inverse(self) def _eval_power(self, exp): if isinstance(self, UnitaryOperator): # so all eigenvalues of self are 1 or -1 if exp.is_even: from sympy.core.singleton import S return S.One # is identity, see Issue 24153. elif exp.is_odd: return self # No simplification in all other cases return Operator._eval_power(self, exp) class UnitaryOperator(Operator): """A unitary operator that satisfies U*Dagger(U) == 1. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== >>> from sympy.physics.quantum import Dagger, UnitaryOperator >>> U = UnitaryOperator('U') >>> U*Dagger(U) 1 """ def _eval_adjoint(self): return self._eval_inverse() class IdentityOperator(Operator): """An identity operator I that satisfies op * I == I * op == op for any operator op. Parameters ========== N : Integer Optional parameter that specifies the dimension of the Hilbert space of operator. This is used when generating a matrix representation. Examples ======== >>> from sympy.physics.quantum import IdentityOperator >>> IdentityOperator() I """ @property def dimension(self): return self.N @classmethod def default_args(self): return (oo,) def __init__(self, *args, **hints): if not len(args) in (0, 1): raise ValueError('0 or 1 parameters expected, got %s' % args) self.N = args[0] if (len(args) == 1 and args[0]) else oo def _eval_commutator(self, other, **hints): return S.Zero def _eval_anticommutator(self, other, **hints): return 2 * other def _eval_inverse(self): return self def _eval_adjoint(self): return self def _apply_operator(self, ket, **options): return ket def _apply_from_right_to(self, bra, **options): return bra def _eval_power(self, exp): return self def _print_contents(self, printer, *args): return 'I' def _print_contents_pretty(self, printer, *args): return prettyForm('I') def _print_contents_latex(self, printer, *args): return r'{\mathcal{I}}' def __mul__(self, other): if isinstance(other, (Operator, Dagger)): return other return Mul(self, other) def _represent_default_basis(self, **options): if not self.N or self.N == oo: raise NotImplementedError('Cannot represent infinite dimensional' + ' identity operator as a matrix') format = options.get('format', 'sympy') if format != 'sympy': raise NotImplementedError('Representation in format ' + '%s not implemented.' % format) return eye(self.N) class OuterProduct(Operator): """An unevaluated outer product between a ket and bra. This constructs an outer product between any subclass of ``KetBase`` and ``BraBase`` as ``|a><b|``. An ``OuterProduct`` inherits from Operator as they act as operators in quantum expressions. For reference see [1]_. Parameters ========== ket : KetBase The ket on the left side of the outer product. bar : BraBase The bra on the right side of the outer product. Examples ======== Create a simple outer product by hand and take its dagger:: >>> from sympy.physics.quantum import Ket, Bra, OuterProduct, Dagger >>> from sympy.physics.quantum import Operator >>> k = Ket('k') >>> b = Bra('b') >>> op = OuterProduct(k, b) >>> op |k><b| >>> op.hilbert_space H >>> op.ket |k> >>> op.bra <b| >>> Dagger(op) |b><k| In simple products of kets and bras outer products will be automatically identified and created:: >>> k*b |k><b| But in more complex expressions, outer products are not automatically created:: >>> A = Operator('A') >>> A*k*b A*|k>*<b| A user can force the creation of an outer product in a complex expression by using parentheses to group the ket and bra:: >>> A*(k*b) A*|k><b| References ========== .. [1] https://en.wikipedia.org/wiki/Outer_product """ is_commutative = False def __new__(cls, *args, **old_assumptions): from sympy.physics.quantum.state import KetBase, BraBase if len(args) != 2: raise ValueError('2 parameters expected, got %d' % len(args)) ket_expr = expand(args[0]) bra_expr = expand(args[1]) if (isinstance(ket_expr, (KetBase, Mul)) and isinstance(bra_expr, (BraBase, Mul))): ket_c, kets = ket_expr.args_cnc() bra_c, bras = bra_expr.args_cnc() if len(kets) != 1 or not isinstance(kets[0], KetBase): raise TypeError('KetBase subclass expected' ', got: %r' % Mul(*kets)) if len(bras) != 1 or not isinstance(bras[0], BraBase): raise TypeError('BraBase subclass expected' ', got: %r' % Mul(*bras)) if not kets[0].dual_class() == bras[0].__class__: raise TypeError( 'ket and bra are not dual classes: %r, %r' % (kets[0].__class__, bras[0].__class__) ) # TODO: make sure the hilbert spaces of the bra and ket are # compatible obj = Expr.__new__(cls, *(kets[0], bras[0]), **old_assumptions) obj.hilbert_space = kets[0].hilbert_space return Mul(*(ket_c + bra_c)) * obj op_terms = [] if isinstance(ket_expr, Add) and isinstance(bra_expr, Add): for ket_term in ket_expr.args: for bra_term in bra_expr.args: op_terms.append(OuterProduct(ket_term, bra_term, **old_assumptions)) elif isinstance(ket_expr, Add): for ket_term in ket_expr.args: op_terms.append(OuterProduct(ket_term, bra_expr, **old_assumptions)) elif isinstance(bra_expr, Add): for bra_term in bra_expr.args: op_terms.append(OuterProduct(ket_expr, bra_term, **old_assumptions)) else: raise TypeError( 'Expected ket and bra expression, got: %r, %r' % (ket_expr, bra_expr) ) return Add(*op_terms) @property def ket(self): """Return the ket on the left side of the outer product.""" return self.args[0] @property def bra(self): """Return the bra on the right side of the outer product.""" return self.args[1] def _eval_adjoint(self): return OuterProduct(Dagger(self.bra), Dagger(self.ket)) def _sympystr(self, printer, *args): return printer._print(self.ket) + printer._print(self.bra) def _sympyrepr(self, printer, *args): return '%s(%s,%s)' % (self.__class__.__name__, printer._print(self.ket, *args), printer._print(self.bra, *args)) def _pretty(self, printer, *args): pform = self.ket._pretty(printer, *args) return prettyForm(*pform.right(self.bra._pretty(printer, *args))) def _latex(self, printer, *args): k = printer._print(self.ket, *args) b = printer._print(self.bra, *args) return k + b def _represent(self, **options): k = self.ket._represent(**options) b = self.bra._represent(**options) return k*b def _eval_trace(self, **kwargs): # TODO if operands are tensorproducts this may be will be handled # differently. return self.ket._eval_trace(self.bra, **kwargs) class DifferentialOperator(Operator): """An operator for representing the differential operator, i.e. d/dx It is initialized by passing two arguments. The first is an arbitrary expression that involves a function, such as ``Derivative(f(x), x)``. The second is the function (e.g. ``f(x)``) which we are to replace with the ``Wavefunction`` that this ``DifferentialOperator`` is applied to. Parameters ========== expr : Expr The arbitrary expression which the appropriate Wavefunction is to be substituted into func : Expr A function (e.g. f(x)) which is to be replaced with the appropriate Wavefunction when this DifferentialOperator is applied Examples ======== You can define a completely arbitrary expression and specify where the Wavefunction is to be substituted >>> from sympy import Derivative, Function, Symbol >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy.physics.quantum.qapply import qapply >>> f = Function('f') >>> x = Symbol('x') >>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) >>> w = Wavefunction(x**2, x) >>> d.function f(x) >>> d.variables (x,) >>> qapply(d*w) Wavefunction(2, x) """ @property def variables(self): """ Returns the variables with which the function in the specified arbitrary expression is evaluated Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Symbol, Function, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) >>> d.variables (x,) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.variables (x, y) """ return self.args[-1].args @property def function(self): """ Returns the function which is to be replaced with the Wavefunction Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Function, Symbol, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(Derivative(f(x), x), f(x)) >>> d.function f(x) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.function f(x, y) """ return self.args[-1] @property def expr(self): """ Returns the arbitrary expression which is to have the Wavefunction substituted into it Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Function, Symbol, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(Derivative(f(x), x), f(x)) >>> d.expr Derivative(f(x), x) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.expr Derivative(f(x, y), x) + Derivative(f(x, y), y) """ return self.args[0] @property def free_symbols(self): """ Return the free symbols of the expression. """ return self.expr.free_symbols def _apply_operator_Wavefunction(self, func, **options): from sympy.physics.quantum.state import Wavefunction var = self.variables wf_vars = func.args[1:] f = self.function new_expr = self.expr.subs(f, func(*var)) new_expr = new_expr.doit() return Wavefunction(new_expr, *wf_vars) def _eval_derivative(self, symbol): new_expr = Derivative(self.expr, symbol) return DifferentialOperator(new_expr, self.args[-1]) #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print(self, printer, *args): return '%s(%s)' % ( self._print_operator_name(printer, *args), self._print_label(printer, *args) ) def _print_pretty(self, printer, *args): pform = self._print_operator_name_pretty(printer, *args) label_pform = self._print_label_pretty(printer, *args) label_pform = prettyForm( *label_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(label_pform)) return pform
77538f7836c569b5183626a02ad706f0ed08bfdc81c5190df7e363f04fa0533d
"""Matplotlib based plotting of quantum circuits. Todo: * Optimize printing of large circuits. * Get this to work with single gates. * Do a better job checking the form of circuits to make sure it is a Mul of Gates. * Get multi-target gates plotting. * Get initial and final states to plot. * Get measurements to plot. Might need to rethink measurement as a gate issue. * Get scale and figsize to be handled in a better way. * Write some tests/examples! """ from __future__ import annotations from sympy.core.mul import Mul from sympy.external import import_module from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS from sympy.core.assumptions import ManagedProperties __all__ = [ 'CircuitPlot', 'circuit_plot', 'labeller', 'Mz', 'Mx', 'CreateOneQubitGate', 'CreateCGate', ] np = import_module('numpy') matplotlib = import_module( 'matplotlib', import_kwargs={'fromlist': ['pyplot']}, catch=(RuntimeError,)) # This is raised in environments that have no display. if np and matplotlib: pyplot = matplotlib.pyplot Line2D = matplotlib.lines.Line2D Circle = matplotlib.patches.Circle #from matplotlib import rc #rc('text',usetex=True) class CircuitPlot: """A class for managing a circuit plot.""" scale = 1.0 fontsize = 20.0 linewidth = 1.0 control_radius = 0.05 not_radius = 0.15 swap_delta = 0.05 labels: list[str] = [] inits: dict[str, str] = {} label_buffer = 0.5 def __init__(self, c, nqubits, **kwargs): if not np or not matplotlib: raise ImportError('numpy or matplotlib not available.') self.circuit = c self.ngates = len(self.circuit.args) self.nqubits = nqubits self.update(kwargs) self._create_grid() self._create_figure() self._plot_wires() self._plot_gates() self._finish() def update(self, kwargs): """Load the kwargs into the instance dict.""" self.__dict__.update(kwargs) def _create_grid(self): """Create the grid of wires.""" scale = self.scale wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float) gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float) self._wire_grid = wire_grid self._gate_grid = gate_grid def _create_figure(self): """Create the main matplotlib figure.""" self._figure = pyplot.figure( figsize=(self.ngates*self.scale, self.nqubits*self.scale), facecolor='w', edgecolor='w' ) ax = self._figure.add_subplot( 1, 1, 1, frameon=True ) ax.set_axis_off() offset = 0.5*self.scale ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset) ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset) ax.set_aspect('equal') self._axes = ax def _plot_wires(self): """Plot the wires of the circuit diagram.""" xstart = self._gate_grid[0] xstop = self._gate_grid[-1] xdata = (xstart - self.scale, xstop + self.scale) for i in range(self.nqubits): ydata = (self._wire_grid[i], self._wire_grid[i]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) if self.labels: init_label_buffer = 0 if self.inits.get(self.labels[i]): init_label_buffer = 0.25 self._axes.text( xdata[0]-self.label_buffer-init_label_buffer,ydata[0], render_label(self.labels[i],self.inits), size=self.fontsize, color='k',ha='center',va='center') self._plot_measured_wires() def _plot_measured_wires(self): ismeasured = self._measurements() xstop = self._gate_grid[-1] dy = 0.04 # amount to shift wires when doubled # Plot doubled wires after they are measured for im in ismeasured: xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale) ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) # Also double any controlled lines off these wires for i,g in enumerate(self._gates()): if isinstance(g, (CGate, CGateS)): wires = g.controls + g.targets for wire in wires: if wire in ismeasured and \ self._gate_grid[i] > self._gate_grid[ismeasured[wire]]: ydata = min(wires), max(wires) xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def _gates(self): """Create a list of all gates in the circuit plot.""" gates = [] if isinstance(self.circuit, Mul): for g in reversed(self.circuit.args): if isinstance(g, Gate): gates.append(g) elif isinstance(self.circuit, Gate): gates.append(self.circuit) return gates def _plot_gates(self): """Iterate through the gates and plot each of them.""" for i, gate in enumerate(self._gates()): gate.plot_gate(self, i) def _measurements(self): """Return a dict ``{i:j}`` where i is the index of the wire that has been measured, and j is the gate where the wire is measured. """ ismeasured = {} for i,g in enumerate(self._gates()): if getattr(g,'measurement',False): for target in g.targets: if target in ismeasured: if ismeasured[target] > i: ismeasured[target] = i else: ismeasured[target] = i return ismeasured def _finish(self): # Disable clipping to make panning work well for large circuits. for o in self._figure.findobj(): o.set_clip_on(False) def one_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a single qubit gate.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] self._axes.text( x, y, t, color='k', ha='center', va='center', bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), size=self.fontsize ) def two_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a two qubit gate. Does not work yet. """ # x = self._gate_grid[gate_idx] # y = self._wire_grid[wire_idx]+0.5 print(self._gate_grid) print(self._wire_grid) # unused: # obj = self._axes.text( # x, y, t, # color='k', # ha='center', # va='center', # bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), # size=self.fontsize # ) def control_line(self, gate_idx, min_wire, max_wire): """Draw a vertical control line.""" xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx]) ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def control_point(self, gate_idx, wire_idx): """Draw a control point.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.control_radius c = Circle( (x, y), radius*self.scale, ec='k', fc='k', fill=True, lw=self.linewidth ) self._axes.add_patch(c) def not_point(self, gate_idx, wire_idx): """Draw a NOT gates as the circle with plus in the middle.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.not_radius c = Circle( (x, y), radius, ec='k', fc='w', fill=False, lw=self.linewidth ) self._axes.add_patch(c) l = Line2D( (x, x), (y - radius, y + radius), color='k', lw=self.linewidth ) self._axes.add_line(l) def swap_point(self, gate_idx, wire_idx): """Draw a swap point as a cross.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] d = self.swap_delta l1 = Line2D( (x - d, x + d), (y - d, y + d), color='k', lw=self.linewidth ) l2 = Line2D( (x - d, x + d), (y + d, y - d), color='k', lw=self.linewidth ) self._axes.add_line(l1) self._axes.add_line(l2) def circuit_plot(c, nqubits, **kwargs): """Draw the circuit diagram for the circuit with nqubits. Parameters ========== c : circuit The circuit to plot. Should be a product of Gate instances. nqubits : int The number of qubits to include in the circuit. Must be at least as big as the largest ``min_qubits`` of the gates. """ return CircuitPlot(c, nqubits, **kwargs) def render_label(label, inits={}): """Slightly more flexible way to render labels. >>> from sympy.physics.quantum.circuitplot import render_label >>> render_label('q0') '$\\\\left|q0\\\\right\\\\rangle$' >>> render_label('q0', {'q0':'0'}) '$\\\\left|q0\\\\right\\\\rangle=\\\\left|0\\\\right\\\\rangle$' """ init = inits.get(label) if init: return r'$\left|%s\right\rangle=\left|%s\right\rangle$' % (label, init) return r'$\left|%s\right\rangle$' % label def labeller(n, symbol='q'): """Autogenerate labels for wires of quantum circuits. Parameters ========== n : int number of qubits in the circuit. symbol : string A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc. >>> from sympy.physics.quantum.circuitplot import labeller >>> labeller(2) ['q_1', 'q_0'] >>> labeller(3,'j') ['j_2', 'j_1', 'j_0'] """ return ['%s_%d' % (symbol,n-i-1) for i in range(n)] class Mz(OneQubitGate): """Mock-up of a z measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mz' gate_name_latex='M_z' class Mx(OneQubitGate): """Mock-up of an x measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mx' gate_name_latex='M_x' class CreateOneQubitGate(ManagedProperties): def __new__(mcl, name, latexname=None): if not latexname: latexname = name return ManagedProperties.__new__( mcl, name + "Gate", (OneQubitGate,), {'gate_name': name, 'gate_name_latex': latexname}) def CreateCGate(name, latexname=None): """Use a lexical closure to make a controlled gate. """ if not latexname: latexname = name onequbitgate = CreateOneQubitGate(name, latexname) def ControlledGate(ctrls,target): return CGate(tuple(ctrls),onequbitgate(target)) return ControlledGate
b32d8dde8cec15aa21df0df5f1dbeca75caf0a53212f767a43c7d44dcef6f4cc
from sympy.utilities import dict_merge from sympy.utilities.iterables import iterable from sympy.physics.vector import (Dyadic, Vector, ReferenceFrame, Point, dynamicsymbols) from sympy.physics.vector.printing import (vprint, vsprint, vpprint, vlatex, init_vprinting) from sympy.physics.mechanics.particle import Particle from sympy.physics.mechanics.rigidbody import RigidBody from sympy.simplify.simplify import simplify from sympy.core.backend import (Matrix, sympify, Mul, Derivative, sin, cos, tan, AppliedUndef, S) __all__ = ['inertia', 'inertia_of_point_mass', 'linear_momentum', 'angular_momentum', 'kinetic_energy', 'potential_energy', 'Lagrangian', 'mechanics_printing', 'mprint', 'msprint', 'mpprint', 'mlatex', 'msubs', 'find_dynamicsymbols'] # These are functions that we've moved and renamed during extracting the # basic vector calculus code from the mechanics packages. mprint = vprint msprint = vsprint mpprint = vpprint mlatex = vlatex def mechanics_printing(**kwargs): """ Initializes time derivative printing for all SymPy objects in mechanics module. """ init_vprinting(**kwargs) mechanics_printing.__doc__ = init_vprinting.__doc__ def inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0): """Simple way to create inertia Dyadic object. Explanation =========== If you do not know what a Dyadic is, just treat this like the inertia tensor. Then, do the easy thing and define it in a body-fixed frame. Parameters ========== frame : ReferenceFrame The frame the inertia is defined in ixx : Sympifyable the xx element in the inertia dyadic iyy : Sympifyable the yy element in the inertia dyadic izz : Sympifyable the zz element in the inertia dyadic ixy : Sympifyable the xy element in the inertia dyadic iyz : Sympifyable the yz element in the inertia dyadic izx : Sympifyable the zx element in the inertia dyadic Examples ======== >>> from sympy.physics.mechanics import ReferenceFrame, inertia >>> N = ReferenceFrame('N') >>> inertia(N, 1, 2, 3) (N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z) """ if not isinstance(frame, ReferenceFrame): raise TypeError('Need to define the inertia in a frame') ixx = sympify(ixx) ixy = sympify(ixy) iyy = sympify(iyy) iyz = sympify(iyz) izx = sympify(izx) izz = sympify(izz) ol = ixx * (frame.x | frame.x) ol += ixy * (frame.x | frame.y) ol += izx * (frame.x | frame.z) ol += ixy * (frame.y | frame.x) ol += iyy * (frame.y | frame.y) ol += iyz * (frame.y | frame.z) ol += izx * (frame.z | frame.x) ol += iyz * (frame.z | frame.y) ol += izz * (frame.z | frame.z) return ol def inertia_of_point_mass(mass, pos_vec, frame): """Inertia dyadic of a point mass relative to point O. Parameters ========== mass : Sympifyable Mass of the point mass pos_vec : Vector Position from point O to point mass frame : ReferenceFrame Reference frame to express the dyadic in Examples ======== >>> from sympy import symbols >>> from sympy.physics.mechanics import ReferenceFrame, inertia_of_point_mass >>> N = ReferenceFrame('N') >>> r, m = symbols('r m') >>> px = r * N.x >>> inertia_of_point_mass(m, px, N) m*r**2*(N.y|N.y) + m*r**2*(N.z|N.z) """ return mass * (((frame.x | frame.x) + (frame.y | frame.y) + (frame.z | frame.z)) * (pos_vec & pos_vec) - (pos_vec | pos_vec)) def linear_momentum(frame, *body): """Linear momentum of the system. Explanation =========== This function returns the linear momentum of a system of Particle's and/or RigidBody's. The linear momentum of a system is equal to the vector sum of the linear momentum of its constituents. Consider a system, S, comprised of a rigid body, A, and a particle, P. The linear momentum of the system, L, is equal to the vector sum of the linear momentum of the particle, L1, and the linear momentum of the rigid body, L2, i.e. L = L1 + L2 Parameters ========== frame : ReferenceFrame The frame in which linear momentum is desired. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose linear momentum is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, linear_momentum >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = Point('Ac') >>> Ac.set_vel(N, 25 * N.y) >>> I = outer(N.x, N.x) >>> A = RigidBody('A', Ac, N, 20, (I, Ac)) >>> linear_momentum(N, A, Pa) 10*N.x + 500*N.y """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please specify a valid ReferenceFrame') else: linear_momentum_sys = Vector(0) for e in body: if isinstance(e, (RigidBody, Particle)): linear_momentum_sys += e.linear_momentum(frame) else: raise TypeError('*body must have only Particle or RigidBody') return linear_momentum_sys def angular_momentum(point, frame, *body): """Angular momentum of a system. Explanation =========== This function returns the angular momentum of a system of Particle's and/or RigidBody's. The angular momentum of such a system is equal to the vector sum of the angular momentum of its constituents. Consider a system, S, comprised of a rigid body, A, and a particle, P. The angular momentum of the system, H, is equal to the vector sum of the angular momentum of the particle, H1, and the angular momentum of the rigid body, H2, i.e. H = H1 + H2 Parameters ========== point : Point The point about which angular momentum of the system is desired. frame : ReferenceFrame The frame in which angular momentum is desired. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose angular momentum is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, angular_momentum >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> Ac.set_vel(N, 5 * N.y) >>> a = ReferenceFrame('a') >>> a.set_ang_vel(N, 10 * N.z) >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, 20, (I, Ac)) >>> angular_momentum(O, N, Pa, A) 10*N.z """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please enter a valid ReferenceFrame') if not isinstance(point, Point): raise TypeError('Please specify a valid Point') else: angular_momentum_sys = Vector(0) for e in body: if isinstance(e, (RigidBody, Particle)): angular_momentum_sys += e.angular_momentum(point, frame) else: raise TypeError('*body must have only Particle or RigidBody') return angular_momentum_sys def kinetic_energy(frame, *body): """Kinetic energy of a multibody system. Explanation =========== This function returns the kinetic energy of a system of Particle's and/or RigidBody's. The kinetic energy of such a system is equal to the sum of the kinetic energies of its constituents. Consider a system, S, comprising a rigid body, A, and a particle, P. The kinetic energy of the system, T, is equal to the vector sum of the kinetic energy of the particle, T1, and the kinetic energy of the rigid body, T2, i.e. T = T1 + T2 Kinetic energy is a scalar. Parameters ========== frame : ReferenceFrame The frame in which the velocity or angular velocity of the body is defined. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose kinetic energy is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, kinetic_energy >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> Ac.set_vel(N, 5 * N.y) >>> a = ReferenceFrame('a') >>> a.set_ang_vel(N, 10 * N.z) >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, 20, (I, Ac)) >>> kinetic_energy(N, Pa, A) 350 """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please enter a valid ReferenceFrame') ke_sys = S.Zero for e in body: if isinstance(e, (RigidBody, Particle)): ke_sys += e.kinetic_energy(frame) else: raise TypeError('*body must have only Particle or RigidBody') return ke_sys def potential_energy(*body): """Potential energy of a multibody system. Explanation =========== This function returns the potential energy of a system of Particle's and/or RigidBody's. The potential energy of such a system is equal to the sum of the potential energy of its constituents. Consider a system, S, comprising a rigid body, A, and a particle, P. The potential energy of the system, V, is equal to the vector sum of the potential energy of the particle, V1, and the potential energy of the rigid body, V2, i.e. V = V1 + V2 Potential energy is a scalar. Parameters ========== body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose potential energy is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, potential_energy >>> from sympy import symbols >>> M, m, g, h = symbols('M m g h') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> Pa = Particle('Pa', P, m) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> a = ReferenceFrame('a') >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, M, (I, Ac)) >>> Pa.potential_energy = m * g * h >>> A.potential_energy = M * g * h >>> potential_energy(Pa, A) M*g*h + g*h*m """ pe_sys = S.Zero for e in body: if isinstance(e, (RigidBody, Particle)): pe_sys += e.potential_energy else: raise TypeError('*body must have only Particle or RigidBody') return pe_sys def gravity(acceleration, *bodies): """ Returns a list of gravity forces given the acceleration due to gravity and any number of particles or rigidbodies. Example ======= >>> from sympy.physics.mechanics import ReferenceFrame, Point, Particle, outer, RigidBody >>> from sympy.physics.mechanics.functions import gravity >>> from sympy import symbols >>> N = ReferenceFrame('N') >>> m, M, g = symbols('m M g') >>> F1, F2 = symbols('F1 F2') >>> po = Point('po') >>> pa = Particle('pa', po, m) >>> A = ReferenceFrame('A') >>> P = Point('P') >>> I = outer(A.x, A.x) >>> B = RigidBody('B', P, A, M, (I, P)) >>> forceList = [(po, F1), (P, F2)] >>> forceList.extend(gravity(g*N.y, pa, B)) >>> forceList [(po, F1), (P, F2), (po, g*m*N.y), (P, M*g*N.y)] """ gravity_force = [] if not bodies: raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.") for e in bodies: point = getattr(e, 'masscenter', None) if point is None: point = e.point gravity_force.append((point, e.mass*acceleration)) return gravity_force def center_of_mass(point, *bodies): """ Returns the position vector from the given point to the center of mass of the given bodies(particles or rigidbodies). Example ======= >>> from sympy import symbols, S >>> from sympy.physics.vector import Point >>> from sympy.physics.mechanics import Particle, ReferenceFrame, RigidBody, outer >>> from sympy.physics.mechanics.functions import center_of_mass >>> a = ReferenceFrame('a') >>> m = symbols('m', real=True) >>> p1 = Particle('p1', Point('p1_pt'), S(1)) >>> p2 = Particle('p2', Point('p2_pt'), S(2)) >>> p3 = Particle('p3', Point('p3_pt'), S(3)) >>> p4 = Particle('p4', Point('p4_pt'), m) >>> b_f = ReferenceFrame('b_f') >>> b_cm = Point('b_cm') >>> mb = symbols('mb') >>> b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm)) >>> p2.point.set_pos(p1.point, a.x) >>> p3.point.set_pos(p1.point, a.x + a.y) >>> p4.point.set_pos(p1.point, a.y) >>> b.masscenter.set_pos(p1.point, a.y + a.z) >>> point_o=Point('o') >>> point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b)) >>> expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z >>> point_o.pos_from(p1.point) 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z """ if not bodies: raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.") total_mass = 0 vec = Vector(0) for i in bodies: total_mass += i.mass masscenter = getattr(i, 'masscenter', None) if masscenter is None: masscenter = i.point vec += i.mass*masscenter.pos_from(point) return vec/total_mass def Lagrangian(frame, *body): """Lagrangian of a multibody system. Explanation =========== This function returns the Lagrangian of a system of Particle's and/or RigidBody's. The Lagrangian of such a system is equal to the difference between the kinetic energies and potential energies of its constituents. If T and V are the kinetic and potential energies of a system then it's Lagrangian, L, is defined as L = T - V The Lagrangian is a scalar. Parameters ========== frame : ReferenceFrame The frame in which the velocity or angular velocity of the body is defined to determine the kinetic energy. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose Lagrangian is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, Lagrangian >>> from sympy import symbols >>> M, m, g, h = symbols('M m g h') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> Ac.set_vel(N, 5 * N.y) >>> a = ReferenceFrame('a') >>> a.set_ang_vel(N, 10 * N.z) >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, 20, (I, Ac)) >>> Pa.potential_energy = m * g * h >>> A.potential_energy = M * g * h >>> Lagrangian(N, Pa, A) -M*g*h - g*h*m + 350 """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please supply a valid ReferenceFrame') for e in body: if not isinstance(e, (RigidBody, Particle)): raise TypeError('*body must have only Particle or RigidBody') return kinetic_energy(frame, *body) - potential_energy(*body) def find_dynamicsymbols(expression, exclude=None, reference_frame=None): """Find all dynamicsymbols in expression. Explanation =========== If the optional ``exclude`` kwarg is used, only dynamicsymbols not in the iterable ``exclude`` are returned. If we intend to apply this function on a vector, the optional ``reference_frame`` is also used to inform about the corresponding frame with respect to which the dynamic symbols of the given vector is to be determined. Parameters ========== expression : SymPy expression exclude : iterable of dynamicsymbols, optional reference_frame : ReferenceFrame, optional The frame with respect to which the dynamic symbols of the given vector is to be determined. Examples ======== >>> from sympy.physics.mechanics import dynamicsymbols, find_dynamicsymbols >>> from sympy.physics.mechanics import ReferenceFrame >>> x, y = dynamicsymbols('x, y') >>> expr = x + x.diff()*y >>> find_dynamicsymbols(expr) {x(t), y(t), Derivative(x(t), t)} >>> find_dynamicsymbols(expr, exclude=[x, y]) {Derivative(x(t), t)} >>> a, b, c = dynamicsymbols('a, b, c') >>> A = ReferenceFrame('A') >>> v = a * A.x + b * A.y + c * A.z >>> find_dynamicsymbols(v, reference_frame=A) {a(t), b(t), c(t)} """ t_set = {dynamicsymbols._t} if exclude: if iterable(exclude): exclude_set = set(exclude) else: raise TypeError("exclude kwarg must be iterable") else: exclude_set = set() if isinstance(expression, Vector): if reference_frame is None: raise ValueError("You must provide reference_frame when passing a " "vector expression, got %s." % reference_frame) else: expression = expression.to_matrix(reference_frame) return {i for i in expression.atoms(AppliedUndef, Derivative) if i.free_symbols == t_set} - exclude_set def msubs(expr, *sub_dicts, smart=False, **kwargs): """A custom subs for use on expressions derived in physics.mechanics. Traverses the expression tree once, performing the subs found in sub_dicts. Terms inside ``Derivative`` expressions are ignored: Examples ======== >>> from sympy.physics.mechanics import dynamicsymbols, msubs >>> x = dynamicsymbols('x') >>> msubs(x.diff() + x, {x: 1}) Derivative(x(t), t) + 1 Note that sub_dicts can be a single dictionary, or several dictionaries: >>> x, y, z = dynamicsymbols('x, y, z') >>> sub1 = {x: 1, y: 2} >>> sub2 = {z: 3, x.diff(): 4} >>> msubs(x.diff() + x + y + z, sub1, sub2) 10 If smart=True (default False), also checks for conditions that may result in ``nan``, but if simplified would yield a valid expression. For example: >>> from sympy import sin, tan >>> (sin(x)/tan(x)).subs(x, 0) nan >>> msubs(sin(x)/tan(x), {x: 0}, smart=True) 1 It does this by first replacing all ``tan`` with ``sin/cos``. Then each node is traversed. If the node is a fraction, subs is first evaluated on the denominator. If this results in 0, simplification of the entire fraction is attempted. Using this selective simplification, only subexpressions that result in 1/0 are targeted, resulting in faster performance. """ sub_dict = dict_merge(*sub_dicts) if smart: func = _smart_subs elif hasattr(expr, 'msubs'): return expr.msubs(sub_dict) else: func = lambda expr, sub_dict: _crawl(expr, _sub_func, sub_dict) if isinstance(expr, (Matrix, Vector, Dyadic)): return expr.applyfunc(lambda x: func(x, sub_dict)) else: return func(expr, sub_dict) def _crawl(expr, func, *args, **kwargs): """Crawl the expression tree, and apply func to every node.""" val = func(expr, *args, **kwargs) if val is not None: return val new_args = (_crawl(arg, func, *args, **kwargs) for arg in expr.args) return expr.func(*new_args) def _sub_func(expr, sub_dict): """Perform direct matching substitution, ignoring derivatives.""" if expr in sub_dict: return sub_dict[expr] elif not expr.args or expr.is_Derivative: return expr def _tan_repl_func(expr): """Replace tan with sin/cos.""" if isinstance(expr, tan): return sin(*expr.args) / cos(*expr.args) elif not expr.args or expr.is_Derivative: return expr def _smart_subs(expr, sub_dict): """Performs subs, checking for conditions that may result in `nan` or `oo`, and attempts to simplify them out. The expression tree is traversed twice, and the following steps are performed on each expression node: - First traverse: Replace all `tan` with `sin/cos`. - Second traverse: If node is a fraction, check if the denominator evaluates to 0. If so, attempt to simplify it out. Then if node is in sub_dict, sub in the corresponding value. """ expr = _crawl(expr, _tan_repl_func) def _recurser(expr, sub_dict): # Decompose the expression into num, den num, den = _fraction_decomp(expr) if den != 1: # If there is a non trivial denominator, we need to handle it denom_subbed = _recurser(den, sub_dict) if denom_subbed.evalf() == 0: # If denom is 0 after this, attempt to simplify the bad expr expr = simplify(expr) else: # Expression won't result in nan, find numerator num_subbed = _recurser(num, sub_dict) return num_subbed / denom_subbed # We have to crawl the tree manually, because `expr` may have been # modified in the simplify step. First, perform subs as normal: val = _sub_func(expr, sub_dict) if val is not None: return val new_args = (_recurser(arg, sub_dict) for arg in expr.args) return expr.func(*new_args) return _recurser(expr, sub_dict) def _fraction_decomp(expr): """Return num, den such that expr = num/den.""" if not isinstance(expr, Mul): return expr, 1 num = [] den = [] for a in expr.args: if a.is_Pow and a.args[1] < 0: den.append(1 / a) else: num.append(a) if not den: return expr, 1 num = Mul(*num) den = Mul(*den) return num, den def _f_list_parser(fl, ref_frame): """Parses the provided forcelist composed of items of the form (obj, force). Returns a tuple containing: vel_list: The velocity (ang_vel for Frames, vel for Points) in the provided reference frame. f_list: The forces. Used internally in the KanesMethod and LagrangesMethod classes. """ def flist_iter(): for pair in fl: obj, force = pair if isinstance(obj, ReferenceFrame): yield obj.ang_vel_in(ref_frame), force elif isinstance(obj, Point): yield obj.vel(ref_frame), force else: raise TypeError('First entry in each forcelist pair must ' 'be a point or frame.') if not fl: vel_list, f_list = (), () else: unzip = lambda l: list(zip(*l)) if l[0] else [(), ()] vel_list, f_list = unzip(list(flist_iter())) return vel_list, f_list def _validate_coordinates(coordinates=None, speeds=None, check_duplicates=True, is_dynamicsymbols=True): t_set = {dynamicsymbols._t} # Convert input to iterables if coordinates is None: coordinates = [] elif not iterable(coordinates): coordinates = [coordinates] if speeds is None: speeds = [] elif not iterable(speeds): speeds = [speeds] if check_duplicates: # Check for duplicates if len(coordinates) != len(set(coordinates)): raise ValueError('Duplicate generalized coordinates found, all ' 'generalized coordinates should be unique.') if len(speeds) != len(set(speeds)): raise ValueError('Duplicate generalized speeds found, all ' 'generalized speeds should be unique.') if is_dynamicsymbols: # Check whether all coordinates are dynamicsymbols for coordinate in coordinates: if not (isinstance(coordinate, (AppliedUndef, Derivative)) and coordinate.free_symbols == t_set): raise ValueError(f'Generalized coordinate "{coordinate}" is not' f' a dynamicsymbol.') for speed in speeds: if not (isinstance(speed, (AppliedUndef, Derivative)) and speed.free_symbols == t_set): raise ValueError(f'Generalized speed "{speed}" is not a ' f'dynamicsymbol.')
16671c5bce36f492df83df86c5ce2879e92b3e2da283bee0619276c7ba95ccc0
from sympy.physics.mechanics import (Body, Lagrangian, KanesMethod, LagrangesMethod, RigidBody, Particle) from sympy.physics.mechanics.method import _Methods from sympy.core.backend import Matrix __all__ = ['JointsMethod'] class JointsMethod(_Methods): """Method for formulating the equations of motion using a set of interconnected bodies with joints. Parameters ========== newtonion : Body or ReferenceFrame The newtonion(inertial) frame. *joints : Joint The joints in the system Attributes ========== q, u : iterable Iterable of the generalized coordinates and speeds bodies : iterable Iterable of Body objects in the system. loads : iterable Iterable of (Point, vector) or (ReferenceFrame, vector) tuples describing the forces on the system. mass_matrix : Matrix, shape(n, n) The system's mass matrix forcing : Matrix, shape(n, 1) The system's forcing vector mass_matrix_full : Matrix, shape(2*n, 2*n) The "mass matrix" for the u's and q's forcing_full : Matrix, shape(2*n, 1) The "forcing vector" for the u's and q's method : KanesMethod or Lagrange's method Method's object. kdes : iterable Iterable of kde in they system. Examples ======== This is a simple example for a one degree of freedom translational spring-mass-damper. >>> from sympy import symbols >>> from sympy.physics.mechanics import Body, JointsMethod, PrismaticJoint >>> from sympy.physics.vector import dynamicsymbols >>> c, k = symbols('c k') >>> x, v = dynamicsymbols('x v') >>> wall = Body('W') >>> body = Body('B') >>> J = PrismaticJoint('J', wall, body, coordinates=x, speeds=v) >>> wall.apply_force(c*v*wall.x, reaction_body=body) >>> wall.apply_force(k*x*wall.x, reaction_body=body) >>> method = JointsMethod(wall, J) >>> method.form_eoms() Matrix([[-B_mass*Derivative(v(t), t) - c*v(t) - k*x(t)]]) >>> M = method.mass_matrix_full >>> F = method.forcing_full >>> rhs = M.LUsolve(F) >>> rhs Matrix([ [ v(t)], [(-c*v(t) - k*x(t))/B_mass]]) Notes ===== ``JointsMethod`` currently only works with systems that do not have any configuration or motion constraints. """ def __init__(self, newtonion, *joints): if isinstance(newtonion, Body): self.frame = newtonion.frame else: self.frame = newtonion self._joints = joints self._bodies = self._generate_bodylist() self._loads = self._generate_loadlist() self._q = self._generate_q() self._u = self._generate_u() self._kdes = self._generate_kdes() self._method = None @property def bodies(self): """List of bodies in they system.""" return self._bodies @property def loads(self): """List of loads on the system.""" return self._loads @property def q(self): """List of the generalized coordinates.""" return self._q @property def u(self): """List of the generalized speeds.""" return self._u @property def kdes(self): """List of the generalized coordinates.""" return self._kdes @property def forcing_full(self): """The "forcing vector" for the u's and q's.""" return self.method.forcing_full @property def mass_matrix_full(self): """The "mass matrix" for the u's and q's.""" return self.method.mass_matrix_full @property def mass_matrix(self): """The system's mass matrix.""" return self.method.mass_matrix @property def forcing(self): """The system's forcing vector.""" return self.method.forcing @property def method(self): """Object of method used to form equations of systems.""" return self._method def _generate_bodylist(self): bodies = [] for joint in self._joints: if joint.child not in bodies: bodies.append(joint.child) if joint.parent not in bodies: bodies.append(joint.parent) return bodies def _generate_loadlist(self): load_list = [] for body in self.bodies: load_list.extend(body.loads) return load_list def _generate_q(self): q_ind = [] for joint in self._joints: for coordinate in joint.coordinates: if coordinate in q_ind: raise ValueError('Coordinates of joints should be unique.') q_ind.append(coordinate) return Matrix(q_ind) def _generate_u(self): u_ind = [] for joint in self._joints: for speed in joint.speeds: if speed in u_ind: raise ValueError('Speeds of joints should be unique.') u_ind.append(speed) return Matrix(u_ind) def _generate_kdes(self): kd_ind = Matrix(1, 0, []).T for joint in self._joints: kd_ind = kd_ind.col_join(joint.kdes) return kd_ind def _convert_bodies(self): # Convert `Body` to `Particle` and `RigidBody` bodylist = [] for body in self.bodies: if body.is_rigidbody: rb = RigidBody(body.name, body.masscenter, body.frame, body.mass, (body.central_inertia, body.masscenter)) rb.potential_energy = body.potential_energy bodylist.append(rb) else: part = Particle(body.name, body.masscenter, body.mass) part.potential_energy = body.potential_energy bodylist.append(part) return bodylist def form_eoms(self, method=KanesMethod): """Method to form system's equation of motions. Parameters ========== method : Class Class name of method. Returns ======== Matrix Vector of equations of motions. Examples ======== This is a simple example for a one degree of freedom translational spring-mass-damper. >>> from sympy import S, symbols >>> from sympy.physics.mechanics import LagrangesMethod, dynamicsymbols, Body >>> from sympy.physics.mechanics import PrismaticJoint, JointsMethod >>> q = dynamicsymbols('q') >>> qd = dynamicsymbols('q', 1) >>> m, k, b = symbols('m k b') >>> wall = Body('W') >>> part = Body('P', mass=m) >>> part.potential_energy = k * q**2 / S(2) >>> J = PrismaticJoint('J', wall, part, coordinates=q, speeds=qd) >>> wall.apply_force(b * qd * wall.x, reaction_body=part) >>> method = JointsMethod(wall, J) >>> method.form_eoms(LagrangesMethod) Matrix([[b*Derivative(q(t), t) + k*q(t) + m*Derivative(q(t), (t, 2))]]) We can also solve for the states using the 'rhs' method. >>> method.rhs() Matrix([ [ Derivative(q(t), t)], [(-b*Derivative(q(t), t) - k*q(t))/m]]) """ bodylist = self._convert_bodies() if issubclass(method, LagrangesMethod): #LagrangesMethod or similar L = Lagrangian(self.frame, *bodylist) self._method = method(L, self.q, self.loads, bodylist, self.frame) else: #KanesMethod or similar self._method = method(self.frame, q_ind=self.q, u_ind=self.u, kd_eqs=self.kdes, forcelist=self.loads, bodies=bodylist) soln = self.method._form_eoms() return soln def rhs(self, inv_method=None): """Returns equations that can be solved numerically. Parameters ========== inv_method : str The specific sympy inverse matrix calculation method to use. For a list of valid methods, see :meth:`~sympy.matrices.matrices.MatrixBase.inv` Returns ======== Matrix Numerically solvable equations. See Also ======== sympy.physics.mechanics.kane.KanesMethod.rhs: KanesMethod's rhs function. sympy.physics.mechanics.lagrange.LagrangesMethod.rhs: LagrangesMethod's rhs function. """ return self.method.rhs(inv_method=inv_method)
0d5bd6cbda8d466ef8d8d146701a726c5636d192b7054ec358d6cb3135d8885a
# isort:skip_file """ Dimensional analysis and unit systems. This module defines dimension/unit systems and physical quantities. It is based on a group-theoretical construction where dimensions are represented as vectors (coefficients being the exponents), and units are defined as a dimension to which we added a scale. Quantities are built from a factor and a unit, and are the basic objects that one will use when doing computations. All objects except systems and prefixes can be used in SymPy expressions. Note that as part of a CAS, various objects do not combine automatically under operations. Details about the implementation can be found in the documentation, and we will not repeat all the explanations we gave there concerning our approach. Ideas about future developments can be found on the `Github wiki <https://github.com/sympy/sympy/wiki/Unit-systems>`_, and you should consult this page if you are willing to help. Useful functions: - ``find_unit``: easily lookup pre-defined units. - ``convert_to(expr, newunit)``: converts an expression into the same expression expressed in another unit. """ from .dimensions import Dimension, DimensionSystem from .unitsystem import UnitSystem from .util import convert_to from .quantities import Quantity from .definitions.dimension_definitions import ( amount_of_substance, acceleration, action, area, capacitance, charge, conductance, current, energy, force, frequency, impedance, inductance, length, luminous_intensity, magnetic_density, magnetic_flux, mass, momentum, power, pressure, temperature, time, velocity, voltage, volume ) Unit = Quantity speed = velocity luminosity = luminous_intensity magnetic_flux_density = magnetic_density amount = amount_of_substance from .prefixes import ( # 10-power based: yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto, # 2-power based: kibi, mebi, gibi, tebi, pebi, exbi, ) from .definitions import ( percent, percents, permille, rad, radian, radians, deg, degree, degrees, sr, steradian, steradians, mil, angular_mil, angular_mils, m, meter, meters, kg, kilogram, kilograms, s, second, seconds, A, ampere, amperes, K, kelvin, kelvins, mol, mole, moles, cd, candela, candelas, g, gram, grams, mg, milligram, milligrams, ug, microgram, micrograms, t, tonne, metric_ton, newton, newtons, N, joule, joules, J, watt, watts, W, pascal, pascals, Pa, pa, hertz, hz, Hz, coulomb, coulombs, C, volt, volts, v, V, ohm, ohms, siemens, S, mho, mhos, farad, farads, F, henry, henrys, H, tesla, teslas, T, weber, webers, Wb, wb, optical_power, dioptre, D, lux, lx, katal, kat, gray, Gy, becquerel, Bq, km, kilometer, kilometers, dm, decimeter, decimeters, cm, centimeter, centimeters, mm, millimeter, millimeters, um, micrometer, micrometers, micron, microns, nm, nanometer, nanometers, pm, picometer, picometers, ft, foot, feet, inch, inches, yd, yard, yards, mi, mile, miles, nmi, nautical_mile, nautical_miles, angstrom, angstroms, ha, hectare, l, L, liter, liters, dl, dL, deciliter, deciliters, cl, cL, centiliter, centiliters, ml, mL, milliliter, milliliters, ms, millisecond, milliseconds, us, microsecond, microseconds, ns, nanosecond, nanoseconds, ps, picosecond, picoseconds, minute, minutes, h, hour, hours, day, days, anomalistic_year, anomalistic_years, sidereal_year, sidereal_years, tropical_year, tropical_years, common_year, common_years, julian_year, julian_years, draconic_year, draconic_years, gaussian_year, gaussian_years, full_moon_cycle, full_moon_cycles, year, years, G, gravitational_constant, c, speed_of_light, elementary_charge, hbar, planck, eV, electronvolt, electronvolts, avogadro_number, avogadro, avogadro_constant, boltzmann, boltzmann_constant, stefan, stefan_boltzmann_constant, R, molar_gas_constant, faraday_constant, josephson_constant, von_klitzing_constant, Da, dalton, amu, amus, atomic_mass_unit, atomic_mass_constant, me, electron_rest_mass, gee, gees, acceleration_due_to_gravity, u0, magnetic_constant, vacuum_permeability, e0, electric_constant, vacuum_permittivity, Z0, vacuum_impedance, coulomb_constant, electric_force_constant, atmosphere, atmospheres, atm, kPa, bar, bars, pound, pounds, psi, dHg0, mmHg, torr, mmu, mmus, milli_mass_unit, quart, quarts, ly, lightyear, lightyears, au, astronomical_unit, astronomical_units, planck_mass, planck_time, planck_temperature, planck_length, planck_charge, planck_area, planck_volume, planck_momentum, planck_energy, planck_force, planck_power, planck_density, planck_energy_density, planck_intensity, planck_angular_frequency, planck_pressure, planck_current, planck_voltage, planck_impedance, planck_acceleration, bit, bits, byte, kibibyte, kibibytes, mebibyte, mebibytes, gibibyte, gibibytes, tebibyte, tebibytes, pebibyte, pebibytes, exbibyte, exbibytes, ) from .systems import ( mks, mksa, si ) def find_unit(quantity, unit_system="SI"): """ Return a list of matching units or dimension names. - If ``quantity`` is a string -- units/dimensions containing the string `quantity`. - If ``quantity`` is a unit or dimension -- units having matching base units or dimensions. Examples ======== >>> from sympy.physics import units as u >>> u.find_unit('charge') ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] >>> u.find_unit(u.charge) ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] >>> u.find_unit("ampere") ['ampere', 'amperes'] >>> u.find_unit('angstrom') ['angstrom', 'angstroms'] >>> u.find_unit('volt') ['volt', 'volts', 'electronvolt', 'electronvolts', 'planck_voltage'] >>> u.find_unit(u.inch**3)[:9] ['L', 'l', 'cL', 'cl', 'dL', 'dl', 'mL', 'ml', 'liter'] """ unit_system = UnitSystem.get_unit_system(unit_system) import sympy.physics.units as u rv = [] if isinstance(quantity, str): rv = [i for i in dir(u) if quantity in i and isinstance(getattr(u, i), Quantity)] dim = getattr(u, quantity) if isinstance(dim, Dimension): rv.extend(find_unit(dim)) else: for i in sorted(dir(u)): other = getattr(u, i) if not isinstance(other, Quantity): continue if isinstance(quantity, Quantity): if quantity.dimension == other.dimension: rv.append(str(i)) elif isinstance(quantity, Dimension): if other.dimension == quantity: rv.append(str(i)) elif other.dimension == Dimension(unit_system.get_dimensional_expr(quantity)): rv.append(str(i)) return sorted(set(rv), key=lambda x: (len(x), x)) # NOTE: the old units module had additional variables: # 'density', 'illuminance', 'resistance'. # They were not dimensions, but units (old Unit class). __all__ = [ 'Dimension', 'DimensionSystem', 'UnitSystem', 'convert_to', 'Quantity', 'amount_of_substance', 'acceleration', 'action', 'area', 'capacitance', 'charge', 'conductance', 'current', 'energy', 'force', 'frequency', 'impedance', 'inductance', 'length', 'luminous_intensity', 'magnetic_density', 'magnetic_flux', 'mass', 'momentum', 'power', 'pressure', 'temperature', 'time', 'velocity', 'voltage', 'volume', 'Unit', 'speed', 'luminosity', 'magnetic_flux_density', 'amount', 'yotta', 'zetta', 'exa', 'peta', 'tera', 'giga', 'mega', 'kilo', 'hecto', 'deca', 'deci', 'centi', 'milli', 'micro', 'nano', 'pico', 'femto', 'atto', 'zepto', 'yocto', 'kibi', 'mebi', 'gibi', 'tebi', 'pebi', 'exbi', 'percent', 'percents', 'permille', 'rad', 'radian', 'radians', 'deg', 'degree', 'degrees', 'sr', 'steradian', 'steradians', 'mil', 'angular_mil', 'angular_mils', 'm', 'meter', 'meters', 'kg', 'kilogram', 'kilograms', 's', 'second', 'seconds', 'A', 'ampere', 'amperes', 'K', 'kelvin', 'kelvins', 'mol', 'mole', 'moles', 'cd', 'candela', 'candelas', 'g', 'gram', 'grams', 'mg', 'milligram', 'milligrams', 'ug', 'microgram', 'micrograms', 't', 'tonne', 'metric_ton', 'newton', 'newtons', 'N', 'joule', 'joules', 'J', 'watt', 'watts', 'W', 'pascal', 'pascals', 'Pa', 'pa', 'hertz', 'hz', 'Hz', 'coulomb', 'coulombs', 'C', 'volt', 'volts', 'v', 'V', 'ohm', 'ohms', 'siemens', 'S', 'mho', 'mhos', 'farad', 'farads', 'F', 'henry', 'henrys', 'H', 'tesla', 'teslas', 'T', 'weber', 'webers', 'Wb', 'wb', 'optical_power', 'dioptre', 'D', 'lux', 'lx', 'katal', 'kat', 'gray', 'Gy', 'becquerel', 'Bq', 'km', 'kilometer', 'kilometers', 'dm', 'decimeter', 'decimeters', 'cm', 'centimeter', 'centimeters', 'mm', 'millimeter', 'millimeters', 'um', 'micrometer', 'micrometers', 'micron', 'microns', 'nm', 'nanometer', 'nanometers', 'pm', 'picometer', 'picometers', 'ft', 'foot', 'feet', 'inch', 'inches', 'yd', 'yard', 'yards', 'mi', 'mile', 'miles', 'nmi', 'nautical_mile', 'nautical_miles', 'angstrom', 'angstroms', 'ha', 'hectare', 'l', 'L', 'liter', 'liters', 'dl', 'dL', 'deciliter', 'deciliters', 'cl', 'cL', 'centiliter', 'centiliters', 'ml', 'mL', 'milliliter', 'milliliters', 'ms', 'millisecond', 'milliseconds', 'us', 'microsecond', 'microseconds', 'ns', 'nanosecond', 'nanoseconds', 'ps', 'picosecond', 'picoseconds', 'minute', 'minutes', 'h', 'hour', 'hours', 'day', 'days', 'anomalistic_year', 'anomalistic_years', 'sidereal_year', 'sidereal_years', 'tropical_year', 'tropical_years', 'common_year', 'common_years', 'julian_year', 'julian_years', 'draconic_year', 'draconic_years', 'gaussian_year', 'gaussian_years', 'full_moon_cycle', 'full_moon_cycles', 'year', 'years', 'G', 'gravitational_constant', 'c', 'speed_of_light', 'elementary_charge', 'hbar', 'planck', 'eV', 'electronvolt', 'electronvolts', 'avogadro_number', 'avogadro', 'avogadro_constant', 'boltzmann', 'boltzmann_constant', 'stefan', 'stefan_boltzmann_constant', 'R', 'molar_gas_constant', 'faraday_constant', 'josephson_constant', 'von_klitzing_constant', 'Da', 'dalton', 'amu', 'amus', 'atomic_mass_unit', 'atomic_mass_constant', 'me', 'electron_rest_mass', 'gee', 'gees', 'acceleration_due_to_gravity', 'u0', 'magnetic_constant', 'vacuum_permeability', 'e0', 'electric_constant', 'vacuum_permittivity', 'Z0', 'vacuum_impedance', 'coulomb_constant', 'electric_force_constant', 'atmosphere', 'atmospheres', 'atm', 'kPa', 'bar', 'bars', 'pound', 'pounds', 'psi', 'dHg0', 'mmHg', 'torr', 'mmu', 'mmus', 'milli_mass_unit', 'quart', 'quarts', 'ly', 'lightyear', 'lightyears', 'au', 'astronomical_unit', 'astronomical_units', 'planck_mass', 'planck_time', 'planck_temperature', 'planck_length', 'planck_charge', 'planck_area', 'planck_volume', 'planck_momentum', 'planck_energy', 'planck_force', 'planck_power', 'planck_density', 'planck_energy_density', 'planck_intensity', 'planck_angular_frequency', 'planck_pressure', 'planck_current', 'planck_voltage', 'planck_impedance', 'planck_acceleration', 'bit', 'bits', 'byte', 'kibibyte', 'kibibytes', 'mebibyte', 'mebibytes', 'gibibyte', 'gibibytes', 'tebibyte', 'tebibytes', 'pebibyte', 'pebibytes', 'exbibyte', 'exbibytes', 'mks', 'mksa', 'si', ]
0768d3ec112cc82499994c47e9162b3fd81519e5cb9f49cb860313f6014e0d6e
""" Definition of physical dimensions. Unit systems will be constructed on top of these dimensions. Most of the examples in the doc use MKS system and are presented from the computer point of view: from a human point, adding length to time is not legal in MKS but it is in natural system; for a computer in natural system there is no time dimension (but a velocity dimension instead) - in the basis - so the question of adding time to length has no meaning. """ from __future__ import annotations import collections from functools import reduce from sympy.core.basic import Basic from sympy.core.containers import (Dict, Tuple) from sympy.core.singleton import S from sympy.core.sorting import default_sort_key from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.matrices.dense import Matrix from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.core.expr import Expr from sympy.core.power import Pow class _QuantityMapper: _quantity_scale_factors_global: dict[Expr, Expr] = {} _quantity_dimensional_equivalence_map_global: dict[Expr, Expr] = {} _quantity_dimension_global: dict[Expr, Expr] = {} def __init__(self, *args, **kwargs): self._quantity_dimension_map = {} self._quantity_scale_factors = {} def set_quantity_dimension(self, quantity, dimension): """ Set the dimension for the quantity in a unit system. If this relation is valid in every unit system, use ``quantity.set_global_dimension(dimension)`` instead. """ from sympy.physics.units import Quantity dimension = sympify(dimension) if not isinstance(dimension, Dimension): if dimension == 1: dimension = Dimension(1) else: raise ValueError("expected dimension or 1") elif isinstance(dimension, Quantity): dimension = self.get_quantity_dimension(dimension) self._quantity_dimension_map[quantity] = dimension def set_quantity_scale_factor(self, quantity, scale_factor): """ Set the scale factor of a quantity relative to another quantity. It should be used only once per quantity to just one other quantity, the algorithm will then be able to compute the scale factors to all other quantities. In case the scale factor is valid in every unit system, please use ``quantity.set_global_relative_scale_factor(scale_factor)`` instead. """ from sympy.physics.units import Quantity from sympy.physics.units.prefixes import Prefix scale_factor = sympify(scale_factor) # replace all prefixes by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Prefix), lambda x: x.scale_factor ) # replace all quantities by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Quantity), lambda x: self.get_quantity_scale_factor(x) ) self._quantity_scale_factors[quantity] = scale_factor def get_quantity_dimension(self, unit): from sympy.physics.units import Quantity # First look-up the local dimension map, then the global one: if unit in self._quantity_dimension_map: return self._quantity_dimension_map[unit] if unit in self._quantity_dimension_global: return self._quantity_dimension_global[unit] if unit in self._quantity_dimensional_equivalence_map_global: dep_unit = self._quantity_dimensional_equivalence_map_global[unit] if isinstance(dep_unit, Quantity): return self.get_quantity_dimension(dep_unit) else: return Dimension(self.get_dimensional_expr(dep_unit)) if isinstance(unit, Quantity): return Dimension(unit.name) else: return Dimension(1) def get_quantity_scale_factor(self, unit): if unit in self._quantity_scale_factors: return self._quantity_scale_factors[unit] if unit in self._quantity_scale_factors_global: mul_factor, other_unit = self._quantity_scale_factors_global[unit] return mul_factor*self.get_quantity_scale_factor(other_unit) return S.One class Dimension(Expr): """ This class represent the dimension of a physical quantities. The ``Dimension`` constructor takes as parameters a name and an optional symbol. For example, in classical mechanics we know that time is different from temperature and dimensions make this difference (but they do not provide any measure of these quantites. >>> from sympy.physics.units import Dimension >>> length = Dimension('length') >>> length Dimension(length) >>> time = Dimension('time') >>> time Dimension(time) Dimensions can be composed using multiplication, division and exponentiation (by a number) to give new dimensions. Addition and subtraction is defined only when the two objects are the same dimension. >>> velocity = length / time >>> velocity Dimension(length/time) It is possible to use a dimension system object to get the dimensionsal dependencies of a dimension, for example the dimension system used by the SI units convention can be used: >>> from sympy.physics.units.systems.si import dimsys_SI >>> dimsys_SI.get_dimensional_dependencies(velocity) {Dimension(length, L): 1, Dimension(time, T): -1} >>> length + length Dimension(length) >>> l2 = length**2 >>> l2 Dimension(length**2) >>> dimsys_SI.get_dimensional_dependencies(l2) {Dimension(length, L): 2} """ _op_priority = 13.0 # XXX: This doesn't seem to be used anywhere... _dimensional_dependencies = {} # type: ignore is_commutative = True is_number = False # make sqrt(M**2) --> M is_positive = True is_real = True def __new__(cls, name, symbol=None): if isinstance(name, str): name = Symbol(name) else: name = sympify(name) if not isinstance(name, Expr): raise TypeError("Dimension name needs to be a valid math expression") if isinstance(symbol, str): symbol = Symbol(symbol) elif symbol is not None: assert isinstance(symbol, Symbol) obj = Expr.__new__(cls, name) obj._name = name obj._symbol = symbol return obj @property def name(self): return self._name @property def symbol(self): return self._symbol def __str__(self): """ Display the string representation of the dimension. """ if self.symbol is None: return "Dimension(%s)" % (self.name) else: return "Dimension(%s, %s)" % (self.name, self.symbol) def __repr__(self): return self.__str__() def __neg__(self): return self def __add__(self, other): from sympy.physics.units.quantities import Quantity other = sympify(other) if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension) and self == other: return self return super().__add__(other) return self def __radd__(self, other): return self.__add__(other) def __sub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __rsub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __pow__(self, other): return self._eval_power(other) def _eval_power(self, other): other = sympify(other) return Dimension(self.name**other) def __mul__(self, other): from sympy.physics.units.quantities import Quantity if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension): return Dimension(self.name*other.name) if not other.free_symbols: # other.is_number cannot be used return self return super().__mul__(other) return self def __rmul__(self, other): return self.__mul__(other) def __truediv__(self, other): return self*Pow(other, -1) def __rtruediv__(self, other): return other * pow(self, -1) @classmethod def _from_dimensional_dependencies(cls, dependencies): return reduce(lambda x, y: x * y, ( d**e for d, e in dependencies.items() ), 1) def has_integer_powers(self, dim_sys): """ Check if the dimension object has only integer powers. All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the final result is well-defined. """ return all(dpow.is_Integer for dpow in dim_sys.get_dimensional_dependencies(self).values()) # Create dimensions according to the base units in MKSA. # For other unit systems, they can be derived by transforming the base # dimensional dependency dictionary. class DimensionSystem(Basic, _QuantityMapper): r""" DimensionSystem represents a coherent set of dimensions. The constructor takes three parameters: - base dimensions; - derived dimensions: these are defined in terms of the base dimensions (for example velocity is defined from the division of length by time); - dependency of dimensions: how the derived dimensions depend on the base dimensions. Optionally either the ``derived_dims`` or the ``dimensional_dependencies`` may be omitted. """ def __new__(cls, base_dims, derived_dims=(), dimensional_dependencies={}): dimensional_dependencies = dict(dimensional_dependencies) def parse_dim(dim): if isinstance(dim, str): dim = Dimension(Symbol(dim)) elif isinstance(dim, Dimension): pass elif isinstance(dim, Symbol): dim = Dimension(dim) else: raise TypeError("%s wrong type" % dim) return dim base_dims = [parse_dim(i) for i in base_dims] derived_dims = [parse_dim(i) for i in derived_dims] for dim in base_dims: if (dim in dimensional_dependencies and (len(dimensional_dependencies[dim]) != 1 or dimensional_dependencies[dim].get(dim, None) != 1)): raise IndexError("Repeated value in base dimensions") dimensional_dependencies[dim] = Dict({dim: 1}) def parse_dim_name(dim): if isinstance(dim, Dimension): return dim elif isinstance(dim, str): return Dimension(Symbol(dim)) elif isinstance(dim, Symbol): return Dimension(dim) else: raise TypeError("unrecognized type %s for %s" % (type(dim), dim)) for dim in dimensional_dependencies.keys(): dim = parse_dim(dim) if (dim not in derived_dims) and (dim not in base_dims): derived_dims.append(dim) def parse_dict(d): return Dict({parse_dim_name(i): j for i, j in d.items()}) # Make sure everything is a SymPy type: dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in dimensional_dependencies.items()} for dim in derived_dims: if dim in base_dims: raise ValueError("Dimension %s both in base and derived" % dim) if dim not in dimensional_dependencies: # TODO: should this raise a warning? dimensional_dependencies[dim] = Dict({dim: 1}) base_dims.sort(key=default_sort_key) derived_dims.sort(key=default_sort_key) base_dims = Tuple(*base_dims) derived_dims = Tuple(*derived_dims) dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()}) obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies) return obj @property def base_dims(self): return self.args[0] @property def derived_dims(self): return self.args[1] @property def dimensional_dependencies(self): return self.args[2] def _get_dimensional_dependencies_for_name(self, dimension): if isinstance(dimension, str): dimension = Dimension(Symbol(dimension)) elif not isinstance(dimension, Dimension): dimension = Dimension(dimension) if dimension.name.is_Symbol: # Dimensions not included in the dependencies are considered # as base dimensions: return dict(self.dimensional_dependencies.get(dimension, {dimension: 1})) if dimension.name.is_number or dimension.name.is_NumberSymbol: return {} get_for_name = self._get_dimensional_dependencies_for_name if dimension.name.is_Mul: ret = collections.defaultdict(int) dicts = [get_for_name(i) for i in dimension.name.args] for d in dicts: for k, v in d.items(): ret[k] += v return {k: v for (k, v) in ret.items() if v != 0} if dimension.name.is_Add: dicts = [get_for_name(i) for i in dimension.name.args] if all(d == dicts[0] for d in dicts[1:]): return dicts[0] raise TypeError("Only equivalent dimensions can be added or subtracted.") if dimension.name.is_Pow: dim_base = get_for_name(dimension.name.base) dim_exp = get_for_name(dimension.name.exp) if dim_exp == {} or dimension.name.exp.is_Symbol: return {k: v * dimension.name.exp for (k, v) in dim_base.items()} else: raise TypeError("The exponent for the power operator must be a Symbol or dimensionless.") if dimension.name.is_Function: args = (Dimension._from_dimensional_dependencies( get_for_name(arg)) for arg in dimension.name.args) result = dimension.name.func(*args) dicts = [get_for_name(i) for i in dimension.name.args] if isinstance(result, Dimension): return self.get_dimensional_dependencies(result) elif result.func == dimension.name.func: if isinstance(dimension.name, TrigonometricFunction): if dicts[0] in ({}, {Dimension('angle'): 1}): return {} else: raise TypeError("The input argument for the function {} must be dimensionless or have dimensions of angle.".format(dimension.func)) else: if all(item == {} for item in dicts): return {} else: raise TypeError("The input arguments for the function {} must be dimensionless.".format(dimension.func)) else: return get_for_name(result) raise TypeError("Type {} not implemented for get_dimensional_dependencies".format(type(dimension.name))) def get_dimensional_dependencies(self, name, mark_dimensionless=False): dimdep = self._get_dimensional_dependencies_for_name(name) if mark_dimensionless and dimdep == {}: return {Dimension(1): 1} return {k: v for k, v in dimdep.items()} def equivalent_dims(self, dim1, dim2): deps1 = self.get_dimensional_dependencies(dim1) deps2 = self.get_dimensional_dependencies(dim2) return deps1 == deps2 def extend(self, new_base_dims, new_derived_dims=(), new_dim_deps=None): deps = dict(self.dimensional_dependencies) if new_dim_deps: deps.update(new_dim_deps) new_dim_sys = DimensionSystem( tuple(self.base_dims) + tuple(new_base_dims), tuple(self.derived_dims) + tuple(new_derived_dims), deps ) new_dim_sys._quantity_dimension_map.update(self._quantity_dimension_map) new_dim_sys._quantity_scale_factors.update(self._quantity_scale_factors) return new_dim_sys def is_dimensionless(self, dimension): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if dimension.name == 1: return True return self.get_dimensional_dependencies(dimension) == {} @property def list_can_dims(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. List all canonical dimension names. """ dimset = set() for i in self.base_dims: dimset.update(set(self.get_dimensional_dependencies(i).keys())) return tuple(sorted(dimset, key=str)) @property def inv_can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Compute the inverse transformation matrix from the base to the canonical dimension basis. It corresponds to the matrix where columns are the vector of base dimensions in canonical basis. This matrix will almost never be used because dimensions are always defined with respect to the canonical basis, so no work has to be done to get them in this basis. Nonetheless if this matrix is not square (or not invertible) it means that we have chosen a bad basis. """ matrix = reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in self.base_dims]) return matrix @property def can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Return the canonical transformation matrix from the canonical to the base dimension basis. It is the inverse of the matrix computed with inv_can_transf_matrix(). """ #TODO: the inversion will fail if the system is inconsistent, for # example if the matrix is not a square return reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in sorted(self.base_dims, key=str)] ).inv() def dim_can_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Dimensional representation in terms of the canonical base dimensions. """ vec = [] for d in self.list_can_dims: vec.append(self.get_dimensional_dependencies(dim).get(d, 0)) return Matrix(vec) def dim_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Vector representation in terms of the base dimensions. """ return self.can_transf_matrix * Matrix(self.dim_can_vector(dim)) def print_dim_base(self, dim): """ Give the string expression of a dimension in term of the basis symbols. """ dims = self.dim_vector(dim) symbols = [i.symbol if i.symbol is not None else i.name for i in self.base_dims] res = S.One for (s, p) in zip(symbols, dims): res *= s**p return res @property def dim(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Give the dimension of the system. That is return the number of dimensions forming the basis. """ return len(self.base_dims) @property def is_consistent(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Check if the system is well defined. """ # not enough or too many base dimensions compared to independent # dimensions # in vector language: the set of vectors do not form a basis return self.inv_can_transf_matrix.is_square
245e4a480267728f282889cf0b77190912597f191cb55b1b885f26c64e77ef8c
from sympy.core.add import Add from sympy.core.function import Function from sympy.core.mul import Mul from sympy.core.numbers import (I, Rational, oo) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import eye from sympy.polys.polytools import factor from sympy.polys.rootoftools import CRootOf from sympy.simplify.simplify import simplify from sympy.core.containers import Tuple from sympy.matrices import ImmutableMatrix, Matrix from sympy.physics.control import (TransferFunction, Series, Parallel, Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback, bilinear) from sympy.testing.pytest import raises a, x, b, s, g, d, p, k, a0, a1, a2, b0, b1, b2, tau, zeta, wn, T = symbols('a, x, b, s, g, d, p, k,\ a0:3, b0:3, tau, zeta, wn, T') TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) TF2 = TransferFunction(k, 1, s) TF3 = TransferFunction(a2*p - s, a2*s + p, s) def test_TransferFunction_construction(): tf = TransferFunction(s + 1, s**2 + s + 1, s) assert tf.num == (s + 1) assert tf.den == (s**2 + s + 1) assert tf.args == (s + 1, s**2 + s + 1, s) tf1 = TransferFunction(s + 4, s - 5, s) assert tf1.num == (s + 4) assert tf1.den == (s - 5) assert tf1.args == (s + 4, s - 5, s) # using different polynomial variables. tf2 = TransferFunction(p + 3, p**2 - 9, p) assert tf2.num == (p + 3) assert tf2.den == (p**2 - 9) assert tf2.args == (p + 3, p**2 - 9, p) tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p) assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p) # no pole-zero cancellation on its own. tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s) assert tf4.den == (s - 1)*(s + 5) assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s) tf4_ = TransferFunction(p + 2, p + 2, p) assert tf4_.args == (p + 2, p + 2, p) tf5 = TransferFunction(s - 1, 4 - p, s) assert tf5.args == (s - 1, 4 - p, s) tf5_ = TransferFunction(s - 1, s - 1, s) assert tf5_.args == (s - 1, s - 1, s) tf6 = TransferFunction(5, 6, s) assert tf6.num == 5 assert tf6.den == 6 assert tf6.args == (5, 6, s) tf6_ = TransferFunction(1/2, 4, s) assert tf6_.num == 0.5 assert tf6_.den == 4 assert tf6_.args == (0.500000000000000, 4, s) tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s) tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p) assert not tf7 == tf8 tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s) tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s) assert tf7_ == tf8_ assert -(-tf7_) == tf7_ == -(-(-(-tf7_))) tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s) assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s) tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p) tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p) assert tf10.args == (d + p**3, a + d*s + g*s**2, p) assert tf10_ == tf10 tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s) assert tf11.num == (a0 + a1*s) assert tf11.den == (b0 + b1*s + b2*s**2) assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s) # when just the numerator is 0, leave the denominator alone. tf12 = TransferFunction(0, p**2 - p + 1, p) assert tf12.args == (0, p**2 - p + 1, p) tf13 = TransferFunction(0, 1, s) assert tf13.args == (0, 1, s) # float exponents tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s) assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s) tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p) assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p) omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i') tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s) assert tf18.num == k_i/s + k_o*s + k_p assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s) # ValueError when denominator is zero. raises(ValueError, lambda: TransferFunction(4, 0, s)) raises(ValueError, lambda: TransferFunction(s, 0, s)) raises(ValueError, lambda: TransferFunction(0, 0, s)) raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s)) raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3)) raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4)) raises(TypeError, lambda: TransferFunction(3, 4, 8)) def test_TransferFunction_functions(): # classmethod from_rational_expression expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False) expr_2 = s/0 expr_3 = (p*s**2 + 5*s)/(s + 1)**3 expr_4 = 6 expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2)) expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9)) tf = TransferFunction(s + 1, s**2 + 2, s) delay = exp(-s/tau) expr_7 = delay*tf.to_expr() H1 = TransferFunction.from_rational_expression(expr_7, s) H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s) expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False) assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s) raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2)) raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3)) assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s) assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p) raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4)) assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s) assert TransferFunction.from_rational_expression(expr_5, s) == \ TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s) assert TransferFunction.from_rational_expression(expr_6, s) == \ TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s) assert H1 == H2 assert TransferFunction.from_rational_expression(expr_8, s) == \ TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s) # explicitly cancel poles and zeros. tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s) a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s) assert tf0.simplify() == simplify(tf0) == a tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) b = TransferFunction(p + 3, p + 5, p) assert tf1.simplify() == simplify(tf1) == b # expand the numerator and the denominator. G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) G2 = TransferFunction(1, -3, p) c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p) d = (b0*s**s + b1*p**s)*(b2*s*p + p**p) e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p) f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s G3 = TransferFunction(c, d, s) G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p) assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s) assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p) assert G2.expand() == G2 assert G3.expand() == TransferFunction(e, f, s) assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p) # purely symbolic polynomials. p1 = a1*s + a0 p2 = b2*s**2 + b1*s + b0 SP1 = TransferFunction(p1, p2, s) expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s) expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s) assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_ assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1 assert expect1_.evalf() == expect1 c1, d0, d1, d2 = symbols('c1, d0:3') p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0 SP2 = TransferFunction(p3, p4, p) expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p) expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p) assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_ assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2 assert expect2_.evalf() == expect2 SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s) expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s) expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s) assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_ assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3 assert expect3_.evalf() == expect3 SP4 = TransferFunction(s - a1*p**3, a0*s + p, p) expect4 = TransferFunction(7.0*p**3 + s, p - s, p) expect4_ = TransferFunction(7*p**3 + s, p - s, p) assert SP4.subs({a0: -1, a1: -7}) == expect4_ assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4 assert expect4_.evalf() == expect4 # Low-frequency (or DC) gain. assert tf0.dc_gain() == 1 assert tf1.dc_gain() == Rational(3, 5) assert SP2.dc_gain() == 0 assert expect4.dc_gain() == -1 assert expect2_.dc_gain() == 0 assert TransferFunction(1, s, s).dc_gain() == oo # Poles of a transfer function. tf_ = TransferFunction(x**3 - k, k, x) _tf = TransferFunction(k, x**4 - k, x) TF_ = TransferFunction(x**2, x**10 + x + x**2, x) _TF = TransferFunction(x**10 + x + x**2, x**2, x) assert G1.poles() == [I, I, -I, -I] assert G2.poles() == [] assert tf1.poles() == [-5, 1] assert expect4_.poles() == [s] assert SP4.poles() == [-a0*s] assert expect3.poles() == [-0.25*p] assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I]) assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I]) assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))] assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2), CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6), CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)] raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles()) # Stability of a transfer function. q, r = symbols('q, r', negative=True) t = symbols('t', positive=True) TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s) stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s) stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s) assert G1.is_stable() is False assert G2.is_stable() is True assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve. assert expect2.is_stable() is False assert expect1.is_stable() is True assert stable_tf.is_stable() is True assert stable_tf_.is_stable() is True assert TF_.is_stable() is False assert expect4_.is_stable() is None # no assumption provided for the only pole 's'. assert SP4.is_stable() is None # Zeros of a transfer function. assert G1.zeros() == [1, 1] assert G2.zeros() == [] assert tf1.zeros() == [-3, 1] assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 - sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14] assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2, -(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2] assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0), 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125]) assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2, -k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2] assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2), CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6), CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)] raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros()) # negation of TF. tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s) tf3 = TransferFunction(-3*p + 3, 1 - p, p) assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s) assert -tf3 == TransferFunction(3*p - 3, 1 - p, p) # taking power of a TF. tf4 = TransferFunction(p + 4, p - 3, p) tf5 = TransferFunction(s**2 + 1, 1 - s, s) expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s) expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p) assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1 assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2 assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s) assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p) assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s) raises(ValueError, lambda: tf4**(s**2 + s - 1)) raises(ValueError, lambda: tf5**s) raises(ValueError, lambda: tf4**tf5) # SymPy's own functions. tf = TransferFunction(s - 1, s**2 - 2*s + 1, s) tf6 = TransferFunction(s + p, p**2 - 5, s) assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s) assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1 # subs & xreplace assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s) assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s) assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s) raises(TypeError, lambda: tf3.xreplace({p: exp(2)})) assert tf3.subs(p, exp(2)) == tf3 tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s) assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k) assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s) # Conversion to Expr with to_expr() tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s) tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s) tf10 = TransferFunction(0, 1, s) tf11 = TransferFunction(1, 1, s) assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False) assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False) assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False) assert tf11.to_expr() == Pow(1, -1, evaluate=False) def test_TransferFunction_addition_and_subtraction(): tf1 = TransferFunction(s + 6, s - 5, s) tf2 = TransferFunction(s + 3, s + 1, s) tf3 = TransferFunction(s + 1, s**2 + s + 1, s) tf4 = TransferFunction(p, 2 - p, p) # addition assert tf1 + tf2 == Parallel(tf1, tf2) assert tf3 + tf1 == Parallel(tf3, tf1) assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3) assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3) c = symbols("c", commutative=False) raises(ValueError, lambda: tf1 + Matrix([1, 2, 3])) raises(ValueError, lambda: tf2 + c) raises(ValueError, lambda: tf3 + tf4) raises(ValueError, lambda: tf1 + (s - 1)) raises(ValueError, lambda: tf1 + 8) raises(ValueError, lambda: (1 - p**3) + tf1) # subtraction assert tf1 - tf2 == Parallel(tf1, -tf2) assert tf3 - tf2 == Parallel(tf3, -tf2) assert -tf1 - tf3 == Parallel(-tf1, -tf3) assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3) raises(ValueError, lambda: tf1 - Matrix([1, 2, 3])) raises(ValueError, lambda: tf3 - tf4) raises(ValueError, lambda: tf1 - (s - 1)) raises(ValueError, lambda: tf1 - 8) raises(ValueError, lambda: (s + 5) - tf2) raises(ValueError, lambda: (1 + p**4) - tf1) def test_TransferFunction_multiplication_and_division(): G1 = TransferFunction(s + 3, -s**3 + 9, s) G2 = TransferFunction(s + 1, s - 5, s) G3 = TransferFunction(p, p**4 - 6, p) G4 = TransferFunction(p + 4, p - 5, p) G5 = TransferFunction(s + 6, s - 5, s) G6 = TransferFunction(s + 3, s + 1, s) G7 = TransferFunction(1, 1, s) # multiplication assert G1*G2 == Series(G1, G2) assert -G1*G5 == Series(-G1, G5) assert -G2*G5*-G6 == Series(-G2, G5, -G6) assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6) assert G3*G4 == Series(G3, G4) assert (G1*G2)*-(G5*G6) == \ Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6)) assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6)) c = symbols("c", commutative=False) raises(ValueError, lambda: G3 * Matrix([1, 2, 3])) raises(ValueError, lambda: G1 * c) raises(ValueError, lambda: G3 * G5) raises(ValueError, lambda: G5 * (s - 1)) raises(ValueError, lambda: 9 * G5) raises(ValueError, lambda: G3 / Matrix([1, 2, 3])) raises(ValueError, lambda: G6 / 0) raises(ValueError, lambda: G3 / G5) raises(ValueError, lambda: G5 / 2) raises(ValueError, lambda: G5 / s**2) raises(ValueError, lambda: (s - 4*s**2) / G2) raises(ValueError, lambda: 0 / G4) raises(ValueError, lambda: G5 / G6) raises(ValueError, lambda: -G3 /G4) raises(ValueError, lambda: G7 / (1 + G6)) raises(ValueError, lambda: G7 / (G5 * G6)) raises(ValueError, lambda: G7 / (G7 + (G5 + G6))) def test_TransferFunction_is_proper(): omega_o, zeta, tau = symbols('omega_o, zeta, tau') G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) G2 = TransferFunction(tau - s**3, tau + p**4, tau) G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) assert G1.is_proper assert G2.is_proper assert G3.is_proper assert not G4.is_proper def test_TransferFunction_is_strictly_proper(): omega_o, zeta, tau = symbols('omega_o, zeta, tau') tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) tf2 = TransferFunction(tau - s**3, tau + p**4, tau) tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) assert not tf1.is_strictly_proper assert not tf2.is_strictly_proper assert tf3.is_strictly_proper assert not tf4.is_strictly_proper def test_TransferFunction_is_biproper(): tau, omega_o, zeta = symbols('tau, omega_o, zeta') tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) tf2 = TransferFunction(tau - s**3, tau + p**4, tau) tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) assert tf1.is_biproper assert tf2.is_biproper assert not tf3.is_biproper assert not tf4.is_biproper def test_Series_construction(): tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) tf2 = TransferFunction(a2*p - s, a2*s + p, s) tf3 = TransferFunction(a0*p + p**a1 - s, p, p) tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) inp = Function('X_d')(s) out = Function('X')(s) s0 = Series(tf, tf2) assert s0.args == (tf, tf2) assert s0.var == s s1 = Series(Parallel(tf, -tf2), tf2) assert s1.args == (Parallel(tf, -tf2), tf2) assert s1.var == s tf3_ = TransferFunction(inp, 1, s) tf4_ = TransferFunction(-out, 1, s) s2 = Series(tf, Parallel(tf3_, tf4_), tf2) assert s2.args == (tf, Parallel(tf3_, tf4_), tf2) s3 = Series(tf, tf2, tf4) assert s3.args == (tf, tf2, tf4) s4 = Series(tf3_, tf4_) assert s4.args == (tf3_, tf4_) assert s4.var == s s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4) assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4) s7 = Series(tf, tf2) assert s0 == s7 assert not s0 == s2 raises(ValueError, lambda: Series(tf, tf3)) raises(ValueError, lambda: Series(tf, tf2, tf3, tf4)) raises(ValueError, lambda: Series(-tf3, tf2)) raises(TypeError, lambda: Series(2, tf, tf4)) raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2)) raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4]))) def test_MIMOSeries_construction(): tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) tf_2 = TransferFunction(a2*p - s, a2*s + p, s) tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]]) tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]]) tfm_3 = TransferFunctionMatrix([[-tf_3]]) tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]]) tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p) s8 = MIMOSeries(tfm_2, tfm_1) assert s8.args == (tfm_2, tfm_1) assert s8.var == s assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1) s9 = MIMOSeries(tfm_3, tfm_2, tfm_1) assert s9.args == (tfm_3, tfm_2, tfm_1) assert s9.var == s assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1) s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1) assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1) assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1) # arg cannot be empty tuple. raises(ValueError, lambda: MIMOSeries()) # arg cannot contain SISO as well as MIMO systems. raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1)) # for all the adjacent transfer function matrices: # no. of inputs of first TFM must be equal to the no. of outputs of the second TFM. raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1)) # all the TFMs must use the same complex variable. raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5)) # Number or expression not allowed in the arguments. raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3)) raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3)) raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3)) def test_Series_functions(): tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \ == Series(tf1, Series(tf2, tf3)) assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3)) assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5) assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5) assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5) assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5) assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5) assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5)) assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5))) assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3) assert -tf1*tf2 == Series(-tf1, tf2) assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2)) raises(ValueError, lambda: tf1*tf2*tf4) raises(ValueError, lambda: tf1*(tf2 - tf4)) raises(ValueError, lambda: tf3*Matrix([1, 2, 3])) # evaluate=True -> doit() assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \ TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s) assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \ TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s) assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit() assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \ TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Series(-tf1, -tf2, -tf3).doit() == \ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert -Series(tf1, tf2, tf3).doit() == \ TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \ TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s) assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s) assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)) assert S1.is_proper assert not S1.is_strictly_proper assert S1.is_biproper S2 = Series(tf1, tf2, tf3) assert S2.is_proper assert S2.is_strictly_proper assert not S2.is_biproper S3 = Series(tf1, -tf2, Parallel(tf1, -tf3)) assert S3.is_proper assert S3.is_strictly_proper assert not S3.is_biproper def test_MIMOSeries_functions(): tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]]) tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]]) tfm3 = TransferFunctionMatrix([[-TF1]]) tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]]) tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]]) tfm6 = TransferFunctionMatrix([[-TF3], [TF1]]) tfm7 = TransferFunctionMatrix([[TF1], [-TF2]]) assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6) assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6) assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7) assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5) assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4)) raises(ValueError, lambda: tfm1*tfm2 + TF1) raises(TypeError, lambda: tfm1*tfm2 + a0) raises(TypeError, lambda: tfm4*tfm6 - (s - 1)) raises(TypeError, lambda: tfm4*-tfm6 - 8) raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2) # Shape criteria. raises(TypeError, lambda: -tfm1*tfm2 + tfm4) raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5) raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5) assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1) assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1) # Multiplication of a Series object with a SISO TF not allowed. raises(ValueError, lambda: tfm4*tfm5*TF1) raises(TypeError, lambda: tfm4*tfm5*a1) raises(TypeError, lambda: tfm4*-tfm5*(s - 2)) raises(TypeError, lambda: tfm5*tfm4*9) raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4) # Transfer function matrix in the arguments. assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit() == TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2, (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),), (TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),)))) # doit() should not cancel poles and zeros. mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]]) mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]]) tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s) assert (MIMOSeries(tm_2, tm_1).doit() == TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),))) assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),)) # calling doit() will expand the internal Series and Parallel objects. assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True) == MIMOSeries(-tfm3, -tfm2, tfm1).doit() == TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2, (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),), (TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),)))) assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit() == TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \ k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \ TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix)) def test_Parallel_construction(): tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) tf2 = TransferFunction(a2*p - s, a2*s + p, s) tf3 = TransferFunction(a0*p + p**a1 - s, p, p) tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) inp = Function('X_d')(s) out = Function('X')(s) p0 = Parallel(tf, tf2) assert p0.args == (tf, tf2) assert p0.var == s p1 = Parallel(Series(tf, -tf2), tf2) assert p1.args == (Series(tf, -tf2), tf2) assert p1.var == s tf3_ = TransferFunction(inp, 1, s) tf4_ = TransferFunction(-out, 1, s) p2 = Parallel(tf, Series(tf3_, -tf4_), tf2) assert p2.args == (tf, Series(tf3_, -tf4_), tf2) p3 = Parallel(tf, tf2, tf4) assert p3.args == (tf, tf2, tf4) p4 = Parallel(tf3_, tf4_) assert p4.args == (tf3_, tf4_) assert p4.var == s p5 = Parallel(tf, tf2) assert p0 == p5 assert not p0 == p1 p6 = Parallel(tf2, tf4, Series(tf2, -tf4)) assert p6.args == (tf2, tf4, Series(tf2, -tf4)) p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4) assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4) raises(ValueError, lambda: Parallel(tf, tf3)) raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4)) raises(ValueError, lambda: Parallel(-tf3, tf4)) raises(TypeError, lambda: Parallel(2, tf, tf4)) raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2)) raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4]))) def test_MIMOParallel_construction(): tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]]) tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]]) tfm3 = TransferFunctionMatrix([[TF1]]) tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]]) tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]]) tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]]) tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p) p8 = MIMOParallel(tfm1, tfm2) assert p8.args == (tfm1, tfm2) assert p8.var == s assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1) p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2) assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2) assert p9.var == s assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1) p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2) assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2) assert p10.var == s assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1) p11 = MIMOParallel(tfm2, tfm1, tfm4) assert p11.args == (tfm2, tfm1, tfm4) assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1) p12 = MIMOParallel(tfm6, tfm5) assert p12.args == (tfm6, tfm5) assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2) p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4) assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4) assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1) # arg cannot be empty tuple. raises(TypeError, lambda: MIMOParallel(())) # arg cannot contain SISO as well as MIMO systems. raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1)) # all TFMs must have same shapes. raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4)) # all TFMs must be using the same complex variable. raises(ValueError, lambda: MIMOParallel(tfm3, tfm7)) # Number or expression not allowed in the arguments. raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4)) raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2)) def test_Parallel_functions(): tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3) assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5) assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5) assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3)) assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3)) assert -tf1 - tf2 == Parallel(-tf1, -tf2) assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2)) assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1) assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5) assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5) assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5) assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3) assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5)) raises(ValueError, lambda: tf1 + tf2 + tf4) raises(ValueError, lambda: tf1 - tf2*tf4) raises(ValueError, lambda: tf3 + Matrix([1, 2, 3])) # evaluate=True -> doit() assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \ TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s) assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \ Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \ (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \ 2*s*wn*zeta + wn**2)**2, s) assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \ TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \ , (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit() assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \ TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(-tf1, -tf2, -tf3).doit() == \ TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert -Parallel(tf1, tf2, tf3).doit() == \ TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \ TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \ + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(tf1, tf2).rewrite(TransferFunction) == \ TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s) assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \ TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3) P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) assert P1.is_proper assert not P1.is_strictly_proper assert P1.is_biproper P2 = Parallel(tf1, -tf2, -tf3) assert P2.is_proper assert not P2.is_strictly_proper assert P2.is_biproper P3 = Parallel(tf1, -tf2, Series(tf1, tf3)) assert P3.is_proper assert not P3.is_strictly_proper assert P3.is_biproper def test_MIMOParallel_functions(): tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]]) tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]]) tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]]) tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]]) tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]]) tfm6 = TransferFunctionMatrix([[-TF2]]) tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]]) assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3) assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3) assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1)) assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1)) assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2) assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1) raises(ValueError, lambda: tfm1 + tfm2 + TF2) raises(TypeError, lambda: tfm1 - tfm2 - a1) raises(TypeError, lambda: tfm2 - tfm3 - (s - 1)) raises(TypeError, lambda: -tfm3 - tfm2 - 9) raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2) # All TFMs must use the same complex var. tfm7 uses 'p'. raises(ValueError, lambda: tfm3 - tfm2 - tfm7) raises(ValueError, lambda: tfm2 - tfm1 + tfm7) # (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape. raises(TypeError, lambda: tfm1 + tfm2 + tfm4) raises(TypeError, lambda: (tfm1 - tfm2) - tfm4) assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2)) assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3)) assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3)) raises(ValueError, lambda: (tfm4 + tfm5)*TF1) raises(TypeError, lambda: (tfm2 - tfm3)*a2) raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6)) raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0) raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3)) # (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape. raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5) # (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape. raises(ValueError, lambda: (tfm1 - tfm2)*tfm5) # TFM in the arguments. assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit() == MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix) == TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \ (TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \ (s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),)))) def test_Feedback_construction(): tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tf6 = TransferFunction(s - p, p + s, p) f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3) assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1) assert f1.sys1 == TransferFunction(1, 1, s) assert f1.sys2 == Series(tf1, tf2, tf3) assert f1.var == s f2 = Feedback(tf1, tf2*tf3) assert f2.args == (tf1, Series(tf2, tf3), -1) assert f2.sys1 == tf1 assert f2.sys2 == Series(tf2, tf3) assert f2.var == s f3 = Feedback(tf1*tf2, tf5) assert f3.args == (Series(tf1, tf2), tf5, -1) assert f3.sys1 == Series(tf1, tf2) f4 = Feedback(tf4, tf6) assert f4.args == (tf4, tf6, -1) assert f4.sys1 == tf4 assert f4.var == p f5 = Feedback(tf5, TransferFunction(1, 1, s)) assert f5.args == (tf5, TransferFunction(1, 1, s), -1) assert f5.var == s assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf. f6 = Feedback(TransferFunction(1, 1, p), tf4) assert f6.args == (TransferFunction(1, 1, p), tf4, -1) assert f6.var == p f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p)) assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1) assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6)) # denominator can't be a Parallel instance raises(TypeError, lambda: Feedback(tf1, tf2 + tf3)) raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3]))) raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1)) raises(TypeError, lambda: Feedback(1, 1)) # raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s))) raises(ValueError, lambda: Feedback(tf2, tf4*tf5)) raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1 raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var` def test_Feedback_functions(): tf = TransferFunction(1, 1, s) tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tf6 = TransferFunction(s - p, p + s, p) assert tf / (tf + tf1) == Feedback(tf, tf1) assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3) assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3) assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf) assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5) assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5)) assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6) assert tf5 / (tf + tf5) == Feedback(tf5, tf) raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3)) raises(ValueError, lambda: tf1*tf2*tf3 / tf3*tf5) raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4)) assert Feedback(tf, tf1*tf2*tf3).doit() == \ TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(tf, tf1*tf2*tf3).sensitivity == \ 1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) assert Feedback(tf1, tf2*tf3).doit() == \ TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(tf1, tf2*tf3).sensitivity == \ 1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) assert Feedback(tf1*tf2, tf5).doit() == \ TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \ (a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(tf1*tf2, tf5, 1).sensitivity == \ 1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) assert Feedback(tf4, tf6).doit() == \ TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p) assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \ TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p) assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s) assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \ TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \ (a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \ TransferFunction(p, a0*p + p + p**a1 - s, p) def test_MIMOFeedback_construction(): tf1 = TransferFunction(1, s, s) tf2 = TransferFunction(s, s**3 - 1, s) tf3 = TransferFunction(s, s + 1, s) tf4 = TransferFunction(s, s**2 + 1, s) tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]]) tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]]) f1 = MIMOFeedback(tfm_1, tfm_2) assert f1.args == (tfm_1, tfm_2, -1) assert f1.sys1 == tfm_1 assert f1.sys2 == tfm_2 assert f1.var == s assert f1.sign == -1 assert -(-f1) == f1 f2 = MIMOFeedback(tfm_2, tfm_1, 1) assert f2.args == (tfm_2, tfm_1, 1) assert f2.sys1 == tfm_2 assert f2.sys2 == tfm_1 assert f2.var == s assert f2.sign == 1 f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2)) assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1) assert f3.sys1 == tfm_1 assert f3.sys2 == MIMOSeries(tfm_3, tfm_2) assert f3.var == s assert f3.sign == -1 mat = Matrix([[1, 1/s], [0, 1]]) sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s) f4 = MIMOFeedback(sys1, controller) assert f4.args == (sys1, controller, -1) assert f4.sys1 == f4.sys2 == sys1 def test_MIMOFeedback_errors(): tf1 = TransferFunction(1, s, s) tf2 = TransferFunction(s, s**3 - 1, s) tf3 = TransferFunction(s, s - 1, s) tf4 = TransferFunction(s, s**2 + 1, s) tf5 = TransferFunction(1, 1, s) tf6 = TransferFunction(-1, s - 1, s) tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]]) tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s) tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]]) tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]]) # tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I tfm_6 = TransferFunctionMatrix([[-tf3]]) tfm_7 = TransferFunctionMatrix([[tf3, tf4]]) # Unsupported Types raises(TypeError, lambda: MIMOFeedback(tf1, tf2)) raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3)) # Shape Errors raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1)) raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7)) # sign not 1/-1 raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2)) # Non-Invertible Systems raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1)) raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5)) raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1)) # Variable not same in both the systems tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p) raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1)) def test_MIMOFeedback_functions(): tf1 = TransferFunction(1, s, s) tf2 = TransferFunction(s, s - 1, s) tf3 = TransferFunction(1, 1, s) tf4 = TransferFunction(-1, s - 1, s) tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s) tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]]) tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]]) tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]]) # sensitivity, doit(), rewrite() F_1 = MIMOFeedback(tfm_2, tfm_3) F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1) assert F_1.sensitivity == Matrix([[S.Half, 0], [0, S.Half]]) assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1), (2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]]) assert F_1.doit() == \ TransferFunctionMatrix(((TransferFunction(1, 2*s, s), TransferFunction(1, 2, s)), (TransferFunction(1, 2, s), TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix) assert F_2.doit(cancel=False, expand=True) == \ TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) assert F_2.doit(cancel=False) == \ TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \ (-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) assert F_2.doit() == \ TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s), TransferFunction(-2*s**3*(s - 1), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s)))) assert F_2.doit(expand=True) == \ TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating. def test_TransferFunctionMatrix_construction(): tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tfm3_ = TransferFunctionMatrix([[-TF3]]) assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1) assert tfm3_.args == Tuple(Tuple(Tuple(-TF3))) assert tfm3_.var == s tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]]) assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2) assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5))) assert tfm5.var == s tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]]) assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2) assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2))) assert tfm7.var == s # all transfer functions will use the same complex variable. tf4 uses 'p'. raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]])) raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]])) # length of all the lists in the TFM should be equal. raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]])) raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]])) # lists should only support transfer functions in them. raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]])) raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]])) # `arg` should strictly be nested list of TransferFunction raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5])) raises(ValueError, lambda: TransferFunctionMatrix([TF1])) def test_TransferFunctionMatrix_functions(): tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) # Classmethod (from_matrix) mat_1 = ImmutableMatrix([ [s*(s + 1)*(s - 3)/(s**4 + 1), 2], [p, p*(s + 1)/(s*(s**1 + 1))] ]) mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]]) mat_3 = ImmutableMatrix([[1, 2], [3, 4]]) assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \ TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(p, 1, s), TransferFunction(p, s, s)]]) assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \ TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]]) assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \ TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)], [TransferFunction(3, 1, p), TransferFunction(4, 1, p)]]) # Negating a TFM tfm1 = TransferFunctionMatrix([[TF1], [TF2]]) assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]]) tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]]) assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]]) # subs() H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s) H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]]) assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var` assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]]) assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]]) assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]]) assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]]) # transpose() assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]]) assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]]) assert H_1.transpose().transpose() == H_1 assert H_2.transpose().transpose() == H_2 # elem_poles() assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []], [[], [0]]] assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]] assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]], [[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]] # elem_zeros() assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]] assert H_2.elem_zeros() == [[[0], [0]]] assert tfm2.elem_zeros() == [[[], [], [a2*p]], [[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]] # doit() H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]]) H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]]) assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]]) assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]]) # _flat() assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)] assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)] assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))] assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))] # evalf() assert H_1.evalf() == \ TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s)))) assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \ TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s), TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),)) # simplify() H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s), TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]]) assert H_5.simplify() == simplify(H_5) == \ TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),)) # expand() assert (H_1.expand() == TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)), (TransferFunction(p, 1, s), TransferFunction(p, s, s))))) assert H_5.expand() == \ TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),)) def test_TransferFunction_bilinear(): # simple transfer function, e.g. ohms law tf = TransferFunction(1, a*s+b, s) numZ, denZ = bilinear(tf, T) # discretized transfer function with coefs from tf.bilinear() tf_test_bilinear = TransferFunction(s*numZ[0]+numZ[1], s*denZ[0]+denZ[1], s) # corresponding tf with manually calculated coefs tf_test_manual = TransferFunction(s*T+T, s*(T*b+2*a)+T*b-2*a, s) assert S.Zero == (tf_test_bilinear-tf_test_manual).simplify().num
132c62120c9cd270d2c1e270234254c2d6bb819f354d51c297b603128b13aef2
from sympy.core.numbers import Rational from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import log from sympy.external import import_module from sympy.physics.quantum.density import Density, entropy, fidelity from sympy.physics.quantum.state import Ket, TimeDepKet from sympy.physics.quantum.qubit import Qubit from sympy.physics.quantum.represent import represent from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.cartesian import XKet, PxKet, PxOp, XOp from sympy.physics.quantum.spin import JzKet from sympy.physics.quantum.operator import OuterProduct from sympy.physics.quantum.trace import Tr from sympy.functions import sqrt from sympy.testing.pytest import raises from sympy.physics.quantum.matrixutils import scipy_sparse_matrix from sympy.physics.quantum.tensorproduct import TensorProduct def test_eval_args(): # check instance created assert isinstance(Density([Ket(0), 0.5], [Ket(1), 0.5]), Density) assert isinstance(Density([Qubit('00'), 1/sqrt(2)], [Qubit('11'), 1/sqrt(2)]), Density) #test if Qubit object type preserved d = Density([Qubit('00'), 1/sqrt(2)], [Qubit('11'), 1/sqrt(2)]) for (state, prob) in d.args: assert isinstance(state, Qubit) # check for value error, when prob is not provided raises(ValueError, lambda: Density([Ket(0)], [Ket(1)])) def test_doit(): x, y = symbols('x y') A, B, C, D, E, F = symbols('A B C D E F', commutative=False) d = Density([XKet(), 0.5], [PxKet(), 0.5]) assert (0.5*(PxKet()*Dagger(PxKet())) + 0.5*(XKet()*Dagger(XKet()))) == d.doit() # check for kets with expr in them d_with_sym = Density([XKet(x*y), 0.5], [PxKet(x*y), 0.5]) assert (0.5*(PxKet(x*y)*Dagger(PxKet(x*y))) + 0.5*(XKet(x*y)*Dagger(XKet(x*y)))) == d_with_sym.doit() d = Density([(A + B)*C, 1.0]) assert d.doit() == (1.0*A*C*Dagger(C)*Dagger(A) + 1.0*A*C*Dagger(C)*Dagger(B) + 1.0*B*C*Dagger(C)*Dagger(A) + 1.0*B*C*Dagger(C)*Dagger(B)) # With TensorProducts as args # Density with simple tensor products as args t = TensorProduct(A, B, C) d = Density([t, 1.0]) assert d.doit() == \ 1.0 * TensorProduct(A*Dagger(A), B*Dagger(B), C*Dagger(C)) # Density with multiple Tensorproducts as states t2 = TensorProduct(A, B) t3 = TensorProduct(C, D) d = Density([t2, 0.5], [t3, 0.5]) assert d.doit() == (0.5 * TensorProduct(A*Dagger(A), B*Dagger(B)) + 0.5 * TensorProduct(C*Dagger(C), D*Dagger(D))) #Density with mixed states d = Density([t2 + t3, 1.0]) assert d.doit() == (1.0 * TensorProduct(A*Dagger(A), B*Dagger(B)) + 1.0 * TensorProduct(A*Dagger(C), B*Dagger(D)) + 1.0 * TensorProduct(C*Dagger(A), D*Dagger(B)) + 1.0 * TensorProduct(C*Dagger(C), D*Dagger(D))) #Density operators with spin states tp1 = TensorProduct(JzKet(1, 1), JzKet(1, -1)) d = Density([tp1, 1]) # full trace t = Tr(d) assert t.doit() == 1 #Partial trace on density operators with spin states t = Tr(d, [0]) assert t.doit() == JzKet(1, -1) * Dagger(JzKet(1, -1)) t = Tr(d, [1]) assert t.doit() == JzKet(1, 1) * Dagger(JzKet(1, 1)) # with another spin state tp2 = TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) d = Density([tp2, 1]) #full trace t = Tr(d) assert t.doit() == 1 #Partial trace on density operators with spin states t = Tr(d, [0]) assert t.doit() == JzKet(S.Half, Rational(-1, 2)) * Dagger(JzKet(S.Half, Rational(-1, 2))) t = Tr(d, [1]) assert t.doit() == JzKet(S.Half, S.Half) * Dagger(JzKet(S.Half, S.Half)) def test_apply_op(): d = Density([Ket(0), 0.5], [Ket(1), 0.5]) assert d.apply_op(XOp()) == Density([XOp()*Ket(0), 0.5], [XOp()*Ket(1), 0.5]) def test_represent(): x, y = symbols('x y') d = Density([XKet(), 0.5], [PxKet(), 0.5]) assert (represent(0.5*(PxKet()*Dagger(PxKet()))) + represent(0.5*(XKet()*Dagger(XKet())))) == represent(d) # check for kets with expr in them d_with_sym = Density([XKet(x*y), 0.5], [PxKet(x*y), 0.5]) assert (represent(0.5*(PxKet(x*y)*Dagger(PxKet(x*y)))) + represent(0.5*(XKet(x*y)*Dagger(XKet(x*y))))) == \ represent(d_with_sym) # check when given explicit basis assert (represent(0.5*(XKet()*Dagger(XKet())), basis=PxOp()) + represent(0.5*(PxKet()*Dagger(PxKet())), basis=PxOp())) == \ represent(d, basis=PxOp()) def test_states(): d = Density([Ket(0), 0.5], [Ket(1), 0.5]) states = d.states() assert states[0] == Ket(0) and states[1] == Ket(1) def test_probs(): d = Density([Ket(0), .75], [Ket(1), 0.25]) probs = d.probs() assert probs[0] == 0.75 and probs[1] == 0.25 #probs can be symbols x, y = symbols('x y') d = Density([Ket(0), x], [Ket(1), y]) probs = d.probs() assert probs[0] == x and probs[1] == y def test_get_state(): x, y = symbols('x y') d = Density([Ket(0), x], [Ket(1), y]) states = (d.get_state(0), d.get_state(1)) assert states[0] == Ket(0) and states[1] == Ket(1) def test_get_prob(): x, y = symbols('x y') d = Density([Ket(0), x], [Ket(1), y]) probs = (d.get_prob(0), d.get_prob(1)) assert probs[0] == x and probs[1] == y def test_entropy(): up = JzKet(S.Half, S.Half) down = JzKet(S.Half, Rational(-1, 2)) d = Density((up, S.Half), (down, S.Half)) # test for density object ent = entropy(d) assert entropy(d) == log(2)/2 assert d.entropy() == log(2)/2 np = import_module('numpy', min_module_version='1.4.0') if np: #do this test only if 'numpy' is available on test machine np_mat = represent(d, format='numpy') ent = entropy(np_mat) assert isinstance(np_mat, np.ndarray) assert ent.real == 0.69314718055994529 assert ent.imag == 0 scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) if scipy and np: #do this test only if numpy and scipy are available mat = represent(d, format="scipy.sparse") assert isinstance(mat, scipy_sparse_matrix) assert ent.real == 0.69314718055994529 assert ent.imag == 0 def test_eval_trace(): up = JzKet(S.Half, S.Half) down = JzKet(S.Half, Rational(-1, 2)) d = Density((up, 0.5), (down, 0.5)) t = Tr(d) assert t.doit() == 1.0 #test dummy time dependent states class TestTimeDepKet(TimeDepKet): def _eval_trace(self, bra, **options): return 1 x, t = symbols('x t') k1 = TestTimeDepKet(0, 0.5) k2 = TestTimeDepKet(0, 1) d = Density([k1, 0.5], [k2, 0.5]) assert d.doit() == (0.5 * OuterProduct(k1, k1.dual) + 0.5 * OuterProduct(k2, k2.dual)) t = Tr(d) assert t.doit() == 1.0 def test_fidelity(): #test with kets up = JzKet(S.Half, S.Half) down = JzKet(S.Half, Rational(-1, 2)) updown = (S.One/sqrt(2))*up + (S.One/sqrt(2))*down #check with matrices up_dm = represent(up * Dagger(up)) down_dm = represent(down * Dagger(down)) updown_dm = represent(updown * Dagger(updown)) assert abs(fidelity(up_dm, up_dm) - 1) < 1e-3 assert fidelity(up_dm, down_dm) < 1e-3 assert abs(fidelity(up_dm, updown_dm) - (S.One/sqrt(2))) < 1e-3 assert abs(fidelity(updown_dm, down_dm) - (S.One/sqrt(2))) < 1e-3 #check with density up_dm = Density([up, 1.0]) down_dm = Density([down, 1.0]) updown_dm = Density([updown, 1.0]) assert abs(fidelity(up_dm, up_dm) - 1) < 1e-3 assert abs(fidelity(up_dm, down_dm)) < 1e-3 assert abs(fidelity(up_dm, updown_dm) - (S.One/sqrt(2))) < 1e-3 assert abs(fidelity(updown_dm, down_dm) - (S.One/sqrt(2))) < 1e-3 #check mixed states with density updown2 = sqrt(3)/2*up + S.Half*down d1 = Density([updown, 0.25], [updown2, 0.75]) d2 = Density([updown, 0.75], [updown2, 0.25]) assert abs(fidelity(d1, d2) - 0.991) < 1e-3 assert abs(fidelity(d2, d1) - fidelity(d1, d2)) < 1e-3 #using qubits/density(pure states) state1 = Qubit('0') state2 = Qubit('1') state3 = S.One/sqrt(2)*state1 + S.One/sqrt(2)*state2 state4 = sqrt(Rational(2, 3))*state1 + S.One/sqrt(3)*state2 state1_dm = Density([state1, 1]) state2_dm = Density([state2, 1]) state3_dm = Density([state3, 1]) assert fidelity(state1_dm, state1_dm) == 1 assert fidelity(state1_dm, state2_dm) == 0 assert abs(fidelity(state1_dm, state3_dm) - 1/sqrt(2)) < 1e-3 assert abs(fidelity(state3_dm, state2_dm) - 1/sqrt(2)) < 1e-3 #using qubits/density(mixed states) d1 = Density([state3, 0.70], [state4, 0.30]) d2 = Density([state3, 0.20], [state4, 0.80]) assert abs(fidelity(d1, d1) - 1) < 1e-3 assert abs(fidelity(d1, d2) - 0.996) < 1e-3 assert abs(fidelity(d1, d2) - fidelity(d2, d1)) < 1e-3 #TODO: test for invalid arguments # non-square matrix mat1 = [[0, 0], [0, 0], [0, 0]] mat2 = [[0, 0], [0, 0]] raises(ValueError, lambda: fidelity(mat1, mat2)) # unequal dimensions mat1 = [[0, 0], [0, 0]] mat2 = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] raises(ValueError, lambda: fidelity(mat1, mat2)) # unsupported data-type x, y = 1, 2 # random values that is not a matrix raises(ValueError, lambda: fidelity(x, y))
05935800d1f6c36c5f3a4a85037a084bf2a5d4a9f09c352ba15eddf6543721d6
from sympy.core.function import (Derivative, Function, diff) from sympy.core.mul import Mul from sympy.core.numbers import (Integer, pi) from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.trigonometric import sin from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.hilbert import HilbertSpace from sympy.physics.quantum.operator import (Operator, UnitaryOperator, HermitianOperator, OuterProduct, DifferentialOperator, IdentityOperator) from sympy.physics.quantum.state import Ket, Bra, Wavefunction from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.represent import represent from sympy.physics.quantum.spin import JzKet, JzBra from sympy.physics.quantum.trace import Tr from sympy.matrices import eye class CustomKet(Ket): @classmethod def default_args(self): return ("t",) class CustomOp(HermitianOperator): @classmethod def default_args(self): return ("T",) t_ket = CustomKet() t_op = CustomOp() def test_operator(): A = Operator('A') B = Operator('B') C = Operator('C') assert isinstance(A, Operator) assert isinstance(A, QExpr) assert A.label == (Symbol('A'),) assert A.is_commutative is False assert A.hilbert_space == HilbertSpace() assert A*B != B*A assert (A*(B + C)).expand() == A*B + A*C assert ((A + B)**2).expand() == A**2 + A*B + B*A + B**2 assert t_op.label[0] == Symbol(t_op.default_args()[0]) assert Operator() == Operator("O") assert A*IdentityOperator() == A def test_operator_inv(): A = Operator('A') assert A*A.inv() == 1 assert A.inv()*A == 1 def test_hermitian(): H = HermitianOperator('H') assert isinstance(H, HermitianOperator) assert isinstance(H, Operator) assert Dagger(H) == H assert H.inv() != H assert H.is_commutative is False assert Dagger(H).is_commutative is False def test_unitary(): U = UnitaryOperator('U') assert isinstance(U, UnitaryOperator) assert isinstance(U, Operator) assert U.inv() == Dagger(U) assert U*Dagger(U) == 1 assert Dagger(U)*U == 1 assert U.is_commutative is False assert Dagger(U).is_commutative is False def test_identity(): I = IdentityOperator() O = Operator('O') x = Symbol("x") assert isinstance(I, IdentityOperator) assert isinstance(I, Operator) assert I * O == O assert O * I == O assert I * Dagger(O) == Dagger(O) assert Dagger(O) * I == Dagger(O) assert isinstance(I * I, IdentityOperator) assert isinstance(3 * I, Mul) assert isinstance(I * x, Mul) assert I.inv() == I assert Dagger(I) == I assert qapply(I * O) == O assert qapply(O * I) == O for n in [2, 3, 5]: assert represent(IdentityOperator(n)) == eye(n) def test_outer_product(): k = Ket('k') b = Bra('b') op = OuterProduct(k, b) assert isinstance(op, OuterProduct) assert isinstance(op, Operator) assert op.ket == k assert op.bra == b assert op.label == (k, b) assert op.is_commutative is False op = k*b assert isinstance(op, OuterProduct) assert isinstance(op, Operator) assert op.ket == k assert op.bra == b assert op.label == (k, b) assert op.is_commutative is False op = 2*k*b assert op == Mul(Integer(2), k, b) op = 2*(k*b) assert op == Mul(Integer(2), OuterProduct(k, b)) assert Dagger(k*b) == OuterProduct(Dagger(b), Dagger(k)) assert Dagger(k*b).is_commutative is False #test the _eval_trace assert Tr(OuterProduct(JzKet(1, 1), JzBra(1, 1))).doit() == 1 # test scaled kets and bras assert OuterProduct(2 * k, b) == 2 * OuterProduct(k, b) assert OuterProduct(k, 2 * b) == 2 * OuterProduct(k, b) # test sums of kets and bras k1, k2 = Ket('k1'), Ket('k2') b1, b2 = Bra('b1'), Bra('b2') assert (OuterProduct(k1 + k2, b1) == OuterProduct(k1, b1) + OuterProduct(k2, b1)) assert (OuterProduct(k1, b1 + b2) == OuterProduct(k1, b1) + OuterProduct(k1, b2)) assert (OuterProduct(1 * k1 + 2 * k2, 3 * b1 + 4 * b2) == 3 * OuterProduct(k1, b1) + 4 * OuterProduct(k1, b2) + 6 * OuterProduct(k2, b1) + 8 * OuterProduct(k2, b2)) def test_operator_dagger(): A = Operator('A') B = Operator('B') assert Dagger(A*B) == Dagger(B)*Dagger(A) assert Dagger(A + B) == Dagger(A) + Dagger(B) assert Dagger(A**2) == Dagger(A)**2 def test_differential_operator(): x = Symbol('x') f = Function('f') d = DifferentialOperator(Derivative(f(x), x), f(x)) g = Wavefunction(x**2, x) assert qapply(d*g) == Wavefunction(2*x, x) assert d.expr == Derivative(f(x), x) assert d.function == f(x) assert d.variables == (x,) assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 2), f(x)) d = DifferentialOperator(Derivative(f(x), x, 2), f(x)) g = Wavefunction(x**3, x) assert qapply(d*g) == Wavefunction(6*x, x) assert d.expr == Derivative(f(x), x, 2) assert d.function == f(x) assert d.variables == (x,) assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 3), f(x)) d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) assert d.expr == 1/x*Derivative(f(x), x) assert d.function == f(x) assert d.variables == (x,) assert diff(d, x) == \ DifferentialOperator(Derivative(1/x*Derivative(f(x), x), x), f(x)) assert qapply(d*g) == Wavefunction(3*x, x) # 2D cartesian Laplacian y = Symbol('y') d = DifferentialOperator(Derivative(f(x, y), x, 2) + Derivative(f(x, y), y, 2), f(x, y)) w = Wavefunction(x**3*y**2 + y**3*x**2, x, y) assert d.expr == Derivative(f(x, y), x, 2) + Derivative(f(x, y), y, 2) assert d.function == f(x, y) assert d.variables == (x, y) assert diff(d, x) == \ DifferentialOperator(Derivative(d.expr, x), f(x, y)) assert diff(d, y) == \ DifferentialOperator(Derivative(d.expr, y), f(x, y)) assert qapply(d*w) == Wavefunction(2*x**3 + 6*x*y**2 + 6*x**2*y + 2*y**3, x, y) # 2D polar Laplacian (th = theta) r, th = symbols('r th') d = DifferentialOperator(1/r*Derivative(r*Derivative(f(r, th), r), r) + 1/(r**2)*Derivative(f(r, th), th, 2), f(r, th)) w = Wavefunction(r**2*sin(th), r, (th, 0, pi)) assert d.expr == \ 1/r*Derivative(r*Derivative(f(r, th), r), r) + \ 1/(r**2)*Derivative(f(r, th), th, 2) assert d.function == f(r, th) assert d.variables == (r, th) assert diff(d, r) == \ DifferentialOperator(Derivative(d.expr, r), f(r, th)) assert diff(d, th) == \ DifferentialOperator(Derivative(d.expr, th), f(r, th)) assert qapply(d*w) == Wavefunction(3*sin(th), r, (th, 0, pi)) def test_eval_power(): from sympy.core import Pow from sympy.core.expr import unchanged O = Operator('O') U = UnitaryOperator('U') H = HermitianOperator('H') assert O**-1 == O.inv() # same as doc test assert U**-1 == U.inv() assert H**-1 == H.inv() x = symbols("x", commutative = True) assert unchanged(Pow, H, x) # verify Pow(H,x)=="X^n" assert H**x == Pow(H, x) assert Pow(H,x) == Pow(H, x, evaluate=False) # Just check from sympy.physics.quantum.gate import XGate X = XGate(0) # is hermitian and unitary assert unchanged(Pow, X, x) # verify Pow(X,x)=="X^x" assert X**x == Pow(X, x) assert Pow(X, x, evaluate=False) == Pow(X, x) # Just check n = symbols("n", integer=True, even=True) assert X**n == 1 n = symbols("n", integer=True, odd=True) assert X**n == X n = symbols("n", integer=True) assert unchanged(Pow, X, n) # verify Pow(X,n)=="X^n" assert X**n == Pow(X, n) assert Pow(X, n, evaluate=False)==Pow(X, n) # Just check assert X**4 == 1 assert X**7 == X
2d035a3aebd773e8254627d0065b176adb40401fb2287be634cc3af3f26833f7
import random from sympy.core.numbers import (Integer, Rational) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import Matrix from sympy.physics.quantum.qubit import (measure_all, measure_partial, matrix_to_qubit, matrix_to_density, qubit_to_matrix, IntQubit, IntQubitBra, QubitBra) from sympy.physics.quantum.gate import (HadamardGate, CNOT, XGate, YGate, ZGate, PhaseGate) from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.represent import represent from sympy.physics.quantum.shor import Qubit from sympy.testing.pytest import raises from sympy.physics.quantum.density import Density from sympy.physics.quantum.trace import Tr x, y = symbols('x,y') epsilon = .000001 def test_Qubit(): array = [0, 0, 1, 1, 0] qb = Qubit('00110') assert qb.flip(0) == Qubit('00111') assert qb.flip(1) == Qubit('00100') assert qb.flip(4) == Qubit('10110') assert qb.qubit_values == (0, 0, 1, 1, 0) assert qb.dimension == 5 for i in range(5): assert qb[i] == array[4 - i] assert len(qb) == 5 qb = Qubit('110') def test_QubitBra(): qb = Qubit(0) qb_bra = QubitBra(0) assert qb.dual_class() == QubitBra assert qb_bra.dual_class() == Qubit qb = Qubit(1, 1, 0) qb_bra = QubitBra(1, 1, 0) assert represent(qb, nqubits=3).H == represent(qb_bra, nqubits=3) qb = Qubit(0, 1) qb_bra = QubitBra(1,0) assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(0) qb_bra = QubitBra(0, 1) assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(1) def test_IntQubit(): # issue 9136 iqb = IntQubit(0, nqubits=1) assert qubit_to_matrix(Qubit('0')) == qubit_to_matrix(iqb) qb = Qubit('1010') assert qubit_to_matrix(IntQubit(qb)) == qubit_to_matrix(qb) iqb = IntQubit(1, nqubits=1) assert qubit_to_matrix(Qubit('1')) == qubit_to_matrix(iqb) assert qubit_to_matrix(IntQubit(1)) == qubit_to_matrix(iqb) iqb = IntQubit(7, nqubits=4) assert qubit_to_matrix(Qubit('0111')) == qubit_to_matrix(iqb) assert qubit_to_matrix(IntQubit(7, 4)) == qubit_to_matrix(iqb) iqb = IntQubit(8) assert iqb.as_int() == 8 assert iqb.qubit_values == (1, 0, 0, 0) iqb = IntQubit(7, 4) assert iqb.qubit_values == (0, 1, 1, 1) assert IntQubit(3) == IntQubit(3, 2) #test Dual Classes iqb = IntQubit(3) iqb_bra = IntQubitBra(3) assert iqb.dual_class() == IntQubitBra assert iqb_bra.dual_class() == IntQubit iqb = IntQubit(5) iqb_bra = IntQubitBra(5) assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(1) iqb = IntQubit(4) iqb_bra = IntQubitBra(5) assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(0) raises(ValueError, lambda: IntQubit(4, 1)) raises(ValueError, lambda: IntQubit('5')) raises(ValueError, lambda: IntQubit(5, '5')) raises(ValueError, lambda: IntQubit(5, nqubits='5')) raises(TypeError, lambda: IntQubit(5, bad_arg=True)) def test_superposition_of_states(): state = 1/sqrt(2)*Qubit('01') + 1/sqrt(2)*Qubit('10') state_gate = CNOT(0, 1)*HadamardGate(0)*state state_expanded = Qubit('01')/2 + Qubit('00')/2 - Qubit('11')/2 + Qubit('10')/2 assert qapply(state_gate).expand() == state_expanded assert matrix_to_qubit(represent(state_gate, nqubits=2)) == state_expanded #test apply methods def test_apply_represent_equality(): gates = [HadamardGate(int(3*random.random())), XGate(int(3*random.random())), ZGate(int(3*random.random())), YGate(int(3*random.random())), ZGate(int(3*random.random())), PhaseGate(int(3*random.random()))] circuit = Qubit(int(random.random()*2), int(random.random()*2), int(random.random()*2), int(random.random()*2), int(random.random()*2), int(random.random()*2)) for i in range(int(random.random()*6)): circuit = gates[int(random.random()*6)]*circuit mat = represent(circuit, nqubits=6) states = qapply(circuit) state_rep = matrix_to_qubit(mat) states = states.expand() state_rep = state_rep.expand() assert state_rep == states def test_matrix_to_qubits(): qb = Qubit(0, 0, 0, 0) mat = Matrix([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) assert matrix_to_qubit(mat) == qb assert qubit_to_matrix(qb) == mat state = 2*sqrt(2)*(Qubit(0, 0, 0) + Qubit(0, 0, 1) + Qubit(0, 1, 0) + Qubit(0, 1, 1) + Qubit(1, 0, 0) + Qubit(1, 0, 1) + Qubit(1, 1, 0) + Qubit(1, 1, 1)) ones = sqrt(2)*2*Matrix([1, 1, 1, 1, 1, 1, 1, 1]) assert matrix_to_qubit(ones) == state.expand() assert qubit_to_matrix(state) == ones def test_measure_normalize(): a, b = symbols('a b') state = a*Qubit('110') + b*Qubit('111') assert measure_partial(state, (0,), normalize=False) == \ [(a*Qubit('110'), a*a.conjugate()), (b*Qubit('111'), b*b.conjugate())] assert measure_all(state, normalize=False) == \ [(Qubit('110'), a*a.conjugate()), (Qubit('111'), b*b.conjugate())] def test_measure_partial(): #Basic test of collapse of entangled two qubits (Bell States) state = Qubit('01') + Qubit('10') assert measure_partial(state, (0,)) == \ [(Qubit('10'), S.Half), (Qubit('01'), S.Half)] assert measure_partial(state, int(0)) == \ [(Qubit('10'), S.Half), (Qubit('01'), S.Half)] assert measure_partial(state, (0,)) == \ measure_partial(state, (1,))[::-1] #Test of more complex collapse and probability calculation state1 = sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111') assert measure_partial(state1, (0,)) == \ [(sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111'), 1)] assert measure_partial(state1, (1, 2)) == measure_partial(state1, (3, 4)) assert measure_partial(state1, (1, 2, 3)) == \ [(Qubit('00001'), Rational(2, 3)), (Qubit('11111'), Rational(1, 3))] #test of measuring multiple bits at once state2 = Qubit('1111') + Qubit('1101') + Qubit('1011') + Qubit('1000') assert measure_partial(state2, (0, 1, 3)) == \ [(Qubit('1000'), Rational(1, 4)), (Qubit('1101'), Rational(1, 4)), (Qubit('1011')/sqrt(2) + Qubit('1111')/sqrt(2), S.Half)] assert measure_partial(state2, (0,)) == \ [(Qubit('1000'), Rational(1, 4)), (Qubit('1111')/sqrt(3) + Qubit('1101')/sqrt(3) + Qubit('1011')/sqrt(3), Rational(3, 4))] def test_measure_all(): assert measure_all(Qubit('11')) == [(Qubit('11'), 1)] state = Qubit('11') + Qubit('10') assert measure_all(state) == [(Qubit('10'), S.Half), (Qubit('11'), S.Half)] state2 = Qubit('11')/sqrt(5) + 2*Qubit('00')/sqrt(5) assert measure_all(state2) == \ [(Qubit('00'), Rational(4, 5)), (Qubit('11'), Rational(1, 5))] # from issue #12585 assert measure_all(qapply(Qubit('0'))) == [(Qubit('0'), 1)] def test_eval_trace(): q1 = Qubit('10110') q2 = Qubit('01010') d = Density([q1, 0.6], [q2, 0.4]) t = Tr(d) assert t.doit() == 1.0 # extreme bits t = Tr(d, 0) assert t.doit() == (0.4*Density([Qubit('0101'), 1]) + 0.6*Density([Qubit('1011'), 1])) t = Tr(d, 4) assert t.doit() == (0.4*Density([Qubit('1010'), 1]) + 0.6*Density([Qubit('0110'), 1])) # index somewhere in between t = Tr(d, 2) assert t.doit() == (0.4*Density([Qubit('0110'), 1]) + 0.6*Density([Qubit('1010'), 1])) #trace all indices t = Tr(d, [0, 1, 2, 3, 4]) assert t.doit() == 1.0 # trace some indices, initialized in # non-canonical order t = Tr(d, [2, 1, 3]) assert t.doit() == (0.4*Density([Qubit('00'), 1]) + 0.6*Density([Qubit('10'), 1])) # mixed states q = (1/sqrt(2)) * (Qubit('00') + Qubit('11')) d = Density( [q, 1.0] ) t = Tr(d, 0) assert t.doit() == (0.5*Density([Qubit('0'), 1]) + 0.5*Density([Qubit('1'), 1])) def test_matrix_to_density(): mat = Matrix([[0, 0], [0, 1]]) assert matrix_to_density(mat) == Density([Qubit('1'), 1]) mat = Matrix([[1, 0], [0, 0]]) assert matrix_to_density(mat) == Density([Qubit('0'), 1]) mat = Matrix([[0, 0], [0, 0]]) assert matrix_to_density(mat) == 0 mat = Matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]) assert matrix_to_density(mat) == Density([Qubit('10'), 1]) mat = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) assert matrix_to_density(mat) == Density([Qubit('00'), 1])
aeffe40854b5a76fbf78d8d7133755096e1fefcce98d374b3a0685a34668d037
from sympy.core.backend import sin, cos, tan, pi, symbols, Matrix, S, Function from sympy.physics.mechanics import (Particle, Point, ReferenceFrame, RigidBody) from sympy.physics.mechanics import (angular_momentum, dynamicsymbols, inertia, inertia_of_point_mass, kinetic_energy, linear_momentum, outer, potential_energy, msubs, find_dynamicsymbols, Lagrangian) from sympy.physics.mechanics.functions import (gravity, center_of_mass, _validate_coordinates) from sympy.testing.pytest import raises q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5') N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q1, N.z]) B = A.orientnew('B', 'Axis', [q2, A.x]) C = B.orientnew('C', 'Axis', [q3, B.y]) def test_inertia(): N = ReferenceFrame('N') ixx, iyy, izz = symbols('ixx iyy izz') ixy, iyz, izx = symbols('ixy iyz izx') assert inertia(N, ixx, iyy, izz) == (ixx * (N.x | N.x) + iyy * (N.y | N.y) + izz * (N.z | N.z)) assert inertia(N, 0, 0, 0) == 0 * (N.x | N.x) raises(TypeError, lambda: inertia(0, 0, 0, 0)) assert inertia(N, ixx, iyy, izz, ixy, iyz, izx) == (ixx * (N.x | N.x) + ixy * (N.x | N.y) + izx * (N.x | N.z) + ixy * (N.y | N.x) + iyy * (N.y | N.y) + iyz * (N.y | N.z) + izx * (N.z | N.x) + iyz * (N.z | N.y) + izz * (N.z | N.z)) def test_inertia_of_point_mass(): r, s, t, m = symbols('r s t m') N = ReferenceFrame('N') px = r * N.x I = inertia_of_point_mass(m, px, N) assert I == m * r**2 * (N.y | N.y) + m * r**2 * (N.z | N.z) py = s * N.y I = inertia_of_point_mass(m, py, N) assert I == m * s**2 * (N.x | N.x) + m * s**2 * (N.z | N.z) pz = t * N.z I = inertia_of_point_mass(m, pz, N) assert I == m * t**2 * (N.x | N.x) + m * t**2 * (N.y | N.y) p = px + py + pz I = inertia_of_point_mass(m, p, N) assert I == (m * (s**2 + t**2) * (N.x | N.x) - m * r * s * (N.x | N.y) - m * r * t * (N.x | N.z) - m * r * s * (N.y | N.x) + m * (r**2 + t**2) * (N.y | N.y) - m * s * t * (N.y | N.z) - m * r * t * (N.z | N.x) - m * s * t * (N.z | N.y) + m * (r**2 + s**2) * (N.z | N.z)) def test_linear_momentum(): N = ReferenceFrame('N') Ac = Point('Ac') Ac.set_vel(N, 25 * N.y) I = outer(N.x, N.x) A = RigidBody('A', Ac, N, 20, (I, Ac)) P = Point('P') Pa = Particle('Pa', P, 1) Pa.point.set_vel(N, 10 * N.x) raises(TypeError, lambda: linear_momentum(A, A, Pa)) raises(TypeError, lambda: linear_momentum(N, N, Pa)) assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y def test_angular_momentum_and_linear_momentum(): """A rod with length 2l, centroidal inertia I, and mass M along with a particle of mass m fixed to the end of the rod rotate with an angular rate of omega about point O which is fixed to the non-particle end of the rod. The rod's reference frame is A and the inertial frame is N.""" m, M, l, I = symbols('m, M, l, I') omega = dynamicsymbols('omega') N = ReferenceFrame('N') a = ReferenceFrame('a') O = Point('O') Ac = O.locatenew('Ac', l * N.x) P = Ac.locatenew('P', l * N.x) O.set_vel(N, 0 * N.x) a.set_ang_vel(N, omega * N.z) Ac.v2pt_theory(O, N, a) P.v2pt_theory(O, N, a) Pa = Particle('Pa', P, m) A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac)) expected = 2 * m * omega * l * N.y + M * l * omega * N.y assert linear_momentum(N, A, Pa) == expected raises(TypeError, lambda: angular_momentum(N, N, A, Pa)) raises(TypeError, lambda: angular_momentum(O, O, A, Pa)) raises(TypeError, lambda: angular_momentum(O, N, O, Pa)) expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z assert angular_momentum(O, N, A, Pa) == expected def test_kinetic_energy(): m, M, l1 = symbols('m M l1') omega = dynamicsymbols('omega') N = ReferenceFrame('N') O = Point('O') O.set_vel(N, 0 * N.x) Ac = O.locatenew('Ac', l1 * N.x) P = Ac.locatenew('P', l1 * N.x) a = ReferenceFrame('a') a.set_ang_vel(N, omega * N.z) Ac.v2pt_theory(O, N, a) P.v2pt_theory(O, N, a) Pa = Particle('Pa', P, m) I = outer(N.z, N.z) A = RigidBody('A', Ac, a, M, (I, Ac)) raises(TypeError, lambda: kinetic_energy(Pa, Pa, A)) raises(TypeError, lambda: kinetic_energy(N, N, A)) assert 0 == (kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2 + 2*l1**2*m*omega**2 + omega**2/2)).expand() def test_potential_energy(): m, M, l1, g, h, H = symbols('m M l1 g h H') omega = dynamicsymbols('omega') N = ReferenceFrame('N') O = Point('O') O.set_vel(N, 0 * N.x) Ac = O.locatenew('Ac', l1 * N.x) P = Ac.locatenew('P', l1 * N.x) a = ReferenceFrame('a') a.set_ang_vel(N, omega * N.z) Ac.v2pt_theory(O, N, a) P.v2pt_theory(O, N, a) Pa = Particle('Pa', P, m) I = outer(N.z, N.z) A = RigidBody('A', Ac, a, M, (I, Ac)) Pa.potential_energy = m * g * h A.potential_energy = M * g * H assert potential_energy(A, Pa) == m * g * h + M * g * H def test_Lagrangian(): M, m, g, h = symbols('M m g h') N = ReferenceFrame('N') O = Point('O') O.set_vel(N, 0 * N.x) P = O.locatenew('P', 1 * N.x) P.set_vel(N, 10 * N.x) Pa = Particle('Pa', P, 1) Ac = O.locatenew('Ac', 2 * N.y) Ac.set_vel(N, 5 * N.y) a = ReferenceFrame('a') a.set_ang_vel(N, 10 * N.z) I = outer(N.z, N.z) A = RigidBody('A', Ac, a, 20, (I, Ac)) Pa.potential_energy = m * g * h A.potential_energy = M * g * h raises(TypeError, lambda: Lagrangian(A, A, Pa)) raises(TypeError, lambda: Lagrangian(N, N, Pa)) def test_msubs(): a, b = symbols('a, b') x, y, z = dynamicsymbols('x, y, z') # Test simple substitution expr = Matrix([[a*x + b, x*y.diff() + y], [x.diff().diff(), z + sin(z.diff())]]) sol = Matrix([[a + b, y], [x.diff().diff(), 1]]) sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0} assert msubs(expr, sd) == sol # Test smart substitution expr = cos(x + y)*tan(x + y) + b*x.diff() sd = {x: 0, y: pi/2, x.diff(): 1} assert msubs(expr, sd, smart=True) == b + 1 N = ReferenceFrame('N') v = x*N.x + y*N.y d = x*(N.x|N.x) + y*(N.y|N.y) v_sol = 1*N.y d_sol = 1*(N.y|N.y) sd = {x: 0, y: 1} assert msubs(v, sd) == v_sol assert msubs(d, sd) == d_sol def test_find_dynamicsymbols(): a, b = symbols('a, b') x, y, z = dynamicsymbols('x, y, z') expr = Matrix([[a*x + b, x*y.diff() + y], [x.diff().diff(), z + sin(z.diff())]]) # Test finding all dynamicsymbols sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()} assert find_dynamicsymbols(expr) == sol # Test finding all but those in sym_list exclude_list = [x, y, z] sol = {y.diff(), x.diff().diff(), z.diff()} assert find_dynamicsymbols(expr, exclude=exclude_list) == sol # Test finding all dynamicsymbols in a vector with a given reference frame d, e, f = dynamicsymbols('d, e, f') A = ReferenceFrame('A') v = d * A.x + e * A.y + f * A.z sol = {d, e, f} assert find_dynamicsymbols(v, reference_frame=A) == sol # Test if a ValueError is raised on supplying only a vector as input raises(ValueError, lambda: find_dynamicsymbols(v)) def test_gravity(): N = ReferenceFrame('N') m, M, g = symbols('m M g') F1, F2 = dynamicsymbols('F1 F2') po = Point('po') pa = Particle('pa', po, m) A = ReferenceFrame('A') P = Point('P') I = outer(A.x, A.x) B = RigidBody('B', P, A, M, (I, P)) forceList = [(po, F1), (P, F2)] forceList.extend(gravity(g*N.y, pa, B)) l = [(po, F1), (P, F2), (po, g*m*N.y), (P, g*M*N.y)] for i in range(len(l)): for j in range(len(l[i])): assert forceList[i][j] == l[i][j] # This function tests the center_of_mass() function # that was added in PR #14758 to compute the center of # mass of a system of bodies. def test_center_of_mass(): a = ReferenceFrame('a') m = symbols('m', real=True) p1 = Particle('p1', Point('p1_pt'), S.One) p2 = Particle('p2', Point('p2_pt'), S(2)) p3 = Particle('p3', Point('p3_pt'), S(3)) p4 = Particle('p4', Point('p4_pt'), m) b_f = ReferenceFrame('b_f') b_cm = Point('b_cm') mb = symbols('mb') b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm)) p2.point.set_pos(p1.point, a.x) p3.point.set_pos(p1.point, a.x + a.y) p4.point.set_pos(p1.point, a.y) b.masscenter.set_pos(p1.point, a.y + a.z) point_o=Point('o') point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b)) expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z assert point_o.pos_from(p1.point)-expr == 0 def test_validate_coordinates(): q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4 u1:4') s1, s2, s3 = symbols('s1:4') # Test normal _validate_coordinates([q1, q2, q3], [u1, u2, u3]) # Test not equal number of coordinates and speeds _validate_coordinates([q1, q2]) _validate_coordinates([q1, q2], [u1]) _validate_coordinates(speeds=[u1, u2]) # Test duplicate _validate_coordinates([q1, q2, q2], [u1, u2, u3], check_duplicates=False) raises(ValueError, lambda: _validate_coordinates( [q1, q2, q2], [u1, u2, u3])) _validate_coordinates([q1, q2, q3], [u1, u2, u2], check_duplicates=False) raises(ValueError, lambda: _validate_coordinates( [q1, q2, q3], [u1, u2, u2], check_duplicates=True)) # Test is_dynamicsymbols _validate_coordinates([q1 + q2, q3], is_dynamicsymbols=False) raises(ValueError, lambda: _validate_coordinates([q1 + q2, q3])) _validate_coordinates([s1, q1, q2], [0, u1, u2], is_dynamicsymbols=False) raises(ValueError, lambda: _validate_coordinates( [s1, q1, q2], [0, u1, u2], is_dynamicsymbols=True)) _validate_coordinates([s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=False) raises(ValueError, lambda: _validate_coordinates( [s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=True)) # Test normal function t = dynamicsymbols._t a = symbols('a') f1, f2 = symbols('f1:3', cls=Function) _validate_coordinates([f1(a), f2(a)], is_dynamicsymbols=False) raises(ValueError, lambda: _validate_coordinates([f1(a), f2(a)])) raises(ValueError, lambda: _validate_coordinates(speeds=[f1(a), f2(a)])) dynamicsymbols._t = a _validate_coordinates([f1(a), f2(a)]) raises(ValueError, lambda: _validate_coordinates([f1(t), f2(t)])) dynamicsymbols._t = t
17747265cd408ccd828796f6ed3b7e558759d470085af860b504104df32237ac
from .unit_definitions import ( percent, percents, permille, rad, radian, radians, deg, degree, degrees, sr, steradian, steradians, mil, angular_mil, angular_mils, m, meter, meters, kg, kilogram, kilograms, s, second, seconds, A, ampere, amperes, K, kelvin, kelvins, mol, mole, moles, cd, candela, candelas, g, gram, grams, mg, milligram, milligrams, ug, microgram, micrograms, t, tonne, metric_ton, newton, newtons, N, joule, joules, J, watt, watts, W, pascal, pascals, Pa, pa, hertz, hz, Hz, coulomb, coulombs, C, volt, volts, v, V, ohm, ohms, siemens, S, mho, mhos, farad, farads, F, henry, henrys, H, tesla, teslas, T, weber, webers, Wb, wb, optical_power, dioptre, D, lux, lx, katal, kat, gray, Gy, becquerel, Bq, km, kilometer, kilometers, dm, decimeter, decimeters, cm, centimeter, centimeters, mm, millimeter, millimeters, um, micrometer, micrometers, micron, microns, nm, nanometer, nanometers, pm, picometer, picometers, ft, foot, feet, inch, inches, yd, yard, yards, mi, mile, miles, nmi, nautical_mile, nautical_miles, ha, hectare, l, L, liter, liters, dl, dL, deciliter, deciliters, cl, cL, centiliter, centiliters, ml, mL, milliliter, milliliters, ms, millisecond, milliseconds, us, microsecond, microseconds, ns, nanosecond, nanoseconds, ps, picosecond, picoseconds, minute, minutes, h, hour, hours, day, days, anomalistic_year, anomalistic_years, sidereal_year, sidereal_years, tropical_year, tropical_years, common_year, common_years, julian_year, julian_years, draconic_year, draconic_years, gaussian_year, gaussian_years, full_moon_cycle, full_moon_cycles, year, years, G, gravitational_constant, c, speed_of_light, elementary_charge, hbar, planck, eV, electronvolt, electronvolts, avogadro_number, avogadro, avogadro_constant, boltzmann, boltzmann_constant, stefan, stefan_boltzmann_constant, R, molar_gas_constant, faraday_constant, josephson_constant, von_klitzing_constant, Da, dalton, amu, amus, atomic_mass_unit, atomic_mass_constant, me, electron_rest_mass, gee, gees, acceleration_due_to_gravity, u0, magnetic_constant, vacuum_permeability, e0, electric_constant, vacuum_permittivity, Z0, vacuum_impedance, coulomb_constant, coulombs_constant, electric_force_constant, atmosphere, atmospheres, atm, kPa, kilopascal, bar, bars, pound, pounds, psi, dHg0, mmHg, torr, mmu, mmus, milli_mass_unit, quart, quarts, angstrom, angstroms, ly, lightyear, lightyears, au, astronomical_unit, astronomical_units, planck_mass, planck_time, planck_temperature, planck_length, planck_charge, planck_area, planck_volume, planck_momentum, planck_energy, planck_force, planck_power, planck_density, planck_energy_density, planck_intensity, planck_angular_frequency, planck_pressure, planck_current, planck_voltage, planck_impedance, planck_acceleration, bit, bits, byte, kibibyte, kibibytes, mebibyte, mebibytes, gibibyte, gibibytes, tebibyte, tebibytes, pebibyte, pebibytes, exbibyte, exbibytes, curie, rutherford ) __all__ = [ 'percent', 'percents', 'permille', 'rad', 'radian', 'radians', 'deg', 'degree', 'degrees', 'sr', 'steradian', 'steradians', 'mil', 'angular_mil', 'angular_mils', 'm', 'meter', 'meters', 'kg', 'kilogram', 'kilograms', 's', 'second', 'seconds', 'A', 'ampere', 'amperes', 'K', 'kelvin', 'kelvins', 'mol', 'mole', 'moles', 'cd', 'candela', 'candelas', 'g', 'gram', 'grams', 'mg', 'milligram', 'milligrams', 'ug', 'microgram', 'micrograms', 't', 'tonne', 'metric_ton', 'newton', 'newtons', 'N', 'joule', 'joules', 'J', 'watt', 'watts', 'W', 'pascal', 'pascals', 'Pa', 'pa', 'hertz', 'hz', 'Hz', 'coulomb', 'coulombs', 'C', 'volt', 'volts', 'v', 'V', 'ohm', 'ohms', 'siemens', 'S', 'mho', 'mhos', 'farad', 'farads', 'F', 'henry', 'henrys', 'H', 'tesla', 'teslas', 'T', 'weber', 'webers', 'Wb', 'wb', 'optical_power', 'dioptre', 'D', 'lux', 'lx', 'katal', 'kat', 'gray', 'Gy', 'becquerel', 'Bq', 'km', 'kilometer', 'kilometers', 'dm', 'decimeter', 'decimeters', 'cm', 'centimeter', 'centimeters', 'mm', 'millimeter', 'millimeters', 'um', 'micrometer', 'micrometers', 'micron', 'microns', 'nm', 'nanometer', 'nanometers', 'pm', 'picometer', 'picometers', 'ft', 'foot', 'feet', 'inch', 'inches', 'yd', 'yard', 'yards', 'mi', 'mile', 'miles', 'nmi', 'nautical_mile', 'nautical_miles', 'ha', 'hectare', 'l', 'L', 'liter', 'liters', 'dl', 'dL', 'deciliter', 'deciliters', 'cl', 'cL', 'centiliter', 'centiliters', 'ml', 'mL', 'milliliter', 'milliliters', 'ms', 'millisecond', 'milliseconds', 'us', 'microsecond', 'microseconds', 'ns', 'nanosecond', 'nanoseconds', 'ps', 'picosecond', 'picoseconds', 'minute', 'minutes', 'h', 'hour', 'hours', 'day', 'days', 'anomalistic_year', 'anomalistic_years', 'sidereal_year', 'sidereal_years', 'tropical_year', 'tropical_years', 'common_year', 'common_years', 'julian_year', 'julian_years', 'draconic_year', 'draconic_years', 'gaussian_year', 'gaussian_years', 'full_moon_cycle', 'full_moon_cycles', 'year', 'years', 'G', 'gravitational_constant', 'c', 'speed_of_light', 'elementary_charge', 'hbar', 'planck', 'eV', 'electronvolt', 'electronvolts', 'avogadro_number', 'avogadro', 'avogadro_constant', 'boltzmann', 'boltzmann_constant', 'stefan', 'stefan_boltzmann_constant', 'R', 'molar_gas_constant', 'faraday_constant', 'josephson_constant', 'von_klitzing_constant', 'Da', 'dalton', 'amu', 'amus', 'atomic_mass_unit', 'atomic_mass_constant', 'me', 'electron_rest_mass', 'gee', 'gees', 'acceleration_due_to_gravity', 'u0', 'magnetic_constant', 'vacuum_permeability', 'e0', 'electric_constant', 'vacuum_permittivity', 'Z0', 'vacuum_impedance', 'coulomb_constant', 'coulombs_constant', 'electric_force_constant', 'atmosphere', 'atmospheres', 'atm', 'kPa', 'kilopascal', 'bar', 'bars', 'pound', 'pounds', 'psi', 'dHg0', 'mmHg', 'torr', 'mmu', 'mmus', 'milli_mass_unit', 'quart', 'quarts', 'angstrom', 'angstroms', 'ly', 'lightyear', 'lightyears', 'au', 'astronomical_unit', 'astronomical_units', 'planck_mass', 'planck_time', 'planck_temperature', 'planck_length', 'planck_charge', 'planck_area', 'planck_volume', 'planck_momentum', 'planck_energy', 'planck_force', 'planck_power', 'planck_density', 'planck_energy_density', 'planck_intensity', 'planck_angular_frequency', 'planck_pressure', 'planck_current', 'planck_voltage', 'planck_impedance', 'planck_acceleration', 'bit', 'bits', 'byte', 'kibibyte', 'kibibytes', 'mebibyte', 'mebibytes', 'gibibyte', 'gibibytes', 'tebibyte', 'tebibytes', 'pebibyte', 'pebibytes', 'exbibyte', 'exbibytes', 'curie', 'rutherford', ]
92575f32384e15d2406d88198893d416dc94548368bc37f85d34c2d269288835
from sympy.physics.units.definitions.dimension_definitions import current, temperature, amount_of_substance, \ luminous_intensity, angle, charge, voltage, impedance, conductance, capacitance, inductance, magnetic_density, \ magnetic_flux, information from sympy.core.numbers import (Rational, pi) from sympy.core.singleton import S as S_singleton from sympy.physics.units.prefixes import kilo, mega, milli, micro, deci, centi, nano, pico, kibi, mebi, gibi, tebi, pebi, exbi from sympy.physics.units.quantities import PhysicalConstant, Quantity One = S_singleton.One #### UNITS #### # Dimensionless: percent = percents = Quantity("percent", latex_repr=r"\%") percent.set_global_relative_scale_factor(Rational(1, 100), One) permille = Quantity("permille") permille.set_global_relative_scale_factor(Rational(1, 1000), One) # Angular units (dimensionless) rad = radian = radians = Quantity("radian", abbrev="rad") radian.set_global_dimension(angle) deg = degree = degrees = Quantity("degree", abbrev="deg", latex_repr=r"^\circ") degree.set_global_relative_scale_factor(pi/180, radian) sr = steradian = steradians = Quantity("steradian", abbrev="sr") mil = angular_mil = angular_mils = Quantity("angular_mil", abbrev="mil") # Base units: m = meter = meters = Quantity("meter", abbrev="m") # gram; used to define its prefixed units g = gram = grams = Quantity("gram", abbrev="g") # NOTE: the `kilogram` has scale factor 1000. In SI, kg is a base unit, but # nonetheless we are trying to be compatible with the `kilo` prefix. In a # similar manner, people using CGS or gaussian units could argue that the # `centimeter` rather than `meter` is the fundamental unit for length, but the # scale factor of `centimeter` will be kept as 1/100 to be compatible with the # `centi` prefix. The current state of the code assumes SI unit dimensions, in # the future this module will be modified in order to be unit system-neutral # (that is, support all kinds of unit systems). kg = kilogram = kilograms = Quantity("kilogram", abbrev="kg") kg.set_global_relative_scale_factor(kilo, gram) s = second = seconds = Quantity("second", abbrev="s") A = ampere = amperes = Quantity("ampere", abbrev='A') ampere.set_global_dimension(current) K = kelvin = kelvins = Quantity("kelvin", abbrev='K') kelvin.set_global_dimension(temperature) mol = mole = moles = Quantity("mole", abbrev="mol") mole.set_global_dimension(amount_of_substance) cd = candela = candelas = Quantity("candela", abbrev="cd") candela.set_global_dimension(luminous_intensity) # derived units newton = newtons = N = Quantity("newton", abbrev="N") joule = joules = J = Quantity("joule", abbrev="J") watt = watts = W = Quantity("watt", abbrev="W") pascal = pascals = Pa = pa = Quantity("pascal", abbrev="Pa") hertz = hz = Hz = Quantity("hertz", abbrev="Hz") # CGS derived units: dyne = Quantity("dyne") dyne.set_global_relative_scale_factor(One/10**5, newton) erg = Quantity("erg") erg.set_global_relative_scale_factor(One/10**7, joule) # MKSA extension to MKS: derived units coulomb = coulombs = C = Quantity("coulomb", abbrev='C') coulomb.set_global_dimension(charge) volt = volts = v = V = Quantity("volt", abbrev='V') volt.set_global_dimension(voltage) ohm = ohms = Quantity("ohm", abbrev='ohm', latex_repr=r"\Omega") ohm.set_global_dimension(impedance) siemens = S = mho = mhos = Quantity("siemens", abbrev='S') siemens.set_global_dimension(conductance) farad = farads = F = Quantity("farad", abbrev='F') farad.set_global_dimension(capacitance) henry = henrys = H = Quantity("henry", abbrev='H') henry.set_global_dimension(inductance) tesla = teslas = T = Quantity("tesla", abbrev='T') tesla.set_global_dimension(magnetic_density) weber = webers = Wb = wb = Quantity("weber", abbrev='Wb') weber.set_global_dimension(magnetic_flux) # CGS units for electromagnetic quantities: statampere = Quantity("statampere") statcoulomb = statC = franklin = Quantity("statcoulomb", abbrev="statC") statvolt = Quantity("statvolt") gauss = Quantity("gauss") maxwell = Quantity("maxwell") debye = Quantity("debye") oersted = Quantity("oersted") # Other derived units: optical_power = dioptre = diopter = D = Quantity("dioptre") lux = lx = Quantity("lux", abbrev="lx") # katal is the SI unit of catalytic activity katal = kat = Quantity("katal", abbrev="kat") # gray is the SI unit of absorbed dose gray = Gy = Quantity("gray") # becquerel is the SI unit of radioactivity becquerel = Bq = Quantity("becquerel", abbrev="Bq") # Common mass units mg = milligram = milligrams = Quantity("milligram", abbrev="mg") mg.set_global_relative_scale_factor(milli, gram) ug = microgram = micrograms = Quantity("microgram", abbrev="ug", latex_repr=r"\mu\text{g}") ug.set_global_relative_scale_factor(micro, gram) # Atomic mass constant Da = dalton = amu = amus = atomic_mass_unit = atomic_mass_constant = PhysicalConstant("atomic_mass_constant") t = metric_ton = tonne = Quantity("tonne", abbrev="t") tonne.set_global_relative_scale_factor(mega, gram) # Electron rest mass me = electron_rest_mass = Quantity("electron_rest_mass", abbrev="me") # Common length units km = kilometer = kilometers = Quantity("kilometer", abbrev="km") km.set_global_relative_scale_factor(kilo, meter) dm = decimeter = decimeters = Quantity("decimeter", abbrev="dm") dm.set_global_relative_scale_factor(deci, meter) cm = centimeter = centimeters = Quantity("centimeter", abbrev="cm") cm.set_global_relative_scale_factor(centi, meter) mm = millimeter = millimeters = Quantity("millimeter", abbrev="mm") mm.set_global_relative_scale_factor(milli, meter) um = micrometer = micrometers = micron = microns = \ Quantity("micrometer", abbrev="um", latex_repr=r'\mu\text{m}') um.set_global_relative_scale_factor(micro, meter) nm = nanometer = nanometers = Quantity("nanometer", abbrev="nm") nm.set_global_relative_scale_factor(nano, meter) pm = picometer = picometers = Quantity("picometer", abbrev="pm") pm.set_global_relative_scale_factor(pico, meter) ft = foot = feet = Quantity("foot", abbrev="ft") ft.set_global_relative_scale_factor(Rational(3048, 10000), meter) inch = inches = Quantity("inch") inch.set_global_relative_scale_factor(Rational(1, 12), foot) yd = yard = yards = Quantity("yard", abbrev="yd") yd.set_global_relative_scale_factor(3, feet) mi = mile = miles = Quantity("mile") mi.set_global_relative_scale_factor(5280, feet) nmi = nautical_mile = nautical_miles = Quantity("nautical_mile") nmi.set_global_relative_scale_factor(6076, feet) angstrom = angstroms = Quantity("angstrom", latex_repr=r'\r{A}') angstrom.set_global_relative_scale_factor(Rational(1, 10**10), meter) # Common volume and area units ha = hectare = Quantity("hectare", abbrev="ha") l = L = liter = liters = Quantity("liter") dl = dL = deciliter = deciliters = Quantity("deciliter") dl.set_global_relative_scale_factor(Rational(1, 10), liter) cl = cL = centiliter = centiliters = Quantity("centiliter") cl.set_global_relative_scale_factor(Rational(1, 100), liter) ml = mL = milliliter = milliliters = Quantity("milliliter") ml.set_global_relative_scale_factor(Rational(1, 1000), liter) # Common time units ms = millisecond = milliseconds = Quantity("millisecond", abbrev="ms") millisecond.set_global_relative_scale_factor(milli, second) us = microsecond = microseconds = Quantity("microsecond", abbrev="us", latex_repr=r'\mu\text{s}') microsecond.set_global_relative_scale_factor(micro, second) ns = nanosecond = nanoseconds = Quantity("nanosecond", abbrev="ns") nanosecond.set_global_relative_scale_factor(nano, second) ps = picosecond = picoseconds = Quantity("picosecond", abbrev="ps") picosecond.set_global_relative_scale_factor(pico, second) minute = minutes = Quantity("minute") minute.set_global_relative_scale_factor(60, second) h = hour = hours = Quantity("hour") hour.set_global_relative_scale_factor(60, minute) day = days = Quantity("day") day.set_global_relative_scale_factor(24, hour) anomalistic_year = anomalistic_years = Quantity("anomalistic_year") anomalistic_year.set_global_relative_scale_factor(365.259636, day) sidereal_year = sidereal_years = Quantity("sidereal_year") sidereal_year.set_global_relative_scale_factor(31558149.540, seconds) tropical_year = tropical_years = Quantity("tropical_year") tropical_year.set_global_relative_scale_factor(365.24219, day) common_year = common_years = Quantity("common_year") common_year.set_global_relative_scale_factor(365, day) julian_year = julian_years = Quantity("julian_year") julian_year.set_global_relative_scale_factor((365 + One/4), day) draconic_year = draconic_years = Quantity("draconic_year") draconic_year.set_global_relative_scale_factor(346.62, day) gaussian_year = gaussian_years = Quantity("gaussian_year") gaussian_year.set_global_relative_scale_factor(365.2568983, day) full_moon_cycle = full_moon_cycles = Quantity("full_moon_cycle") full_moon_cycle.set_global_relative_scale_factor(411.78443029, day) year = years = tropical_year #### CONSTANTS #### # Newton constant G = gravitational_constant = PhysicalConstant("gravitational_constant", abbrev="G") # speed of light c = speed_of_light = PhysicalConstant("speed_of_light", abbrev="c") # elementary charge elementary_charge = PhysicalConstant("elementary_charge", abbrev="e") # Planck constant planck = PhysicalConstant("planck", abbrev="h") # Reduced Planck constant hbar = PhysicalConstant("hbar", abbrev="hbar") # Electronvolt eV = electronvolt = electronvolts = PhysicalConstant("electronvolt", abbrev="eV") # Avogadro number avogadro_number = PhysicalConstant("avogadro_number") # Avogadro constant avogadro = avogadro_constant = PhysicalConstant("avogadro_constant") # Boltzmann constant boltzmann = boltzmann_constant = PhysicalConstant("boltzmann_constant") # Stefan-Boltzmann constant stefan = stefan_boltzmann_constant = PhysicalConstant("stefan_boltzmann_constant") # Molar gas constant R = molar_gas_constant = PhysicalConstant("molar_gas_constant", abbrev="R") # Faraday constant faraday_constant = PhysicalConstant("faraday_constant") # Josephson constant josephson_constant = PhysicalConstant("josephson_constant", abbrev="K_j") # Von Klitzing constant von_klitzing_constant = PhysicalConstant("von_klitzing_constant", abbrev="R_k") # Acceleration due to gravity (on the Earth surface) gee = gees = acceleration_due_to_gravity = PhysicalConstant("acceleration_due_to_gravity", abbrev="g") # magnetic constant: u0 = magnetic_constant = vacuum_permeability = PhysicalConstant("magnetic_constant") # electric constat: e0 = electric_constant = vacuum_permittivity = PhysicalConstant("vacuum_permittivity") # vacuum impedance: Z0 = vacuum_impedance = PhysicalConstant("vacuum_impedance", abbrev='Z_0', latex_repr=r'Z_{0}') # Coulomb's constant: coulomb_constant = coulombs_constant = electric_force_constant = \ PhysicalConstant("coulomb_constant", abbrev="k_e") atmosphere = atmospheres = atm = Quantity("atmosphere", abbrev="atm") kPa = kilopascal = Quantity("kilopascal", abbrev="kPa") kilopascal.set_global_relative_scale_factor(kilo, Pa) bar = bars = Quantity("bar", abbrev="bar") pound = pounds = Quantity("pound") # exact psi = Quantity("psi") dHg0 = 13.5951 # approx value at 0 C mmHg = torr = Quantity("mmHg") atmosphere.set_global_relative_scale_factor(101325, pascal) bar.set_global_relative_scale_factor(100, kPa) pound.set_global_relative_scale_factor(Rational(45359237, 100000000), kg) mmu = mmus = milli_mass_unit = Quantity("milli_mass_unit") quart = quarts = Quantity("quart") # Other convenient units and magnitudes ly = lightyear = lightyears = Quantity("lightyear", abbrev="ly") au = astronomical_unit = astronomical_units = Quantity("astronomical_unit", abbrev="AU") # Fundamental Planck units: planck_mass = Quantity("planck_mass", abbrev="m_P", latex_repr=r'm_\text{P}') planck_time = Quantity("planck_time", abbrev="t_P", latex_repr=r't_\text{P}') planck_temperature = Quantity("planck_temperature", abbrev="T_P", latex_repr=r'T_\text{P}') planck_length = Quantity("planck_length", abbrev="l_P", latex_repr=r'l_\text{P}') planck_charge = Quantity("planck_charge", abbrev="q_P", latex_repr=r'q_\text{P}') # Derived Planck units: planck_area = Quantity("planck_area") planck_volume = Quantity("planck_volume") planck_momentum = Quantity("planck_momentum") planck_energy = Quantity("planck_energy", abbrev="E_P", latex_repr=r'E_\text{P}') planck_force = Quantity("planck_force", abbrev="F_P", latex_repr=r'F_\text{P}') planck_power = Quantity("planck_power", abbrev="P_P", latex_repr=r'P_\text{P}') planck_density = Quantity("planck_density", abbrev="rho_P", latex_repr=r'\rho_\text{P}') planck_energy_density = Quantity("planck_energy_density", abbrev="rho^E_P") planck_intensity = Quantity("planck_intensity", abbrev="I_P", latex_repr=r'I_\text{P}') planck_angular_frequency = Quantity("planck_angular_frequency", abbrev="omega_P", latex_repr=r'\omega_\text{P}') planck_pressure = Quantity("planck_pressure", abbrev="p_P", latex_repr=r'p_\text{P}') planck_current = Quantity("planck_current", abbrev="I_P", latex_repr=r'I_\text{P}') planck_voltage = Quantity("planck_voltage", abbrev="V_P", latex_repr=r'V_\text{P}') planck_impedance = Quantity("planck_impedance", abbrev="Z_P", latex_repr=r'Z_\text{P}') planck_acceleration = Quantity("planck_acceleration", abbrev="a_P", latex_repr=r'a_\text{P}') # Information theory units: bit = bits = Quantity("bit") bit.set_global_dimension(information) byte = bytes = Quantity("byte") kibibyte = kibibytes = Quantity("kibibyte") mebibyte = mebibytes = Quantity("mebibyte") gibibyte = gibibytes = Quantity("gibibyte") tebibyte = tebibytes = Quantity("tebibyte") pebibyte = pebibytes = Quantity("pebibyte") exbibyte = exbibytes = Quantity("exbibyte") byte.set_global_relative_scale_factor(8, bit) kibibyte.set_global_relative_scale_factor(kibi, byte) mebibyte.set_global_relative_scale_factor(mebi, byte) gibibyte.set_global_relative_scale_factor(gibi, byte) tebibyte.set_global_relative_scale_factor(tebi, byte) pebibyte.set_global_relative_scale_factor(pebi, byte) exbibyte.set_global_relative_scale_factor(exbi, byte) # Older units for radioactivity curie = Ci = Quantity("curie", abbrev="Ci") rutherford = Rd = Quantity("rutherford", abbrev="Rd")
d95a2f65c64fb7034c9d6a591c87cca9acfd0a8628ff850506e7b4f6a6df1d64
from sympy.core.singleton import S from sympy.core.numbers import pi from sympy.physics.units import DimensionSystem, hertz, kilogram from sympy.physics.units.definitions import ( G, Hz, J, N, Pa, W, c, g, kg, m, s, meter, gram, second, newton, joule, watt, pascal) from sympy.physics.units.definitions.dimension_definitions import ( acceleration, action, energy, force, frequency, momentum, power, pressure, velocity, length, mass, time) from sympy.physics.units.prefixes import PREFIXES, prefix_unit from sympy.physics.units.prefixes import ( kibi, mebi, gibi, tebi, pebi, exbi ) from sympy.physics.units.definitions import ( cd, K, coulomb, volt, ohm, siemens, farad, henry, tesla, weber, dioptre, lux, katal, gray, becquerel, inch, hectare, liter, julian_year, gravitational_constant, speed_of_light, elementary_charge, planck, hbar, electronvolt, avogadro_number, avogadro_constant, boltzmann_constant, stefan_boltzmann_constant, atomic_mass_constant, molar_gas_constant, faraday_constant, josephson_constant, von_klitzing_constant, acceleration_due_to_gravity, magnetic_constant, vacuum_permittivity, vacuum_impedance, coulomb_constant, atmosphere, bar, pound, psi, mmHg, milli_mass_unit, quart, lightyear, astronomical_unit, planck_mass, planck_time, planck_temperature, planck_length, planck_charge, planck_area, planck_volume, planck_momentum, planck_energy, planck_force, planck_power, planck_density, planck_energy_density, planck_intensity, planck_angular_frequency, planck_pressure, planck_current, planck_voltage, planck_impedance, planck_acceleration, bit, byte, kibibyte, mebibyte, gibibyte, tebibyte, pebibyte, exbibyte, curie, rutherford, radian, degree, steradian, angular_mil, atomic_mass_unit, gee, kPa, ampere, u0, kelvin, mol, mole, candela, electric_constant, boltzmann, angstrom ) dimsys_length_weight_time = DimensionSystem([ # Dimensional dependencies for MKS base dimensions length, mass, time, ], dimensional_dependencies=dict( # Dimensional dependencies for derived dimensions velocity=dict(length=1, time=-1), acceleration=dict(length=1, time=-2), momentum=dict(mass=1, length=1, time=-1), force=dict(mass=1, length=1, time=-2), energy=dict(mass=1, length=2, time=-2), power=dict(length=2, mass=1, time=-3), pressure=dict(mass=1, length=-1, time=-2), frequency=dict(time=-1), action=dict(length=2, mass=1, time=-1), area=dict(length=2), volume=dict(length=3), )) One = S.One # Base units: dimsys_length_weight_time.set_quantity_dimension(meter, length) dimsys_length_weight_time.set_quantity_scale_factor(meter, One) # gram; used to define its prefixed units dimsys_length_weight_time.set_quantity_dimension(gram, mass) dimsys_length_weight_time.set_quantity_scale_factor(gram, One) dimsys_length_weight_time.set_quantity_dimension(second, time) dimsys_length_weight_time.set_quantity_scale_factor(second, One) # derived units dimsys_length_weight_time.set_quantity_dimension(newton, force) dimsys_length_weight_time.set_quantity_scale_factor(newton, kilogram*meter/second**2) dimsys_length_weight_time.set_quantity_dimension(joule, energy) dimsys_length_weight_time.set_quantity_scale_factor(joule, newton*meter) dimsys_length_weight_time.set_quantity_dimension(watt, power) dimsys_length_weight_time.set_quantity_scale_factor(watt, joule/second) dimsys_length_weight_time.set_quantity_dimension(pascal, pressure) dimsys_length_weight_time.set_quantity_scale_factor(pascal, newton/meter**2) dimsys_length_weight_time.set_quantity_dimension(hertz, frequency) dimsys_length_weight_time.set_quantity_scale_factor(hertz, One) # Other derived units: dimsys_length_weight_time.set_quantity_dimension(dioptre, 1 / length) dimsys_length_weight_time.set_quantity_scale_factor(dioptre, 1/meter) # Common volume and area units dimsys_length_weight_time.set_quantity_dimension(hectare, length**2) dimsys_length_weight_time.set_quantity_scale_factor(hectare, (meter**2)*(10000)) dimsys_length_weight_time.set_quantity_dimension(liter, length**3) dimsys_length_weight_time.set_quantity_scale_factor(liter, meter**3/1000) # Newton constant # REF: NIST SP 959 (June 2019) dimsys_length_weight_time.set_quantity_dimension(gravitational_constant, length ** 3 * mass ** -1 * time ** -2) dimsys_length_weight_time.set_quantity_scale_factor(gravitational_constant, 6.67430e-11*m**3/(kg*s**2)) # speed of light dimsys_length_weight_time.set_quantity_dimension(speed_of_light, velocity) dimsys_length_weight_time.set_quantity_scale_factor(speed_of_light, 299792458*meter/second) # Planck constant # REF: NIST SP 959 (June 2019) dimsys_length_weight_time.set_quantity_dimension(planck, action) dimsys_length_weight_time.set_quantity_scale_factor(planck, 6.62607015e-34*joule*second) # Reduced Planck constant # REF: NIST SP 959 (June 2019) dimsys_length_weight_time.set_quantity_dimension(hbar, action) dimsys_length_weight_time.set_quantity_scale_factor(hbar, planck / (2 * pi)) __all__ = [ 'mmHg', 'atmosphere', 'newton', 'meter', 'vacuum_permittivity', 'pascal', 'magnetic_constant', 'angular_mil', 'julian_year', 'weber', 'exbibyte', 'liter', 'molar_gas_constant', 'faraday_constant', 'avogadro_constant', 'planck_momentum', 'planck_density', 'gee', 'mol', 'bit', 'gray', 'kibi', 'bar', 'curie', 'prefix_unit', 'PREFIXES', 'planck_time', 'gram', 'candela', 'force', 'planck_intensity', 'energy', 'becquerel', 'planck_acceleration', 'speed_of_light', 'dioptre', 'second', 'frequency', 'Hz', 'power', 'lux', 'planck_current', 'momentum', 'tebibyte', 'planck_power', 'degree', 'mebi', 'K', 'planck_volume', 'quart', 'pressure', 'W', 'joule', 'boltzmann_constant', 'c', 'g', 'planck_force', 'exbi', 's', 'watt', 'action', 'hbar', 'gibibyte', 'DimensionSystem', 'cd', 'volt', 'planck_charge', 'angstrom', 'dimsys_length_weight_time', 'pebi', 'vacuum_impedance', 'planck', 'farad', 'gravitational_constant', 'u0', 'hertz', 'tesla', 'steradian', 'josephson_constant', 'planck_area', 'stefan_boltzmann_constant', 'astronomical_unit', 'J', 'N', 'planck_voltage', 'planck_energy', 'atomic_mass_constant', 'rutherford', 'elementary_charge', 'Pa', 'planck_mass', 'henry', 'planck_angular_frequency', 'ohm', 'pound', 'planck_pressure', 'G', 'avogadro_number', 'psi', 'von_klitzing_constant', 'planck_length', 'radian', 'mole', 'acceleration', 'planck_energy_density', 'mebibyte', 'length', 'acceleration_due_to_gravity', 'planck_temperature', 'tebi', 'inch', 'electronvolt', 'coulomb_constant', 'kelvin', 'kPa', 'boltzmann', 'milli_mass_unit', 'gibi', 'planck_impedance', 'electric_constant', 'kg', 'coulomb', 'siemens', 'byte', 'atomic_mass_unit', 'm', 'kibibyte', 'kilogram', 'lightyear', 'mass', 'time', 'pebibyte', 'velocity', 'ampere', 'katal', ]
fce990d6a04fb9df3e9557acbd536140baf0461f6aa7bad73121b3a93b6a0abd
import warnings from sympy.core.add import Add from sympy.core.function import (Function, diff) from sympy.core.numbers import (Number, Rational) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin from sympy.integrals.integrals import integrate from sympy.physics.units import (amount_of_substance, area, convert_to, find_unit, volume, kilometer, joule, molar_gas_constant, vacuum_permittivity, elementary_charge, volt, ohm) from sympy.physics.units.definitions import (amu, au, centimeter, coulomb, day, foot, grams, hour, inch, kg, km, m, meter, millimeter, minute, quart, s, second, speed_of_light, bit, byte, kibibyte, mebibyte, gibibyte, tebibyte, pebibyte, exbibyte, kilogram, gravitational_constant, electron_rest_mass) from sympy.physics.units.definitions.dimension_definitions import ( Dimension, charge, length, time, temperature, pressure, energy, mass ) from sympy.physics.units.prefixes import PREFIXES, kilo from sympy.physics.units.quantities import PhysicalConstant, Quantity from sympy.physics.units.systems import SI from sympy.testing.pytest import raises k = PREFIXES["k"] def test_str_repr(): assert str(kg) == "kilogram" def test_eq(): # simple test assert 10*m == 10*m assert 10*m != 10*s def test_convert_to(): q = Quantity("q1") q.set_global_relative_scale_factor(S(5000), meter) assert q.convert_to(m) == 5000*m assert speed_of_light.convert_to(m / s) == 299792458 * m / s # TODO: eventually support this kind of conversion: # assert (2*speed_of_light).convert_to(m / s) == 2 * 299792458 * m / s assert day.convert_to(s) == 86400*s # Wrong dimension to convert: assert q.convert_to(s) == q assert speed_of_light.convert_to(m) == speed_of_light expr = joule*second conv = convert_to(expr, joule) assert conv == joule*second def test_Quantity_definition(): q = Quantity("s10", abbrev="sabbr") q.set_global_relative_scale_factor(10, second) u = Quantity("u", abbrev="dam") u.set_global_relative_scale_factor(10, meter) km = Quantity("km") km.set_global_relative_scale_factor(kilo, meter) v = Quantity("u") v.set_global_relative_scale_factor(5*kilo, meter) assert q.scale_factor == 10 assert q.dimension == time assert q.abbrev == Symbol("sabbr") assert u.dimension == length assert u.scale_factor == 10 assert u.abbrev == Symbol("dam") assert km.scale_factor == 1000 assert km.func(*km.args) == km assert km.func(*km.args).args == km.args assert v.dimension == length assert v.scale_factor == 5000 def test_abbrev(): u = Quantity("u") u.set_global_relative_scale_factor(S.One, meter) assert u.name == Symbol("u") assert u.abbrev == Symbol("u") u = Quantity("u", abbrev="om") u.set_global_relative_scale_factor(S(2), meter) assert u.name == Symbol("u") assert u.abbrev == Symbol("om") assert u.scale_factor == 2 assert isinstance(u.scale_factor, Number) u = Quantity("u", abbrev="ikm") u.set_global_relative_scale_factor(3*kilo, meter) assert u.abbrev == Symbol("ikm") assert u.scale_factor == 3000 def test_print(): u = Quantity("unitname", abbrev="dam") assert repr(u) == "unitname" assert str(u) == "unitname" def test_Quantity_eq(): u = Quantity("u", abbrev="dam") v = Quantity("v1") assert u != v v = Quantity("v2", abbrev="ds") assert u != v v = Quantity("v3", abbrev="dm") assert u != v def test_add_sub(): u = Quantity("u") v = Quantity("v") w = Quantity("w") u.set_global_relative_scale_factor(S(10), meter) v.set_global_relative_scale_factor(S(5), meter) w.set_global_relative_scale_factor(S(2), second) assert isinstance(u + v, Add) assert (u + v.convert_to(u)) == (1 + S.Half)*u # TODO: eventually add this: # assert (u + v).convert_to(u) == (1 + S.Half)*u assert isinstance(u - v, Add) assert (u - v.convert_to(u)) == S.Half*u # TODO: eventually add this: # assert (u - v).convert_to(u) == S.Half*u def test_quantity_abs(): v_w1 = Quantity('v_w1') v_w2 = Quantity('v_w2') v_w3 = Quantity('v_w3') v_w1.set_global_relative_scale_factor(1, meter/second) v_w2.set_global_relative_scale_factor(1, meter/second) v_w3.set_global_relative_scale_factor(1, meter/second) expr = v_w3 - Abs(v_w1 - v_w2) assert SI.get_dimensional_expr(v_w1) == (length/time).name Dq = Dimension(SI.get_dimensional_expr(expr)) assert SI.get_dimension_system().get_dimensional_dependencies(Dq) == { length: 1, time: -1, } assert meter == sqrt(meter**2) def test_check_unit_consistency(): u = Quantity("u") v = Quantity("v") w = Quantity("w") u.set_global_relative_scale_factor(S(10), meter) v.set_global_relative_scale_factor(S(5), meter) w.set_global_relative_scale_factor(S(2), second) def check_unit_consistency(expr): SI._collect_factor_and_dimension(expr) raises(ValueError, lambda: check_unit_consistency(u + w)) raises(ValueError, lambda: check_unit_consistency(u - w)) raises(ValueError, lambda: check_unit_consistency(u + 1)) raises(ValueError, lambda: check_unit_consistency(u - 1)) raises(ValueError, lambda: check_unit_consistency(1 - exp(u / w))) def test_mul_div(): u = Quantity("u") v = Quantity("v") t = Quantity("t") ut = Quantity("ut") v2 = Quantity("v") u.set_global_relative_scale_factor(S(10), meter) v.set_global_relative_scale_factor(S(5), meter) t.set_global_relative_scale_factor(S(2), second) ut.set_global_relative_scale_factor(S(20), meter*second) v2.set_global_relative_scale_factor(S(5), meter/second) assert 1 / u == u**(-1) assert u / 1 == u v1 = u / t v2 = v # Pow only supports structural equality: assert v1 != v2 assert v1 == v2.convert_to(v1) # TODO: decide whether to allow such expression in the future # (requires somehow manipulating the core). # assert u / Quantity('l2', dimension=length, scale_factor=2) == 5 assert u * 1 == u ut1 = u * t ut2 = ut # Mul only supports structural equality: assert ut1 != ut2 assert ut1 == ut2.convert_to(ut1) # Mul only supports structural equality: lp1 = Quantity("lp1") lp1.set_global_relative_scale_factor(S(2), 1/meter) assert u * lp1 != 20 assert u**0 == 1 assert u**1 == u # TODO: Pow only support structural equality: u2 = Quantity("u2") u3 = Quantity("u3") u2.set_global_relative_scale_factor(S(100), meter**2) u3.set_global_relative_scale_factor(Rational(1, 10), 1/meter) assert u ** 2 != u2 assert u ** -1 != u3 assert u ** 2 == u2.convert_to(u) assert u ** -1 == u3.convert_to(u) def test_units(): assert convert_to((5*m/s * day) / km, 1) == 432 assert convert_to(foot / meter, meter) == Rational(3048, 10000) # amu is a pure mass so mass/mass gives a number, not an amount (mol) # TODO: need better simplification routine: assert str(convert_to(grams/amu, grams).n(2)) == '6.0e+23' # Light from the sun needs about 8.3 minutes to reach earth t = (1*au / speed_of_light) / minute # TODO: need a better way to simplify expressions containing units: t = convert_to(convert_to(t, meter / minute), meter) assert t.simplify() == Rational(49865956897, 5995849160) # TODO: fix this, it should give `m` without `Abs` assert sqrt(m**2) == m assert (sqrt(m))**2 == m t = Symbol('t') assert integrate(t*m/s, (t, 1*s, 5*s)) == 12*m*s assert (t * m/s).integrate((t, 1*s, 5*s)) == 12*m*s def test_issue_quart(): assert convert_to(4 * quart / inch ** 3, meter) == 231 assert convert_to(4 * quart / inch ** 3, millimeter) == 231 def test_electron_rest_mass(): assert convert_to(electron_rest_mass, kilogram) == 9.1093837015e-31*kilogram assert convert_to(electron_rest_mass, grams) == 9.1093837015e-28*grams def test_issue_5565(): assert (m < s).is_Relational def test_find_unit(): assert find_unit('coulomb') == ['coulomb', 'coulombs', 'coulomb_constant'] assert find_unit(coulomb) == ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] assert find_unit(charge) == ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] assert find_unit(inch) == [ 'm', 'au', 'cm', 'dm', 'ft', 'km', 'ly', 'mi', 'mm', 'nm', 'pm', 'um', 'yd', 'nmi', 'feet', 'foot', 'inch', 'mile', 'yard', 'meter', 'miles', 'yards', 'inches', 'meters', 'micron', 'microns', 'angstrom', 'angstroms', 'decimeter', 'kilometer', 'lightyear', 'nanometer', 'picometer', 'centimeter', 'decimeters', 'kilometers', 'lightyears', 'micrometer', 'millimeter', 'nanometers', 'picometers', 'centimeters', 'micrometers', 'millimeters', 'nautical_mile', 'planck_length', 'nautical_miles', 'astronomical_unit', 'astronomical_units'] assert find_unit(inch**-1) == ['D', 'dioptre', 'optical_power'] assert find_unit(length**-1) == ['D', 'dioptre', 'optical_power'] assert find_unit(inch ** 2) == ['ha', 'hectare', 'planck_area'] assert find_unit(inch ** 3) == [ 'L', 'l', 'cL', 'cl', 'dL', 'dl', 'mL', 'ml', 'liter', 'quart', 'liters', 'quarts', 'deciliter', 'centiliter', 'deciliters', 'milliliter', 'centiliters', 'milliliters', 'planck_volume'] assert find_unit('voltage') == ['V', 'v', 'volt', 'volts', 'planck_voltage'] assert find_unit(grams) == ['g', 't', 'Da', 'kg', 'me', 'mg', 'ug', 'amu', 'mmu', 'amus', 'gram', 'mmus', 'grams', 'pound', 'tonne', 'dalton', 'pounds', 'kilogram', 'kilograms', 'microgram', 'milligram', 'metric_ton', 'micrograms', 'milligrams', 'planck_mass', 'milli_mass_unit', 'atomic_mass_unit', 'electron_rest_mass', 'atomic_mass_constant'] def test_Quantity_derivative(): x = symbols("x") assert diff(x*meter, x) == meter assert diff(x**3*meter**2, x) == 3*x**2*meter**2 assert diff(meter, meter) == 1 assert diff(meter**2, meter) == 2*meter def test_quantity_postprocessing(): q1 = Quantity('q1') q2 = Quantity('q2') SI.set_quantity_dimension(q1, length*pressure**2*temperature/time) SI.set_quantity_dimension(q2, energy*pressure*temperature/(length**2*time)) assert q1 + q2 q = q1 + q2 Dq = Dimension(SI.get_dimensional_expr(q)) assert SI.get_dimension_system().get_dimensional_dependencies(Dq) == { length: -1, mass: 2, temperature: 1, time: -5, } def test_factor_and_dimension(): assert (3000, Dimension(1)) == SI._collect_factor_and_dimension(3000) assert (1001, length) == SI._collect_factor_and_dimension(meter + km) assert (2, length/time) == SI._collect_factor_and_dimension( meter/second + 36*km/(10*hour)) x, y = symbols('x y') assert (x + y/100, length) == SI._collect_factor_and_dimension( x*m + y*centimeter) cH = Quantity('cH') SI.set_quantity_dimension(cH, amount_of_substance/volume) pH = -log(cH) assert (1, volume/amount_of_substance) == SI._collect_factor_and_dimension( exp(pH)) v_w1 = Quantity('v_w1') v_w2 = Quantity('v_w2') v_w1.set_global_relative_scale_factor(Rational(3, 2), meter/second) v_w2.set_global_relative_scale_factor(2, meter/second) expr = Abs(v_w1/2 - v_w2) assert (Rational(5, 4), length/time) == \ SI._collect_factor_and_dimension(expr) expr = Rational(5, 2)*second/meter*v_w1 - 3000 assert (-(2996 + Rational(1, 4)), Dimension(1)) == \ SI._collect_factor_and_dimension(expr) expr = v_w1**(v_w2/v_w1) assert ((Rational(3, 2))**Rational(4, 3), (length/time)**Rational(4, 3)) == \ SI._collect_factor_and_dimension(expr) def test_dimensional_expr_of_derivative(): l = Quantity('l') t = Quantity('t') t1 = Quantity('t1') l.set_global_relative_scale_factor(36, km) t.set_global_relative_scale_factor(1, hour) t1.set_global_relative_scale_factor(1, second) x = Symbol('x') y = Symbol('y') f = Function('f') dfdx = f(x, y).diff(x, y) dl_dt = dfdx.subs({f(x, y): l, x: t, y: t1}) assert SI.get_dimensional_expr(dl_dt) ==\ SI.get_dimensional_expr(l / t / t1) ==\ Symbol("length")/Symbol("time")**2 assert SI._collect_factor_and_dimension(dl_dt) ==\ SI._collect_factor_and_dimension(l / t / t1) ==\ (10, length/time**2) def test_get_dimensional_expr_with_function(): v_w1 = Quantity('v_w1') v_w2 = Quantity('v_w2') v_w1.set_global_relative_scale_factor(1, meter/second) v_w2.set_global_relative_scale_factor(1, meter/second) assert SI.get_dimensional_expr(sin(v_w1)) == \ sin(SI.get_dimensional_expr(v_w1)) assert SI.get_dimensional_expr(sin(v_w1/v_w2)) == 1 def test_binary_information(): assert convert_to(kibibyte, byte) == 1024*byte assert convert_to(mebibyte, byte) == 1024**2*byte assert convert_to(gibibyte, byte) == 1024**3*byte assert convert_to(tebibyte, byte) == 1024**4*byte assert convert_to(pebibyte, byte) == 1024**5*byte assert convert_to(exbibyte, byte) == 1024**6*byte assert kibibyte.convert_to(bit) == 8*1024*bit assert byte.convert_to(bit) == 8*bit a = 10*kibibyte*hour assert convert_to(a, byte) == 10240*byte*hour assert convert_to(a, minute) == 600*kibibyte*minute assert convert_to(a, [byte, minute]) == 614400*byte*minute def test_conversion_with_2_nonstandard_dimensions(): good_grade = Quantity("good_grade") kilo_good_grade = Quantity("kilo_good_grade") centi_good_grade = Quantity("centi_good_grade") kilo_good_grade.set_global_relative_scale_factor(1000, good_grade) centi_good_grade.set_global_relative_scale_factor(S.One/10**5, kilo_good_grade) charity_points = Quantity("charity_points") milli_charity_points = Quantity("milli_charity_points") missions = Quantity("missions") milli_charity_points.set_global_relative_scale_factor(S.One/1000, charity_points) missions.set_global_relative_scale_factor(251, charity_points) assert convert_to( kilo_good_grade*milli_charity_points*millimeter, [centi_good_grade, missions, centimeter] ) == S.One * 10**5 / (251*1000) / 10 * centi_good_grade*missions*centimeter def test_eval_subs(): energy, mass, force = symbols('energy mass force') expr1 = energy/mass units = {energy: kilogram*meter**2/second**2, mass: kilogram} assert expr1.subs(units) == meter**2/second**2 expr2 = force/mass units = {force:gravitational_constant*kilogram**2/meter**2, mass:kilogram} assert expr2.subs(units) == gravitational_constant*kilogram/meter**2 def test_issue_14932(): assert (log(inch) - log(2)).simplify() == log(inch/2) assert (log(inch) - log(foot)).simplify() == -log(12) p = symbols('p', positive=True) assert (log(inch) - log(p)).simplify() == log(inch/p) def test_issue_14547(): # the root issue is that an argument with dimensions should # not raise an error when the `arg - 1` calculation is # performed in the assumptions system from sympy.physics.units import foot, inch from sympy.core.relational import Eq assert log(foot).is_zero is None assert log(foot).is_positive is None assert log(foot).is_nonnegative is None assert log(foot).is_negative is None assert log(foot).is_algebraic is None assert log(foot).is_rational is None # doesn't raise error assert Eq(log(foot), log(inch)) is not None # might be False or unevaluated x = Symbol('x') e = foot + x assert e.is_Add and set(e.args) == {foot, x} e = foot + 1 assert e.is_Add and set(e.args) == {foot, 1} def test_issue_22164(): warnings.simplefilter("error") dm = Quantity("dm") SI.set_quantity_dimension(dm, length) SI.set_quantity_scale_factor(dm, 1) bad_exp = Quantity("bad_exp") SI.set_quantity_dimension(bad_exp, length) SI.set_quantity_scale_factor(bad_exp, 1) expr = dm ** bad_exp # deprecation warning is not expected here SI._collect_factor_and_dimension(expr) def test_issue_22819(): from sympy.physics.units import tonne, gram, Da from sympy.physics.units.systems.si import dimsys_SI assert tonne.convert_to(gram) == 1000000*gram assert dimsys_SI.get_dimensional_dependencies(area) == {length: 2} assert Da.scale_factor == 1.66053906660000e-24 def test_issue_20288(): from sympy.core.numbers import E from sympy.physics.units import energy u = Quantity('u') v = Quantity('v') SI.set_quantity_dimension(u, energy) SI.set_quantity_dimension(v, energy) u.set_global_relative_scale_factor(1, joule) v.set_global_relative_scale_factor(1, joule) expr = 1 + exp(u**2/v**2) assert SI._collect_factor_and_dimension(expr) == (1 + E, Dimension(1)) def test_issue_24062(): from sympy.core.numbers import E from sympy.physics.units import impedance, capacitance, time, ohm, farad, second R = Quantity('R') C = Quantity('C') T = Quantity('T') SI.set_quantity_dimension(R, impedance) SI.set_quantity_dimension(C, capacitance) SI.set_quantity_dimension(T, time) R.set_global_relative_scale_factor(1, ohm) C.set_global_relative_scale_factor(1, farad) T.set_global_relative_scale_factor(1, second) expr = T / (R * C) dim = SI._collect_factor_and_dimension(expr)[1] assert SI.get_dimension_system().is_dimensionless(dim) exp_expr = 1 + exp(expr) assert SI._collect_factor_and_dimension(exp_expr) == (1 + E, Dimension(1)) def test_issue_24211(): from sympy.physics.units import time, velocity, acceleration, second, meter V1 = Quantity('V1') SI.set_quantity_dimension(V1, velocity) SI.set_quantity_scale_factor(V1, 1 * meter / second) A1 = Quantity('A1') SI.set_quantity_dimension(A1, acceleration) SI.set_quantity_scale_factor(A1, 1 * meter / second**2) T1 = Quantity('T1') SI.set_quantity_dimension(T1, time) SI.set_quantity_scale_factor(T1, 1 * second) expr = A1*T1 + V1 # should not throw ValueError here SI._collect_factor_and_dimension(expr) def test_prefixed_property(): assert not meter.is_prefixed assert not joule.is_prefixed assert not day.is_prefixed assert not second.is_prefixed assert not volt.is_prefixed assert not ohm.is_prefixed assert centimeter.is_prefixed assert kilometer.is_prefixed assert kilogram.is_prefixed assert pebibyte.is_prefixed def test_physics_constant(): from sympy.physics.units import definitions for name in dir(definitions): quantity = getattr(definitions, name) if not isinstance(quantity, Quantity): continue if name.endswith('_constant'): assert isinstance(quantity, PhysicalConstant), f"{quantity} must be PhysicalConstant, but is {type(quantity)}" assert quantity.is_physical_constant, f"{name} is not marked as physics constant when it should be" for const in [gravitational_constant, molar_gas_constant, vacuum_permittivity, speed_of_light, elementary_charge]: assert isinstance(const, PhysicalConstant), f"{const} must be PhysicalConstant, but is {type(const)}" assert const.is_physical_constant, f"{const} is not marked as physics constant when it should be" assert not meter.is_physical_constant assert not joule.is_physical_constant
25ea535adf3219db6fe5d43600a50a6fd7f1a6e62a2d63a9d283a6ce8bfdbdf6
from sympy.concrete.tests.test_sums_products import NS from sympy.core.singleton import S from sympy.functions.elementary.miscellaneous import sqrt from sympy.physics.units import convert_to, coulomb_constant, elementary_charge, gravitational_constant, planck from sympy.physics.units.definitions.unit_definitions import angstrom, statcoulomb, coulomb, second, gram, centimeter, erg, \ newton, joule, dyne, speed_of_light, meter, farad, henry, statvolt, volt, ohm from sympy.physics.units.systems import SI from sympy.physics.units.systems.cgs import cgs_gauss def test_conversion_to_from_si(): assert convert_to(statcoulomb, coulomb, cgs_gauss) == coulomb/2997924580 assert convert_to(coulomb, statcoulomb, cgs_gauss) == 2997924580*statcoulomb assert convert_to(statcoulomb, sqrt(gram*centimeter**3)/second, cgs_gauss) == centimeter**(S(3)/2)*sqrt(gram)/second assert convert_to(coulomb, sqrt(gram*centimeter**3)/second, cgs_gauss) == 2997924580*centimeter**(S(3)/2)*sqrt(gram)/second # SI units have an additional base unit, no conversion in case of electromagnetism: assert convert_to(coulomb, statcoulomb, SI) == coulomb assert convert_to(statcoulomb, coulomb, SI) == statcoulomb # SI without electromagnetism: assert convert_to(erg, joule, SI) == joule/10**7 assert convert_to(erg, joule, cgs_gauss) == joule/10**7 assert convert_to(joule, erg, SI) == 10**7*erg assert convert_to(joule, erg, cgs_gauss) == 10**7*erg assert convert_to(dyne, newton, SI) == newton/10**5 assert convert_to(dyne, newton, cgs_gauss) == newton/10**5 assert convert_to(newton, dyne, SI) == 10**5*dyne assert convert_to(newton, dyne, cgs_gauss) == 10**5*dyne def test_cgs_gauss_convert_constants(): assert convert_to(speed_of_light, centimeter/second, cgs_gauss) == 29979245800*centimeter/second assert convert_to(coulomb_constant, 1, cgs_gauss) == 1 assert convert_to(coulomb_constant, newton*meter**2/coulomb**2, cgs_gauss) == 22468879468420441*meter**2*newton/(2500000*coulomb**2) assert convert_to(coulomb_constant, newton*meter**2/coulomb**2, SI) == 22468879468420441*meter**2*newton/(2500000*coulomb**2) assert convert_to(coulomb_constant, dyne*centimeter**2/statcoulomb**2, cgs_gauss) == centimeter**2*dyne/statcoulomb**2 assert convert_to(coulomb_constant, 1, SI) == coulomb_constant assert NS(convert_to(coulomb_constant, newton*meter**2/coulomb**2, SI)) == '8987551787.36818*meter**2*newton/coulomb**2' assert convert_to(elementary_charge, statcoulomb, cgs_gauss) assert convert_to(angstrom, centimeter, cgs_gauss) == 1*centimeter/10**8 assert convert_to(gravitational_constant, dyne*centimeter**2/gram**2, cgs_gauss) assert NS(convert_to(planck, erg*second, cgs_gauss)) == '6.62607015e-27*erg*second' spc = 25000*second/(22468879468420441*centimeter) assert convert_to(ohm, second/centimeter, cgs_gauss) == spc assert convert_to(henry, second**2/centimeter, cgs_gauss) == spc*second assert convert_to(volt, statvolt, cgs_gauss) == 10**6*statvolt/299792458 assert convert_to(farad, centimeter, cgs_gauss) == 299792458**2*centimeter/10**5
9534f5130579b5bdd602f9a64bf9888e10925922e207434d3d6e27f7fddfbb49
r""" N-dim array module for SymPy. Four classes are provided to handle N-dim arrays, given by the combinations dense/sparse (i.e. whether to store all elements or only the non-zero ones in memory) and mutable/immutable (immutable classes are SymPy objects, but cannot change after they have been created). Examples ======== The following examples show the usage of ``Array``. This is an abbreviation for ``ImmutableDenseNDimArray``, that is an immutable and dense N-dim array, the other classes are analogous. For mutable classes it is also possible to change element values after the object has been constructed. Array construction can detect the shape of nested lists and tuples: >>> from sympy import Array >>> a1 = Array([[1, 2], [3, 4], [5, 6]]) >>> a1 [[1, 2], [3, 4], [5, 6]] >>> a1.shape (3, 2) >>> a1.rank() 2 >>> from sympy.abc import x, y, z >>> a2 = Array([[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]]) >>> a2 [[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]] >>> a2.shape (2, 2, 2) >>> a2.rank() 3 Otherwise one could pass a 1-dim array followed by a shape tuple: >>> m1 = Array(range(12), (3, 4)) >>> m1 [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] >>> m2 = Array(range(12), (3, 2, 2)) >>> m2 [[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]] >>> m2[1,1,1] 7 >>> m2.reshape(4, 3) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]] Slice support: >>> m2[:, 1, 1] [3, 7, 11] Elementwise derivative: >>> from sympy.abc import x, y, z >>> m3 = Array([x**3, x*y, z]) >>> m3.diff(x) [3*x**2, y, 0] >>> m3.diff(z) [0, 0, 1] Multiplication with other SymPy expressions is applied elementwisely: >>> (1+x)*m3 [x**3*(x + 1), x*y*(x + 1), z*(x + 1)] To apply a function to each element of the N-dim array, use ``applyfunc``: >>> m3.applyfunc(lambda x: x/2) [x**3/2, x*y/2, z/2] N-dim arrays can be converted to nested lists by the ``tolist()`` method: >>> m2.tolist() [[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]] >>> isinstance(m2.tolist(), list) True If the rank is 2, it is possible to convert them to matrices with ``tomatrix()``: >>> m1.tomatrix() Matrix([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) Products and contractions ------------------------- Tensor product between arrays `A_{i_1,\ldots,i_n}` and `B_{j_1,\ldots,j_m}` creates the combined array `P = A \otimes B` defined as `P_{i_1,\ldots,i_n,j_1,\ldots,j_m} := A_{i_1,\ldots,i_n}\cdot B_{j_1,\ldots,j_m}.` It is available through ``tensorproduct(...)``: >>> from sympy import Array, tensorproduct >>> from sympy.abc import x,y,z,t >>> A = Array([x, y, z, t]) >>> B = Array([1, 2, 3, 4]) >>> tensorproduct(A, B) [[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z], [t, 2*t, 3*t, 4*t]] In case you don't want to evaluate the tensor product immediately, you can use ``ArrayTensorProduct``, which creates an unevaluated tensor product expression: >>> from sympy.tensor.array.expressions import ArrayTensorProduct >>> ArrayTensorProduct(A, B) ArrayTensorProduct([x, y, z, t], [1, 2, 3, 4]) Calling ``.as_explicit()`` on ``ArrayTensorProduct`` is equivalent to just calling ``tensorproduct(...)``: >>> ArrayTensorProduct(A, B).as_explicit() [[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z], [t, 2*t, 3*t, 4*t]] Tensor product between a rank-1 array and a matrix creates a rank-3 array: >>> from sympy import eye >>> p1 = tensorproduct(A, eye(4)) >>> p1 [[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]], [[y, 0, 0, 0], [0, y, 0, 0], [0, 0, y, 0], [0, 0, 0, y]], [[z, 0, 0, 0], [0, z, 0, 0], [0, 0, z, 0], [0, 0, 0, z]], [[t, 0, 0, 0], [0, t, 0, 0], [0, 0, t, 0], [0, 0, 0, t]]] Now, to get back `A_0 \otimes \mathbf{1}` one can access `p_{0,m,n}` by slicing: >>> p1[0,:,:] [[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]] Tensor contraction sums over the specified axes, for example contracting positions `a` and `b` means `A_{i_1,\ldots,i_a,\ldots,i_b,\ldots,i_n} \implies \sum_k A_{i_1,\ldots,k,\ldots,k,\ldots,i_n}` Remember that Python indexing is zero starting, to contract the a-th and b-th axes it is therefore necessary to specify `a-1` and `b-1` >>> from sympy import tensorcontraction >>> C = Array([[x, y], [z, t]]) The matrix trace is equivalent to the contraction of a rank-2 array: `A_{m,n} \implies \sum_k A_{k,k}` >>> tensorcontraction(C, (0, 1)) t + x To create an expression representing a tensor contraction that does not get evaluated immediately, use ``ArrayContraction``, which is equivalent to ``tensorcontraction(...)`` if it is followed by ``.as_explicit()``: >>> from sympy.tensor.array.expressions import ArrayContraction >>> ArrayContraction(C, (0, 1)) ArrayContraction([[x, y], [z, t]], (0, 1)) >>> ArrayContraction(C, (0, 1)).as_explicit() t + x Matrix product is equivalent to a tensor product of two rank-2 arrays, followed by a contraction of the 2nd and 3rd axes (in Python indexing axes number 1, 2). `A_{m,n}\cdot B_{i,j} \implies \sum_k A_{m, k}\cdot B_{k, j}` >>> D = Array([[2, 1], [0, -1]]) >>> tensorcontraction(tensorproduct(C, D), (1, 2)) [[2*x, x - y], [2*z, -t + z]] One may verify that the matrix product is equivalent: >>> from sympy import Matrix >>> Matrix([[x, y], [z, t]])*Matrix([[2, 1], [0, -1]]) Matrix([ [2*x, x - y], [2*z, -t + z]]) or equivalently >>> C.tomatrix()*D.tomatrix() Matrix([ [2*x, x - y], [2*z, -t + z]]) Diagonal operator ----------------- The ``tensordiagonal`` function acts in a similar manner as ``tensorcontraction``, but the joined indices are not summed over, for example diagonalizing positions `a` and `b` means `A_{i_1,\ldots,i_a,\ldots,i_b,\ldots,i_n} \implies A_{i_1,\ldots,k,\ldots,k,\ldots,i_n} \implies \tilde{A}_{i_1,\ldots,i_{a-1},i_{a+1},\ldots,i_{b-1},i_{b+1},\ldots,i_n,k}` where `\tilde{A}` is the array equivalent to the diagonal of `A` at positions `a` and `b` moved to the last index slot. Compare the difference between contraction and diagonal operators: >>> from sympy import tensordiagonal >>> from sympy.abc import a, b, c, d >>> m = Matrix([[a, b], [c, d]]) >>> tensorcontraction(m, [0, 1]) a + d >>> tensordiagonal(m, [0, 1]) [a, d] In short, no summation occurs with ``tensordiagonal``. Derivatives by array -------------------- The usual derivative operation may be extended to support derivation with respect to arrays, provided that all elements in the that array are symbols or expressions suitable for derivations. The definition of a derivative by an array is as follows: given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}` the derivative of arrays will return a new array `B` defined by `B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}` The function ``derive_by_array`` performs such an operation: >>> from sympy import derive_by_array >>> from sympy.abc import x, y, z, t >>> from sympy import sin, exp With scalars, it behaves exactly as the ordinary derivative: >>> derive_by_array(sin(x*y), x) y*cos(x*y) Scalar derived by an array basis: >>> derive_by_array(sin(x*y), [x, y, z]) [y*cos(x*y), x*cos(x*y), 0] Deriving array by an array basis: `B^{nm} := \frac{\partial A^m}{\partial x^n}` >>> basis = [x, y, z] >>> ax = derive_by_array([exp(x), sin(y*z), t], basis) >>> ax [[exp(x), 0, 0], [0, z*cos(y*z), 0], [0, y*cos(y*z), 0]] Contraction of the resulting array: `\sum_m \frac{\partial A^m}{\partial x^m}` >>> tensorcontraction(ax, (0, 1)) z*cos(y*z) + exp(x) """ from .dense_ndim_array import MutableDenseNDimArray, ImmutableDenseNDimArray, DenseNDimArray from .sparse_ndim_array import MutableSparseNDimArray, ImmutableSparseNDimArray, SparseNDimArray from .ndim_array import NDimArray, ArrayKind from .arrayop import tensorproduct, tensorcontraction, tensordiagonal, derive_by_array, permutedims from .array_comprehension import ArrayComprehension, ArrayComprehensionMap Array = ImmutableDenseNDimArray __all__ = [ 'MutableDenseNDimArray', 'ImmutableDenseNDimArray', 'DenseNDimArray', 'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'SparseNDimArray', 'NDimArray', 'ArrayKind', 'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array', 'permutedims', 'ArrayComprehension', 'ArrayComprehensionMap', 'Array', ]
51829d2906600ec5ed0e8a729964bc40cec565cc51d4ed03fdc6edf8a8f1ef23
import itertools from collections.abc import Iterable from sympy.core._print_helpers import Printable from sympy.core.containers import Tuple from sympy.core.function import diff from sympy.core.singleton import S from sympy.core.sympify import _sympify from sympy.tensor.array.ndim_array import NDimArray from sympy.tensor.array.dense_ndim_array import DenseNDimArray, ImmutableDenseNDimArray from sympy.tensor.array.sparse_ndim_array import SparseNDimArray def _arrayfy(a): from sympy.matrices import MatrixBase if isinstance(a, NDimArray): return a if isinstance(a, (MatrixBase, list, tuple, Tuple)): return ImmutableDenseNDimArray(a) return a def tensorproduct(*args): """ Tensor product among scalars or array-like objects. The equivalent operator for array expressions is ``ArrayTensorProduct``, which can be used to keep the expression unevaluated. Examples ======== >>> from sympy.tensor.array import tensorproduct, Array >>> from sympy.abc import x, y, z, t >>> A = Array([[1, 2], [3, 4]]) >>> B = Array([x, y]) >>> tensorproduct(A, B) [[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]] >>> tensorproduct(A, x) [[x, 2*x], [3*x, 4*x]] >>> tensorproduct(A, B, B) [[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]], [[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]] Applying this function on two matrices will result in a rank 4 array. >>> from sympy import Matrix, eye >>> m = Matrix([[x, y], [z, t]]) >>> p = tensorproduct(eye(3), m) >>> p [[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]] See Also ======== sympy.tensor.array.expressions.array_expressions.ArrayTensorProduct """ from sympy.tensor.array import SparseNDimArray, ImmutableSparseNDimArray if len(args) == 0: return S.One if len(args) == 1: return _arrayfy(args[0]) from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.matrices.expressions.matexpr import MatrixSymbol if any(isinstance(arg, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)) for arg in args): return ArrayTensorProduct(*args) if len(args) > 2: return tensorproduct(tensorproduct(args[0], args[1]), *args[2:]) # length of args is 2: a, b = map(_arrayfy, args) if not isinstance(a, NDimArray) or not isinstance(b, NDimArray): return a*b if isinstance(a, SparseNDimArray) and isinstance(b, SparseNDimArray): lp = len(b) new_array = {k1*lp + k2: v1*v2 for k1, v1 in a._sparse_array.items() for k2, v2 in b._sparse_array.items()} return ImmutableSparseNDimArray(new_array, a.shape + b.shape) product_list = [i*j for i in Flatten(a) for j in Flatten(b)] return ImmutableDenseNDimArray(product_list, a.shape + b.shape) def _util_contraction_diagonal(array, *contraction_or_diagonal_axes): array = _arrayfy(array) # Verify contraction_axes: taken_dims = set() for axes_group in contraction_or_diagonal_axes: if not isinstance(axes_group, Iterable): raise ValueError("collections of contraction/diagonal axes expected") dim = array.shape[axes_group[0]] for d in axes_group: if d in taken_dims: raise ValueError("dimension specified more than once") if dim != array.shape[d]: raise ValueError("cannot contract or diagonalize between axes of different dimension") taken_dims.add(d) rank = array.rank() remaining_shape = [dim for i, dim in enumerate(array.shape) if i not in taken_dims] cum_shape = [0]*rank _cumul = 1 for i in range(rank): cum_shape[rank - i - 1] = _cumul _cumul *= int(array.shape[rank - i - 1]) # DEFINITION: by absolute position it is meant the position along the one # dimensional array containing all the tensor components. # Possible future work on this module: move computation of absolute # positions to a class method. # Determine absolute positions of the uncontracted indices: remaining_indices = [[cum_shape[i]*j for j in range(array.shape[i])] for i in range(rank) if i not in taken_dims] # Determine absolute positions of the contracted indices: summed_deltas = [] for axes_group in contraction_or_diagonal_axes: lidx = [] for js in range(array.shape[axes_group[0]]): lidx.append(sum([cum_shape[ig] * js for ig in axes_group])) summed_deltas.append(lidx) return array, remaining_indices, remaining_shape, summed_deltas def tensorcontraction(array, *contraction_axes): """ Contraction of an array-like object on the specified axes. The equivalent operator for array expressions is ``ArrayContraction``, which can be used to keep the expression unevaluated. Examples ======== >>> from sympy import Array, tensorcontraction >>> from sympy import Matrix, eye >>> tensorcontraction(eye(3), (0, 1)) 3 >>> A = Array(range(18), (3, 2, 3)) >>> A [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]] >>> tensorcontraction(A, (0, 2)) [21, 30] Matrix multiplication may be emulated with a proper combination of ``tensorcontraction`` and ``tensorproduct`` >>> from sympy import tensorproduct >>> from sympy.abc import a,b,c,d,e,f,g,h >>> m1 = Matrix([[a, b], [c, d]]) >>> m2 = Matrix([[e, f], [g, h]]) >>> p = tensorproduct(m1, m2) >>> p [[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]] >>> tensorcontraction(p, (1, 2)) [[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]] >>> m1*m2 Matrix([ [a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]) See Also ======== sympy.tensor.array.expressions.array_expressions.ArrayContraction """ from sympy.tensor.array.expressions.array_expressions import _array_contraction from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.matrices.expressions.matexpr import MatrixSymbol if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)): return _array_contraction(array, *contraction_axes) array, remaining_indices, remaining_shape, summed_deltas = _util_contraction_diagonal(array, *contraction_axes) # Compute the contracted array: # # 1. external for loops on all uncontracted indices. # Uncontracted indices are determined by the combinatorial product of # the absolute positions of the remaining indices. # 2. internal loop on all contracted indices. # It sums the values of the absolute contracted index and the absolute # uncontracted index for the external loop. contracted_array = [] for icontrib in itertools.product(*remaining_indices): index_base_position = sum(icontrib) isum = S.Zero for sum_to_index in itertools.product(*summed_deltas): idx = array._get_tuple_index(index_base_position + sum(sum_to_index)) isum += array[idx] contracted_array.append(isum) if len(remaining_indices) == 0: assert len(contracted_array) == 1 return contracted_array[0] return type(array)(contracted_array, remaining_shape) def tensordiagonal(array, *diagonal_axes): """ Diagonalization of an array-like object on the specified axes. This is equivalent to multiplying the expression by Kronecker deltas uniting the axes. The diagonal indices are put at the end of the axes. The equivalent operator for array expressions is ``ArrayDiagonal``, which can be used to keep the expression unevaluated. Examples ======== ``tensordiagonal`` acting on a 2-dimensional array by axes 0 and 1 is equivalent to the diagonal of the matrix: >>> from sympy import Array, tensordiagonal >>> from sympy import Matrix, eye >>> tensordiagonal(eye(3), (0, 1)) [1, 1, 1] >>> from sympy.abc import a,b,c,d >>> m1 = Matrix([[a, b], [c, d]]) >>> tensordiagonal(m1, [0, 1]) [a, d] In case of higher dimensional arrays, the diagonalized out dimensions are appended removed and appended as a single dimension at the end: >>> A = Array(range(18), (3, 2, 3)) >>> A [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]] >>> tensordiagonal(A, (0, 2)) [[0, 7, 14], [3, 10, 17]] >>> from sympy import permutedims >>> tensordiagonal(A, (0, 2)) == permutedims(Array([A[0, :, 0], A[1, :, 1], A[2, :, 2]]), [1, 0]) True See Also ======== sympy.tensor.array.expressions.array_expressions.ArrayDiagonal """ if any(len(i) <= 1 for i in diagonal_axes): raise ValueError("need at least two axes to diagonalize") from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal, _array_diagonal from sympy.matrices.expressions.matexpr import MatrixSymbol if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)): return _array_diagonal(array, *diagonal_axes) ArrayDiagonal._validate(array, *diagonal_axes) array, remaining_indices, remaining_shape, diagonal_deltas = _util_contraction_diagonal(array, *diagonal_axes) # Compute the diagonalized array: # # 1. external for loops on all undiagonalized indices. # Undiagonalized indices are determined by the combinatorial product of # the absolute positions of the remaining indices. # 2. internal loop on all diagonal indices. # It appends the values of the absolute diagonalized index and the absolute # undiagonalized index for the external loop. diagonalized_array = [] diagonal_shape = [len(i) for i in diagonal_deltas] for icontrib in itertools.product(*remaining_indices): index_base_position = sum(icontrib) isum = [] for sum_to_index in itertools.product(*diagonal_deltas): idx = array._get_tuple_index(index_base_position + sum(sum_to_index)) isum.append(array[idx]) isum = type(array)(isum).reshape(*diagonal_shape) diagonalized_array.append(isum) return type(array)(diagonalized_array, remaining_shape + diagonal_shape) def derive_by_array(expr, dx): r""" Derivative by arrays. Supports both arrays and scalars. The equivalent operator for array expressions is ``array_derive``. Explanation =========== Given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}` this function will return a new array `B` defined by `B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}` Examples ======== >>> from sympy import derive_by_array >>> from sympy.abc import x, y, z, t >>> from sympy import cos >>> derive_by_array(cos(x*t), x) -t*sin(t*x) >>> derive_by_array(cos(x*t), [x, y, z, t]) [-t*sin(t*x), 0, 0, -x*sin(t*x)] >>> derive_by_array([x, y**2*z], [[x, y], [z, t]]) [[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]] """ from sympy.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray array_types = (Iterable, MatrixBase, NDimArray) if isinstance(dx, array_types): dx = ImmutableDenseNDimArray(dx) for i in dx: if not i._diff_wrt: raise ValueError("cannot derive by this array") if isinstance(expr, array_types): if isinstance(expr, NDimArray): expr = expr.as_immutable() else: expr = ImmutableDenseNDimArray(expr) if isinstance(dx, array_types): if isinstance(expr, SparseNDimArray): lp = len(expr) new_array = {k + i*lp: v for i, x in enumerate(Flatten(dx)) for k, v in expr.diff(x)._sparse_array.items()} else: new_array = [[y.diff(x) for y in Flatten(expr)] for x in Flatten(dx)] return type(expr)(new_array, dx.shape + expr.shape) else: return expr.diff(dx) else: expr = _sympify(expr) if isinstance(dx, array_types): return ImmutableDenseNDimArray([expr.diff(i) for i in Flatten(dx)], dx.shape) else: dx = _sympify(dx) return diff(expr, dx) def permutedims(expr, perm=None, index_order_old=None, index_order_new=None): """ Permutes the indices of an array. Parameter specifies the permutation of the indices. The equivalent operator for array expressions is ``PermuteDims``, which can be used to keep the expression unevaluated. Examples ======== >>> from sympy.abc import x, y, z, t >>> from sympy import sin >>> from sympy import Array, permutedims >>> a = Array([[x, y, z], [t, sin(x), 0]]) >>> a [[x, y, z], [t, sin(x), 0]] >>> permutedims(a, (1, 0)) [[x, t], [y, sin(x)], [z, 0]] If the array is of second order, ``transpose`` can be used: >>> from sympy import transpose >>> transpose(a) [[x, t], [y, sin(x)], [z, 0]] Examples on higher dimensions: >>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) >>> permutedims(b, (2, 1, 0)) [[[1, 5], [3, 7]], [[2, 6], [4, 8]]] >>> permutedims(b, (1, 2, 0)) [[[1, 5], [2, 6]], [[3, 7], [4, 8]]] An alternative way to specify the same permutations as in the previous lines involves passing the *old* and *new* indices, either as a list or as a string: >>> permutedims(b, index_order_old="cba", index_order_new="abc") [[[1, 5], [3, 7]], [[2, 6], [4, 8]]] >>> permutedims(b, index_order_old="cab", index_order_new="abc") [[[1, 5], [2, 6]], [[3, 7], [4, 8]]] ``Permutation`` objects are also allowed: >>> from sympy.combinatorics import Permutation >>> permutedims(b, Permutation([1, 2, 0])) [[[1, 5], [2, 6]], [[3, 7], [4, 8]]] See Also ======== sympy.tensor.array.expressions.array_expressions.PermuteDims """ from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import _permute_dims from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.array.expressions import PermuteDims from sympy.tensor.array.expressions.array_expressions import get_rank perm = PermuteDims._get_permutation_from_arguments(perm, index_order_old, index_order_new, get_rank(expr)) if isinstance(expr, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)): return _permute_dims(expr, perm) if not isinstance(expr, NDimArray): expr = ImmutableDenseNDimArray(expr) from sympy.combinatorics import Permutation if not isinstance(perm, Permutation): perm = Permutation(list(perm)) if perm.size != expr.rank(): raise ValueError("wrong permutation size") # Get the inverse permutation: iperm = ~perm new_shape = perm(expr.shape) if isinstance(expr, SparseNDimArray): return type(expr)({tuple(perm(expr._get_tuple_index(k))): v for k, v in expr._sparse_array.items()}, new_shape) indices_span = perm([range(i) for i in expr.shape]) new_array = [None]*len(expr) for i, idx in enumerate(itertools.product(*indices_span)): t = iperm(idx) new_array[i] = expr[t] return type(expr)(new_array, new_shape) class Flatten(Printable): """ Flatten an iterable object to a list in a lazy-evaluation way. Notes ===== This class is an iterator with which the memory cost can be economised. Optimisation has been considered to ameliorate the performance for some specific data types like DenseNDimArray and SparseNDimArray. Examples ======== >>> from sympy.tensor.array.arrayop import Flatten >>> from sympy.tensor.array import Array >>> A = Array(range(6)).reshape(2, 3) >>> Flatten(A) Flatten([[0, 1, 2], [3, 4, 5]]) >>> [i for i in Flatten(A)] [0, 1, 2, 3, 4, 5] """ def __init__(self, iterable): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import NDimArray if not isinstance(iterable, (Iterable, MatrixBase)): raise NotImplementedError("Data type not yet supported") if isinstance(iterable, list): iterable = NDimArray(iterable) self._iter = iterable self._idx = 0 def __iter__(self): return self def __next__(self): from sympy.matrices.matrices import MatrixBase if len(self._iter) > self._idx: if isinstance(self._iter, DenseNDimArray): result = self._iter._array[self._idx] elif isinstance(self._iter, SparseNDimArray): if self._idx in self._iter._sparse_array: result = self._iter._sparse_array[self._idx] else: result = 0 elif isinstance(self._iter, MatrixBase): result = self._iter[self._idx] elif hasattr(self._iter, '__next__'): result = next(self._iter) else: result = self._iter[self._idx] else: raise StopIteration self._idx += 1 return result def next(self): return self.__next__() def _sympystr(self, printer): return type(self).__name__ + '(' + printer._print(self._iter) + ')'
b38ff5b88269a7dd647aa5b1cfdee784fb55f9337d0641ef0aead9b38e0d49fa
from sympy.core.basic import Basic from sympy.core.containers import (Dict, Tuple) from sympy.core.expr import Expr from sympy.core.kind import Kind, NumberKind, UndefinedKind from sympy.core.numbers import Integer from sympy.core.singleton import S from sympy.core.sympify import sympify from sympy.external.gmpy import SYMPY_INTS from sympy.printing.defaults import Printable import itertools from collections.abc import Iterable class ArrayKind(Kind): """ Kind for N-dimensional array in SymPy. This kind represents the multidimensional array that algebraic operations are defined. Basic class for this kind is ``NDimArray``, but any expression representing the array can have this. Parameters ========== element_kind : Kind Kind of the element. Default is :obj:NumberKind `<sympy.core.kind.NumberKind>`, which means that the array contains only numbers. Examples ======== Any instance of array class has ``ArrayKind``. >>> from sympy import NDimArray >>> NDimArray([1,2,3]).kind ArrayKind(NumberKind) Although expressions representing an array may be not instance of array class, it will have ``ArrayKind`` as well. >>> from sympy import Integral >>> from sympy.tensor.array import NDimArray >>> from sympy.abc import x >>> intA = Integral(NDimArray([1,2,3]), x) >>> isinstance(intA, NDimArray) False >>> intA.kind ArrayKind(NumberKind) Use ``isinstance()`` to check for ``ArrayKind` without specifying the element kind. Use ``is`` with specifying the element kind. >>> from sympy.tensor.array import ArrayKind >>> from sympy.core import NumberKind >>> boolA = NDimArray([True, False]) >>> isinstance(boolA.kind, ArrayKind) True >>> boolA.kind is ArrayKind(NumberKind) False See Also ======== shape : Function to return the shape of objects with ``MatrixKind``. """ def __new__(cls, element_kind=NumberKind): obj = super().__new__(cls, element_kind) obj.element_kind = element_kind return obj def __repr__(self): return "ArrayKind(%s)" % self.element_kind @classmethod def _union(cls, kinds) -> 'ArrayKind': elem_kinds = set(e.kind for e in kinds) if len(elem_kinds) == 1: elemkind, = elem_kinds else: elemkind = UndefinedKind return ArrayKind(elemkind) class NDimArray(Printable): """N-dimensional array. Examples ======== Create an N-dim array of zeros: >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3, 4) >>> a [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] Create an N-dim array from a list; >>> a = MutableDenseNDimArray([[2, 3], [4, 5]]) >>> a [[2, 3], [4, 5]] >>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]) >>> b [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]] Create an N-dim array from a flat list with dimension shape: >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) >>> a [[1, 2, 3], [4, 5, 6]] Create an N-dim array from a matrix: >>> from sympy import Matrix >>> a = Matrix([[1,2],[3,4]]) >>> a Matrix([ [1, 2], [3, 4]]) >>> b = MutableDenseNDimArray(a) >>> b [[1, 2], [3, 4]] Arithmetic operations on N-dim arrays >>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2)) >>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2)) >>> c = a + b >>> c [[5, 5], [5, 5]] >>> a - b [[-3, -3], [-3, -3]] """ _diff_wrt = True is_scalar = False def __new__(cls, iterable, shape=None, **kwargs): from sympy.tensor.array import ImmutableDenseNDimArray return ImmutableDenseNDimArray(iterable, shape, **kwargs) def __getitem__(self, index): raise NotImplementedError("A subclass of NDimArray should implement __getitem__") def _parse_index(self, index): if isinstance(index, (SYMPY_INTS, Integer)): if index >= self._loop_size: raise ValueError("Only a tuple index is accepted") return index if self._loop_size == 0: raise ValueError("Index not valid with an empty array") if len(index) != self._rank: raise ValueError('Wrong number of array axes') real_index = 0 # check if input index can exist in current indexing for i in range(self._rank): if (index[i] >= self.shape[i]) or (index[i] < -self.shape[i]): raise ValueError('Index ' + str(index) + ' out of border') if index[i] < 0: real_index += 1 real_index = real_index*self.shape[i] + index[i] return real_index def _get_tuple_index(self, integer_index): index = [] for i, sh in enumerate(reversed(self.shape)): index.append(integer_index % sh) integer_index //= sh index.reverse() return tuple(index) def _check_symbolic_index(self, index): # Check if any index is symbolic: tuple_index = (index if isinstance(index, tuple) else (index,)) if any((isinstance(i, Expr) and (not i.is_number)) for i in tuple_index): for i, nth_dim in zip(tuple_index, self.shape): if ((i < 0) == True) or ((i >= nth_dim) == True): raise ValueError("index out of range") from sympy.tensor import Indexed return Indexed(self, *tuple_index) return None def _setter_iterable_check(self, value): from sympy.matrices.matrices import MatrixBase if isinstance(value, (Iterable, MatrixBase, NDimArray)): raise NotImplementedError @classmethod def _scan_iterable_shape(cls, iterable): def f(pointer): if not isinstance(pointer, Iterable): return [pointer], () if len(pointer) == 0: return [], (0,) result = [] elems, shapes = zip(*[f(i) for i in pointer]) if len(set(shapes)) != 1: raise ValueError("could not determine shape unambiguously") for i in elems: result.extend(i) return result, (len(shapes),)+shapes[0] return f(iterable) @classmethod def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray if shape is None: if iterable is None: shape = () iterable = () # Construction of a sparse array from a sparse array elif isinstance(iterable, SparseNDimArray): return iterable._shape, iterable._sparse_array # Construct N-dim array from another N-dim array: elif isinstance(iterable, NDimArray): shape = iterable.shape # Construct N-dim array from an iterable (numpy arrays included): elif isinstance(iterable, Iterable): iterable, shape = cls._scan_iterable_shape(iterable) # Construct N-dim array from a Matrix: elif isinstance(iterable, MatrixBase): shape = iterable.shape else: shape = () iterable = (iterable,) if isinstance(iterable, (Dict, dict)) and shape is not None: new_dict = iterable.copy() for k, v in new_dict.items(): if isinstance(k, (tuple, Tuple)): new_key = 0 for i, idx in enumerate(k): new_key = new_key * shape[i] + idx iterable[new_key] = iterable[k] del iterable[k] if isinstance(shape, (SYMPY_INTS, Integer)): shape = (shape,) if not all(isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape): raise TypeError("Shape should contain integers only.") return tuple(shape), iterable def __len__(self): """Overload common function len(). Returns number of elements in array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a [[0, 0, 0], [0, 0, 0], [0, 0, 0]] >>> len(a) 9 """ return self._loop_size @property def shape(self): """ Returns array shape (dimension). Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a.shape (3, 3) """ return self._shape def rank(self): """ Returns rank of array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3,4,5,6,3) >>> a.rank() 5 """ return self._rank def diff(self, *args, **kwargs): """ Calculate the derivative of each element in the array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> from sympy.abc import x, y >>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]]) >>> M.diff(x) [[1, 0], [0, y]] """ from sympy.tensor.array.array_derivatives import ArrayDerivative kwargs.setdefault('evaluate', True) return ArrayDerivative(self.as_immutable(), *args, **kwargs) def _eval_derivative(self, base): # Types are (base: scalar, self: array) return self.applyfunc(lambda x: base.diff(x)) def _eval_derivative_n_times(self, s, n): return Basic._eval_derivative_n_times(self, s, n) def applyfunc(self, f): """Apply a function to each element of the N-dim array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2)) >>> m [[0, 1], [2, 3]] >>> m.applyfunc(lambda i: 2*i) [[0, 2], [4, 6]] """ from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(self, SparseNDimArray) and f(S.Zero) == 0: return type(self)({k: f(v) for k, v in self._sparse_array.items() if f(v) != 0}, self.shape) return type(self)(map(f, Flatten(self)), self.shape) def _sympystr(self, printer): def f(sh, shape_left, i, j): if len(shape_left) == 1: return "["+", ".join([printer._print(self[self._get_tuple_index(e)]) for e in range(i, j)])+"]" sh //= shape_left[0] return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left) if self.rank() == 0: return printer._print(self[()]) return f(self._loop_size, self.shape, 0, self._loop_size) def tolist(self): """ Converting MutableDenseNDimArray to one-dim list Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2)) >>> a [[1, 2], [3, 4]] >>> b = a.tolist() >>> b [[1, 2], [3, 4]] """ def f(sh, shape_left, i, j): if len(shape_left) == 1: return [self[self._get_tuple_index(e)] for e in range(i, j)] result = [] sh //= shape_left[0] for e in range(shape_left[0]): result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh)) return result return f(self._loop_size, self.shape, 0, self._loop_size) def __add__(self, other): from sympy.tensor.array.arrayop import Flatten if not isinstance(other, NDimArray): return NotImplemented if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i+j for i,j in zip(Flatten(self), Flatten(other))] return type(self)(result_list, self.shape) def __sub__(self, other): from sympy.tensor.array.arrayop import Flatten if not isinstance(other, NDimArray): return NotImplemented if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i-j for i,j in zip(Flatten(self), Flatten(other))] return type(self)(result_list, self.shape) def __mul__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) if isinstance(self, SparseNDimArray): if other.is_zero: return type(self)({}, self.shape) return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [i*other for i in Flatten(self)] return type(self)(result_list, self.shape) def __rmul__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) if isinstance(self, SparseNDimArray): if other.is_zero: return type(self)({}, self.shape) return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [other*i for i in Flatten(self)] return type(self)(result_list, self.shape) def __truediv__(self, other): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected") other = sympify(other) if isinstance(self, SparseNDimArray) and other != S.Zero: return type(self)({k: v/other for (k, v) in self._sparse_array.items()}, self.shape) result_list = [i/other for i in Flatten(self)] return type(self)(result_list, self.shape) def __rtruediv__(self, other): raise NotImplementedError('unsupported operation on NDimArray') def __neg__(self): from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.arrayop import Flatten if isinstance(self, SparseNDimArray): return type(self)({k: -v for (k, v) in self._sparse_array.items()}, self.shape) result_list = [-i for i in Flatten(self)] return type(self)(result_list, self.shape) def __iter__(self): def iterator(): if self._shape: for i in range(self._shape[0]): yield self[i] else: yield self[()] return iterator() def __eq__(self, other): """ NDimArray instances can be compared to each other. Instances equal if they have same shape and data. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3) >>> b = MutableDenseNDimArray.zeros(2, 3) >>> a == b True >>> c = a.reshape(3, 2) >>> c == b False >>> a[0,0] = 1 >>> b[0,0] = 2 >>> a == b False """ from sympy.tensor.array import SparseNDimArray if not isinstance(other, NDimArray): return False if not self.shape == other.shape: return False if isinstance(self, SparseNDimArray) and isinstance(other, SparseNDimArray): return dict(self._sparse_array) == dict(other._sparse_array) return list(self) == list(other) def __ne__(self, other): return not self == other def _eval_transpose(self): if self.rank() != 2: raise ValueError("array rank not 2") from .arrayop import permutedims return permutedims(self, (1, 0)) def transpose(self): return self._eval_transpose() def _eval_conjugate(self): from sympy.tensor.array.arrayop import Flatten return self.func([i.conjugate() for i in Flatten(self)], self.shape) def conjugate(self): return self._eval_conjugate() def _eval_adjoint(self): return self.transpose().conjugate() def adjoint(self): return self._eval_adjoint() def _slice_expand(self, s, dim): if not isinstance(s, slice): return (s,) start, stop, step = s.indices(dim) return [start + i*step for i in range((stop-start)//step)] def _get_slice_data_for_array_access(self, index): sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)] eindices = itertools.product(*sl_factors) return sl_factors, eindices def _get_slice_data_for_array_assignment(self, index, value): if not isinstance(value, NDimArray): value = type(self)(value) sl_factors, eindices = self._get_slice_data_for_array_access(index) slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors] # TODO: add checks for dimensions for `value`? return value, eindices, slice_offsets @classmethod def _check_special_bounds(cls, flat_list, shape): if shape == () and len(flat_list) != 1: raise ValueError("arrays without shape need one scalar value") if shape == (0,) and len(flat_list) > 0: raise ValueError("if array shape is (0,) there cannot be elements") def _check_index_for_getitem(self, index): if isinstance(index, (SYMPY_INTS, Integer, slice)): index = (index,) if len(index) < self.rank(): index = tuple(index) + \ tuple(slice(None) for i in range(len(index), self.rank())) if len(index) > self.rank(): raise ValueError('Dimension of index greater than rank of array') return index class ImmutableNDimArray(NDimArray, Basic): _op_priority = 11.0 def __hash__(self): return Basic.__hash__(self) def as_immutable(self): return self def as_mutable(self): raise NotImplementedError("abstract method")
21ef2a54c272a764ecabb6958666693d7f17f8a4e517db9ac6441f4f3099f73f
import functools from typing import List from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.singleton import S from sympy.core.sympify import _sympify from sympy.tensor.array.mutable_ndim_array import MutableNDimArray from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray, ArrayKind from sympy.utilities.iterables import flatten class DenseNDimArray(NDimArray): _array: List[Basic] def __new__(self, *args, **kwargs): return ImmutableDenseNDimArray(*args, **kwargs) @property def kind(self) -> ArrayKind: return ArrayKind._union(self._array) def __getitem__(self, index): """ Allows to get items from N-dim array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([0, 1, 2, 3], (2, 2)) >>> a [[0, 1], [2, 3]] >>> a[0, 0] 0 >>> a[1, 1] 3 >>> a[0] [0, 1] >>> a[1] [2, 3] Symbolic index: >>> from sympy.abc import i, j >>> a[i, j] [[0, 1], [2, 3]][i, j] Replace `i` and `j` to get element `(1, 1)`: >>> a[i, j].subs({i: 1, j: 1}) 3 """ syindex = self._check_symbolic_index(index) if syindex is not None: return syindex index = self._check_index_for_getitem(index) if isinstance(index, tuple) and any(isinstance(i, slice) for i in index): sl_factors, eindices = self._get_slice_data_for_array_access(index) array = [self._array[self._parse_index(i)] for i in eindices] nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)] return type(self)(array, nshape) else: index = self._parse_index(index) return self._array[index] @classmethod def zeros(cls, *shape): list_length = functools.reduce(lambda x, y: x*y, shape, S.One) return cls._new(([0]*list_length,), shape) def tomatrix(self): """ Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1 for i in range(9)], (3, 3)) >>> b = a.tomatrix() >>> b Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) """ from sympy.matrices import Matrix if self.rank() != 2: raise ValueError('Dimensions must be of size of 2') return Matrix(self.shape[0], self.shape[1], self._array) def reshape(self, *newshape): """ Returns MutableDenseNDimArray instance with new shape. Elements number must be suitable to new shape. The only argument of method sets new shape. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) >>> a.shape (2, 3) >>> a [[1, 2, 3], [4, 5, 6]] >>> b = a.reshape(3, 2) >>> b.shape (3, 2) >>> b [[1, 2], [3, 4], [5, 6]] """ new_total_size = functools.reduce(lambda x,y: x*y, newshape) if new_total_size != self._loop_size: raise ValueError('Expecting reshape size to %d but got prod(%s) = %d' % ( self._loop_size, str(newshape), new_total_size)) # there is no `.func` as this class does not subtype `Basic`: return type(self)(self._array, newshape) class ImmutableDenseNDimArray(DenseNDimArray, ImmutableNDimArray): # type: ignore def __new__(cls, iterable, shape=None, **kwargs): return cls._new(iterable, shape, **kwargs) @classmethod def _new(cls, iterable, shape, **kwargs): shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs) shape = Tuple(*map(_sympify, shape)) cls._check_special_bounds(flat_list, shape) flat_list = flatten(flat_list) flat_list = Tuple(*flat_list) self = Basic.__new__(cls, flat_list, shape, **kwargs) self._shape = shape self._array = list(flat_list) self._rank = len(shape) self._loop_size = functools.reduce(lambda x,y: x*y, shape, 1) return self def __setitem__(self, index, value): raise TypeError('immutable N-dim array') def as_mutable(self): return MutableDenseNDimArray(self) def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import simplify return self.applyfunc(simplify) class MutableDenseNDimArray(DenseNDimArray, MutableNDimArray): def __new__(cls, iterable=None, shape=None, **kwargs): return cls._new(iterable, shape, **kwargs) @classmethod def _new(cls, iterable, shape, **kwargs): shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs) flat_list = flatten(flat_list) self = object.__new__(cls) self._shape = shape self._array = list(flat_list) self._rank = len(shape) self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list) return self def __setitem__(self, index, value): """Allows to set items to MutableDenseNDimArray. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 2) >>> a[0,0] = 1 >>> a[1,1] = 1 >>> a [[1, 0], [0, 1]] """ if isinstance(index, tuple) and any(isinstance(i, slice) for i in index): value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value) for i in eindices: other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None] self._array[self._parse_index(i)] = value[other_i] else: index = self._parse_index(index) self._setter_iterable_check(value) value = _sympify(value) self._array[index] = value def as_immutable(self): return ImmutableDenseNDimArray(self) @property def free_symbols(self): return {i for j in self._array for i in j.free_symbols}
2726c7d8001b1063686f8e08eaf97bba28b2fd5a664783b880a09939fc033d61
from sympy.concrete.summations import Sum from sympy.core.function import expand from sympy.core.numbers import Integer from sympy.matrices.dense import (Matrix, eye) from sympy.tensor.indexed import Indexed from sympy.combinatorics import Permutation from sympy.core import S, Rational, Symbol, Basic, Add from sympy.core.containers import Tuple from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.tensor.array import Array from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, \ get_symmetric_group_sgs, TensorIndex, tensor_mul, TensAdd, \ riemann_cyclic_replace, riemann_cyclic, TensMul, tensor_heads, \ TensorManager, TensExpr, TensorHead, canon_bp, \ tensorhead, tensorsymmetry, TensorType, substitute_indices, \ WildTensorIndex, WildTensorHead, _WildTensExpr from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy from sympy.matrices import diag def _is_equal(arg1, arg2): if isinstance(arg1, TensExpr): return arg1.equals(arg2) elif isinstance(arg2, TensExpr): return arg2.equals(arg1) return arg1 == arg2 #################### Tests from tensor_can.py ####################### def test_canonicalize_no_slot_sym(): # A_d0 * B^d0; T_c = A^d0*B_d0 Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, d0, d1 = tensor_indices('a,b,d0,d1', Lorentz) A, B = tensor_heads('A,B', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(-d0)*B(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*B(-L_0)' # A^a * B^b; T_c = T t = A(a)*B(b) tc = t.canon_bp() assert tc == t # B^b * A^a t1 = B(b)*A(a) tc = t1.canon_bp() assert str(tc) == 'A(a)*B(b)' # A symmetric # A^{b}_{d0}*A^{d0, a}; T_c = A^{a d0}*A{b}_{d0} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(b, -d0)*A(d0, a) tc = t.canon_bp() assert str(tc) == 'A(a, L_0)*A(b, -L_0)' # A^{d1}_{d0}*B^d0*C_d1 # T_c = A^{d0 d1}*B_d0*C_d1 B, C = tensor_heads('B,C', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(d1, -d0)*B(d0)*C(-d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_0)*C(-L_1)' # A without symmetry # A^{d1}_{d0}*B^d0*C_d1 ord=[d0,-d0,d1,-d1]; g = [2,1,0,3,4,5] # T_c = A^{d0 d1}*B_d1*C_d0; can = [0,2,3,1,4,5] A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, -d0)*B(d0)*C(-d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_1)*C(-L_0)' # A, B without symmetry # A^{d1}_{d0}*B_{d1}^{d0} # T_c = A^{d0 d1}*B_{d0 d1} B = TensorHead('B', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, -d0)*B(-d1, d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_0, -L_1)' # A_{d0}^{d1}*B_{d1}^{d0} # T_c = A^{d0 d1}*B_{d1 d0} t = A(-d0, d1)*B(-d1, d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_1, -L_0)' # A, B, C without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} # T_c=A^{d0 d1}*B_{a d1}*C_{d0 b} C = TensorHead('C', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_1)*C(-L_0, -b)' # A symmetric, B and C without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} # T_c = A^{d0 d1}*B_{a d0}*C_{d1 b} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-L_1, -b)' # A and C symmetric, B without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} ord=[a,b,d0,-d0,d1,-d1] # T_c = A^{d0 d1}*B_{a d0}*C_{b d1} C = TensorHead('C', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-b, -L_1)' def test_canonicalize_no_dummies(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a, b, c, d', Lorentz) # A commuting # A^c A^b A^a # T_c = A^a A^b A^c A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(c)*A(b)*A(a) tc = t.canon_bp() assert str(tc) == 'A(a)*A(b)*A(c)' # A anticommuting # A^c A^b A^a # T_c = -A^a A^b A^c A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1) t = A(c)*A(b)*A(a) tc = t.canon_bp() assert str(tc) == '-A(a)*A(b)*A(c)' # A commuting and symmetric # A^{b,d}*A^{c,a} # T_c = A^{a c}*A^{b d} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(b, d)*A(c, a) tc = t.canon_bp() assert str(tc) == 'A(a, c)*A(b, d)' # A anticommuting and symmetric # A^{b,d}*A^{c,a} # T_c = -A^{a c}*A^{b d} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2), 1) t = A(b, d)*A(c, a) tc = t.canon_bp() assert str(tc) == '-A(a, c)*A(b, d)' # A^{c,a}*A^{b,d} # T_c = A^{a c}*A^{b d} t = A(c, a)*A(b, d) tc = t.canon_bp() assert str(tc) == 'A(a, c)*A(b, d)' def test_tensorhead_construction_without_symmetry(): L = TensorIndexType('Lorentz') A1 = TensorHead('A', [L, L]) A2 = TensorHead('A', [L, L], TensorSymmetry.no_symmetry(2)) assert A1 == A2 A3 = TensorHead('A', [L, L], TensorSymmetry.fully_symmetric(2)) # Symmetric assert A1 != A3 def test_no_metric_symmetry(): # no metric symmetry; A no symmetry # A^d1_d0 * A^d0_d1 # T_c = A^d0_d1 * A^d1_d0 Lorentz = TensorIndexType('Lorentz', dummy_name='L', metric_symmetry=0) d0, d1, d2, d3 = tensor_indices('d:4', Lorentz) A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, -d0)*A(d0, -d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)' # A^d1_d2 * A^d0_d3 * A^d2_d1 * A^d3_d0 # T_c = A^d0_d1 * A^d1_d0 * A^d2_d3 * A^d3_d2 t = A(d1, -d2)*A(d0, -d3)*A(d2, -d1)*A(d3, -d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)*A(L_2, -L_3)*A(L_3, -L_2)' # A^d0_d2 * A^d1_d3 * A^d3_d0 * A^d2_d1 # T_c = A^d0_d1 * A^d1_d2 * A^d2_d3 * A^d3_d0 t = A(d0, -d1)*A(d1, -d2)*A(d2, -d3)*A(d3, -d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_2)*A(L_2, -L_3)*A(L_3, -L_0)' def test_canonicalize1(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Lorentz) # A_d0*A^d0; ord = [d0,-d0] # T_c = A^d0*A_d0 A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(-d0)*A(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*A(-L_0)' # A commuting # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0 # T_c = A^d0*A_d0*A^d1*A_d1*A^d2*A_d2 t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*A(-L_0)*A(L_1)*A(-L_1)*A(L_2)*A(-L_2)' # A anticommuting # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0 # T_c 0 A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1) t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0) tc = t.canon_bp() assert tc == 0 # A commuting symmetric # A^{d0 b}*A^a_d1*A^d1_d0 # T_c = A^{a d0}*A^{b d1}*A_{d0 d1} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d0, b)*A(a, -d1)*A(d1, -d0) tc = t.canon_bp() assert str(tc) == 'A(a, L_0)*A(b, L_1)*A(-L_0, -L_1)' # A, B commuting symmetric # A^{d0 b}*A^d1_d0*B^a_d1 # T_c = A^{b d0}*A_d0^d1*B^a_d1 B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d0, b)*A(d1, -d0)*B(a, -d1) tc = t.canon_bp() assert str(tc) == 'A(b, L_0)*A(-L_0, L_1)*B(a, -L_1)' # A commuting symmetric # A^{d1 d0 b}*A^{a}_{d1 d0}; ord=[a,b, d0,-d0,d1,-d1] # T_c = A^{a d0 d1}*A^{b}_{d0 d1} A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3)) t = A(d1, d0, b)*A(a, -d1, -d0) tc = t.canon_bp() assert str(tc) == 'A(a, L_0, L_1)*A(b, -L_0, -L_1)' # A^{d3 d0 d2}*A^a0_{d1 d2}*A^d1_d3^a1*A^{a2 a3}_d0 # T_c = A^{a0 d0 d1}*A^a1_d0^d2*A^{a2 a3 d3}*A_{d1 d2 d3} t = A(d3, d0, d2)*A(a0, -d1, -d2)*A(d1, -d3, a1)*A(a2, a3, -d0) tc = t.canon_bp() assert str(tc) == 'A(a0, L_0, L_1)*A(a1, -L_0, L_2)*A(a2, a3, L_3)*A(-L_1, -L_2, -L_3)' # A commuting symmetric, B antisymmetric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # in this esxample and in the next three, # renaming dummy indices and using symmetry of A, # T = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3 # can = 0 A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3)) B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert tc == 0 # A anticommuting symmetric, B antisymmetric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3} A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3), 1) B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1, L_2)*A(-L_0, -L_1, L_3)*B(-L_2, -L_3)' # A anticommuting symmetric, B antisymmetric commuting, antisymmetric metric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = -A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3} Spinor = TensorIndexType('Spinor', dummy_name='S', metric_symmetry=-1) a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Spinor) A = TensorHead('A', [Spinor]*3, TensorSymmetry.fully_symmetric(3), 1) B = TensorHead('B', [Spinor]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == '-A(S_0, S_1, S_2)*A(-S_0, -S_1, S_3)*B(-S_2, -S_3)' # A anticommuting symmetric, B antisymmetric anticommuting, # no metric symmetry # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3 Mat = TensorIndexType('Mat', metric_symmetry=0, dummy_name='M') a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Mat) A = TensorHead('A', [Mat]*3, TensorSymmetry.fully_symmetric(3), 1) B = TensorHead('B', [Mat]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == 'A(M_0, M_1, M_2)*A(-M_0, -M_1, -M_3)*B(-M_2, M_3)' # Gamma anticommuting # Gamma_{mu nu} * gamma^rho * Gamma^{nu mu alpha} # T_c = -Gamma^{mu nu} * gamma^rho * Gamma_{alpha mu nu} alpha, beta, gamma, mu, nu, rho = \ tensor_indices('alpha,beta,gamma,mu,nu,rho', Lorentz) Gamma = TensorHead('Gamma', [Lorentz], TensorSymmetry.fully_symmetric(1), 2) Gamma2 = TensorHead('Gamma', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2), 2) Gamma3 = TensorHead('Gamma', [Lorentz]*3, TensorSymmetry.fully_symmetric(-3), 2) t = Gamma2(-mu, -nu)*Gamma(rho)*Gamma3(nu, mu, alpha) tc = t.canon_bp() assert str(tc) == '-Gamma(L_0, L_1)*Gamma(rho)*Gamma(alpha, -L_0, -L_1)' # Gamma_{mu nu} * Gamma^{gamma beta} * gamma_rho * Gamma^{nu mu alpha} # T_c = Gamma^{mu nu} * Gamma^{beta gamma} * gamma_rho * Gamma^alpha_{mu nu} t = Gamma2(mu, nu)*Gamma2(beta, gamma)*Gamma(-rho)*Gamma3(alpha, -mu, -nu) tc = t.canon_bp() assert str(tc) == 'Gamma(L_0, L_1)*Gamma(beta, gamma)*Gamma(-rho)*Gamma(alpha, -L_0, -L_1)' # f^a_{b,c} antisymmetric in b,c; A_mu^a no symmetry # f^c_{d a} * f_{c e b} * A_mu^d * A_nu^a * A^{nu e} * A^{mu b} # g = [8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15] # T_c = -f^{a b c} * f_a^{d e} * A^mu_b * A_{mu d} * A^nu_c * A_{nu e} Flavor = TensorIndexType('Flavor', dummy_name='F') a, b, c, d, e, ff = tensor_indices('a,b,c,d,e,f', Flavor) mu, nu = tensor_indices('mu,nu', Lorentz) f = TensorHead('f', [Flavor]*3, TensorSymmetry.direct_product(1, -2)) A = TensorHead('A', [Lorentz, Flavor], TensorSymmetry.no_symmetry(2)) t = f(c, -d, -a)*f(-c, -e, -b)*A(-mu, d)*A(-nu, a)*A(nu, e)*A(mu, b) tc = t.canon_bp() assert str(tc) == '-f(F_0, F_1, F_2)*f(-F_0, F_3, F_4)*A(L_0, -F_1)*A(-L_0, -F_3)*A(L_1, -F_2)*A(-L_1, -F_4)' def test_bug_correction_tensor_indices(): # to make sure that tensor_indices does not return a list if creating # only one index: A = TensorIndexType("A") i = tensor_indices('i', A) assert not isinstance(i, (tuple, list)) assert isinstance(i, TensorIndex) def test_riemann_invariants(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 = \ tensor_indices('d0:12', Lorentz) # R^{d0 d1}_{d1 d0}; ord = [d0,-d0,d1,-d1] # T_c = -R^{d0 d1}_{d0 d1} R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(d0, d1, -d1, -d0) tc = t.canon_bp() assert str(tc) == '-R(L_0, L_1, -L_0, -L_1)' # R_d11^d1_d0^d5 * R^{d6 d4 d0}_d5 * R_{d7 d2 d8 d9} * # R_{d10 d3 d6 d4} * R^{d2 d7 d11}_d1 * R^{d8 d9 d3 d10} # can = [0,2,4,6, 1,3,8,10, 5,7,12,14, 9,11,16,18, 13,15,20,22, # 17,19,21<F10,23, 24,25] # T_c = R^{d0 d1 d2 d3} * R_{d0 d1}^{d4 d5} * R_{d2 d3}^{d6 d7} * # R_{d4 d5}^{d8 d9} * R_{d6 d7}^{d10 d11} * R_{d8 d9 d10 d11} t = R(-d11,d1,-d0,d5)*R(d6,d4,d0,-d5)*R(-d7,-d2,-d8,-d9)* \ R(-d10,-d3,-d6,-d4)*R(d2,d7,d11,-d1)*R(d8,d9,d3,d10) tc = t.canon_bp() assert str(tc) == 'R(L_0, L_1, L_2, L_3)*R(-L_0, -L_1, L_4, L_5)*R(-L_2, -L_3, L_6, L_7)*R(-L_4, -L_5, L_8, L_9)*R(-L_6, -L_7, L_10, L_11)*R(-L_8, -L_9, -L_10, -L_11)' def test_riemann_products(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') d0, d1, d2, d3, d4, d5, d6 = tensor_indices('d0:7', Lorentz) a0, a1, a2, a3, a4, a5 = tensor_indices('a0:6', Lorentz) a, b = tensor_indices('a,b', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) # R^{a b d0}_d0 = 0 t = R(a, b, d0, -d0) tc = t.canon_bp() assert tc == 0 # R^{d0 b a}_d0 # T_c = -R^{a d0 b}_d0 t = R(d0, b, a, -d0) tc = t.canon_bp() assert str(tc) == '-R(a, L_0, b, -L_0)' # R^d1_d2^b_d0 * R^{d0 a}_d1^d2; ord=[a,b,d0,-d0,d1,-d1,d2,-d2] # T_c = -R^{a d0 d1 d2}* R^b_{d0 d1 d2} t = R(d1, -d2, b, -d0)*R(d0, a, -d1, d2) tc = t.canon_bp() assert str(tc) == '-R(a, L_0, L_1, L_2)*R(b, -L_0, -L_1, -L_2)' # A symmetric commuting # R^{d6 d5}_d2^d1 * R^{d4 d0 d2 d3} * A_{d6 d0} A_{d3 d1} * A_{d4 d5} # g = [12,10,5,2, 8,0,4,6, 13,1, 7,3, 9,11,14,15] # T_c = -R^{d0 d1 d2 d3} * R_d0^{d4 d5 d6} * A_{d1 d4}*A_{d2 d5}*A_{d3 d6} V = TensorHead('V', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = R(d6, d5, -d2, d1)*R(d4, d0, d2, d3)*V(-d6, -d0)*V(-d3, -d1)*V(-d4, -d5) tc = t.canon_bp() assert str(tc) == '-R(L_0, L_1, L_2, L_3)*R(-L_0, L_4, L_5, L_6)*V(-L_1, -L_4)*V(-L_2, -L_5)*V(-L_3, -L_6)' # R^{d2 a0 a2 d0} * R^d1_d2^{a1 a3} * R^{a4 a5}_{d0 d1} # T_c = R^{a0 d0 a2 d1}*R^{a1 a3}_d0^d2*R^{a4 a5}_{d1 d2} t = R(d2, a0, a2, d0)*R(d1, -d2, a1, a3)*R(a4, a5, -d0, -d1) tc = t.canon_bp() assert str(tc) == 'R(a0, L_0, a2, L_1)*R(a1, a3, -L_0, L_2)*R(a4, a5, -L_1, -L_2)' ###################################################################### def test_canonicalize2(): D = Symbol('D') Eucl = TensorIndexType('Eucl', metric_symmetry=1, dim=D, dummy_name='E') i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14 = \ tensor_indices('i0:15', Eucl) A = TensorHead('A', [Eucl]*3, TensorSymmetry.fully_symmetric(-3)) # two examples from Cvitanovic, Group Theory page 59 # of identities for antisymmetric tensors of rank 3 # contracted according to the Kuratowski graph eq.(6.59) t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i3,i7,i5)*A(-i2,-i5,i6)*A(-i4,-i6,i8) t1 = t.canon_bp() assert t1 == 0 # eq.(6.60) #t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)* # A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i3,-i12,i14) t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*\ A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i9,-i12,i14) t1 = t.canon_bp() assert t1 == 0 def test_canonicalize3(): D = Symbol('D') Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S') a0,a1,a2,a3,a4 = tensor_indices('a0:5', Spinor) chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1) t = chi(a1)*psi(a0) t1 = t.canon_bp() assert t1 == t t = psi(a1)*chi(a0) t1 = t.canon_bp() assert t1 == -chi(a0)*psi(a1) def test_TensorIndexType(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', metric_name='g', metric_symmetry=1, dim=D, dummy_name='L') m0, m1, m2, m3, m4 = tensor_indices('m0:5', Lorentz) sym2 = TensorSymmetry.fully_symmetric(2) sym2n = TensorSymmetry(*get_symmetric_group_sgs(2)) assert sym2 == sym2n g = Lorentz.metric assert str(g) == 'g(Lorentz,Lorentz)' assert Lorentz.eps_dim == Lorentz.dim TSpace = TensorIndexType('TSpace', dummy_name = 'TSpace') i0, i1 = tensor_indices('i0 i1', TSpace) g = TSpace.metric A = TensorHead('A', [TSpace]*2, sym2) assert str(A(i0,-i0).canon_bp()) == 'A(TSpace_0, -TSpace_0)' def test_indices(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) assert a.tensor_index_type == Lorentz assert a != -a A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(a,b)*B(-b,c) indices = t.get_indices() L_0 = TensorIndex('L_0', Lorentz) assert indices == [a, L_0, -L_0, c] raises(ValueError, lambda: tensor_indices(3, Lorentz)) raises(ValueError, lambda: A(a,b,c)) A = TensorHead('A', [Lorentz, Lorentz]) assert A('a', 'b') == A(TensorIndex('a', Lorentz), TensorIndex('b', Lorentz)) assert A('a', '-b') == A(TensorIndex('a', Lorentz), TensorIndex('b', Lorentz, is_up=False)) assert A('a', TensorIndex('b', Lorentz)) == A(TensorIndex('a', Lorentz), TensorIndex('b', Lorentz)) def test_TensorSymmetry(): assert TensorSymmetry.fully_symmetric(2) == \ TensorSymmetry(get_symmetric_group_sgs(2)) assert TensorSymmetry.fully_symmetric(-3) == \ TensorSymmetry(get_symmetric_group_sgs(3, True)) assert TensorSymmetry.direct_product(-4) == \ TensorSymmetry.fully_symmetric(-4) assert TensorSymmetry.fully_symmetric(-1) == \ TensorSymmetry.fully_symmetric(1) assert TensorSymmetry.direct_product(1, -1, 1) == \ TensorSymmetry.no_symmetry(3) assert TensorSymmetry(get_symmetric_group_sgs(2)) == \ TensorSymmetry(*get_symmetric_group_sgs(2)) # TODO: add check for *get_symmetric_group_sgs(0) sym = TensorSymmetry.fully_symmetric(-3) assert sym.rank == 3 assert sym.base == Tuple(0, 1) assert sym.generators == Tuple(Permutation(0, 1)(3, 4), Permutation(1, 2)(3, 4)) def test_TensExpr(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) g = Lorentz.metric A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) raises(ValueError, lambda: g(c, d)/g(a, b)) raises(ValueError, lambda: S.One/g(a, b)) raises(ValueError, lambda: (A(c, d) + g(c, d))/g(a, b)) raises(ValueError, lambda: S.One/(A(c, d) + g(c, d))) raises(ValueError, lambda: A(a, b) + A(a, c)) #t = A(a, b) + B(a, b) # assigned to t for below #raises(NotImplementedError, lambda: TensExpr.__mul__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__add__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__radd__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__sub__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__rsub__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__truediv__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__rtruediv__(t, 'a')) with warns_deprecated_sympy(): # DO NOT REMOVE THIS AFTER DEPRECATION REMOVED: raises(ValueError, lambda: A(a, b)**2) raises(NotImplementedError, lambda: 2**A(a, b)) raises(NotImplementedError, lambda: abs(A(a, b))) def test_TensorHead(): # simple example of algebraic expression Lorentz = TensorIndexType('Lorentz', dummy_name='L') A = TensorHead('A', [Lorentz]*2) assert A.name == 'A' assert A.index_types == [Lorentz, Lorentz] assert A.rank == 2 assert A.symmetry == TensorSymmetry.no_symmetry(2) assert A.comm == 0 def test_add1(): assert TensAdd().args == () assert TensAdd().doit() == 0 # simple example of algebraic expression Lorentz = TensorIndexType('Lorentz', dummy_name='L') a,b,d0,d1,i,j,k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz) # A, B symmetric A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t1 = A(b, -d0)*B(d0, a) assert TensAdd(t1).equals(t1) t2a = B(d0, a) + A(d0, a) t2 = A(b, -d0)*t2a assert str(t2) == 'A(b, -L_0)*(A(L_0, a) + B(L_0, a))' t2 = t2.expand() assert str(t2) == 'A(b, -L_0)*A(L_0, a) + A(b, -L_0)*B(L_0, a)' t2 = t2.canon_bp() assert str(t2) == 'A(a, L_0)*A(b, -L_0) + A(b, L_0)*B(a, -L_0)' t2b = t2 + t1 assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + A(b, -L_0)*B(L_0, a) + A(b, L_0)*B(a, -L_0)' t2b = t2b.canon_bp() assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + 2*A(b, L_0)*B(a, -L_0)' p, q, r = tensor_heads('p,q,r', [Lorentz]) t = q(d0)*2 assert str(t) == '2*q(d0)' t = 2*q(d0) assert str(t) == '2*q(d0)' t1 = p(d0) + 2*q(d0) assert str(t1) == '2*q(d0) + p(d0)' t2 = p(-d0) + 2*q(-d0) assert str(t2) == '2*q(-d0) + p(-d0)' t1 = p(d0) t3 = t1*t2 assert str(t3) == 'p(L_0)*(2*q(-L_0) + p(-L_0))' t3 = t3.expand() assert str(t3) == 'p(L_0)*p(-L_0) + 2*p(L_0)*q(-L_0)' t3 = t2*t1 t3 = t3.expand() assert str(t3) == 'p(-L_0)*p(L_0) + 2*q(-L_0)*p(L_0)' t3 = t3.canon_bp() assert str(t3) == 'p(L_0)*p(-L_0) + 2*p(L_0)*q(-L_0)' t1 = p(d0) + 2*q(d0) t3 = t1*t2 t3 = t3.canon_bp() assert str(t3) == 'p(L_0)*p(-L_0) + 4*p(L_0)*q(-L_0) + 4*q(L_0)*q(-L_0)' t1 = p(d0) - 2*q(d0) assert str(t1) == '-2*q(d0) + p(d0)' t2 = p(-d0) + 2*q(-d0) t3 = t1*t2 t3 = t3.canon_bp() assert t3 == p(d0)*p(-d0) - 4*q(d0)*q(-d0) t = p(i)*p(j)*(p(k) + q(k)) + p(i)*(p(j) + q(j))*(p(k) - 3*q(k)) t = t.canon_bp() assert t == 2*p(i)*p(j)*p(k) - 2*p(i)*p(j)*q(k) + p(i)*p(k)*q(j) - 3*p(i)*q(j)*q(k) t1 = (p(i) + q(i) + 2*r(i))*(p(j) - q(j)) t2 = (p(j) + q(j) + 2*r(j))*(p(i) - q(i)) t = t1 + t2 t = t.canon_bp() assert t == 2*p(i)*p(j) + 2*p(i)*r(j) + 2*p(j)*r(i) - 2*q(i)*q(j) - 2*q(i)*r(j) - 2*q(j)*r(i) t = p(i)*q(j)/2 assert 2*t == p(i)*q(j) t = (p(i) + q(i))/2 assert 2*t == p(i) + q(i) t = S.One - p(i)*p(-i) t = t.canon_bp() tz1 = t + p(-j)*p(j) assert tz1 != 1 tz1 = tz1.canon_bp() assert tz1.equals(1) t = S.One + p(i)*p(-i) assert (t - p(-j)*p(j)).canon_bp().equals(1) t = A(a, b) + B(a, b) assert t.rank == 2 t1 = t - A(a, b) - B(a, b) assert t1 == 0 t = 1 - (A(a, -a) + B(a, -a)) t1 = 1 + (A(a, -a) + B(a, -a)) assert (t + t1).expand().equals(2) t2 = 1 + A(a, -a) assert t1 != t2 assert t2 != TensMul.from_data(0, [], [], []) #Test whether TensAdd.doit chokes on subterms that are zero. assert TensAdd(p(a), TensMul(0, p(a)) ).doit() == p(a) def test_special_eq_ne(): # test special equality cases: Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, d0, d1, i, j, k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz) # A, B symmetric A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) p, q, r = tensor_heads('p,q,r', [Lorentz]) t = 0*A(a, b) assert _is_equal(t, 0) assert _is_equal(t, S.Zero) assert p(i) != A(a, b) assert A(a, -a) != A(a, b) assert 0*(A(a, b) + B(a, b)) == 0 assert 0*(A(a, b) + B(a, b)) is S.Zero assert 3*(A(a, b) - A(a, b)) is S.Zero assert p(i) + q(i) != A(a, b) assert p(i) + q(i) != A(a, b) + B(a, b) assert p(i) - p(i) == 0 assert p(i) - p(i) is S.Zero assert _is_equal(A(a, b), A(b, a)) def test_add2(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') m, n, p, q = tensor_indices('m,n,p,q', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(-3)) t1 = 2*R(m, n, p, q) - R(m, q, n, p) + R(m, p, n, q) t2 = t1*A(-n, -p, -q) t2 = t2.canon_bp() assert t2 == 0 t1 = Rational(2, 3)*R(m,n,p,q) - Rational(1, 3)*R(m,q,n,p) + Rational(1, 3)*R(m,p,n,q) t2 = t1*A(-n, -p, -q) t2 = t2.canon_bp() assert t2 == 0 t = A(m, -m, n) + A(n, p, -p) t = t.canon_bp() assert t == 0 def test_add3(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') i0, i1 = tensor_indices('i0:2', Lorentz) E, px, py, pz = symbols('E px py pz') A = TensorHead('A', [Lorentz]) B = TensorHead('B', [Lorentz]) expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2) assert expr1.args == (-E**2, px**2, py**2, pz**2, A(i0)*A(-i0)) expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0) assert expr2.args == (E**2, -px**2, -py**2, -pz**2, -A(i0)*A(-i0)) expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2 assert expr3.args == (-E**2, px**2, py**2, pz**2, A(i0)*A(-i0)) expr4 = B(i1)*B(-i1) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0) assert expr4.args == (2*E**2, -2*px**2, -2*py**2, -2*pz**2, B(i1)*B(-i1), -A(i0)*A(-i0)) def test_mul(): from sympy.abc import x Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) t = TensMul.from_data(S.One, [], [], []) assert str(t) == '1' A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = (1 + x)*A(a, b) assert str(t) == '(x + 1)*A(a, b)' assert t.index_types == [Lorentz, Lorentz] assert t.rank == 2 assert t.dum == [] assert t.coeff == 1 + x assert sorted(t.free) == [(a, 0), (b, 1)] assert t.components == [A] ts = A(a, b) assert str(ts) == 'A(a, b)' assert ts.index_types == [Lorentz, Lorentz] assert ts.rank == 2 assert ts.dum == [] assert ts.coeff == 1 assert sorted(ts.free) == [(a, 0), (b, 1)] assert ts.components == [A] t = A(-b, a)*B(-a, c)*A(-c, d) t1 = tensor_mul(*t.split()) assert t == t1 assert tensor_mul(*[]) == TensMul.from_data(S.One, [], [], []) t = TensMul.from_data(1, [], [], []) C = TensorHead('C', []) assert str(C()) == 'C' assert str(t) == '1' assert t == 1 raises(ValueError, lambda: A(a, b)*A(a, c)) def test_substitute_indices(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz) A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) p = TensorHead('p', [Lorentz]) t = p(i) t1 = t.substitute_indices((j, k)) assert t1 == t t1 = t.substitute_indices((i, j)) assert t1 == p(j) t1 = t.substitute_indices((i, -j)) assert t1 == p(-j) t1 = t.substitute_indices((-i, j)) assert t1 == p(-j) t1 = t.substitute_indices((-i, -j)) assert t1 == p(j) t = A(m, n) t1 = t.substitute_indices((m, i), (n, -i)) assert t1 == A(n, -n) t1 = substitute_indices(t, (m, i), (n, -i)) assert t1 == A(n, -n) t = A(i, k)*B(-k, -j) t1 = t.substitute_indices((i, j), (j, k)) t1a = A(j, l)*B(-l, -k) assert t1 == t1a t1 = substitute_indices(t, (i, j), (j, k)) assert t1 == t1a t = A(i, j) + B(i, j) t1 = t.substitute_indices((j, -i)) t1a = A(i, -i) + B(i, -i) assert t1 == t1a t1 = substitute_indices(t, (j, -i)) assert t1 == t1a def test_riemann_cyclic_replace(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') m0, m1, m2, m3 = tensor_indices('m:4', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(m0, m2, m1, m3) t1 = riemann_cyclic_replace(t) t1a = Rational(-1, 3)*R(m0, m3, m2, m1) + Rational(1, 3)*R(m0, m1, m2, m3) + Rational(2, 3)*R(m0, m2, m1, m3) assert t1 == t1a def test_riemann_cyclic(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(i,j,k,l) + R(i,l,j,k) + R(i,k,l,j) - \ R(i,j,l,k) - R(i,l,k,j) - R(i,k,j,l) t2 = t*R(-i,-j,-k,-l) t3 = riemann_cyclic(t2) assert t3 == 0 t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l)) t1 = riemann_cyclic(t) assert t1 == 0 t = R(i,j,k,l) t1 = riemann_cyclic(t) assert t1 == Rational(-1, 3)*R(i, l, j, k) + Rational(1, 3)*R(i, k, j, l) + Rational(2, 3)*R(i, j, k, l) t = R(i,j,k,l)*R(-k,-l,m,n)*(R(-m,-n,-i,-j) + 2*R(-m,-j,-n,-i)) t1 = riemann_cyclic(t) assert t1 == 0 @XFAIL def test_div(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') m0, m1, m2, m3 = tensor_indices('m0:4', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(m0,m1,-m1,m3) t1 = t/S(4) assert str(t1) == '(1/4)*R(m0, L_0, -L_0, m3)' t = t.canon_bp() assert not t1._is_canon_bp t1 = t*4 assert t1._is_canon_bp t1 = t1/4 assert t1._is_canon_bp def test_contract_metric1(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p = TensorHead('p', [Lorentz]) t = g(a, b)*p(-b) t1 = t.contract_metric(g) assert t1 == p(a) A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) # case with g with all free indices t1 = A(a,b)*B(-b,c)*g(d, e) t2 = t1.contract_metric(g) assert t1 == t2 # case of g(d, -d) t1 = A(a,b)*B(-b,c)*g(-d, d) t2 = t1.contract_metric(g) assert t2 == D*A(a, d)*B(-d, c) # g with one free index t1 = A(a,b)*B(-b,-c)*g(c, d) t2 = t1.contract_metric(g) assert t2 == A(a, c)*B(-c, d) # g with both indices contracted with another tensor t1 = A(a,b)*B(-b,-c)*g(c, -a) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a, b)*B(-b, -a)) t1 = A(a,b)*B(-b,-c)*g(c, d)*g(-a, -d) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a,b)*B(-b,-a)) t1 = A(a,b)*g(-a,-b) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a, -a)) assert not t2.free Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) g = Lorentz.metric assert _is_equal(g(a, -a).contract_metric(g), Lorentz.dim) # no dim def test_contract_metric2(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e, L_0 = tensor_indices('a,b,c,d,e,L_0', Lorentz) g = Lorentz.metric p, q = tensor_heads('p,q', [Lorentz]) t1 = g(a,b)*p(c)*p(-c) t2 = 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) assert t == 3*D*p(a)*p(-a)*q(b)*q(-b) t1 = g(a,b)*p(c)*p(-c) t2 = 3*q(-a)*q(-b) t = t1*t2 t = t.contract_metric(g) t = t.canon_bp() assert t == 3*p(a)*p(-a)*q(b)*q(-b) t1 = 2*g(a,b)*p(c)*p(-c) t2 = - 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) t = 6*g(a,b)*g(-a,-b)*p(c)*p(-c)*q(d)*q(-d) t = t.contract_metric(g) t1 = 2*g(a,b)*p(c)*p(-c) t2 = q(-a)*q(-b) + 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) assert t == (2 + 6*D)*p(a)*p(-a)*q(b)*q(-b) t1 = p(a)*p(b) + p(a)*q(b) + 2*g(a,b)*p(c)*p(-c) t2 = q(-a)*q(-b) - g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) t1 = (1 - 2*D)*p(a)*p(-a)*q(b)*q(-b) + p(a)*q(-a)*p(b)*q(-b) assert canon_bp(t - t1) == 0 t = g(a,b)*g(c,d)*g(-b,-c) t1 = t.contract_metric(g) assert t1 == g(a, d) t1 = g(a,b)*g(c,d) + g(a,c)*g(b,d) + g(a,d)*g(b,c) t2 = t1.substitute_indices((a,-a),(b,-b),(c,-c),(d,-d)) t = t1*t2 t = t.contract_metric(g) assert t.equals(3*D**2 + 6*D) t = 2*p(a)*g(b,-b) t1 = t.contract_metric(g) assert t1.equals(2*D*p(a)) t = 2*p(a)*g(b,-a) t1 = t.contract_metric(g) assert t1 == 2*p(b) M = Symbol('M') t = (p(a)*p(b) + g(a, b)*M**2)*g(-a, -b) - D*M**2 t1 = t.contract_metric(g) assert t1 == p(a)*p(-a) A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(a, b)*p(L_0)*g(-a, -b) t1 = t.contract_metric(g) assert str(t1) == 'A(L_1, -L_1)*p(L_0)' or str(t1) == 'A(-L_1, L_1)*p(L_0)' def test_metric_contract3(): D = Symbol('D') Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S') a0, a1, a2, a3, a4 = tensor_indices('a0:5', Spinor) C = Spinor.metric chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1) B = TensorHead('B', [Spinor]*2, TensorSymmetry.no_symmetry(2)) t = C(a0,-a0) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(-a0,a0) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a0,a1)*C(-a0,-a1) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a1,a0)*C(-a0,-a1) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(-a0,a1)*C(a0,-a1) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(a1,-a0)*C(a0,-a1) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a0,a1)*B(-a1,-a0) t1 = t.contract_metric(C) t1 = t1.canon_bp() assert _is_equal(t1, B(a0,-a0)) t = C(a1,a0)*B(-a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0,-a0)) t = C(a0,-a1)*B(a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0,-a0)) t = C(-a0,a1)*B(-a1,a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0,-a0)) t = C(-a0,-a1)*B(a1,a0) t1 = t.contract_metric(C) assert _is_equal(t1, B(a0,-a0)) t = C(-a1, a0)*B(a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, B(a0,-a0)) t = C(a0,a1)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, psi(a0)) t = C(a1,a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, -psi(a0)) t = C(a0,a1)*chi(-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(a1)*psi(-a1)) t = C(a1,a0)*chi(-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(a1)*psi(-a1)) t = C(-a1,a0)*chi(-a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(-a1)*psi(a1)) t = C(a0,-a1)*chi(-a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(-a1)*psi(a1)) t = C(-a0,-a1)*chi(a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(-a1)*psi(a1)) t = C(-a1,-a0)*chi(a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(-a1)*psi(a1)) t = C(-a1,-a0)*B(a0,a2)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -B(-a1,a2)*psi(a1)) t = C(a1,a0)*B(-a2,-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, B(-a2,a1)*psi(-a1)) def test_contract_metric4(): R3 = TensorIndexType('R3', dim=3) p, q, r = tensor_indices("p q r", R3) delta = R3.delta eps = R3.epsilon K = TensorHead("K", [R3]) #Check whether contract_metric chokes on an expandable expression which becomes zero on canonicalization (issue #24354) expr = eps(p,q,r)*( K(-p)*K(-q) + delta(-p,-q) ) assert expr.contract_metric(delta) == 0 def test_epsilon(): Lorentz = TensorIndexType('Lorentz', dim=4, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) epsilon = Lorentz.epsilon p, q, r, s = tensor_heads('p,q,r,s', [Lorentz]) t = epsilon(b,a,c,d) t1 = t.canon_bp() assert t1 == -epsilon(a,b,c,d) t = epsilon(c,b,d,a) t1 = t.canon_bp() assert t1 == epsilon(a,b,c,d) t = epsilon(c,a,d,b) t1 = t.canon_bp() assert t1 == -epsilon(a,b,c,d) t = epsilon(a,b,c,d)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b) t = epsilon(c,b,d,a)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b) t = epsilon(c,a,d,b)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == -epsilon(c,d,a,b)*p(-a)*q(-b) t = epsilon(c,a,d,b)*p(-a)*p(-b) t1 = t.canon_bp() assert t1 == 0 t = epsilon(c,a,d,b)*p(-a)*q(-b) + epsilon(a,b,c,d)*p(-b)*q(-a) t1 = t.canon_bp() assert t1 == -2*epsilon(c,d,a,b)*p(-a)*q(-b) # Test that epsilon can be create with a SymPy integer: Lorentz = TensorIndexType('Lorentz', dim=Integer(4), dummy_name='L') epsilon = Lorentz.epsilon assert isinstance(epsilon, TensorHead) def test_contract_delta1(): # see Group Theory by Cvitanovic page 9 n = Symbol('n') Color = TensorIndexType('Color', dim=n, dummy_name='C') a, b, c, d, e, f = tensor_indices('a,b,c,d,e,f', Color) delta = Color.delta def idn(a, b, d, c): assert a.is_up and d.is_up assert not (b.is_up or c.is_up) return delta(a,c)*delta(d,b) def T(a, b, d, c): assert a.is_up and d.is_up assert not (b.is_up or c.is_up) return delta(a,b)*delta(d,c) def P1(a, b, c, d): return idn(a,b,c,d) - 1/n*T(a,b,c,d) def P2(a, b, c, d): return 1/n*T(a,b,c,d) t = P1(a, -b, e, -f)*P1(f, -e, d, -c) t1 = t.contract_delta(delta) assert canon_bp(t1 - P1(a, -b, d, -c)) == 0 t = P2(a, -b, e, -f)*P2(f, -e, d, -c) t1 = t.contract_delta(delta) assert t1 == P2(a, -b, d, -c) t = P1(a, -b, e, -f)*P2(f, -e, d, -c) t1 = t.contract_delta(delta) assert t1 == 0 t = P1(a, -b, b, -a) t1 = t.contract_delta(delta) assert t1.equals(n**2 - 1) def test_fun(): with warns_deprecated_sympy(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p, q = tensor_heads('p q', [Lorentz]) t = q(c)*p(a)*q(b) + g(a,b)*g(c,d)*q(-d) assert t(a,b,c) == t assert canon_bp(t - t(b,a,c) - q(c)*p(a)*q(b) + q(c)*p(b)*q(a)) == 0 assert t(b,c,d) == q(d)*p(b)*q(c) + g(b,c)*g(d,e)*q(-e) t1 = t.substitute_indices((a,b),(b,a)) assert canon_bp(t1 - q(c)*p(b)*q(a) - g(a,b)*g(c,d)*q(-d)) == 0 # check that g_{a b; c} = 0 # example taken from L. Brewin # "A brief introduction to Cadabra" arxiv:0903.2085 # dg_{a b c} = \partial_{a} g_{b c} is symmetric in b, c dg = TensorHead('dg', [Lorentz]*3, TensorSymmetry.direct_product(1, 2)) # gamma^a_{b c} is the Christoffel symbol gamma = S.Half*g(a,d)*(dg(-b,-d,-c) + dg(-c,-b,-d) - dg(-d,-b,-c)) # t = g_{a b; c} t = dg(-c,-a,-b) - g(-a,-d)*gamma(d,-b,-c) - g(-b,-d)*gamma(d,-a,-c) t = t.contract_metric(g) assert t == 0 t = q(c)*p(a)*q(b) assert t(b,c,d) == q(d)*p(b)*q(c) def test_TensorManager(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') LorentzH = TensorIndexType('LorentzH', dummy_name='LH') i, j = tensor_indices('i,j', Lorentz) ih, jh = tensor_indices('ih,jh', LorentzH) p, q = tensor_heads('p q', [Lorentz]) ph, qh = tensor_heads('ph qh', [LorentzH]) Gsymbol = Symbol('Gsymbol') GHsymbol = Symbol('GHsymbol') TensorManager.set_comm(Gsymbol, GHsymbol, 0) G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), Gsymbol) assert TensorManager._comm_i2symbol[G.comm] == Gsymbol GH = TensorHead('GH', [LorentzH], TensorSymmetry.no_symmetry(1), GHsymbol) ps = G(i)*p(-i) psh = GH(ih)*ph(-ih) t = ps + psh t1 = t*t assert canon_bp(t1 - ps*ps - 2*ps*psh - psh*psh) == 0 qs = G(i)*q(-i) qsh = GH(ih)*qh(-ih) assert _is_equal(ps*qsh, qsh*ps) assert not _is_equal(ps*qs, qs*ps) n = TensorManager.comm_symbols2i(Gsymbol) assert TensorManager.comm_i2symbol(n) == Gsymbol assert GHsymbol in TensorManager._comm_symbols2i raises(ValueError, lambda: TensorManager.set_comm(GHsymbol, 1, 2)) TensorManager.set_comms((Gsymbol,GHsymbol,0),(Gsymbol,1,1)) assert TensorManager.get_comm(n, 1) == TensorManager.get_comm(1, n) == 1 TensorManager.clear() assert TensorManager.comm == [{0:0, 1:0, 2:0}, {0:0, 1:1, 2:None}, {0:0, 1:None}] assert GHsymbol not in TensorManager._comm_symbols2i nh = TensorManager.comm_symbols2i(GHsymbol) assert TensorManager.comm_i2symbol(nh) == GHsymbol assert GHsymbol in TensorManager._comm_symbols2i def test_hash(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p, q = tensor_heads('p q', [Lorentz]) p_type = p.args[1] t1 = p(a)*q(b) t2 = p(a)*p(b) assert hash(t1) != hash(t2) t3 = p(a)*p(b) + g(a,b) t4 = p(a)*p(b) - g(a,b) assert hash(t3) != hash(t4) assert a.func(*a.args) == a assert Lorentz.func(*Lorentz.args) == Lorentz assert g.func(*g.args) == g assert p.func(*p.args) == p assert p_type.func(*p_type.args) == p_type assert p(a).func(*(p(a)).args) == p(a) assert t1.func(*t1.args) == t1 assert t2.func(*t2.args) == t2 assert t3.func(*t3.args) == t3 assert t4.func(*t4.args) == t4 assert hash(a.func(*a.args)) == hash(a) assert hash(Lorentz.func(*Lorentz.args)) == hash(Lorentz) assert hash(g.func(*g.args)) == hash(g) assert hash(p.func(*p.args)) == hash(p) assert hash(p_type.func(*p_type.args)) == hash(p_type) assert hash(p(a).func(*(p(a)).args)) == hash(p(a)) assert hash(t1.func(*t1.args)) == hash(t1) assert hash(t2.func(*t2.args)) == hash(t2) assert hash(t3.func(*t3.args)) == hash(t3) assert hash(t4.func(*t4.args)) == hash(t4) def check_all(obj): return all([isinstance(_, Basic) for _ in obj.args]) assert check_all(a) assert check_all(Lorentz) assert check_all(g) assert check_all(p) assert check_all(p_type) assert check_all(p(a)) assert check_all(t1) assert check_all(t2) assert check_all(t3) assert check_all(t4) tsymmetry = TensorSymmetry.direct_product(-2, 1, 3) assert tsymmetry.func(*tsymmetry.args) == tsymmetry assert hash(tsymmetry.func(*tsymmetry.args)) == hash(tsymmetry) assert check_all(tsymmetry) ### TEST VALUED TENSORS ### def _get_valued_base_test_variables(): minkowski = Matrix(( (1, 0, 0, 0), (0, -1, 0, 0), (0, 0, -1, 0), (0, 0, 0, -1), )) Lorentz = TensorIndexType('Lorentz', dim=4) Lorentz.data = minkowski i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz) E, px, py, pz = symbols('E px py pz') A = TensorHead('A', [Lorentz]) A.data = [E, px, py, pz] B = TensorHead('B', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm') B.data = range(4) AB = TensorHead("AB", [Lorentz]*2) AB.data = minkowski ba_matrix = Matrix(( (1, 2, 3, 4), (5, 6, 7, 8), (9, 0, -1, -2), (-3, -4, -5, -6), )) BA = TensorHead("BA", [Lorentz]*2) BA.data = ba_matrix # Let's test the diagonal metric, with inverted Minkowski metric: LorentzD = TensorIndexType('LorentzD') LorentzD.data = [-1, 1, 1, 1] mu0, mu1, mu2 = tensor_indices('mu0:3', LorentzD) C = TensorHead('C', [LorentzD]) C.data = [E, px, py, pz] ### non-diagonal metric ### ndm_matrix = ( (1, 1, 0,), (1, 0, 1), (0, 1, 0,), ) ndm = TensorIndexType("ndm") ndm.data = ndm_matrix n0, n1, n2 = tensor_indices('n0:3', ndm) NA = TensorHead('NA', [ndm]) NA.data = range(10, 13) NB = TensorHead('NB', [ndm]*2) NB.data = [[i+j for j in range(10, 13)] for i in range(10, 13)] NC = TensorHead('NC', [ndm]*3) NC.data = [[[i+j+k for k in range(4, 7)] for j in range(1, 4)] for i in range(2, 5)] return (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) def test_valued_tensor_iter(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() list_BA = [Array([1, 2, 3, 4]), Array([5, 6, 7, 8]), Array([9, 0, -1, -2]), Array([-3, -4, -5, -6])] # iteration on VTensorHead assert list(A) == [E, px, py, pz] assert list(ba_matrix) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -1, -2, -3, -4, -5, -6] assert list(BA) == list_BA # iteration on VTensMul assert list(A(i1)) == [E, px, py, pz] assert list(BA(i1, i2)) == list_BA assert list(3 * BA(i1, i2)) == [3 * i for i in list_BA] assert list(-5 * BA(i1, i2)) == [-5 * i for i in list_BA] # iteration on VTensAdd # A(i1) + A(i1) assert list(A(i1) + A(i1)) == [2*E, 2*px, 2*py, 2*pz] assert BA(i1, i2) - BA(i1, i2) == 0 assert list(BA(i1, i2) - 2 * BA(i1, i2)) == [-i for i in list_BA] def test_valued_tensor_covariant_contravariant_elements(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert A(-i0)[0] == A(i0)[0] assert A(-i0)[1] == -A(i0)[1] assert AB(i0, i1)[1, 1] == -1 assert AB(i0, -i1)[1, 1] == 1 assert AB(-i0, -i1)[1, 1] == -1 assert AB(-i0, i1)[1, 1] == 1 def test_valued_tensor_get_matrix(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() matab = AB(i0, i1).get_matrix() assert matab == Matrix([ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1], ]) # when alternating contravariant/covariant with [1, -1, -1, -1] metric # it becomes the identity matrix: assert AB(i0, -i1).get_matrix() == eye(4) # covariant and contravariant forms: assert A(i0).get_matrix() == Matrix([E, px, py, pz]) assert A(-i0).get_matrix() == Matrix([E, -px, -py, -pz]) def test_valued_tensor_contraction(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert (A(i0) * A(-i0)).data == E ** 2 - px ** 2 - py ** 2 - pz ** 2 assert (A(i0) * A(-i0)).data == A ** 2 assert (A(i0) * A(-i0)).data == A(i0) ** 2 assert (A(i0) * B(-i0)).data == -px - 2 * py - 3 * pz for i in range(4): for j in range(4): assert (A(i0) * B(-i1))[i, j] == [E, px, py, pz][i] * [0, -1, -2, -3][j] # test contraction on the alternative Minkowski metric: [-1, 1, 1, 1] assert (C(mu0) * C(-mu0)).data == -E ** 2 + px ** 2 + py ** 2 + pz ** 2 contrexp = A(i0) * AB(i1, -i0) assert A(i0).rank == 1 assert AB(i1, -i0).rank == 2 assert contrexp.rank == 1 for i in range(4): assert contrexp[i] == [E, px, py, pz][i] def test_valued_tensor_self_contraction(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert AB(i0, -i0).data == 4 assert BA(i0, -i0).data == 2 def test_valued_tensor_pow(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert C**2 == -E**2 + px**2 + py**2 + pz**2 assert C**1 == sqrt(-E**2 + px**2 + py**2 + pz**2) assert C(mu0)**2 == C**2 assert C(mu0)**1 == C**1 def test_valued_tensor_expressions(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() x1, x2, x3 = symbols('x1:4') # test coefficient in contraction: rank2coeff = x1 * A(i3) * B(i2) assert rank2coeff[1, 1] == x1 * px assert rank2coeff[3, 3] == 3 * pz * x1 coeff_expr = ((x1 * A(i4)) * (B(-i4) / x2)).data assert coeff_expr.expand() == -px*x1/x2 - 2*py*x1/x2 - 3*pz*x1/x2 add_expr = A(i0) + B(i0) assert add_expr[0] == E assert add_expr[1] == px + 1 assert add_expr[2] == py + 2 assert add_expr[3] == pz + 3 sub_expr = A(i0) - B(i0) assert sub_expr[0] == E assert sub_expr[1] == px - 1 assert sub_expr[2] == py - 2 assert sub_expr[3] == pz - 3 assert (add_expr * B(-i0)).data == -px - 2*py - 3*pz - 14 expr1 = x1*A(i0) + x2*B(i0) expr2 = expr1 * B(i1) * (-4) expr3 = expr2 + 3*x3*AB(i0, i1) expr4 = expr3 / 2 assert expr4 * 2 == expr3 expr5 = (expr4 * BA(-i1, -i0)) assert expr5.data.expand() == 28*E*x1 + 12*px*x1 + 20*py*x1 + 28*pz*x1 + 136*x2 + 3*x3 def test_valued_tensor_add_scalar(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # one scalar summand after the contracted tensor expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2) assert expr1.data == 0 # multiple scalar summands in front of the contracted tensor expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0) assert expr2.data == 0 # multiple scalar summands after the contracted tensor expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2 assert expr3.data == 0 # multiple scalar summands and multiple tensors expr4 = C(mu0)*C(-mu0) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0) assert expr4.data == 0 def test_noncommuting_components(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() euclid = TensorIndexType('Euclidean') euclid.data = [1, 1] i1, i2, i3 = tensor_indices('i1:4', euclid) a, b, c, d = symbols('a b c d', commutative=False) V1 = TensorHead('V1', [euclid]*2) V1.data = [[a, b], (c, d)] V2 = TensorHead('V2', [euclid]*2) V2.data = [[a, c], [b, d]] vtp = V1(i1, i2) * V2(-i2, -i1) assert vtp.data == a**2 + b**2 + c**2 + d**2 assert vtp.data != a**2 + 2*b*c + d**2 vtp2 = V1(i1, i2)*V1(-i2, -i1) assert vtp2.data == a**2 + b*c + c*b + d**2 assert vtp2.data != a**2 + 2*b*c + d**2 Vc = (b * V1(i1, -i1)).data assert Vc.expand() == b * a + b * d def test_valued_non_diagonal_metric(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() mmatrix = Matrix(ndm_matrix) assert (NA(n0)*NA(-n0)).data == (NA(n0).get_matrix().T * mmatrix * NA(n0).get_matrix())[0, 0] def test_valued_assign_numpy_ndarray(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # this is needed to make sure that a numpy.ndarray can be assigned to a # tensor. arr = [E+1, px-1, py, pz] A.data = Array(arr) for i in range(4): assert A(i0).data[i] == arr[i] qx, qy, qz = symbols('qx qy qz') A(-i0).data = Array([E, qx, qy, qz]) for i in range(4): assert A(i0).data[i] == [E, -qx, -qy, -qz][i] assert A.data[i] == [E, -qx, -qy, -qz][i] # test on multi-indexed tensors. random_4x4_data = [[(i**3-3*i**2)%(j+7) for i in range(4)] for j in range(4)] AB(-i0, -i1).data = random_4x4_data for i in range(4): for j in range(4): assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1) assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1) assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1) assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j] AB(-i0, i1).data = random_4x4_data for i in range(4): for j in range(4): assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1) assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j] assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1) assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1) def test_valued_metric_inverse(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # let's assign some fancy matrix, just to verify it: # (this has no physical sense, it's just testing sympy); # it is symmetrical: md = [[2, 2, 2, 1], [2, 3, 1, 0], [2, 1, 2, 3], [1, 0, 3, 2]] Lorentz.data = md m = Matrix(md) metric = Lorentz.metric minv = m.inv() meye = eye(4) # the Kronecker Delta: KD = Lorentz.get_kronecker_delta() for i in range(4): for j in range(4): assert metric(i0, i1).data[i, j] == m[i, j] assert metric(-i0, -i1).data[i, j] == minv[i, j] assert metric(i0, -i1).data[i, j] == meye[i, j] assert metric(-i0, i1).data[i, j] == meye[i, j] assert metric(i0, i1)[i, j] == m[i, j] assert metric(-i0, -i1)[i, j] == minv[i, j] assert metric(i0, -i1)[i, j] == meye[i, j] assert metric(-i0, i1)[i, j] == meye[i, j] assert KD(i0, -i1)[i, j] == meye[i, j] def test_valued_canon_bp_swapaxes(): with warns_deprecated_sympy(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() e1 = A(i1)*A(i0) e2 = e1.canon_bp() assert e2 == A(i0)*A(i1) for i in range(4): for j in range(4): assert e1[i, j] == e2[j, i] o1 = B(i2)*A(i1)*B(i0) o2 = o1.canon_bp() for i in range(4): for j in range(4): for k in range(4): assert o1[i, j, k] == o2[j, i, k] def test_valued_components_with_wrong_symmetry(): with warns_deprecated_sympy(): IT = TensorIndexType('IT', dim=3) i0, i1, i2, i3 = tensor_indices('i0:4', IT) IT.data = [1, 1, 1] A_nosym = TensorHead('A', [IT]*2) A_sym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(2)) A_antisym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(-2)) mat_nosym = Matrix([[1,2,3],[4,5,6],[7,8,9]]) mat_sym = mat_nosym + mat_nosym.T mat_antisym = mat_nosym - mat_nosym.T A_nosym.data = mat_nosym A_nosym.data = mat_sym A_nosym.data = mat_antisym def assign(A, dat): A.data = dat A_sym.data = mat_sym raises(ValueError, lambda: assign(A_sym, mat_nosym)) raises(ValueError, lambda: assign(A_sym, mat_antisym)) A_antisym.data = mat_antisym raises(ValueError, lambda: assign(A_antisym, mat_sym)) raises(ValueError, lambda: assign(A_antisym, mat_nosym)) A_sym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] A_antisym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] def test_issue_10972_TensMul_data(): with warns_deprecated_sympy(): Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2) Lorentz.data = [-1, 1] mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta', Lorentz) u = TensorHead('u', [Lorentz]) u.data = [1, 0] F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) F.data = [[0, 1], [-1, 0]] mul_1 = F(mu, alpha) * u(-alpha) * F(nu, beta) * u(-beta) assert (mul_1.data == Array([[0, 0], [0, 1]])) mul_2 = F(mu, alpha) * F(nu, beta) * u(-alpha) * u(-beta) assert (mul_2.data == mul_1.data) assert ((mul_1 + mul_1).data == 2 * mul_1.data) def test_TensMul_data(): with warns_deprecated_sympy(): Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='L', dim=4) Lorentz.data = [-1, 1, 1, 1] mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta', Lorentz) u = TensorHead('u', [Lorentz]) u.data = [1, 0, 0, 0] F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z') F.data = [ [0, Ex, Ey, Ez], [-Ex, 0, Bz, -By], [-Ey, -Bz, 0, Bx], [-Ez, By, -Bx, 0]] E = F(mu, nu) * u(-nu) assert ((E(mu) * E(nu)).data == Array([[0, 0, 0, 0], [0, Ex ** 2, Ex * Ey, Ex * Ez], [0, Ex * Ey, Ey ** 2, Ey * Ez], [0, Ex * Ez, Ey * Ez, Ez ** 2]]) ) assert ((E(mu) * E(nu)).canon_bp().data == (E(mu) * E(nu)).data) assert ((F(mu, alpha) * F(beta, nu) * u(-alpha) * u(-beta)).data == - (E(mu) * E(nu)).data ) assert ((F(alpha, mu) * F(beta, nu) * u(-alpha) * u(-beta)).data == (E(mu) * E(nu)).data ) g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) g.data = Lorentz.data # tensor 'perp' is orthogonal to vector 'u' perp = u(mu) * u(nu) + g(mu, nu) mul_1 = u(-mu) * perp(mu, nu) assert (mul_1.data == Array([0, 0, 0, 0])) mul_2 = u(-mu) * perp(mu, alpha) * perp(nu, beta) assert (mul_2.data == Array.zeros(4, 4, 4)) Fperp = perp(mu, alpha) * perp(nu, beta) * F(-alpha, -beta) assert (Fperp.data[0, :] == Array([0, 0, 0, 0])) assert (Fperp.data[:, 0] == Array([0, 0, 0, 0])) mul_3 = u(-mu) * Fperp(mu, nu) assert (mul_3.data == Array([0, 0, 0, 0])) # Test the deleter del g.data def test_issue_11020_TensAdd_data(): with warns_deprecated_sympy(): Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2) Lorentz.data = [-1, 1] a, b, c, d = tensor_indices('a, b, c, d', Lorentz) i0, i1 = tensor_indices('i_0:2', Lorentz) # metric tensor g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) g.data = Lorentz.data u = TensorHead('u', [Lorentz]) u.data = [1, 0] add_1 = g(b, c) * g(d, i0) * u(-i0) - g(b, c) * u(d) assert (add_1.data == Array.zeros(2, 2, 2)) # Now let us replace index `d` with `a`: add_2 = g(b, c) * g(a, i0) * u(-i0) - g(b, c) * u(a) assert (add_2.data == Array.zeros(2, 2, 2)) # some more tests # perp is tensor orthogonal to u^\mu perp = u(a) * u(b) + g(a, b) mul_1 = u(-a) * perp(a, b) assert (mul_1.data == Array([0, 0])) mul_2 = u(-c) * perp(c, a) * perp(d, b) assert (mul_2.data == Array.zeros(2, 2, 2)) def test_index_iteration(): L = TensorIndexType("Lorentz", dummy_name="L") i0, i1, i2, i3, i4 = tensor_indices('i0:5', L) L0 = tensor_indices('L_0', L) L1 = tensor_indices('L_1', L) A = TensorHead("A", [L, L]) B = TensorHead("B", [L, L], TensorSymmetry.fully_symmetric(2)) e1 = A(i0,i2) e2 = A(i0,-i0) e3 = A(i0,i1)*B(i2,i3) e4 = A(i0,i1)*B(i2,-i1) e5 = A(i0,i1)*B(-i0,-i1) e6 = e1 + e4 assert list(e1._iterate_free_indices) == [(i0, (1, 0)), (i2, (1, 1))] assert list(e1._iterate_dummy_indices) == [] assert list(e1._iterate_indices) == [(i0, (1, 0)), (i2, (1, 1))] assert list(e2._iterate_free_indices) == [] assert list(e2._iterate_dummy_indices) == [(L0, (1, 0)), (-L0, (1, 1))] assert list(e2._iterate_indices) == [(L0, (1, 0)), (-L0, (1, 1))] assert list(e3._iterate_free_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))] assert list(e3._iterate_dummy_indices) == [] assert list(e3._iterate_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))] assert list(e4._iterate_free_indices) == [(i0, (0, 1, 0)), (i2, (1, 1, 0))] assert list(e4._iterate_dummy_indices) == [(L0, (0, 1, 1)), (-L0, (1, 1, 1))] assert list(e4._iterate_indices) == [(i0, (0, 1, 0)), (L0, (0, 1, 1)), (i2, (1, 1, 0)), (-L0, (1, 1, 1))] assert list(e5._iterate_free_indices) == [] assert list(e5._iterate_dummy_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))] assert list(e5._iterate_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))] assert list(e6._iterate_free_indices) == [(i0, (0, 0, 1, 0)), (i2, (0, 1, 1, 0)), (i0, (1, 1, 0)), (i2, (1, 1, 1))] assert list(e6._iterate_dummy_indices) == [(L0, (0, 0, 1, 1)), (-L0, (0, 1, 1, 1))] assert list(e6._iterate_indices) == [(i0, (0, 0, 1, 0)), (L0, (0, 0, 1, 1)), (i2, (0, 1, 1, 0)), (-L0, (0, 1, 1, 1)), (i0, (1, 1, 0)), (i2, (1, 1, 1))] assert e1.get_indices() == [i0, i2] assert e1.get_free_indices() == [i0, i2] assert e2.get_indices() == [L0, -L0] assert e2.get_free_indices() == [] assert e3.get_indices() == [i0, i1, i2, i3] assert e3.get_free_indices() == [i0, i1, i2, i3] assert e4.get_indices() == [i0, L0, i2, -L0] assert e4.get_free_indices() == [i0, i2] assert e5.get_indices() == [L0, L1, -L0, -L1] assert e5.get_free_indices() == [] def test_tensor_expand(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) L_0 = TensorIndex("L_0", L) A, B, C, D = tensor_heads("A B C D", [L]) assert isinstance(Add(A(i), B(i)), TensAdd) assert isinstance(expand(A(i)+B(i)), TensAdd) expr = A(i)*(A(-i)+B(-i)) assert expr.args == (A(L_0), A(-L_0) + B(-L_0)) assert expr != A(i)*A(-i) + A(i)*B(-i) assert expr.expand() == A(i)*A(-i) + A(i)*B(-i) assert str(expr) == "A(L_0)*(A(-L_0) + B(-L_0))" expr = A(i)*A(j) + A(i)*B(j) assert str(expr) == "A(i)*A(j) + A(i)*B(j)" expr = A(-i)*(A(i)*A(j) + A(i)*B(j)*C(k)*C(-k)) assert expr != A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k) assert expr.expand() == A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k) assert str(expr) == "A(-L_0)*(A(L_0)*A(j) + A(L_0)*B(j)*C(L_1)*C(-L_1))" assert str(expr.canon_bp()) == 'A(j)*A(L_0)*A(-L_0) + A(L_0)*A(-L_0)*B(j)*C(L_1)*C(-L_1)' expr = A(-i)*(2*A(i)*A(j) + A(i)*B(j)) assert expr.expand() == 2*A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j) expr = 2*A(i)*A(-i) assert expr.coeff == 2 expr = A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k))) assert str(expr) == "A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k)))" assert str(expr.expand()) == "A(i)*B(j)*C(k) + A(i)*C(j)*A(k) + A(i)*C(j)*D(k)" assert isinstance(TensMul(3), TensMul) tm = TensMul(3).doit() assert tm == 3 assert isinstance(tm, Integer) p1 = B(j)*B(-j) + B(j)*C(-j) p2 = C(-i)*p1 p3 = A(i)*p2 assert p3.expand() == A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j) expr = A(i)*(B(-i) + C(-i)*(B(j)*B(-j) + B(j)*C(-j))) assert expr.expand() == A(i)*B(-i) + A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j) expr = C(-i)*(B(j)*B(-j) + B(j)*C(-j)) assert expr.expand() == C(-i)*B(j)*B(-j) + C(-i)*B(j)*C(-j) def test_tensor_alternative_construction(): L = TensorIndexType("L") i0, i1, i2, i3 = tensor_indices('i0:4', L) A = TensorHead("A", [L]) x, y = symbols("x y") assert A(i0) == A(Symbol("i0")) assert A(-i0) == A(-Symbol("i0")) raises(TypeError, lambda: A(x+y)) raises(ValueError, lambda: A(2*x)) def test_tensor_replacement(): L = TensorIndexType("L") L2 = TensorIndexType("L2", dim=2) i, j, k, l = tensor_indices("i j k l", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) K = TensorHead("K", [L]*4) expr = H(i, j) repl = {H(i,-j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, j], Array([[1, -2], [3, -4]])) assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [Symbol("i"), -Symbol("j")]) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, -2], [-3, 4]]) assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, 2], [-3, -4]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [-2, -4]]) assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [-2, 4]]) assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [2, 4]]) assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [2, -4]]) # Test stability of optional parameter 'indices' assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]]) expr = H(i,j) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]])) assert expr.replace_with_arrays(repl) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, 2], [-3, -4]]) assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, -2], [-3, 4]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [2, 4]]) assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [2, -4]]) assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [-2, -4]]) assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [-2, 4]]) # Not the same indices: expr = H(i,k) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, k], Array([[1, 2], [3, 4]])) expr = A(i)*A(-i) repl = {A(i): [1,2], L: diag(1, -1)} assert expr._extract_data(repl) == ([], -3) assert expr.replace_with_arrays(repl, []) == -3 expr = K(i, j, -j, k)*A(-i)*A(-k) repl = {A(i): [1, 2], K(i,j,k,l): Array([1]*2**4).reshape(2,2,2,2), L: diag(1, -1)} assert expr._extract_data(repl) expr = H(j, k) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} raises(ValueError, lambda: expr._extract_data(repl)) expr = A(i) repl = {B(i): [1, 2]} raises(ValueError, lambda: expr._extract_data(repl)) expr = A(i) repl = {A(i): [[1, 2], [3, 4]]} raises(ValueError, lambda: expr._extract_data(repl)) # TensAdd: expr = A(k)*H(i, j) + B(k)*H(i, j) repl = {A(k): [1], B(k): [1], H(i, j): [[1, 2],[3,4]], L:diag(1,1)} assert expr._extract_data(repl) == ([k, i, j], Array([[[2, 4], [6, 8]]])) assert expr.replace_with_arrays(repl, [k, i, j]) == Array([[[2, 4], [6, 8]]]) assert expr.replace_with_arrays(repl, [k, j, i]) == Array([[[2, 6], [4, 8]]]) expr = A(k)*A(-k) + 100 repl = {A(k): [2, 3], L: diag(1, 1)} assert expr.replace_with_arrays(repl, []) == 113 ## Symmetrization: expr = H(i, j) + H(j, i) repl = {H(i, j): [[1, 2], [3, 4]]} assert expr._extract_data(repl) == ([i, j], Array([[2, 5], [5, 8]])) assert expr.replace_with_arrays(repl, [i, j]) == Array([[2, 5], [5, 8]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[2, 5], [5, 8]]) ## Anti-symmetrization: expr = H(i, j) - H(j, i) repl = {H(i, j): [[1, 2], [3, 4]]} assert expr.replace_with_arrays(repl, [i, j]) == Array([[0, -1], [1, 0]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[0, 1], [-1, 0]]) # Tensors with contractions in replacements: expr = K(i, j, k, -k) repl = {K(i, j, k, -k): [[1, 2], [3, 4]]} assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]])) expr = H(i, -i) repl = {H(i, -i): 42} assert expr._extract_data(repl) == ([], 42) expr = H(i, -i) repl = { H(-i, -j): Array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]), L: Array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]), } assert expr._extract_data(repl) == ([], 4) # Replace with array, raise exception if indices are not compatible: expr = A(i)*A(j) repl = {A(i): [1, 2]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [j])) # Raise exception if array dimension is not compatible: expr = A(i) repl = {A(i): [[1, 2]]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [i])) # TensorIndexType with dimension, wrong dimension in replacement array: u1, u2, u3 = tensor_indices("u1:4", L2) U = TensorHead("U", [L2]) expr = U(u1)*U(-u2) repl = {U(u1): [[1]]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [u1, -u2])) def test_rewrite_tensor_to_Indexed(): L = TensorIndexType("L", dim=4) A = TensorHead("A", [L]*4) B = TensorHead("B", [L]) i0, i1, i2, i3 = symbols("i0:4") L_0, L_1 = symbols("L_0:2") a1 = A(i0, i1, i2, i3) assert a1.rewrite(Indexed) == Indexed(Symbol("A"), i0, i1, i2, i3) a2 = A(i0, -i0, i2, i3) assert a2.rewrite(Indexed) == Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) a3 = a2 + A(i2, i3, i0, -i0) assert a3.rewrite(Indexed) == \ Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) +\ Sum(Indexed(Symbol("A"), i2, i3, L_0, L_0), (L_0, 0, 3)) b1 = B(-i0)*a1 assert b1.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_0)*Indexed(Symbol("A"), L_0, i1, i2, i3), (L_0, 0, 3)) b2 = B(-i3)*a2 assert b2.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_1)*Indexed(Symbol("A"), L_0, L_0, i2, L_1), (L_0, 0, 3), (L_1, 0, 3)) def test_tensor_matching(): """ Test match and replace with the pattern being a WildTensor or a WildTensorIndex """ R3 = TensorIndexType('R3', dim=3) p, q, r = tensor_indices("p q r", R3) a,b,c = symbols("a b c", cls = WildTensorIndex, tensor_index_type=R3, ignore_updown=True) g = WildTensorIndex("g", R3) eps = R3.epsilon K = TensorHead("K", [R3]) V = TensorHead("V", [R3]) A = TensorHead("A", [R3, R3]) W = WildTensorHead('W', unordered_indices=True) U = WildTensorHead('U') assert a.matches(q) == {a:q} assert a.matches(-q) == {a:-q} assert g.matches(-q) == None assert g.matches(q) == {g:q} assert eps(p,-a,a).matches( eps(p,q,r) ) == None assert eps(p,-b,a).matches( eps(p,q,r) ) == {a: r, -b: q} assert eps(p,-q,r).replace(eps(a,b,c), 1) == 1 assert W().matches( K(p)*V(q) ) == {W(): K(p)*V(q)} assert W(a).matches( K(p) ) == {a:p, W(a).head: _WildTensExpr(K(p))} assert W(a,p).matches( K(p)*V(q) ) == {a:q, W(a,p).head: _WildTensExpr(K(p)*V(q))} assert W(p,q).matches( K(p)*V(q) ) == {W(p,q).head: _WildTensExpr(K(p)*V(q))} assert W(p,q).matches( A(q,p) ) == {W(p,q).head: _WildTensExpr(A(q, p))} assert U(p,q).matches( A(q,p) ) == None assert ( K(q)*K(p) ).replace( W(q,p), 1) == 1 def test_TensMul_subs(): """ Test subs and xreplace in TensMul. See bug #24337 """ R3 = TensorIndexType('R3', dim=3) p, q, r = tensor_indices("p q r", R3) K = TensorHead("K", [R3]) V = TensorHead("V", [R3]) A = TensorHead("A", [R3, R3]) C0 = TensorIndex(R3.dummy_name + "_0", R3, True) assert ( K(p)*V(r)*K(-p) ).subs({V(r): K(q)*K(-q)}) == K(p)*K(q)*K(-q)*K(-p) assert ( K(p)*V(r)*K(-p) ).xreplace({V(r): K(q)*K(-q)}) == K(p)*K(q)*K(-q)*K(-p) assert ( K(p)*V(r) ).xreplace({p: C0, V(r): K(q)*K(-q)}) == K(C0)*K(q)*K(-q) assert ( K(p)*A(q,-q)*K(-p) ).doit() == K(p)*A(q,-q)*K(-p) def test_tensorsymmetry(): with warns_deprecated_sympy(): tensorsymmetry([1]*2) def test_tensorhead(): with warns_deprecated_sympy(): tensorhead('A', []) def test_TensorType(): with warns_deprecated_sympy(): sym2 = TensorSymmetry.fully_symmetric(2) Lorentz = TensorIndexType('Lorentz') S2 = TensorType([Lorentz]*2, sym2) assert isinstance(S2, TensorType) def test_dummy_fmt(): with warns_deprecated_sympy(): TensorIndexType('Lorentz', dummy_fmt='L')
7a930c86f44922191839fde656fdd6ce77078b2261c78a8ed7b7d2e1755c0054
import operator from functools import reduce, singledispatch from sympy.core.expr import Expr from sympy.core.singleton import S from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions.matexpr import (MatrixExpr, MatrixSymbol) from sympy.matrices.expressions.special import Identity, OneMatrix from sympy.matrices.expressions.transpose import Transpose from sympy.combinatorics.permutations import _af_invert from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.tensor.array.expressions.array_expressions import ( _ArrayExpr, ZeroArray, ArraySymbol, ArrayTensorProduct, ArrayAdd, PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, get_rank, get_shape, ArrayContraction, _array_tensor_product, _array_contraction, _array_diagonal, _array_add, _permute_dims, Reshape) from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array @singledispatch def array_derive(expr, x): """ Derivatives (gradients) for array expressions. """ raise NotImplementedError(f"not implemented for type {type(expr)}") @array_derive.register(Expr) def _(expr: Expr, x: _ArrayExpr): return ZeroArray(*x.shape) @array_derive.register(ArrayTensorProduct) def _(expr: ArrayTensorProduct, x: Expr): args = expr.args addend_list = [] for i, arg in enumerate(expr.args): darg = array_derive(arg, x) if darg == 0: continue args_prev = args[:i] args_succ = args[i+1:] shape_prev = reduce(operator.add, map(get_shape, args_prev), ()) shape_succ = reduce(operator.add, map(get_shape, args_succ), ()) addend = _array_tensor_product(*args_prev, darg, *args_succ) tot1 = len(get_shape(x)) tot2 = tot1 + len(shape_prev) tot3 = tot2 + len(get_shape(arg)) tot4 = tot3 + len(shape_succ) perm = [i for i in range(tot1, tot2)] + \ [i for i in range(tot1)] + [i for i in range(tot2, tot3)] + \ [i for i in range(tot3, tot4)] addend = _permute_dims(addend, _af_invert(perm)) addend_list.append(addend) if len(addend_list) == 1: return addend_list[0] elif len(addend_list) == 0: return S.Zero else: return _array_add(*addend_list) @array_derive.register(ArraySymbol) def _(expr: ArraySymbol, x: _ArrayExpr): if expr == x: return _permute_dims( ArrayTensorProduct.fromiter(Identity(i) for i in expr.shape), [2*i for i in range(len(expr.shape))] + [2*i+1 for i in range(len(expr.shape))] ) return ZeroArray(*(x.shape + expr.shape)) @array_derive.register(MatrixSymbol) def _(expr: MatrixSymbol, x: _ArrayExpr): m, n = expr.shape if expr == x: return _permute_dims( _array_tensor_product(Identity(m), Identity(n)), [0, 2, 1, 3] ) return ZeroArray(*(x.shape + expr.shape)) @array_derive.register(Identity) def _(expr: Identity, x: _ArrayExpr): return ZeroArray(*(x.shape + expr.shape)) @array_derive.register(OneMatrix) def _(expr: OneMatrix, x: _ArrayExpr): return ZeroArray(*(x.shape + expr.shape)) @array_derive.register(Transpose) def _(expr: Transpose, x: Expr): # D(A.T, A) ==> (m,n,i,j) ==> D(A_ji, A_mn) = d_mj d_ni # D(B.T, A) ==> (m,n,i,j) ==> D(B_ji, A_mn) fd = array_derive(expr.arg, x) return _permute_dims(fd, [0, 1, 3, 2]) @array_derive.register(Inverse) def _(expr: Inverse, x: Expr): mat = expr.I dexpr = array_derive(mat, x) tp = _array_tensor_product(-expr, dexpr, expr) mp = _array_contraction(tp, (1, 4), (5, 6)) pp = _permute_dims(mp, [1, 2, 0, 3]) return pp @array_derive.register(ElementwiseApplyFunction) def _(expr: ElementwiseApplyFunction, x: Expr): assert get_rank(expr) == 2 assert get_rank(x) == 2 fdiff = expr._get_function_fdiff() dexpr = array_derive(expr.expr, x) tp = _array_tensor_product( ElementwiseApplyFunction(fdiff, expr.expr), dexpr ) td = _array_diagonal( tp, (0, 4), (1, 5) ) return td @array_derive.register(ArrayElementwiseApplyFunc) def _(expr: ArrayElementwiseApplyFunc, x: Expr): fdiff = expr._get_function_fdiff() subexpr = expr.expr dsubexpr = array_derive(subexpr, x) tp = _array_tensor_product( dsubexpr, ArrayElementwiseApplyFunc(fdiff, subexpr) ) b = get_rank(x) c = get_rank(expr) diag_indices = [(b + i, b + c + i) for i in range(c)] return _array_diagonal(tp, *diag_indices) @array_derive.register(MatrixExpr) def _(expr: MatrixExpr, x: Expr): cg = convert_matrix_to_array(expr) return array_derive(cg, x) @array_derive.register(HadamardProduct) def _(expr: HadamardProduct, x: Expr): raise NotImplementedError() @array_derive.register(ArrayContraction) def _(expr: ArrayContraction, x: Expr): fd = array_derive(expr.expr, x) rank_x = len(get_shape(x)) contraction_indices = expr.contraction_indices new_contraction_indices = [tuple(j + rank_x for j in i) for i in contraction_indices] return _array_contraction(fd, *new_contraction_indices) @array_derive.register(ArrayDiagonal) def _(expr: ArrayDiagonal, x: Expr): dsubexpr = array_derive(expr.expr, x) rank_x = len(get_shape(x)) diag_indices = [[j + rank_x for j in i] for i in expr.diagonal_indices] return _array_diagonal(dsubexpr, *diag_indices) @array_derive.register(ArrayAdd) def _(expr: ArrayAdd, x: Expr): return _array_add(*[array_derive(arg, x) for arg in expr.args]) @array_derive.register(PermuteDims) def _(expr: PermuteDims, x: Expr): de = array_derive(expr.expr, x) perm = [0, 1] + [i + 2 for i in expr.permutation.array_form] return _permute_dims(de, perm) @array_derive.register(Reshape) def _(expr: Reshape, x: Expr): de = array_derive(expr.expr, x) return Reshape(de, get_shape(x) + expr.shape) def matrix_derive(expr, x): from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix ce = convert_matrix_to_array(expr) dce = array_derive(ce, x) return convert_array_to_matrix(dce).doit()
69b88165a2904506278b1fb935b6028e23ae1e82a3f59e18d18288895d47ee85
import random import concurrent.futures from collections.abc import Hashable from sympy.core.add import Add from sympy.core.function import (Function, diff, expand) from sympy.core.numbers import (E, Float, I, Integer, Rational, nan, oo, pi) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import sympify from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt) from sympy.functions.elementary.trigonometric import (cos, sin, tan) from sympy.integrals.integrals import integrate from sympy.polys.polytools import (Poly, PurePoly) from sympy.printing.str import sstr from sympy.sets.sets import FiniteSet from sympy.simplify.simplify import (signsimp, simplify) from sympy.simplify.trigsimp import trigsimp from sympy.matrices.matrices import (ShapeError, MatrixError, NonSquareMatrixError, DeferredVector, _find_reasonable_pivot_naive, _simplify) from sympy.matrices import ( GramSchmidt, ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix, casoratian, diag, eye, hessian, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, wronskian, zeros, MutableDenseMatrix, ImmutableDenseMatrix, MatrixSymbol, dotprodsimp, rot_ccw_axis1, rot_ccw_axis2, rot_ccw_axis3) from sympy.matrices.utilities import _dotprodsimp_state from sympy.core import Tuple, Wild from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.utilities.iterables import flatten, capture, iterable from sympy.utilities.exceptions import ignore_warnings, SymPyDeprecationWarning from sympy.testing.pytest import (raises, XFAIL, slow, skip, warns_deprecated_sympy, warns) from sympy.assumptions import Q from sympy.tensor.array import Array from sympy.matrices.expressions import MatPow from sympy.external import import_module from sympy.algebras import Quaternion from sympy.abc import a, b, c, d, x, y, z, t pyodide_js = import_module('pyodide_js') # don't re-order this list classes = (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix) def test_args(): for n, cls in enumerate(classes): m = cls.zeros(3, 2) # all should give back the same type of arguments, e.g. ints for shape assert m.shape == (3, 2) and all(type(i) is int for i in m.shape) assert m.rows == 3 and type(m.rows) is int assert m.cols == 2 and type(m.cols) is int if not n % 2: assert type(m.flat()) in (list, tuple, Tuple) else: assert type(m.todok()) is dict def test_deprecated_mat_smat(): for cls in Matrix, ImmutableMatrix: m = cls.zeros(3, 2) with warns_deprecated_sympy(): mat = m._mat assert mat == m.flat() for cls in SparseMatrix, ImmutableSparseMatrix: m = cls.zeros(3, 2) with warns_deprecated_sympy(): smat = m._smat assert smat == m.todok() def test_division(): v = Matrix(1, 2, [x, y]) assert v/z == Matrix(1, 2, [x/z, y/z]) def test_sum(): m = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]]) assert m + m == Matrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]]) n = Matrix(1, 2, [1, 2]) raises(ShapeError, lambda: m + n) def test_abs(): m = Matrix(1, 2, [-3, x]) n = Matrix(1, 2, [3, Abs(x)]) assert abs(m) == n def test_addition(): a = Matrix(( (1, 2), (3, 1), )) b = Matrix(( (1, 2), (3, 0), )) assert a + b == a.add(b) == Matrix([[2, 4], [6, 1]]) def test_fancy_index_matrix(): for M in (Matrix, SparseMatrix): a = M(3, 3, range(9)) assert a == a[:, :] assert a[1, :] == Matrix(1, 3, [3, 4, 5]) assert a[:, 1] == Matrix([1, 4, 7]) assert a[[0, 1], :] == Matrix([[0, 1, 2], [3, 4, 5]]) assert a[[0, 1], 2] == a[[0, 1], [2]] assert a[2, [0, 1]] == a[[2], [0, 1]] assert a[:, [0, 1]] == Matrix([[0, 1], [3, 4], [6, 7]]) assert a[0, 0] == 0 assert a[0:2, :] == Matrix([[0, 1, 2], [3, 4, 5]]) assert a[:, 0:2] == Matrix([[0, 1], [3, 4], [6, 7]]) assert a[::2, 1] == a[[0, 2], 1] assert a[1, ::2] == a[1, [0, 2]] a = M(3, 3, range(9)) assert a[[0, 2, 1, 2, 1], :] == Matrix([ [0, 1, 2], [6, 7, 8], [3, 4, 5], [6, 7, 8], [3, 4, 5]]) assert a[:, [0,2,1,2,1]] == Matrix([ [0, 2, 1, 2, 1], [3, 5, 4, 5, 4], [6, 8, 7, 8, 7]]) a = SparseMatrix.zeros(3) a[1, 2] = 2 a[0, 1] = 3 a[2, 0] = 4 assert a.extract([1, 1], [2]) == Matrix([ [2], [2]]) assert a.extract([1, 0], [2, 2, 2]) == Matrix([ [2, 2, 2], [0, 0, 0]]) assert a.extract([1, 0, 1, 2], [2, 0, 1, 0]) == Matrix([ [2, 0, 0, 0], [0, 0, 3, 0], [2, 0, 0, 0], [0, 4, 0, 4]]) def test_multiplication(): a = Matrix(( (1, 2), (3, 1), (0, 6), )) b = Matrix(( (1, 2), (3, 0), )) c = a*b assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 try: eval('c = a @ b') except SyntaxError: pass else: assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 h = matrix_multiply_elementwise(a, c) assert h == a.multiply_elementwise(c) assert h[0, 0] == 7 assert h[0, 1] == 4 assert h[1, 0] == 18 assert h[1, 1] == 6 assert h[2, 0] == 0 assert h[2, 1] == 0 raises(ShapeError, lambda: matrix_multiply_elementwise(a, b)) c = b * Symbol("x") assert isinstance(c, Matrix) assert c[0, 0] == x assert c[0, 1] == 2*x assert c[1, 0] == 3*x assert c[1, 1] == 0 c2 = x * b assert c == c2 c = 5 * b assert isinstance(c, Matrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 try: eval('c = 5 @ b') except SyntaxError: pass else: assert isinstance(c, Matrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 M = Matrix([[oo, 0], [0, oo]]) assert M ** 2 == M M = Matrix([[oo, oo], [0, 0]]) assert M ** 2 == Matrix([[nan, nan], [nan, nan]]) def test_power(): raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2) R = Rational A = Matrix([[2, 3], [4, 5]]) assert (A**-3)[:] == [R(-269)/8, R(153)/8, R(51)/2, R(-29)/2] assert (A**5)[:] == [6140, 8097, 10796, 14237] A = Matrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433] assert A**0 == eye(3) assert A**1 == A assert (Matrix([[2]]) ** 100)[0, 0] == 2**100 assert eye(2)**10000000 == eye(2) assert Matrix([[1, 2], [3, 4]])**Integer(2) == Matrix([[7, 10], [15, 22]]) A = Matrix([[33, 24], [48, 57]]) assert (A**S.Half)[:] == [5, 2, 4, 7] A = Matrix([[0, 4], [-1, 5]]) assert (A**S.Half)**2 == A assert Matrix([[1, 0], [1, 1]])**S.Half == Matrix([[1, 0], [S.Half, 1]]) assert Matrix([[1, 0], [1, 1]])**0.5 == Matrix([[1, 0], [0.5, 1]]) from sympy.abc import n assert Matrix([[1, a], [0, 1]])**n == Matrix([[1, a*n], [0, 1]]) assert Matrix([[b, a], [0, b]])**n == Matrix([[b**n, a*b**(n-1)*n], [0, b**n]]) assert Matrix([ [a**n, a**(n - 1)*n, (a**n*n**2 - a**n*n)/(2*a**2)], [ 0, a**n, a**(n - 1)*n], [ 0, 0, a**n]]) assert Matrix([[a, 1, 0], [0, a, 0], [0, 0, b]])**n == Matrix([ [a**n, a**(n-1)*n, 0], [0, a**n, 0], [0, 0, b**n]]) A = Matrix([[1, 0], [1, 7]]) assert A._matrix_pow_by_jordan_blocks(S(3)) == A._eval_pow_by_recursion(3) A = Matrix([[2]]) assert A**10 == Matrix([[2**10]]) == A._matrix_pow_by_jordan_blocks(S(10)) == \ A._eval_pow_by_recursion(10) # testing a matrix that cannot be jordan blocked issue 11766 m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) raises(MatrixError, lambda: m._matrix_pow_by_jordan_blocks(S(10))) # test issue 11964 raises(MatrixError, lambda: Matrix([[1, 1], [3, 3]])._matrix_pow_by_jordan_blocks(S(-10))) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) # Nilpotent jordan block size 3 assert A**10.0 == Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) raises(ValueError, lambda: A**2.1) raises(ValueError, lambda: A**Rational(3, 2)) A = Matrix([[8, 1], [3, 2]]) assert A**10.0 == Matrix([[1760744107, 272388050], [817164150, 126415807]]) A = Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 1 assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 2 assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) n = Symbol('n', integer=True) assert isinstance(A**n, MatPow) n = Symbol('n', integer=True, negative=True) raises(ValueError, lambda: A**n) n = Symbol('n', integer=True, nonnegative=True) assert A**n == Matrix([ [KroneckerDelta(0, n), KroneckerDelta(1, n), -KroneckerDelta(0, n) - KroneckerDelta(1, n) + 1], [ 0, KroneckerDelta(0, n), 1 - KroneckerDelta(0, n)], [ 0, 0, 1]]) assert A**(n + 2) == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) raises(ValueError, lambda: A**Rational(3, 2)) A = Matrix([[0, 0, 1], [3, 0, 1], [4, 3, 1]]) assert A**5.0 == Matrix([[168, 72, 89], [291, 144, 161], [572, 267, 329]]) assert A**5.0 == A**5 A = Matrix([[0, 1, 0],[-1, 0, 0],[0, 0, 0]]) n = Symbol("n") An = A**n assert An.subs(n, 2).doit() == A**2 raises(ValueError, lambda: An.subs(n, -2).doit()) assert An * An == A**(2*n) # concretizing behavior for non-integer and complex powers A = Matrix([[0,0,0],[0,0,0],[0,0,0]]) n = Symbol('n', integer=True, positive=True) assert A**n == A n = Symbol('n', integer=True, nonnegative=True) assert A**n == diag(0**n, 0**n, 0**n) assert (A**n).subs(n, 0) == eye(3) assert (A**n).subs(n, 1) == zeros(3) A = Matrix ([[2,0,0],[0,2,0],[0,0,2]]) assert A**2.1 == diag (2**2.1, 2**2.1, 2**2.1) assert A**I == diag (2**I, 2**I, 2**I) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) raises(ValueError, lambda: A**2.1) raises(ValueError, lambda: A**I) A = Matrix([[S.Half, S.Half], [S.Half, S.Half]]) assert A**S.Half == A A = Matrix([[1, 1],[3, 3]]) assert A**S.Half == Matrix ([[S.Half, S.Half], [3*S.Half, 3*S.Half]]) def test_issue_17247_expression_blowup_1(): M = Matrix([[1+x, 1-x], [1-x, 1+x]]) with dotprodsimp(True): assert M.exp().expand() == Matrix([ [ (exp(2*x) + exp(2))/2, (-exp(2*x) + exp(2))/2], [(-exp(2*x) + exp(2))/2, (exp(2*x) + exp(2))/2]]) def test_issue_17247_expression_blowup_2(): M = Matrix([[1+x, 1-x], [1-x, 1+x]]) with dotprodsimp(True): P, J = M.jordan_form () assert P*J*P.inv() def test_issue_17247_expression_blowup_3(): M = Matrix([[1+x, 1-x], [1-x, 1+x]]) with dotprodsimp(True): assert M**100 == Matrix([ [633825300114114700748351602688*x**100 + 633825300114114700748351602688, 633825300114114700748351602688 - 633825300114114700748351602688*x**100], [633825300114114700748351602688 - 633825300114114700748351602688*x**100, 633825300114114700748351602688*x**100 + 633825300114114700748351602688]]) def test_issue_17247_expression_blowup_4(): # This matrix takes extremely long on current master even with intermediate simplification so an abbreviated version is used. It is left here for test in case of future optimizations. # M = Matrix(S('''[ # [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256, 15/128 - 3*I/32, 19/256 + 551*I/1024], # [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096, 129/256 - 549*I/512, 42533/16384 + 29103*I/8192], # [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256], # [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096], # [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128], # [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024], # [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], # [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], # [ -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], # [ 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], # [ -4, 9 - 5*I, -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], # [ -2*I, 119/8 + 29*I/4, 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) # assert M**10 == Matrix([ # [ 7*(-221393644768594642173548179825793834595 - 1861633166167425978847110897013541127952*I)/9671406556917033397649408, 15*(31670992489131684885307005100073928751695 + 10329090958303458811115024718207404523808*I)/77371252455336267181195264, 7*(-3710978679372178839237291049477017392703 + 1377706064483132637295566581525806894169*I)/19342813113834066795298816, (9727707023582419994616144751727760051598 - 59261571067013123836477348473611225724433*I)/9671406556917033397649408, (31896723509506857062605551443641668183707 + 54643444538699269118869436271152084599580*I)/38685626227668133590597632, (-2024044860947539028275487595741003997397402 + 130959428791783397562960461903698670485863*I)/309485009821345068724781056, 3*(26190251453797590396533756519358368860907 - 27221191754180839338002754608545400941638*I)/77371252455336267181195264, (1154643595139959842768960128434994698330461 + 3385496216250226964322872072260446072295634*I)/618970019642690137449562112, 3*(-31849347263064464698310044805285774295286 - 11877437776464148281991240541742691164309*I)/77371252455336267181195264, (4661330392283532534549306589669150228040221 - 4171259766019818631067810706563064103956871*I)/1237940039285380274899124224, (9598353794289061833850770474812760144506 + 358027153990999990968244906482319780943983*I)/309485009821345068724781056, (-9755135335127734571547571921702373498554177 - 4837981372692695195747379349593041939686540*I)/2475880078570760549798248448], # [(-379516731607474268954110071392894274962069 - 422272153179747548473724096872271700878296*I)/77371252455336267181195264, (41324748029613152354787280677832014263339501 - 12715121258662668420833935373453570749288074*I)/1237940039285380274899124224, (-339216903907423793947110742819264306542397 + 494174755147303922029979279454787373566517*I)/77371252455336267181195264, (-18121350839962855576667529908850640619878381 - 37413012454129786092962531597292531089199003*I)/1237940039285380274899124224, (2489661087330511608618880408199633556675926 + 1137821536550153872137379935240732287260863*I)/309485009821345068724781056, (-136644109701594123227587016790354220062972119 + 110130123468183660555391413889600443583585272*I)/4951760157141521099596496896, (1488043981274920070468141664150073426459593 - 9691968079933445130866371609614474474327650*I)/1237940039285380274899124224, 27*(4636797403026872518131756991410164760195942 + 3369103221138229204457272860484005850416533*I)/4951760157141521099596496896, (-8534279107365915284081669381642269800472363 + 2241118846262661434336333368511372725482742*I)/1237940039285380274899124224, (60923350128174260992536531692058086830950875 - 263673488093551053385865699805250505661590126*I)/9903520314283042199192993792, (18520943561240714459282253753348921824172569 + 24846649186468656345966986622110971925703604*I)/4951760157141521099596496896, (-232781130692604829085973604213529649638644431 + 35981505277760667933017117949103953338570617*I)/9903520314283042199192993792], # [ (8742968295129404279528270438201520488950 + 3061473358639249112126847237482570858327*I)/4835703278458516698824704, (-245657313712011778432792959787098074935273 + 253113767861878869678042729088355086740856*I)/38685626227668133590597632, (1947031161734702327107371192008011621193 - 19462330079296259148177542369999791122762*I)/9671406556917033397649408, (552856485625209001527688949522750288619217 + 392928441196156725372494335248099016686580*I)/77371252455336267181195264, (-44542866621905323121630214897126343414629 + 3265340021421335059323962377647649632959*I)/19342813113834066795298816, (136272594005759723105646069956434264218730 - 330975364731707309489523680957584684763587*I)/38685626227668133590597632, (27392593965554149283318732469825168894401 + 75157071243800133880129376047131061115278*I)/38685626227668133590597632, 7*(-357821652913266734749960136017214096276154 - 45509144466378076475315751988405961498243*I)/309485009821345068724781056, (104485001373574280824835174390219397141149 - 99041000529599568255829489765415726168162*I)/77371252455336267181195264, (1198066993119982409323525798509037696321291 + 4249784165667887866939369628840569844519936*I)/618970019642690137449562112, (-114985392587849953209115599084503853611014 - 52510376847189529234864487459476242883449*I)/77371252455336267181195264, (6094620517051332877965959223269600650951573 - 4683469779240530439185019982269137976201163*I)/1237940039285380274899124224], # [ (611292255597977285752123848828590587708323 - 216821743518546668382662964473055912169502*I)/77371252455336267181195264, (-1144023204575811464652692396337616594307487 + 12295317806312398617498029126807758490062855*I)/309485009821345068724781056, (-374093027769390002505693378578475235158281 - 573533923565898290299607461660384634333639*I)/77371252455336267181195264, (47405570632186659000138546955372796986832987 - 2837476058950808941605000274055970055096534*I)/1237940039285380274899124224, (-571573207393621076306216726219753090535121 + 533381457185823100878764749236639320783831*I)/77371252455336267181195264, (-7096548151856165056213543560958582513797519 - 24035731898756040059329175131592138642195366*I)/618970019642690137449562112, (2396762128833271142000266170154694033849225 + 1448501087375679588770230529017516492953051*I)/309485009821345068724781056, (-150609293845161968447166237242456473262037053 + 92581148080922977153207018003184520294188436*I)/4951760157141521099596496896, 5*(270278244730804315149356082977618054486347 - 1997830155222496880429743815321662710091562*I)/1237940039285380274899124224, (62978424789588828258068912690172109324360330 + 44803641177219298311493356929537007630129097*I)/2475880078570760549798248448, 19*(-451431106327656743945775812536216598712236 + 114924966793632084379437683991151177407937*I)/1237940039285380274899124224, (63417747628891221594106738815256002143915995 - 261508229397507037136324178612212080871150958*I)/9903520314283042199192993792], # [ (-2144231934021288786200752920446633703357 + 2305614436009705803670842248131563850246*I)/1208925819614629174706176, (-90720949337459896266067589013987007078153 - 221951119475096403601562347412753844534569*I)/19342813113834066795298816, (11590973613116630788176337262688659880376 + 6514520676308992726483494976339330626159*I)/4835703278458516698824704, 3*(-131776217149000326618649542018343107657237 + 79095042939612668486212006406818285287004*I)/38685626227668133590597632, (10100577916793945997239221374025741184951 - 28631383488085522003281589065994018550748*I)/9671406556917033397649408, 67*(10090295594251078955008130473573667572549 + 10449901522697161049513326446427839676762*I)/77371252455336267181195264, (-54270981296988368730689531355811033930513 - 3413683117592637309471893510944045467443*I)/19342813113834066795298816, (440372322928679910536575560069973699181278 - 736603803202303189048085196176918214409081*I)/77371252455336267181195264, (33220374714789391132887731139763250155295 + 92055083048787219934030779066298919603554*I)/38685626227668133590597632, 5*(-594638554579967244348856981610805281527116 - 82309245323128933521987392165716076704057*I)/309485009821345068724781056, (128056368815300084550013708313312073721955 - 114619107488668120303579745393765245911404*I)/77371252455336267181195264, 21*(59839959255173222962789517794121843393573 + 241507883613676387255359616163487405826334*I)/618970019642690137449562112], # [ (-13454485022325376674626653802541391955147 + 184471402121905621396582628515905949793486*I)/19342813113834066795298816, (-6158730123400322562149780662133074862437105 - 3416173052604643794120262081623703514107476*I)/154742504910672534362390528, (770558003844914708453618983120686116100419 - 127758381209767638635199674005029818518766*I)/77371252455336267181195264, (-4693005771813492267479835161596671660631703 + 12703585094750991389845384539501921531449948*I)/309485009821345068724781056, (-295028157441149027913545676461260860036601 - 841544569970643160358138082317324743450770*I)/77371252455336267181195264, (56716442796929448856312202561538574275502893 + 7216818824772560379753073185990186711454778*I)/1237940039285380274899124224, 15*(-87061038932753366532685677510172566368387 + 61306141156647596310941396434445461895538*I)/154742504910672534362390528, (-3455315109680781412178133042301025723909347 - 24969329563196972466388460746447646686670670*I)/618970019642690137449562112, (2453418854160886481106557323699250865361849 + 1497886802326243014471854112161398141242514*I)/309485009821345068724781056, (-151343224544252091980004429001205664193082173 + 90471883264187337053549090899816228846836628*I)/4951760157141521099596496896, (1652018205533026103358164026239417416432989 - 9959733619236515024261775397109724431400162*I)/1237940039285380274899124224, 3*(40676374242956907656984876692623172736522006 + 31023357083037817469535762230872667581366205*I)/4951760157141521099596496896], # [ (-1226990509403328460274658603410696548387 - 4131739423109992672186585941938392788458*I)/1208925819614629174706176, (162392818524418973411975140074368079662703 + 23706194236915374831230612374344230400704*I)/9671406556917033397649408, (-3935678233089814180000602553655565621193 + 2283744757287145199688061892165659502483*I)/1208925819614629174706176, (-2400210250844254483454290806930306285131 - 315571356806370996069052930302295432758205*I)/19342813113834066795298816, (13365917938215281056563183751673390817910 + 15911483133819801118348625831132324863881*I)/4835703278458516698824704, 3*(-215950551370668982657516660700301003897855 + 51684341999223632631602864028309400489378*I)/38685626227668133590597632, (20886089946811765149439844691320027184765 - 30806277083146786592790625980769214361844*I)/9671406556917033397649408, (562180634592713285745940856221105667874855 + 1031543963988260765153550559766662245114916*I)/77371252455336267181195264, (-65820625814810177122941758625652476012867 - 12429918324787060890804395323920477537595*I)/19342813113834066795298816, (319147848192012911298771180196635859221089 - 402403304933906769233365689834404519960394*I)/38685626227668133590597632, (23035615120921026080284733394359587955057 + 115351677687031786114651452775242461310624*I)/38685626227668133590597632, (-3426830634881892756966440108592579264936130 - 1022954961164128745603407283836365128598559*I)/309485009821345068724781056], # [ (-192574788060137531023716449082856117537757 - 69222967328876859586831013062387845780692*I)/19342813113834066795298816, (2736383768828013152914815341491629299773262 - 2773252698016291897599353862072533475408743*I)/77371252455336267181195264, (-23280005281223837717773057436155921656805 + 214784953368021840006305033048142888879224*I)/19342813113834066795298816, (-3035247484028969580570400133318947903462326 - 2195168903335435855621328554626336958674325*I)/77371252455336267181195264, (984552428291526892214541708637840971548653 - 64006622534521425620714598573494988589378*I)/77371252455336267181195264, (-3070650452470333005276715136041262898509903 + 7286424705750810474140953092161794621989080*I)/154742504910672534362390528, (-147848877109756404594659513386972921139270 - 416306113044186424749331418059456047650861*I)/38685626227668133590597632, (55272118474097814260289392337160619494260781 + 7494019668394781211907115583302403519488058*I)/1237940039285380274899124224, (-581537886583682322424771088996959213068864 + 542191617758465339135308203815256798407429*I)/77371252455336267181195264, (-6422548983676355789975736799494791970390991 - 23524183982209004826464749309156698827737702*I)/618970019642690137449562112, 7*(180747195387024536886923192475064903482083 + 84352527693562434817771649853047924991804*I)/154742504910672534362390528, (-135485179036717001055310712747643466592387031 + 102346575226653028836678855697782273460527608*I)/4951760157141521099596496896], # [ (3384238362616083147067025892852431152105 + 156724444932584900214919898954874618256*I)/604462909807314587353088, (-59558300950677430189587207338385764871866 + 114427143574375271097298201388331237478857*I)/4835703278458516698824704, (-1356835789870635633517710130971800616227 - 7023484098542340388800213478357340875410*I)/1208925819614629174706176, (234884918567993750975181728413524549575881 + 79757294640629983786895695752733890213506*I)/9671406556917033397649408, (-7632732774935120473359202657160313866419 + 2905452608512927560554702228553291839465*I)/1208925819614629174706176, (52291747908702842344842889809762246649489 - 520996778817151392090736149644507525892649*I)/19342813113834066795298816, (17472406829219127839967951180375981717322 + 23464704213841582137898905375041819568669*I)/4835703278458516698824704, (-911026971811893092350229536132730760943307 + 150799318130900944080399439626714846752360*I)/38685626227668133590597632, (26234457233977042811089020440646443590687 - 45650293039576452023692126463683727692890*I)/9671406556917033397649408, 3*(288348388717468992528382586652654351121357 + 454526517721403048270274049572136109264668*I)/77371252455336267181195264, (-91583492367747094223295011999405657956347 - 12704691128268298435362255538069612411331*I)/19342813113834066795298816, (411208730251327843849027957710164064354221 - 569898526380691606955496789378230959965898*I)/38685626227668133590597632], # [ (27127513117071487872628354831658811211795 - 37765296987901990355760582016892124833857*I)/4835703278458516698824704, (1741779916057680444272938534338833170625435 + 3083041729779495966997526404685535449810378*I)/77371252455336267181195264, 3*(-60642236251815783728374561836962709533401 - 24630301165439580049891518846174101510744*I)/19342813113834066795298816, 3*(445885207364591681637745678755008757483408 - 350948497734812895032502179455610024541643*I)/38685626227668133590597632, (-47373295621391195484367368282471381775684 + 219122969294089357477027867028071400054973*I)/19342813113834066795298816, (-2801565819673198722993348253876353741520438 - 2250142129822658548391697042460298703335701*I)/77371252455336267181195264, (801448252275607253266997552356128790317119 - 50890367688077858227059515894356594900558*I)/77371252455336267181195264, (-5082187758525931944557763799137987573501207 + 11610432359082071866576699236013484487676124*I)/309485009821345068724781056, (-328925127096560623794883760398247685166830 - 643447969697471610060622160899409680422019*I)/77371252455336267181195264, 15*(2954944669454003684028194956846659916299765 + 33434406416888505837444969347824812608566*I)/1237940039285380274899124224, (-415749104352001509942256567958449835766827 + 479330966144175743357171151440020955412219*I)/77371252455336267181195264, 3*(-4639987285852134369449873547637372282914255 - 11994411888966030153196659207284951579243273*I)/1237940039285380274899124224], # [ (-478846096206269117345024348666145495601 + 1249092488629201351470551186322814883283*I)/302231454903657293676544, (-17749319421930878799354766626365926894989 - 18264580106418628161818752318217357231971*I)/1208925819614629174706176, (2801110795431528876849623279389579072819 + 363258850073786330770713557775566973248*I)/604462909807314587353088, (-59053496693129013745775512127095650616252 + 78143588734197260279248498898321500167517*I)/4835703278458516698824704, (-283186724922498212468162690097101115349 - 6443437753863179883794497936345437398276*I)/1208925819614629174706176, (188799118826748909206887165661384998787543 + 84274736720556630026311383931055307398820*I)/9671406556917033397649408, (-5482217151670072904078758141270295025989 + 1818284338672191024475557065444481298568*I)/1208925819614629174706176, (56564463395350195513805521309731217952281 - 360208541416798112109946262159695452898431*I)/19342813113834066795298816, 11*(1259539805728870739006416869463689438068 + 1409136581547898074455004171305324917387*I)/4835703278458516698824704, 5*(-123701190701414554945251071190688818343325 + 30997157322590424677294553832111902279712*I)/38685626227668133590597632, (16130917381301373033736295883982414239781 - 32752041297570919727145380131926943374516*I)/9671406556917033397649408, (650301385108223834347093740500375498354925 + 899526407681131828596801223402866051809258*I)/77371252455336267181195264], # [ (9011388245256140876590294262420614839483 + 8167917972423946282513000869327525382672*I)/1208925819614629174706176, (-426393174084720190126376382194036323028924 + 180692224825757525982858693158209545430621*I)/9671406556917033397649408, (24588556702197802674765733448108154175535 - 45091766022876486566421953254051868331066*I)/4835703278458516698824704, (1872113939365285277373877183750416985089691 + 3030392393733212574744122057679633775773130*I)/77371252455336267181195264, (-222173405538046189185754954524429864167549 - 75193157893478637039381059488387511299116*I)/19342813113834066795298816, (2670821320766222522963689317316937579844558 - 2645837121493554383087981511645435472169191*I)/77371252455336267181195264, 5*(-2100110309556476773796963197283876204940 + 41957457246479840487980315496957337371937*I)/19342813113834066795298816, (-5733743755499084165382383818991531258980593 - 3328949988392698205198574824396695027195732*I)/154742504910672534362390528, (707827994365259025461378911159398206329247 - 265730616623227695108042528694302299777294*I)/77371252455336267181195264, (-1442501604682933002895864804409322823788319 + 11504137805563265043376405214378288793343879*I)/309485009821345068724781056, (-56130472299445561499538726459719629522285 - 61117552419727805035810982426639329818864*I)/9671406556917033397649408, (39053692321126079849054272431599539429908717 - 10209127700342570953247177602860848130710666*I)/1237940039285380274899124224]]) M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M**10 == Matrix(S('''[ [ 7369525394972778926719607798014571861/604462909807314587353088 - 229284202061790301477392339912557559*I/151115727451828646838272, -19704281515163975949388435612632058035/1208925819614629174706176 + 14319858347987648723768698170712102887*I/302231454903657293676544, -3623281909451783042932142262164941211/604462909807314587353088 - 6039240602494288615094338643452320495*I/604462909807314587353088, 109260497799140408739847239685705357695/2417851639229258349412352 - 7427566006564572463236368211555511431*I/2417851639229258349412352, -16095803767674394244695716092817006641/2417851639229258349412352 + 10336681897356760057393429626719177583*I/1208925819614629174706176, -42207883340488041844332828574359769743/2417851639229258349412352 - 182332262671671273188016400290188468499*I/4835703278458516698824704], [50566491050825573392726324995779608259/1208925819614629174706176 - 90047007594468146222002432884052362145*I/2417851639229258349412352, 74273703462900000967697427843983822011/1208925819614629174706176 + 265947522682943571171988741842776095421*I/1208925819614629174706176, -116900341394390200556829767923360888429/2417851639229258349412352 - 53153263356679268823910621474478756845*I/2417851639229258349412352, 195407378023867871243426523048612490249/1208925819614629174706176 - 1242417915995360200584837585002906728929*I/9671406556917033397649408, -863597594389821970177319682495878193/302231454903657293676544 + 476936100741548328800725360758734300481*I/9671406556917033397649408, -3154451590535653853562472176601754835575/19342813113834066795298816 - 232909875490506237386836489998407329215*I/2417851639229258349412352], [ -1715444997702484578716037230949868543/302231454903657293676544 + 5009695651321306866158517287924120777*I/302231454903657293676544, -30551582497996879620371947949342101301/604462909807314587353088 - 7632518367986526187139161303331519629*I/151115727451828646838272, 312680739924495153190604170938220575/18889465931478580854784 - 108664334509328818765959789219208459*I/75557863725914323419136, -14693696966703036206178521686918865509/604462909807314587353088 + 72345386220900843930147151999899692401*I/1208925819614629174706176, -8218872496728882299722894680635296519/1208925819614629174706176 - 16776782833358893712645864791807664983*I/1208925819614629174706176, 143237839169380078671242929143670635137/2417851639229258349412352 + 2883817094806115974748882735218469447*I/2417851639229258349412352], [ 3087979417831061365023111800749855987/151115727451828646838272 + 34441942370802869368851419102423997089*I/604462909807314587353088, -148309181940158040917731426845476175667/604462909807314587353088 - 263987151804109387844966835369350904919*I/9671406556917033397649408, 50259518594816377378747711930008883165/1208925819614629174706176 - 95713974916869240305450001443767979653*I/2417851639229258349412352, 153466447023875527996457943521467271119/2417851639229258349412352 + 517285524891117105834922278517084871349*I/2417851639229258349412352, -29184653615412989036678939366291205575/604462909807314587353088 - 27551322282526322041080173287022121083*I/1208925819614629174706176, 196404220110085511863671393922447671649/1208925819614629174706176 - 1204712019400186021982272049902206202145*I/9671406556917033397649408], [ -2632581805949645784625606590600098779/151115727451828646838272 - 589957435912868015140272627522612771*I/37778931862957161709568, 26727850893953715274702844733506310247/302231454903657293676544 - 10825791956782128799168209600694020481*I/302231454903657293676544, -1036348763702366164044671908440791295/151115727451828646838272 + 3188624571414467767868303105288107375*I/151115727451828646838272, -36814959939970644875593411585393242449/604462909807314587353088 - 18457555789119782404850043842902832647*I/302231454903657293676544, 12454491297984637815063964572803058647/604462909807314587353088 - 340489532842249733975074349495329171*I/302231454903657293676544, -19547211751145597258386735573258916681/604462909807314587353088 + 87299583775782199663414539883938008933*I/1208925819614629174706176], [ -40281994229560039213253423262678393183/604462909807314587353088 - 2939986850065527327299273003299736641*I/604462909807314587353088, 331940684638052085845743020267462794181/2417851639229258349412352 - 284574901963624403933361315517248458969*I/1208925819614629174706176, 6453843623051745485064693628073010961/302231454903657293676544 + 36062454107479732681350914931391590957*I/604462909807314587353088, -147665869053634695632880753646441962067/604462909807314587353088 - 305987938660447291246597544085345123927*I/9671406556917033397649408, 107821369195275772166593879711259469423/2417851639229258349412352 - 11645185518211204108659001435013326687*I/302231454903657293676544, 64121228424717666402009446088588091619/1208925819614629174706176 + 265557133337095047883844369272389762133*I/1208925819614629174706176]]''')) def test_issue_17247_expression_blowup_5(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.charpoly('x') == PurePoly(x**6 + (-6 - 6*I)*x**5 + 36*I*x**4, x, domain='EX') def test_issue_17247_expression_blowup_6(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.det('bareiss') == 0 def test_issue_17247_expression_blowup_7(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.det('berkowitz') == 0 def test_issue_17247_expression_blowup_8(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.det('lu') == 0 def test_issue_17247_expression_blowup_9(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.rref() == (Matrix([ [1, 0, -1, -2, -3, -4, -5, -6], [0, 1, 2, 3, 4, 5, 6, 7], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]), (0, 1)) def test_issue_17247_expression_blowup_10(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.cofactor(0, 0) == 0 def test_issue_17247_expression_blowup_11(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.cofactor_matrix() == Matrix(6, 6, [0]*36) def test_issue_17247_expression_blowup_12(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.eigenvals() == {6: 1, 6*I: 1, 0: 4} def test_issue_17247_expression_blowup_13(): M = Matrix([ [ 0, 1 - x, x + 1, 1 - x], [1 - x, x + 1, 0, x + 1], [ 0, 1 - x, x + 1, 1 - x], [ 0, 0, 1 - x, 0]]) ev = M.eigenvects() assert ev[0] == (0, 2, [Matrix([0, -1, 0, 1])]) assert ev[1][0] == x - sqrt(2)*(x - 1) + 1 assert ev[1][1] == 1 assert ev[1][2][0].expand(deep=False, numer=True) == Matrix([ [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)], [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x - sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)], [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)], [1] ]) assert ev[2][0] == x + sqrt(2)*(x - 1) + 1 assert ev[2][1] == 1 assert ev[2][2][0].expand(deep=False, numer=True) == Matrix([ [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)], [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x + sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)], [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)], [1] ]) def test_issue_17247_expression_blowup_14(): M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) with dotprodsimp(True): assert M.echelon_form() == Matrix([ [x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x], [ 0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0]]) def test_issue_17247_expression_blowup_15(): M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) with dotprodsimp(True): assert M.rowspace() == [Matrix([[x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x]]), Matrix([[0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x]])] def test_issue_17247_expression_blowup_16(): M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) with dotprodsimp(True): assert M.columnspace() == [Matrix([[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x]]), Matrix([[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1]])] def test_issue_17247_expression_blowup_17(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.nullspace() == [ Matrix([[1],[-2],[1],[0],[0],[0],[0],[0]]), Matrix([[2],[-3],[0],[1],[0],[0],[0],[0]]), Matrix([[3],[-4],[0],[0],[1],[0],[0],[0]]), Matrix([[4],[-5],[0],[0],[0],[1],[0],[0]]), Matrix([[5],[-6],[0],[0],[0],[0],[1],[0]]), Matrix([[6],[-7],[0],[0],[0],[0],[0],[1]])] def test_issue_17247_expression_blowup_18(): M = Matrix(6, 6, ([1+x, 1-x]*3 + [1-x, 1+x]*3)*3) with dotprodsimp(True): assert not M.is_nilpotent() def test_issue_17247_expression_blowup_19(): M = Matrix(S('''[ [ -3/4, 0, 1/4 + I/2, 0], [ 0, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 1/2 - I, 0, 0, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert not M.is_diagonalizable() def test_issue_17247_expression_blowup_20(): M = Matrix([ [x + 1, 1 - x, 0, 0], [1 - x, x + 1, 0, x + 1], [ 0, 1 - x, x + 1, 0], [ 0, 0, 0, x + 1]]) with dotprodsimp(True): assert M.diagonalize() == (Matrix([ [1, 1, 0, (x + 1)/(x - 1)], [1, -1, 0, 0], [1, 1, 1, 0], [0, 0, 0, 1]]), Matrix([ [2, 0, 0, 0], [0, 2*x, 0, 0], [0, 0, x + 1, 0], [0, 0, 0, x + 1]])) def test_issue_17247_expression_blowup_21(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='GE') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_22(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='LU') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_23(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='ADJ').expand() == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_24(): M = SparseMatrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='CH') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_25(): M = SparseMatrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='LDL') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_26(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024], [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.rank() == 4 def test_issue_17247_expression_blowup_27(): M = Matrix([ [ 0, 1 - x, x + 1, 1 - x], [1 - x, x + 1, 0, x + 1], [ 0, 1 - x, x + 1, 1 - x], [ 0, 0, 1 - x, 0]]) with dotprodsimp(True): P, J = M.jordan_form() assert P.expand() == Matrix(S('''[ [ 0, 4*x/(x**2 - 2*x + 1), -(-17*x**4 + 12*sqrt(2)*x**4 - 4*sqrt(2)*x**3 + 6*x**3 - 6*x - 4*sqrt(2)*x + 12*sqrt(2) + 17)/(-7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 + 8*x**3 - 2*x**2 + 8*x + 6*sqrt(2)*x - 5*sqrt(2) - 7), -(12*sqrt(2)*x**4 + 17*x**4 - 6*x**3 - 4*sqrt(2)*x**3 - 4*sqrt(2)*x + 6*x - 17 + 12*sqrt(2))/(7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 - 8*x**3 + 2*x**2 - 8*x + 6*sqrt(2)*x - 5*sqrt(2) + 7)], [x - 1, x/(x - 1) + 1/(x - 1), (-7*x**3 + 5*sqrt(2)*x**3 - x**2 + sqrt(2)*x**2 - sqrt(2)*x - x - 5*sqrt(2) - 7)/(-3*x**3 + 2*sqrt(2)*x**3 - 2*sqrt(2)*x**2 + 3*x**2 + 2*sqrt(2)*x + 3*x - 3 - 2*sqrt(2)), (7*x**3 + 5*sqrt(2)*x**3 + x**2 + sqrt(2)*x**2 - sqrt(2)*x + x - 5*sqrt(2) + 7)/(2*sqrt(2)*x**3 + 3*x**3 - 3*x**2 - 2*sqrt(2)*x**2 - 3*x + 2*sqrt(2)*x - 2*sqrt(2) + 3)], [ 0, 1, -(-3*x**2 + 2*sqrt(2)*x**2 + 2*x - 3 - 2*sqrt(2))/(-x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x + 1 + sqrt(2)), -(2*sqrt(2)*x**2 + 3*x**2 - 2*x - 2*sqrt(2) + 3)/(x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x - 1 + sqrt(2))], [1 - x, 0, 1, 1]]''')).expand() assert J == Matrix(S('''[ [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, x - sqrt(2)*(x - 1) + 1, 0], [0, 0, 0, x + sqrt(2)*(x - 1) + 1]]''')) def test_issue_17247_expression_blowup_28(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.singular_values() == S('''[ sqrt(14609315/131072 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2), sqrt(14609315/131072 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2), sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2), sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2)]''') def test_issue_16823(): # This still needs to be fixed if not using dotprodsimp. M = Matrix(S('''[ [1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I,15/128-3/32*I,19/256+551/1024*I], [21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I,129/256-549/512*I,42533/16384+29103/8192*I], [-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I], [1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I], [-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I], [1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I], [-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I], [-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I], [0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I], [1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I], [0,-4*I,0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I], [0,1/4+1/2*I,1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I]]''')) with dotprodsimp(True): assert M.rank() == 8 def test_issue_18531(): # solve_linear_system still needs fixing but the rref works. M = Matrix([ [1, 1, 1, 1, 1, 0, 1, 0, 0], [1 + sqrt(2), -1 + sqrt(2), 1 - sqrt(2), -sqrt(2) - 1, 1, 1, -1, 1, 1], [-5 + 2*sqrt(2), -5 - 2*sqrt(2), -5 - 2*sqrt(2), -5 + 2*sqrt(2), -7, 2, -7, -2, 0], [-3*sqrt(2) - 1, 1 - 3*sqrt(2), -1 + 3*sqrt(2), 1 + 3*sqrt(2), -7, -5, 7, -5, 3], [7 - 4*sqrt(2), 4*sqrt(2) + 7, 4*sqrt(2) + 7, 7 - 4*sqrt(2), 7, -12, 7, 12, 0], [-1 + 3*sqrt(2), 1 + 3*sqrt(2), -3*sqrt(2) - 1, 1 - 3*sqrt(2), 7, -5, -7, -5, 3], [-3 + 2*sqrt(2), -3 - 2*sqrt(2), -3 - 2*sqrt(2), -3 + 2*sqrt(2), -1, 2, -1, -2, 0], [1 - sqrt(2), -sqrt(2) - 1, 1 + sqrt(2), -1 + sqrt(2), -1, 1, 1, 1, 1] ]) with dotprodsimp(True): assert M.rref() == (Matrix([ [1, 0, 0, 0, 0, 0, 0, 0, S(1)/2], [0, 1, 0, 0, 0, 0, 0, 0, -S(1)/2], [0, 0, 1, 0, 0, 0, 0, 0, S(1)/2], [0, 0, 0, 1, 0, 0, 0, 0, -S(1)/2], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, -S(1)/2], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, -S(1)/2]]), (0, 1, 2, 3, 4, 5, 6, 7)) def test_creation(): raises(ValueError, lambda: Matrix(5, 5, range(20))) raises(ValueError, lambda: Matrix(5, -1, [])) raises(IndexError, lambda: Matrix((1, 2))[2]) with raises(IndexError): Matrix((1, 2))[3] = 5 assert Matrix() == Matrix([]) == Matrix([[]]) == Matrix(0, 0, []) # anything used to be allowed in a matrix with warns_deprecated_sympy(): assert Matrix([[[1], (2,)]]).tolist() == [[[1], (2,)]] with warns_deprecated_sympy(): assert Matrix([[[1], (2,)]]).T.tolist() == [[[1]], [(2,)]] M = Matrix([[0]]) with warns_deprecated_sympy(): M[0, 0] = S.EmptySet a = Matrix([[x, 0], [0, 0]]) m = a assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] b = Matrix(2, 2, [x, 0, 0, 0]) m = b assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] assert a == b assert Matrix(b) == b c23 = Matrix(2, 3, range(1, 7)) c13 = Matrix(1, 3, range(7, 10)) c = Matrix([c23, c13]) assert c.cols == 3 assert c.rows == 3 assert c[:] == [1, 2, 3, 4, 5, 6, 7, 8, 9] assert Matrix(eye(2)) == eye(2) assert ImmutableMatrix(ImmutableMatrix(eye(2))) == ImmutableMatrix(eye(2)) assert ImmutableMatrix(c) == c.as_immutable() assert Matrix(ImmutableMatrix(c)) == ImmutableMatrix(c).as_mutable() assert c is not Matrix(c) dat = [[ones(3,2), ones(3,3)*2], [ones(2,3)*3, ones(2,2)*4]] M = Matrix(dat) assert M == Matrix([ [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [3, 3, 3, 4, 4], [3, 3, 3, 4, 4]]) assert M.tolist() != dat # keep block form if evaluate=False assert Matrix(dat, evaluate=False).tolist() == dat A = MatrixSymbol("A", 2, 2) dat = [ones(2), A] assert Matrix(dat) == Matrix([ [ 1, 1], [ 1, 1], [A[0, 0], A[0, 1]], [A[1, 0], A[1, 1]]]) with warns_deprecated_sympy(): assert Matrix(dat, evaluate=False).tolist() == [[i] for i in dat] # 0-dim tolerance assert Matrix([ones(2), ones(0)]) == Matrix([ones(2)]) raises(ValueError, lambda: Matrix([ones(2), ones(0, 3)])) raises(ValueError, lambda: Matrix([ones(2), ones(3, 0)])) # mix of Matrix and iterable M = Matrix([[1, 2], [3, 4]]) M2 = Matrix([M, (5, 6)]) assert M2 == Matrix([[1, 2], [3, 4], [5, 6]]) def test_irregular_block(): assert Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) == Matrix([ [1, 2, 2, 2, 3, 3], [1, 2, 2, 2, 3, 3], [4, 2, 2, 2, 5, 5], [6, 6, 7, 7, 5, 5]]) def test_tolist(): lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]] m = Matrix(lst) assert m.tolist() == lst def test_as_mutable(): assert zeros(0, 3).as_mutable() == zeros(0, 3) assert zeros(0, 3).as_immutable() == ImmutableMatrix(zeros(0, 3)) assert zeros(3, 0).as_immutable() == ImmutableMatrix(zeros(3, 0)) def test_slicing(): m0 = eye(4) assert m0[:3, :3] == eye(3) assert m0[2:4, 0:2] == zeros(2) m1 = Matrix(3, 3, lambda i, j: i + j) assert m1[0, :] == Matrix(1, 3, (0, 1, 2)) assert m1[1:3, 1] == Matrix(2, 1, (2, 3)) m2 = Matrix([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]) assert m2[:, -1] == Matrix(4, 1, [3, 7, 11, 15]) assert m2[-2:, :] == Matrix([[8, 9, 10, 11], [12, 13, 14, 15]]) def test_submatrix_assignment(): m = zeros(4) m[2:4, 2:4] = eye(2) assert m == Matrix(((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))) m[:2, :2] = eye(2) assert m == eye(4) m[:, 0] = Matrix(4, 1, (1, 2, 3, 4)) assert m == Matrix(((1, 0, 0, 0), (2, 1, 0, 0), (3, 0, 1, 0), (4, 0, 0, 1))) m[:, :] = zeros(4) assert m == zeros(4) m[:, :] = [(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)] assert m == Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) m[:2, 0] = [0, 0] assert m == Matrix(((0, 2, 3, 4), (0, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) def test_extract(): m = Matrix(4, 3, lambda i, j: i*3 + j) assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10]) assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11]) assert m.extract(range(4), range(3)) == m raises(IndexError, lambda: m.extract([4], [0])) raises(IndexError, lambda: m.extract([0], [3])) def test_reshape(): m0 = eye(3) assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) m1 = Matrix(3, 4, lambda i, j: i + j) assert m1.reshape( 4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5))) assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5))) def test_applyfunc(): m0 = eye(3) assert m0.applyfunc(lambda x: 2*x) == eye(3)*2 assert m0.applyfunc(lambda x: 0) == zeros(3) def test_expand(): m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]]) # Test if expand() returns a matrix m1 = m0.expand() assert m1 == Matrix( [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]]) a = Symbol('a', real=True) assert Matrix([exp(I*a)]).expand(complex=True) == \ Matrix([cos(a) + I*sin(a)]) assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([ [1, 1, Rational(3, 2)], [0, 1, -1], [0, 0, 1]] ) def test_refine(): m0 = Matrix([[Abs(x)**2, sqrt(x**2)], [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]]) m1 = m0.refine(Q.real(x) & Q.real(y)) assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]]) m1 = m0.refine(Q.positive(x) & Q.positive(y)) assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]]) m1 = m0.refine(Q.negative(x) & Q.negative(y)) assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]]) def test_random(): M = randMatrix(3, 3) M = randMatrix(3, 3, seed=3) assert M == randMatrix(3, 3, seed=3) M = randMatrix(3, 4, 0, 150) M = randMatrix(3, seed=4, symmetric=True) assert M == randMatrix(3, seed=4, symmetric=True) S = M.copy() S.simplify() assert S == M # doesn't fail when elements are Numbers, not int rng = random.Random(4) assert M == randMatrix(3, symmetric=True, prng=rng) # Ensure symmetry for size in (10, 11): # Test odd and even for percent in (100, 70, 30): M = randMatrix(size, symmetric=True, percent=percent, prng=rng) assert M == M.T M = randMatrix(10, min=1, percent=70) zero_count = 0 for i in range(M.shape[0]): for j in range(M.shape[1]): if M[i, j] == 0: zero_count += 1 assert zero_count == 30 def test_inverse(): A = eye(4) assert A.inv() == eye(4) assert A.inv(method="LU") == eye(4) assert A.inv(method="ADJ") == eye(4) assert A.inv(method="CH") == eye(4) assert A.inv(method="LDL") == eye(4) assert A.inv(method="QR") == eye(4) A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) Ainv = A.inv() assert A*Ainv == eye(3) assert A.inv(method="LU") == Ainv assert A.inv(method="ADJ") == Ainv assert A.inv(method="CH") == Ainv assert A.inv(method="LDL") == Ainv assert A.inv(method="QR") == Ainv AA = Matrix([[0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0], [1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1], [0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0], [1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1], [1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0], [0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0], [1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1], [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1], [0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0], [0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0]]) assert AA.inv(method="BLOCK") * AA == eye(AA.shape[0]) # test that immutability is not a problem cls = ImmutableMatrix m = cls([[48, 49, 31], [ 9, 71, 94], [59, 28, 65]]) assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split()) cls = ImmutableSparseMatrix m = cls([[48, 49, 31], [ 9, 71, 94], [59, 28, 65]]) assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split()) def test_matrix_inverse_mod(): A = Matrix(2, 1, [1, 0]) raises(NonSquareMatrixError, lambda: A.inv_mod(2)) A = Matrix(2, 2, [1, 0, 0, 0]) raises(ValueError, lambda: A.inv_mod(2)) A = Matrix(2, 2, [1, 2, 3, 4]) Ai = Matrix(2, 2, [1, 1, 0, 1]) assert A.inv_mod(3) == Ai A = Matrix(2, 2, [1, 0, 0, 1]) assert A.inv_mod(2) == A A = Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) raises(ValueError, lambda: A.inv_mod(5)) A = Matrix(3, 3, [5, 1, 3, 2, 6, 0, 2, 1, 1]) Ai = Matrix(3, 3, [6, 8, 0, 1, 5, 6, 5, 6, 4]) assert A.inv_mod(9) == Ai A = Matrix(3, 3, [1, 6, -3, 4, 1, -5, 3, -5, 5]) Ai = Matrix(3, 3, [4, 3, 3, 1, 2, 5, 1, 5, 1]) assert A.inv_mod(6) == Ai A = Matrix(3, 3, [1, 6, 1, 4, 1, 5, 3, 2, 5]) Ai = Matrix(3, 3, [6, 0, 3, 6, 6, 4, 1, 6, 1]) assert A.inv_mod(7) == Ai def test_jacobian_hessian(): L = Matrix(1, 2, [x**2*y, 2*y**2 + x*y]) syms = [x, y] assert L.jacobian(syms) == Matrix([[2*x*y, x**2], [y, 4*y + x]]) L = Matrix(1, 2, [x, x**2*y**3]) assert L.jacobian(syms) == Matrix([[1, 0], [2*x*y**3, x**2*3*y**2]]) f = x**2*y syms = [x, y] assert hessian(f, syms) == Matrix([[2*y, 2*x], [2*x, 0]]) f = x**2*y**3 assert hessian(f, syms) == \ Matrix([[2*y**3, 6*x*y**2], [6*x*y**2, 6*x**2*y]]) f = z + x*y**2 g = x**2 + 2*y**3 ans = Matrix([[0, 2*y], [2*y, 2*x]]) assert ans == hessian(f, Matrix([x, y])) assert ans == hessian(f, Matrix([x, y]).T) assert hessian(f, (y, x), [g]) == Matrix([ [ 0, 6*y**2, 2*x], [6*y**2, 2*x, 2*y], [ 2*x, 2*y, 0]]) def test_wronskian(): assert wronskian([cos(x), sin(x)], x) == cos(x)**2 + sin(x)**2 assert wronskian([exp(x), exp(2*x)], x) == exp(3*x) assert wronskian([exp(x), x], x) == exp(x) - x*exp(x) assert wronskian([1, x, x**2], x) == 2 w1 = -6*exp(x)*sin(x)*x + 6*cos(x)*exp(x)*x**2 - 6*exp(x)*cos(x)*x - \ exp(x)*cos(x)*x**3 + exp(x)*sin(x)*x**3 assert wronskian([exp(x), cos(x), x**3], x).expand() == w1 assert wronskian([exp(x), cos(x), x**3], x, method='berkowitz').expand() \ == w1 w2 = -x**3*cos(x)**2 - x**3*sin(x)**2 - 6*x*cos(x)**2 - 6*x*sin(x)**2 assert wronskian([sin(x), cos(x), x**3], x).expand() == w2 assert wronskian([sin(x), cos(x), x**3], x, method='berkowitz').expand() \ == w2 assert wronskian([], x) == 1 def test_subs(): assert Matrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([x*y]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \ Matrix([(x - 1)*(y - 1)]) for cls in classes: assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).subs(1, 2) def test_xreplace(): assert Matrix([[1, x], [x, 4]]).xreplace({x: 5}) == \ Matrix([[1, 5], [5, 4]]) assert Matrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) for cls in classes: assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).xreplace({1: 2}) def test_simplify(): n = Symbol('n') f = Function('f') M = Matrix([[ 1/x + 1/y, (x + x*y) / x ], [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]]) M.simplify() assert M == Matrix([[ (x + y)/(x * y), 1 + y ], [ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]]) eq = (1 + x)**2 M = Matrix([[eq]]) M.simplify() assert M == Matrix([[eq]]) M.simplify(ratio=oo) assert M == Matrix([[eq.simplify(ratio=oo)]]) def test_transpose(): M = Matrix([[1, 2, 3, 4, 5, 6, 7, 8, 9, 0], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]]) assert M.T == Matrix( [ [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [0, 0] ]) assert M.T.T == M assert M.T == M.transpose() def test_conjugate(): M = Matrix([[0, I, 5], [1, 2, 0]]) assert M.T == Matrix([[0, 1], [I, 2], [5, 0]]) assert M.C == Matrix([[0, -I, 5], [1, 2, 0]]) assert M.C == M.conjugate() assert M.H == M.T.C assert M.H == Matrix([[ 0, 1], [-I, 2], [ 5, 0]]) def test_conj_dirac(): raises(AttributeError, lambda: eye(3).D) M = Matrix([[1, I, I, I], [0, 1, I, I], [0, 0, 1, I], [0, 0, 0, 1]]) assert M.D == Matrix([[ 1, 0, 0, 0], [-I, 1, 0, 0], [-I, -I, -1, 0], [-I, -I, I, -1]]) def test_trace(): M = Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 8]]) assert M.trace() == 14 def test_shape(): M = Matrix([[x, 0, 0], [0, y, 0]]) assert M.shape == (2, 3) def test_col_row_op(): M = Matrix([[x, 0, 0], [0, y, 0]]) M.row_op(1, lambda r, j: r + j + 1) assert M == Matrix([[x, 0, 0], [1, y + 2, 3]]) M.col_op(0, lambda c, j: c + y**j) assert M == Matrix([[x + 1, 0, 0], [1 + y, y + 2, 3]]) # neither row nor slice give copies that allow the original matrix to # be changed assert M.row(0) == Matrix([[x + 1, 0, 0]]) r1 = M.row(0) r1[0] = 42 assert M[0, 0] == x + 1 r1 = M[0, :-1] # also testing negative slice r1[0] = 42 assert M[0, 0] == x + 1 c1 = M.col(0) assert c1 == Matrix([x + 1, 1 + y]) c1[0] = 0 assert M[0, 0] == x + 1 c1 = M[:, 0] c1[0] = 42 assert M[0, 0] == x + 1 def test_zip_row_op(): for cls in classes[:2]: # XXX: immutable matrices don't support row ops M = cls.eye(3) M.zip_row_op(1, 0, lambda v, u: v + 2*u) assert M == cls([[1, 0, 0], [2, 1, 0], [0, 0, 1]]) M = cls.eye(3)*2 M[0, 1] = -1 M.zip_row_op(1, 0, lambda v, u: v + 2*u); M assert M == cls([[2, -1, 0], [4, 0, 0], [0, 0, 2]]) def test_issue_3950(): m = Matrix([1, 2, 3]) a = Matrix([1, 2, 3]) b = Matrix([2, 2, 3]) assert not (m in []) assert not (m in [1]) assert m != 1 assert m == a assert m != b def test_issue_3981(): class Index1: def __index__(self): return 1 class Index2: def __index__(self): return 2 index1 = Index1() index2 = Index2() m = Matrix([1, 2, 3]) assert m[index2] == 3 m[index2] = 5 assert m[2] == 5 m = Matrix([[1, 2, 3], [4, 5, 6]]) assert m[index1, index2] == 6 assert m[1, index2] == 6 assert m[index1, 2] == 6 m[index1, index2] = 4 assert m[1, 2] == 4 m[1, index2] = 6 assert m[1, 2] == 6 m[index1, 2] = 8 assert m[1, 2] == 8 def test_evalf(): a = Matrix([sqrt(5), 6]) assert all(a.evalf()[i] == a[i].evalf() for i in range(2)) assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2)) assert all(a.n(2)[i] == a[i].n(2) for i in range(2)) def test_is_symbolic(): a = Matrix([[x, x], [x, x]]) assert a.is_symbolic() is True a = Matrix([[1, 2, 3, 4], [5, 6, 7, 8]]) assert a.is_symbolic() is False a = Matrix([[1, 2, 3, 4], [5, 6, x, 8]]) assert a.is_symbolic() is True a = Matrix([[1, x, 3]]) assert a.is_symbolic() is True a = Matrix([[1, 2, 3]]) assert a.is_symbolic() is False a = Matrix([[1], [x], [3]]) assert a.is_symbolic() is True a = Matrix([[1], [2], [3]]) assert a.is_symbolic() is False def test_is_upper(): a = Matrix([[1, 2, 3]]) assert a.is_upper is True a = Matrix([[1], [2], [3]]) assert a.is_upper is False a = zeros(4, 2) assert a.is_upper is True def test_is_lower(): a = Matrix([[1, 2, 3]]) assert a.is_lower is False a = Matrix([[1], [2], [3]]) assert a.is_lower is True def test_is_nilpotent(): a = Matrix(4, 4, [0, 2, 1, 6, 0, 0, 1, 2, 0, 0, 0, 3, 0, 0, 0, 0]) assert a.is_nilpotent() a = Matrix([[1, 0], [0, 1]]) assert not a.is_nilpotent() a = Matrix([]) assert a.is_nilpotent() def test_zeros_ones_fill(): n, m = 3, 5 a = zeros(n, m) a.fill( 5 ) b = 5 * ones(n, m) assert a == b assert a.rows == b.rows == 3 assert a.cols == b.cols == 5 assert a.shape == b.shape == (3, 5) assert zeros(2) == zeros(2, 2) assert ones(2) == ones(2, 2) assert zeros(2, 3) == Matrix(2, 3, [0]*6) assert ones(2, 3) == Matrix(2, 3, [1]*6) a.fill(0) assert a == zeros(n, m) def test_empty_zeros(): a = zeros(0) assert a == Matrix() a = zeros(0, 2) assert a.rows == 0 assert a.cols == 2 a = zeros(2, 0) assert a.rows == 2 assert a.cols == 0 def test_issue_3749(): a = Matrix([[x**2, x*y], [x*sin(y), x*cos(y)]]) assert a.diff(x) == Matrix([[2*x, y], [sin(y), cos(y)]]) assert Matrix([ [x, -x, x**2], [exp(x), 1/x - exp(-x), x + 1/x]]).limit(x, oo) == \ Matrix([[oo, -oo, oo], [oo, 0, oo]]) assert Matrix([ [(exp(x) - 1)/x, 2*x + y*x, x**x ], [1/x, abs(x), abs(sin(x + 1))]]).limit(x, 0) == \ Matrix([[1, 0, 1], [oo, 0, sin(1)]]) assert a.integrate(x) == Matrix([ [Rational(1, 3)*x**3, y*x**2/2], [x**2*sin(y)/2, x**2*cos(y)/2]]) def test_inv_iszerofunc(): A = eye(4) A.col_swap(0, 1) for method in "GE", "LU": assert A.inv(method=method, iszerofunc=lambda x: x == 0) == \ A.inv(method="ADJ") def test_jacobian_metrics(): rho, phi = symbols("rho,phi") X = Matrix([rho*cos(phi), rho*sin(phi)]) Y = Matrix([rho, phi]) J = X.jacobian(Y) assert J == X.jacobian(Y.T) assert J == (X.T).jacobian(Y) assert J == (X.T).jacobian(Y.T) g = J.T*eye(J.shape[0])*J g = g.applyfunc(trigsimp) assert g == Matrix([[1, 0], [0, rho**2]]) def test_jacobian2(): rho, phi = symbols("rho,phi") X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) Y = Matrix([rho, phi]) J = Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0], ]) assert X.jacobian(Y) == J def test_issue_4564(): X = Matrix([exp(x + y + z), exp(x + y + z), exp(x + y + z)]) Y = Matrix([x, y, z]) for i in range(1, 3): for j in range(1, 3): X_slice = X[:i, :] Y_slice = Y[:j, :] J = X_slice.jacobian(Y_slice) assert J.rows == i assert J.cols == j for k in range(j): assert J[:, k] == X_slice def test_nonvectorJacobian(): X = Matrix([[exp(x + y + z), exp(x + y + z)], [exp(x + y + z), exp(x + y + z)]]) raises(TypeError, lambda: X.jacobian(Matrix([x, y, z]))) X = X[0, :] Y = Matrix([[x, y], [x, z]]) raises(TypeError, lambda: X.jacobian(Y)) raises(TypeError, lambda: X.jacobian(Matrix([ [x, y], [x, z] ]))) def test_vec(): m = Matrix([[1, 3], [2, 4]]) m_vec = m.vec() assert m_vec.cols == 1 for i in range(4): assert m_vec[i] == i + 1 def test_vech(): m = Matrix([[1, 2], [2, 3]]) m_vech = m.vech() assert m_vech.cols == 1 for i in range(3): assert m_vech[i] == i + 1 m_vech = m.vech(diagonal=False) assert m_vech[0] == 2 m = Matrix([[1, x*(x + y)], [y*x + x**2, 1]]) m_vech = m.vech(diagonal=False) assert m_vech[0] == y*x + x**2 m = Matrix([[1, x*(x + y)], [y*x, 1]]) m_vech = m.vech(diagonal=False, check_symmetry=False) assert m_vech[0] == y*x raises(ShapeError, lambda: Matrix([[1, 3]]).vech()) raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech()) raises(ShapeError, lambda: Matrix([[1, 3]]).vech()) raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech()) def test_diag(): # mostly tested in testcommonmatrix.py assert diag([1, 2, 3]) == Matrix([1, 2, 3]) m = [1, 2, [3]] raises(ValueError, lambda: diag(m)) assert diag(m, strict=False) == Matrix([1, 2, 3]) def test_get_diag_blocks1(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert a.get_diag_blocks() == [a] assert b.get_diag_blocks() == [b] assert c.get_diag_blocks() == [c] def test_get_diag_blocks2(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert diag(a, b, b).get_diag_blocks() == [a, b, b] assert diag(a, b, c).get_diag_blocks() == [a, b, c] assert diag(a, c, b).get_diag_blocks() == [a, c, b] assert diag(c, c, b).get_diag_blocks() == [c, c, b] def test_inv_block(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) A = diag(a, b, b) assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), b.inv()) A = diag(a, b, c) assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), c.inv()) A = diag(a, c, b) assert A.inv(try_block_diag=True) == diag(a.inv(), c.inv(), b.inv()) A = diag(a, a, b, a, c, a) assert A.inv(try_block_diag=True) == diag( a.inv(), a.inv(), b.inv(), a.inv(), c.inv(), a.inv()) assert A.inv(try_block_diag=True, method="ADJ") == diag( a.inv(method="ADJ"), a.inv(method="ADJ"), b.inv(method="ADJ"), a.inv(method="ADJ"), c.inv(method="ADJ"), a.inv(method="ADJ")) def test_creation_args(): """ Check that matrix dimensions can be specified using any reasonable type (see issue 4614). """ raises(ValueError, lambda: zeros(3, -1)) raises(TypeError, lambda: zeros(1, 2, 3, 4)) assert zeros(int(3)) == zeros(3) assert zeros(Integer(3)) == zeros(3) raises(ValueError, lambda: zeros(3.)) assert eye(int(3)) == eye(3) assert eye(Integer(3)) == eye(3) raises(ValueError, lambda: eye(3.)) assert ones(int(3), Integer(4)) == ones(3, 4) raises(TypeError, lambda: Matrix(5)) raises(TypeError, lambda: Matrix(1, 2)) raises(ValueError, lambda: Matrix([1, [2]])) def test_diagonal_symmetrical(): m = Matrix(2, 2, [0, 1, 1, 0]) assert not m.is_diagonal() assert m.is_symmetric() assert m.is_symmetric(simplify=False) m = Matrix(2, 2, [1, 0, 0, 1]) assert m.is_diagonal() m = diag(1, 2, 3) assert m.is_diagonal() assert m.is_symmetric() m = Matrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3]) assert m == diag(1, 2, 3) m = Matrix(2, 3, zeros(2, 3)) assert not m.is_symmetric() assert m.is_diagonal() m = Matrix(((5, 0), (0, 6), (0, 0))) assert m.is_diagonal() m = Matrix(((5, 0, 0), (0, 6, 0))) assert m.is_diagonal() m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) assert m.is_symmetric() assert not m.is_symmetric(simplify=False) assert m.expand().is_symmetric(simplify=False) def test_diagonalization(): m = Matrix([[1, 2+I], [2-I, 3]]) assert m.is_diagonalizable() m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) assert not m.is_diagonalizable() assert not m.is_symmetric() raises(NonSquareMatrixError, lambda: m.diagonalize()) # diagonalizable m = diag(1, 2, 3) (P, D) = m.diagonalize() assert P == eye(3) assert D == m m = Matrix(2, 2, [0, 1, 1, 0]) assert m.is_symmetric() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D m = Matrix(2, 2, [1, 0, 0, 3]) assert m.is_symmetric() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D assert P == eye(2) assert D == m m = Matrix(2, 2, [1, 1, 0, 0]) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D for i in P: assert i.as_numer_denom()[1] == 1 m = Matrix(2, 2, [1, 0, 0, 0]) assert m.is_diagonal() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D assert P == Matrix([[0, 1], [1, 0]]) # diagonalizable, complex only m = Matrix(2, 2, [0, 1, -1, 0]) assert not m.is_diagonalizable(True) raises(MatrixError, lambda: m.diagonalize(True)) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D # not diagonalizable m = Matrix(2, 2, [0, 1, 0, 0]) assert not m.is_diagonalizable() raises(MatrixError, lambda: m.diagonalize()) m = Matrix(3, 3, [-3, 1, -3, 20, 3, 10, 2, -2, 4]) assert not m.is_diagonalizable() raises(MatrixError, lambda: m.diagonalize()) # symbolic a, b, c, d = symbols('a b c d') m = Matrix(2, 2, [a, c, c, b]) assert m.is_symmetric() assert m.is_diagonalizable() def test_issue_15887(): # Mutable matrix should not use cache a = MutableDenseMatrix([[0, 1], [1, 0]]) assert a.is_diagonalizable() is True a[1, 0] = 0 assert a.is_diagonalizable() is False a = MutableDenseMatrix([[0, 1], [1, 0]]) a.diagonalize() a[1, 0] = 0 raises(MatrixError, lambda: a.diagonalize()) def test_jordan_form(): m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) raises(NonSquareMatrixError, lambda: m.jordan_form()) # diagonalizable m = Matrix(3, 3, [7, -12, 6, 10, -19, 10, 12, -24, 13]) Jmust = Matrix(3, 3, [-1, 0, 0, 0, 1, 0, 0, 0, 1]) P, J = m.jordan_form() assert Jmust == J assert Jmust == m.diagonalize()[1] # m = Matrix(3, 3, [0, 6, 3, 1, 3, 1, -2, 2, 1]) # m.jordan_form() # very long # m.jordan_form() # # diagonalizable, complex only # Jordan cells # complexity: one of eigenvalues is zero m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) # The blocks are ordered according to the value of their eigenvalues, # in order to make the matrix compatible with .diagonalize() Jmust = Matrix(3, 3, [2, 1, 0, 0, 2, 0, 0, 0, 2]) P, J = m.jordan_form() assert Jmust == J # complexity: all of eigenvalues are equal m = Matrix(3, 3, [2, 6, -15, 1, 1, -5, 1, 2, -6]) # Jmust = Matrix(3, 3, [-1, 0, 0, 0, -1, 1, 0, 0, -1]) # same here see 1456ff Jmust = Matrix(3, 3, [-1, 1, 0, 0, -1, 0, 0, 0, -1]) P, J = m.jordan_form() assert Jmust == J # complexity: two of eigenvalues are zero m = Matrix(3, 3, [4, -5, 2, 5, -7, 3, 6, -9, 4]) Jmust = Matrix(3, 3, [0, 1, 0, 0, 0, 0, 0, 0, 1]) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5]) Jmust = Matrix(4, 4, [2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2] ) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [6, 2, -8, -6, -3, 2, 9, 6, 2, -2, -8, -6, -1, 0, 3, 4]) # Jmust = Matrix(4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, -2]) # same here see 1456ff Jmust = Matrix(4, 4, [-2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2]) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [5, 4, 2, 1, 0, 1, -1, -1, -1, -1, 3, 0, 1, 1, -1, 2]) assert not m.is_diagonalizable() Jmust = Matrix(4, 4, [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4]) P, J = m.jordan_form() assert Jmust == J # checking for maximum precision to remain unchanged m = Matrix([[Float('1.0', precision=110), Float('2.0', precision=110)], [Float('3.14159265358979323846264338327', precision=110), Float('4.0', precision=110)]]) P, J = m.jordan_form() for term in J.values(): if isinstance(term, Float): assert term._prec == 110 def test_jordan_form_complex_issue_9274(): A = Matrix([[ 2, 4, 1, 0], [-4, 2, 0, 1], [ 0, 0, 2, 4], [ 0, 0, -4, 2]]) p = 2 - 4*I; q = 2 + 4*I; Jmust1 = Matrix([[p, 1, 0, 0], [0, p, 0, 0], [0, 0, q, 1], [0, 0, 0, q]]) Jmust2 = Matrix([[q, 1, 0, 0], [0, q, 0, 0], [0, 0, p, 1], [0, 0, 0, p]]) P, J = A.jordan_form() assert J == Jmust1 or J == Jmust2 assert simplify(P*J*P.inv()) == A def test_issue_10220(): # two non-orthogonal Jordan blocks with eigenvalue 1 M = Matrix([[1, 0, 0, 1], [0, 1, 1, 0], [0, 0, 1, 1], [0, 0, 0, 1]]) P, J = M.jordan_form() assert P == Matrix([[0, 1, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]) assert J == Matrix([ [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) def test_jordan_form_issue_15858(): A = Matrix([ [1, 1, 1, 0], [-2, -1, 0, -1], [0, 0, -1, -1], [0, 0, 2, 1]]) (P, J) = A.jordan_form() assert P.expand() == Matrix([ [ -I, -I/2, I, I/2], [-1 + I, 0, -1 - I, 0], [ 0, -S(1)/2 - I/2, 0, -S(1)/2 + I/2], [ 0, 1, 0, 1]]) assert J == Matrix([ [-I, 1, 0, 0], [0, -I, 0, 0], [0, 0, I, 1], [0, 0, 0, I]]) def test_Matrix_berkowitz_charpoly(): UA, K_i, K_w = symbols('UA K_i K_w') A = Matrix([[-K_i - UA + K_i**2/(K_i + K_w), K_i*K_w/(K_i + K_w)], [ K_i*K_w/(K_i + K_w), -K_w + K_w**2/(K_i + K_w)]]) charpoly = A.charpoly(x) assert charpoly == \ Poly(x**2 + (K_i*UA + K_w*UA + 2*K_i*K_w)/(K_i + K_w)*x + K_i*K_w*UA/(K_i + K_w), x, domain='ZZ(K_i,K_w,UA)') assert type(charpoly) is PurePoly A = Matrix([[1, 3], [2, 0]]) assert A.charpoly() == A.charpoly(x) == PurePoly(x**2 - x - 6) A = Matrix([[1, 2], [x, 0]]) p = A.charpoly(x) assert p.gen != x assert p.as_expr().subs(p.gen, x) == x**2 - 3*x def test_exp_jordan_block(): l = Symbol('lamda') m = Matrix.jordan_block(1, l) assert m._eval_matrix_exp_jblock() == Matrix([[exp(l)]]) m = Matrix.jordan_block(3, l) assert m._eval_matrix_exp_jblock() == \ Matrix([ [exp(l), exp(l), exp(l)/2], [0, exp(l), exp(l)], [0, 0, exp(l)]]) def test_exp(): m = Matrix([[3, 4], [0, -2]]) m_exp = Matrix([[exp(3), -4*exp(-2)/5 + 4*exp(3)/5], [0, exp(-2)]]) assert m.exp() == m_exp assert exp(m) == m_exp m = Matrix([[1, 0], [0, 1]]) assert m.exp() == Matrix([[E, 0], [0, E]]) assert exp(m) == Matrix([[E, 0], [0, E]]) m = Matrix([[1, -1], [1, 1]]) assert m.exp() == Matrix([[E*cos(1), -E*sin(1)], [E*sin(1), E*cos(1)]]) def test_log(): l = Symbol('lamda') m = Matrix.jordan_block(1, l) assert m._eval_matrix_log_jblock() == Matrix([[log(l)]]) m = Matrix.jordan_block(4, l) assert m._eval_matrix_log_jblock() == \ Matrix( [ [log(l), 1/l, -1/(2*l**2), 1/(3*l**3)], [0, log(l), 1/l, -1/(2*l**2)], [0, 0, log(l), 1/l], [0, 0, 0, log(l)] ] ) m = Matrix( [[0, 0, 1], [0, 0, 0], [-1, 0, 0]] ) raises(MatrixError, lambda: m.log()) def test_has(): A = Matrix(((x, y), (2, 3))) assert A.has(x) assert not A.has(z) assert A.has(Symbol) A = A.subs(x, 2) assert not A.has(x) def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero1(): # Test if matrices._find_reasonable_pivot_naive() # finds a guaranteed non-zero pivot when the # some of the candidate pivots are symbolic expressions. # Keyword argument: simpfunc=None indicates that no simplifications # should be performed during the search. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2 + sin(x)**2, S.Half]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column) assert pivot_val == S.Half def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero2(): # Test if matrices._find_reasonable_pivot_naive() # finds a guaranteed non-zero pivot when the # some of the candidate pivots are symbolic expressions. # Keyword argument: simpfunc=_simplify indicates that the search # should attempt to simplify candidate pivots. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2+sin(x)**2+x**2, cos(x)**2+sin(x)**2]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column, simpfunc=_simplify) assert pivot_val == 1 def test_find_reasonable_pivot_naive_simplifies(): # Test if matrices._find_reasonable_pivot_naive() # simplifies candidate pivots, and reports # their offsets correctly. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2+sin(x)**2+x, cos(x)**2+sin(x)**2]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column, simpfunc=_simplify) assert len(simplified) == 2 assert simplified[0][0] == 1 assert simplified[0][1] == 1+x assert simplified[1][0] == 2 assert simplified[1][1] == 1 def test_errors(): raises(ValueError, lambda: Matrix([[1, 2], [1]])) raises(IndexError, lambda: Matrix([[1, 2]])[1.2, 5]) raises(IndexError, lambda: Matrix([[1, 2]])[1, 5.2]) raises(ValueError, lambda: randMatrix(3, c=4, symmetric=True)) raises(ValueError, lambda: Matrix([1, 2]).reshape(4, 6)) raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_matrix([1, 0], Matrix([1, 2]))) raises(TypeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_list([0, 1], set())) raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [2, 3, 0]]).inv()) raises(ShapeError, lambda: Matrix(1, 2, [1, 2]).row_join(Matrix([[1, 2], [3, 4]]))) raises( ShapeError, lambda: Matrix([1, 2]).col_join(Matrix([[1, 2], [3, 4]]))) raises(ShapeError, lambda: Matrix([1]).row_insert(1, Matrix([[1, 2], [3, 4]]))) raises(ShapeError, lambda: Matrix([1]).col_insert(1, Matrix([[1, 2], [3, 4]]))) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).trace()) raises(TypeError, lambda: Matrix([1]).applyfunc(1)) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor(4, 5)) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor_submatrix(4, 5)) raises(TypeError, lambda: Matrix([1, 2, 3]).cross(1)) raises(TypeError, lambda: Matrix([1, 2, 3]).dot(1)) raises(ShapeError, lambda: Matrix([1, 2, 3]).dot(Matrix([1, 2]))) raises(ShapeError, lambda: Matrix([1, 2]).dot([])) raises(TypeError, lambda: Matrix([1, 2]).dot('a')) raises(ShapeError, lambda: Matrix([1, 2]).dot([1, 2, 3])) raises(NonSquareMatrixError, lambda: Matrix([1, 2, 3]).exp()) raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).normalized()) raises(ValueError, lambda: Matrix([1, 2]).inv(method='not a method')) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_GE()) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_GE()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_ADJ()) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_ADJ()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_LU()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).is_nilpotent()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).det()) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).det(method='Not a real method')) raises(ValueError, lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc="Not function")) raises(ValueError, lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc=False)) raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), Matrix([[1, 2], [2, 1]]))) raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), [])) raises(ValueError, lambda: hessian(Symbol('x')**2, 'a')) raises(IndexError, lambda: eye(3)[5, 2]) raises(IndexError, lambda: eye(3)[2, 5]) M = Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) raises(ValueError, lambda: M.det('method=LU_decomposition()')) V = Matrix([[10, 10, 10]]) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(ValueError, lambda: M.row_insert(4.7, V)) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(ValueError, lambda: M.col_insert(-4.2, V)) def test_len(): assert len(Matrix()) == 0 assert len(Matrix([[1, 2]])) == len(Matrix([[1], [2]])) == 2 assert len(Matrix(0, 2, lambda i, j: 0)) == \ len(Matrix(2, 0, lambda i, j: 0)) == 0 assert len(Matrix([[0, 1, 2], [3, 4, 5]])) == 6 assert Matrix([1]) == Matrix([[1]]) assert not Matrix() assert Matrix() == Matrix([]) def test_integrate(): A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2))) assert A.integrate(x) == \ Matrix(((x, 4*x, x**2/2), (x*y, 2*x, 4*x), (10*x, 5*x, x**3/3))) assert A.integrate(y) == \ Matrix(((y, 4*y, x*y), (y**2/2, 2*y, 4*y), (10*y, 5*y, y*x**2))) def test_limit(): A = Matrix(((1, 4, sin(x)/x), (y, 2, 4), (10, 5, x**2 + 1))) assert A.limit(x, 0) == Matrix(((1, 4, 1), (y, 2, 4), (10, 5, 1))) def test_diff(): A = MutableDenseMatrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) assert isinstance(A.diff(x), type(A)) assert A.diff(x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert A.diff(y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) assert diff(A, x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert diff(A, y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) A_imm = A.as_immutable() assert isinstance(A_imm.diff(x), type(A_imm)) assert A_imm.diff(x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert A_imm.diff(y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) assert diff(A_imm, x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert diff(A_imm, y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) def test_diff_by_matrix(): # Derive matrix by matrix: A = MutableDenseMatrix([[x, y], [z, t]]) assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(A, A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) A_imm = A.as_immutable() assert A_imm.diff(A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(A_imm, A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # Derive a constant matrix: assert A.diff(a) == MutableDenseMatrix([[0, 0], [0, 0]]) B = ImmutableDenseMatrix([a, b]) assert A.diff(B) == Array.zeros(2, 1, 2, 2) assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # Test diff with tuples: dB = B.diff([[a, b]]) assert dB.shape == (2, 2, 1) assert dB == Array([[[1], [0]], [[0], [1]]]) f = Function("f") fxyz = f(x, y, z) assert fxyz.diff([[x, y, z]]) == Array([fxyz.diff(x), fxyz.diff(y), fxyz.diff(z)]) assert fxyz.diff(([x, y, z], 2)) == Array([ [fxyz.diff(x, 2), fxyz.diff(x, y), fxyz.diff(x, z)], [fxyz.diff(x, y), fxyz.diff(y, 2), fxyz.diff(y, z)], [fxyz.diff(x, z), fxyz.diff(z, y), fxyz.diff(z, 2)], ]) expr = sin(x)*exp(y) assert expr.diff([[x, y]]) == Array([cos(x)*exp(y), sin(x)*exp(y)]) assert expr.diff(y, ((x, y),)) == Array([cos(x)*exp(y), sin(x)*exp(y)]) assert expr.diff(x, ((x, y),)) == Array([-sin(x)*exp(y), cos(x)*exp(y)]) assert expr.diff(((y, x),), [[x, y]]) == Array([[cos(x)*exp(y), -sin(x)*exp(y)], [sin(x)*exp(y), cos(x)*exp(y)]]) # Test different notations: assert fxyz.diff(x).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[0, 1, 0] assert fxyz.diff(z).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[2, 1, 0] assert fxyz.diff([[x, y, z]], ((z, y, x),)) == Array([[fxyz.diff(i).diff(j) for i in (x, y, z)] for j in (z, y, x)]) # Test scalar derived by matrix remains matrix: res = x.diff(Matrix([[x, y]])) assert isinstance(res, ImmutableDenseMatrix) assert res == Matrix([[1, 0]]) res = (x**3).diff(Matrix([[x, y]])) assert isinstance(res, ImmutableDenseMatrix) assert res == Matrix([[3*x**2, 0]]) def test_getattr(): A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) raises(AttributeError, lambda: A.nonexistantattribute) assert getattr(A, 'diff')(x) == Matrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) def test_hessenberg(): A = Matrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]]) assert A.is_upper_hessenberg A = A.T assert A.is_lower_hessenberg A[0, -1] = 1 assert A.is_lower_hessenberg is False A = Matrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]]) assert not A.is_upper_hessenberg A = zeros(5, 2) assert A.is_upper_hessenberg def test_cholesky(): raises(NonSquareMatrixError, lambda: Matrix((1, 2)).cholesky()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky()) raises(ValueError, lambda: Matrix(((5 + I, 0), (0, 1))).cholesky()) raises(ValueError, lambda: Matrix(((1, 5), (5, 1))).cholesky()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky(hermitian=False)) assert Matrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([ [sqrt(5 + I), 0], [0, 1]]) A = Matrix(((1, 5), (5, 1))) L = A.cholesky(hermitian=False) assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]]) assert L*L.T == A A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L = A.cholesky() assert L * L.T == A assert L.is_lower assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) A = Matrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) assert A.cholesky().expand() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3))) raises(NonSquareMatrixError, lambda: SparseMatrix((1, 2)).cholesky()) raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky()) raises(ValueError, lambda: SparseMatrix(((5 + I, 0), (0, 1))).cholesky()) raises(ValueError, lambda: SparseMatrix(((1, 5), (5, 1))).cholesky()) raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky(hermitian=False)) assert SparseMatrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([ [sqrt(5 + I), 0], [0, 1]]) A = SparseMatrix(((1, 5), (5, 1))) L = A.cholesky(hermitian=False) assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]]) assert L*L.T == A A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L = A.cholesky() assert L * L.T == A assert L.is_lower assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) A = SparseMatrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) assert A.cholesky() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3))) def test_matrix_norm(): # Vector Tests # Test columns and symbols x = Symbol('x', real=True) v = Matrix([cos(x), sin(x)]) assert trigsimp(v.norm(2)) == 1 assert v.norm(10) == Pow(cos(x)**10 + sin(x)**10, Rational(1, 10)) # Test Rows A = Matrix([[5, Rational(3, 2)]]) assert A.norm() == Pow(25 + Rational(9, 4), S.Half) assert A.norm(oo) == max(A) assert A.norm(-oo) == min(A) # Matrix Tests # Intuitive test A = Matrix([[1, 1], [1, 1]]) assert A.norm(2) == 2 assert A.norm(-2) == 0 assert A.norm('frobenius') == 2 assert eye(10).norm(2) == eye(10).norm(-2) == 1 assert A.norm(oo) == 2 # Test with Symbols and more complex entries A = Matrix([[3, y, y], [x, S.Half, -pi]]) assert (A.norm('fro') == sqrt(Rational(37, 4) + 2*abs(y)**2 + pi**2 + x**2)) # Check non-square A = Matrix([[1, 2, -3], [4, 5, Rational(13, 2)]]) assert A.norm(2) == sqrt(Rational(389, 8) + sqrt(78665)/8) assert A.norm(-2) is S.Zero assert A.norm('frobenius') == sqrt(389)/2 # Test properties of matrix norms # https://en.wikipedia.org/wiki/Matrix_norm#Definition # Two matrices A = Matrix([[1, 2], [3, 4]]) B = Matrix([[5, 5], [-2, 2]]) C = Matrix([[0, -I], [I, 0]]) D = Matrix([[1, 0], [0, -1]]) L = [A, B, C, D] alpha = Symbol('alpha', real=True) for order in ['fro', 2, -2]: # Zero Check assert zeros(3).norm(order) is S.Zero # Check Triangle Inequality for all Pairs of Matrices for X in L: for Y in L: dif = (X.norm(order) + Y.norm(order) - (X + Y).norm(order)) assert (dif >= 0) # Scalar multiplication linearity for M in [A, B, C, D]: dif = simplify((alpha*M).norm(order) - abs(alpha) * M.norm(order)) assert dif == 0 # Test Properties of Vector Norms # https://en.wikipedia.org/wiki/Vector_norm # Two column vectors a = Matrix([1, 1 - 1*I, -3]) b = Matrix([S.Half, 1*I, 1]) c = Matrix([-1, -1, -1]) d = Matrix([3, 2, I]) e = Matrix([Integer(1e2), Rational(1, 1e2), 1]) L = [a, b, c, d, e] alpha = Symbol('alpha', real=True) for order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity, pi]: # Zero Check if order > 0: assert Matrix([0, 0, 0]).norm(order) is S.Zero # Triangle inequality on all pairs if order >= 1: # Triangle InEq holds only for these norms for X in L: for Y in L: dif = (X.norm(order) + Y.norm(order) - (X + Y).norm(order)) assert simplify(dif >= 0) is S.true # Linear to scalar multiplication if order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity]: for X in L: dif = simplify((alpha*X).norm(order) - (abs(alpha) * X.norm(order))) assert dif == 0 # ord=1 M = Matrix(3, 3, [1, 3, 0, -2, -1, 0, 3, 9, 6]) assert M.norm(1) == 13 def test_condition_number(): x = Symbol('x', real=True) A = eye(3) A[0, 0] = 10 A[2, 2] = Rational(1, 10) assert A.condition_number() == 100 A[1, 1] = x assert A.condition_number() == Max(10, Abs(x)) / Min(Rational(1, 10), Abs(x)) M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]]) Mc = M.condition_number() assert all(Float(1.).epsilon_eq(Mc.subs(x, val).evalf()) for val in [Rational(1, 5), S.Half, Rational(1, 10), pi/2, pi, pi*Rational(7, 4) ]) #issue 10782 assert Matrix([]).condition_number() == 0 def test_equality(): A = Matrix(((1, 2, 3), (4, 5, 6), (7, 8, 9))) B = Matrix(((9, 8, 7), (6, 5, 4), (3, 2, 1))) assert A == A[:, :] assert not A != A[:, :] assert not A == B assert A != B assert A != 10 assert not A == 10 # A SparseMatrix can be equal to a Matrix C = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) D = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) assert C == D assert not C != D def test_col_join(): assert eye(3).col_join(Matrix([[7, 7, 7]])) == \ Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], [7, 7, 7]]) def test_row_insert(): r4 = Matrix([[4, 4, 4]]) for i in range(-4, 5): l = [1, 0, 0] l.insert(i, 4) assert flatten(eye(3).row_insert(i, r4).col(0).tolist()) == l def test_col_insert(): c4 = Matrix([4, 4, 4]) for i in range(-4, 5): l = [0, 0, 0] l.insert(i, 4) assert flatten(zeros(3).col_insert(i, c4).row(0).tolist()) == l def test_normalized(): assert Matrix([3, 4]).normalized() == \ Matrix([Rational(3, 5), Rational(4, 5)]) # Zero vector trivial cases assert Matrix([0, 0, 0]).normalized() == Matrix([0, 0, 0]) # Machine precision error truncation trivial cases m = Matrix([0,0,1.e-100]) assert m.normalized( iszerofunc=lambda x: x.evalf(n=10, chop=True).is_zero ) == Matrix([0, 0, 0]) def test_print_nonzero(): assert capture(lambda: eye(3).print_nonzero()) == \ '[X ]\n[ X ]\n[ X]\n' assert capture(lambda: eye(3).print_nonzero('.')) == \ '[. ]\n[ . ]\n[ .]\n' def test_zeros_eye(): assert Matrix.eye(3) == eye(3) assert Matrix.zeros(3) == zeros(3) assert ones(3, 4) == Matrix(3, 4, [1]*12) i = Matrix([[1, 0], [0, 1]]) z = Matrix([[0, 0], [0, 0]]) for cls in classes: m = cls.eye(2) assert i == m # but m == i will fail if m is immutable assert i == eye(2, cls=cls) assert type(m) == cls m = cls.zeros(2) assert z == m assert z == zeros(2, cls=cls) assert type(m) == cls def test_is_zero(): assert Matrix().is_zero_matrix assert Matrix([[0, 0], [0, 0]]).is_zero_matrix assert zeros(3, 4).is_zero_matrix assert not eye(3).is_zero_matrix assert Matrix([[x, 0], [0, 0]]).is_zero_matrix == None assert SparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert ImmutableMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert ImmutableSparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert Matrix([[x, 1], [0, 0]]).is_zero_matrix == False a = Symbol('a', nonzero=True) assert Matrix([[a, 0], [0, 0]]).is_zero_matrix == False def test_rotation_matrices(): # This tests the rotation matrices by rotating about an axis and back. theta = pi/3 r3_plus = rot_axis3(theta) r3_minus = rot_axis3(-theta) r2_plus = rot_axis2(theta) r2_minus = rot_axis2(-theta) r1_plus = rot_axis1(theta) r1_minus = rot_axis1(-theta) assert r3_minus*r3_plus*eye(3) == eye(3) assert r2_minus*r2_plus*eye(3) == eye(3) assert r1_minus*r1_plus*eye(3) == eye(3) # Check the correctness of the trace of the rotation matrix assert r1_plus.trace() == 1 + 2*cos(theta) assert r2_plus.trace() == 1 + 2*cos(theta) assert r3_plus.trace() == 1 + 2*cos(theta) # Check that a rotation with zero angle doesn't change anything. assert rot_axis1(0) == eye(3) assert rot_axis2(0) == eye(3) assert rot_axis3(0) == eye(3) # Check left-hand convention # see Issue #24529 q1 = Quaternion.from_axis_angle([1, 0, 0], pi / 2) q2 = Quaternion.from_axis_angle([0, 1, 0], pi / 2) q3 = Quaternion.from_axis_angle([0, 0, 1], pi / 2) assert rot_axis1(- pi / 2) == q1.to_rotation_matrix() assert rot_axis2(- pi / 2) == q2.to_rotation_matrix() assert rot_axis3(- pi / 2) == q3.to_rotation_matrix() # Check right-hand convention assert rot_ccw_axis1(+ pi / 2) == q1.to_rotation_matrix() assert rot_ccw_axis2(+ pi / 2) == q2.to_rotation_matrix() assert rot_ccw_axis3(+ pi / 2) == q3.to_rotation_matrix() def test_DeferredVector(): assert str(DeferredVector("vector")[4]) == "vector[4]" assert sympify(DeferredVector("d")) == DeferredVector("d") raises(IndexError, lambda: DeferredVector("d")[-1]) assert str(DeferredVector("d")) == "d" assert repr(DeferredVector("test")) == "DeferredVector('test')" def test_DeferredVector_not_iterable(): assert not iterable(DeferredVector('X')) def test_DeferredVector_Matrix(): raises(TypeError, lambda: Matrix(DeferredVector("V"))) def test_GramSchmidt(): R = Rational m1 = Matrix(1, 2, [1, 2]) m2 = Matrix(1, 2, [2, 3]) assert GramSchmidt([m1, m2]) == \ [Matrix(1, 2, [1, 2]), Matrix(1, 2, [R(2)/5, R(-1)/5])] assert GramSchmidt([m1.T, m2.T]) == \ [Matrix(2, 1, [1, 2]), Matrix(2, 1, [R(2)/5, R(-1)/5])] # from wikipedia assert GramSchmidt([Matrix([3, 1]), Matrix([2, 2])], True) == [ Matrix([3*sqrt(10)/10, sqrt(10)/10]), Matrix([-sqrt(10)/10, 3*sqrt(10)/10])] # https://github.com/sympy/sympy/issues/9488 L = FiniteSet(Matrix([1])) assert GramSchmidt(L) == [Matrix([[1]])] def test_casoratian(): assert casoratian([1, 2, 3, 4], 1) == 0 assert casoratian([1, 2, 3, 4], 1, zero=False) == 0 def test_zero_dimension_multiply(): assert (Matrix()*zeros(0, 3)).shape == (0, 3) assert zeros(3, 0)*zeros(0, 3) == zeros(3, 3) assert zeros(0, 3)*zeros(3, 0) == Matrix() def test_slice_issue_2884(): m = Matrix(2, 2, range(4)) assert m[1, :] == Matrix([[2, 3]]) assert m[-1, :] == Matrix([[2, 3]]) assert m[:, 1] == Matrix([[1, 3]]).T assert m[:, -1] == Matrix([[1, 3]]).T raises(IndexError, lambda: m[2, :]) raises(IndexError, lambda: m[2, 2]) def test_slice_issue_3401(): assert zeros(0, 3)[:, -1].shape == (0, 1) assert zeros(3, 0)[0, :] == Matrix(1, 0, []) def test_copyin(): s = zeros(3, 3) s[3] = 1 assert s[:, 0] == Matrix([0, 1, 0]) assert s[3] == 1 assert s[3: 4] == [1] s[1, 1] = 42 assert s[1, 1] == 42 assert s[1, 1:] == Matrix([[42, 0]]) s[1, 1:] = Matrix([[5, 6]]) assert s[1, :] == Matrix([[1, 5, 6]]) s[1, 1:] = [[42, 43]] assert s[1, :] == Matrix([[1, 42, 43]]) s[0, 0] = 17 assert s[:, :1] == Matrix([17, 1, 0]) s[0, 0] = [1, 1, 1] assert s[:, 0] == Matrix([1, 1, 1]) s[0, 0] = Matrix([1, 1, 1]) assert s[:, 0] == Matrix([1, 1, 1]) s[0, 0] = SparseMatrix([1, 1, 1]) assert s[:, 0] == Matrix([1, 1, 1]) def test_invertible_check(): # sometimes a singular matrix will have a pivot vector shorter than # the number of rows in a matrix... assert Matrix([[1, 2], [1, 2]]).rref() == (Matrix([[1, 2], [0, 0]]), (0,)) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inv()) m = Matrix([ [-1, -1, 0], [ x, 1, 1], [ 1, x, -1], ]) assert len(m.rref()[1]) != m.rows # in addition, unless simplify=True in the call to rref, the identity # matrix will be returned even though m is not invertible assert m.rref()[0] != eye(3) assert m.rref(simplify=signsimp)[0] != eye(3) raises(ValueError, lambda: m.inv(method="ADJ")) raises(ValueError, lambda: m.inv(method="GE")) raises(ValueError, lambda: m.inv(method="LU")) def test_issue_3959(): x, y = symbols('x, y') e = x*y assert e.subs(x, Matrix([3, 5, 3])) == Matrix([3, 5, 3])*y def test_issue_5964(): assert str(Matrix([[1, 2], [3, 4]])) == 'Matrix([[1, 2], [3, 4]])' def test_issue_7604(): x, y = symbols("x y") assert sstr(Matrix([[x, 2*y], [y**2, x + 3]])) == \ 'Matrix([\n[ x, 2*y],\n[y**2, x + 3]])' def test_is_Identity(): assert eye(3).is_Identity assert eye(3).as_immutable().is_Identity assert not zeros(3).is_Identity assert not ones(3).is_Identity # issue 6242 assert not Matrix([[1, 0, 0]]).is_Identity # issue 8854 assert SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1}).is_Identity assert not SparseMatrix(2,3, range(6)).is_Identity assert not SparseMatrix(3,3, {(0,0):1, (1,1):1}).is_Identity assert not SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1, (0,1):2, (0,2):3}).is_Identity def test_dot(): assert ones(1, 3).dot(ones(3, 1)) == 3 assert ones(1, 3).dot([1, 1, 1]) == 3 assert Matrix([1, 2, 3]).dot(Matrix([1, 2, 3])) == 14 assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I])) == -5 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=False) == -5 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True) == 13 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True, conjugate_convention="physics") == 13 - I assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="right") == 4 + 8*I assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="left") == 4 - 8*I assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), hermitian=False, conjugate_convention="left") == -5 assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), conjugate_convention="left") == 5 raises(ValueError, lambda: Matrix([1, 2]).dot(Matrix([3, 4]), hermitian=True, conjugate_convention="test")) def test_dual(): B_x, B_y, B_z, E_x, E_y, E_z = symbols( 'B_x B_y B_z E_x E_y E_z', real=True) F = Matrix(( ( 0, E_x, E_y, E_z), (-E_x, 0, B_z, -B_y), (-E_y, -B_z, 0, B_x), (-E_z, B_y, -B_x, 0) )) Fd = Matrix(( ( 0, -B_x, -B_y, -B_z), (B_x, 0, E_z, -E_y), (B_y, -E_z, 0, E_x), (B_z, E_y, -E_x, 0) )) assert F.dual().equals(Fd) assert eye(3).dual().equals(zeros(3)) assert F.dual().dual().equals(-F) def test_anti_symmetric(): assert Matrix([1, 2]).is_anti_symmetric() is False m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0]) assert m.is_anti_symmetric() is True assert m.is_anti_symmetric(simplify=False) is False assert m.is_anti_symmetric(simplify=lambda x: x) is False # tweak to fail m[2, 1] = -m[2, 1] assert m.is_anti_symmetric() is False # untweak m[2, 1] = -m[2, 1] m = m.expand() assert m.is_anti_symmetric(simplify=False) is True m[0, 0] = 1 assert m.is_anti_symmetric() is False def test_normalize_sort_diogonalization(): A = Matrix(((1, 2), (2, 1))) P, Q = A.diagonalize(normalize=True) assert P*P.T == P.T*P == eye(P.cols) P, Q = A.diagonalize(normalize=True, sort=True) assert P*P.T == P.T*P == eye(P.cols) assert P*Q*P.inv() == A def test_issue_5321(): raises(ValueError, lambda: Matrix([[1, 2, 3], Matrix(0, 1, [])])) def test_issue_5320(): assert Matrix.hstack(eye(2), 2*eye(2)) == Matrix([ [1, 0, 2, 0], [0, 1, 0, 2] ]) assert Matrix.vstack(eye(2), 2*eye(2)) == Matrix([ [1, 0], [0, 1], [2, 0], [0, 2] ]) cls = SparseMatrix assert cls.hstack(cls(eye(2)), cls(2*eye(2))) == Matrix([ [1, 0, 2, 0], [0, 1, 0, 2] ]) def test_issue_11944(): A = Matrix([[1]]) AIm = sympify(A) assert Matrix.hstack(AIm, A) == Matrix([[1, 1]]) assert Matrix.vstack(AIm, A) == Matrix([[1], [1]]) def test_cross(): a = [1, 2, 3] b = [3, 4, 5] col = Matrix([-2, 4, -2]) row = col.T def test(M, ans): assert ans == M assert type(M) == cls for cls in classes: A = cls(a) B = cls(b) test(A.cross(B), col) test(A.cross(B.T), col) test(A.T.cross(B.T), row) test(A.T.cross(B), row) raises(ShapeError, lambda: Matrix(1, 2, [1, 1]).cross(Matrix(1, 2, [1, 1]))) def test_hash(): for cls in classes[-2:]: s = {cls.eye(1), cls.eye(1)} assert len(s) == 1 and s.pop() == cls.eye(1) # issue 3979 for cls in classes[:2]: assert not isinstance(cls.eye(1), Hashable) @XFAIL def test_issue_3979(): # when this passes, delete this and change the [1:2] # to [:2] in the test_hash above for issue 3979 cls = classes[0] raises(AttributeError, lambda: hash(cls.eye(1))) def test_adjoint(): dat = [[0, I], [1, 0]] ans = Matrix([[0, 1], [-I, 0]]) for cls in classes: assert ans == cls(dat).adjoint() def test_simplify_immutable(): assert simplify(ImmutableMatrix([[sin(x)**2 + cos(x)**2]])) == \ ImmutableMatrix([[1]]) def test_replace(): F, G = symbols('F, G', cls=Function) K = Matrix(2, 2, lambda i, j: G(i+j)) M = Matrix(2, 2, lambda i, j: F(i+j)) N = M.replace(F, G) assert N == K def test_replace_map(): F, G = symbols('F, G', cls=Function) with warns_deprecated_sympy(): K = Matrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1): G(1)}), (G(2), {F(2): G(2)})]) M = Matrix(2, 2, lambda i, j: F(i+j)) with warns(SymPyDeprecationWarning, test_stacklevel=False): N = M.replace(F, G, True) assert N == K def test_atoms(): m = Matrix([[1, 2], [x, 1 - 1/x]]) assert m.atoms() == {S.One,S(2),S.NegativeOne, x} assert m.atoms(Symbol) == {x} def test_pinv(): # Pseudoinverse of an invertible matrix is the inverse. A1 = Matrix([[a, b], [c, d]]) assert simplify(A1.pinv(method="RD")) == simplify(A1.inv()) # Test the four properties of the pseudoinverse for various matrices. As = [Matrix([[13, 104], [2212, 3], [-3, 5]]), Matrix([[1, 7, 9], [11, 17, 19]]), Matrix([a, b])] for A in As: A_pinv = A.pinv(method="RD") AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA # XXX Pinv with diagonalization makes expression too complicated. for A in As: A_pinv = simplify(A.pinv(method="ED")) AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA # XXX Computing pinv using diagonalization makes an expression that # is too complicated to simplify. # A1 = Matrix([[a, b], [c, d]]) # assert simplify(A1.pinv(method="ED")) == simplify(A1.inv()) # so this is tested numerically at a fixed random point from sympy.core.numbers import comp q = A1.pinv(method="ED") w = A1.inv() reps = {a: -73633, b: 11362, c: 55486, d: 62570} assert all( comp(i.n(), j.n()) for i, j in zip(q.subs(reps), w.subs(reps)) ) @slow @XFAIL def test_pinv_rank_deficient_when_diagonalization_fails(): # Test the four properties of the pseudoinverse for matrices when # diagonalization of A.H*A fails. As = [ Matrix([ [61, 89, 55, 20, 71, 0], [62, 96, 85, 85, 16, 0], [69, 56, 17, 4, 54, 0], [10, 54, 91, 41, 71, 0], [ 7, 30, 10, 48, 90, 0], [0, 0, 0, 0, 0, 0]]) ] for A in As: A_pinv = A.pinv(method="ED") AAp = A * A_pinv ApA = A_pinv * A assert AAp.H == AAp assert ApA.H == ApA def test_issue_7201(): assert ones(0, 1) + ones(0, 1) == Matrix(0, 1, []) assert ones(1, 0) + ones(1, 0) == Matrix(1, 0, []) def test_free_symbols(): for M in ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix: assert M([[x], [0]]).free_symbols == {x} def test_from_ndarray(): """See issue 7465.""" try: from numpy import array except ImportError: skip('NumPy must be available to test creating matrices from ndarrays') assert Matrix(array([1, 2, 3])) == Matrix([1, 2, 3]) assert Matrix(array([[1, 2, 3]])) == Matrix([[1, 2, 3]]) assert Matrix(array([[1, 2, 3], [4, 5, 6]])) == \ Matrix([[1, 2, 3], [4, 5, 6]]) assert Matrix(array([x, y, z])) == Matrix([x, y, z]) raises(NotImplementedError, lambda: Matrix(array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))) assert Matrix([array([1, 2]), array([3, 4])]) == Matrix([[1, 2], [3, 4]]) assert Matrix([array([1, 2]), [3, 4]]) == Matrix([[1, 2], [3, 4]]) assert Matrix([array([]), array([])]) == Matrix([]) def test_17522_numpy(): from sympy.matrices.common import _matrixify try: from numpy import array, matrix except ImportError: skip('NumPy must be available to test indexing matrixified NumPy ndarrays and matrices') m = _matrixify(array([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] with ignore_warnings(PendingDeprecationWarning): m = _matrixify(matrix([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] def test_17522_mpmath(): from sympy.matrices.common import _matrixify try: from mpmath import matrix except ImportError: skip('mpmath must be available to test indexing matrixified mpmath matrices') m = _matrixify(matrix([[1, 2], [3, 4]])) assert m[3] == 4.0 assert list(m) == [1.0, 2.0, 3.0, 4.0] def test_17522_scipy(): from sympy.matrices.common import _matrixify try: from scipy.sparse import csr_matrix except ImportError: skip('SciPy must be available to test indexing matrixified SciPy sparse matrices') m = _matrixify(csr_matrix([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] def test_hermitian(): a = Matrix([[1, I], [-I, 1]]) assert a.is_hermitian a[0, 0] = 2*I assert a.is_hermitian is False a[0, 0] = x assert a.is_hermitian is None a[0, 1] = a[1, 0]*I assert a.is_hermitian is False def test_doit(): a = Matrix([[Add(x,x, evaluate=False)]]) assert a[0] != 2*x assert a.doit() == Matrix([[2*x]]) def test_issue_9457_9467_9876(): # for row_del(index) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) M.row_del(1) assert M == Matrix([[1, 2, 3], [3, 4, 5]]) N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) N.row_del(-2) assert N == Matrix([[1, 2, 3], [3, 4, 5]]) O = Matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11]]) O.row_del(-1) assert O == Matrix([[1, 2, 3], [5, 6, 7]]) P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: P.row_del(10)) Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: Q.row_del(-10)) # for col_del(index) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) M.col_del(1) assert M == Matrix([[1, 3], [2, 4], [3, 5]]) N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) N.col_del(-2) assert N == Matrix([[1, 3], [2, 4], [3, 5]]) P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: P.col_del(10)) Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: Q.col_del(-10)) def test_issue_9422(): x, y = symbols('x y', commutative=False) a, b = symbols('a b') M = eye(2) M1 = Matrix(2, 2, [x, y, y, z]) assert y*x*M != x*y*M assert b*a*M == a*b*M assert x*M1 != M1*x assert a*M1 == M1*a assert y*x*M == Matrix([[y*x, 0], [0, y*x]]) def test_issue_10770(): M = Matrix([]) a = ['col_insert', 'row_join'], Matrix([9, 6, 3]) b = ['row_insert', 'col_join'], a[1].T c = ['row_insert', 'col_insert'], Matrix([[1, 2], [3, 4]]) for ops, m in (a, b, c): for op in ops: f = getattr(M, op) new = f(m) if 'join' in op else f(42, m) assert new == m and id(new) != id(m) def test_issue_10658(): A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert A.extract([0, 1, 2], [True, True, False]) == \ Matrix([[1, 2], [4, 5], [7, 8]]) assert A.extract([0, 1, 2], [True, False, False]) == Matrix([[1], [4], [7]]) assert A.extract([True, False, False], [0, 1, 2]) == Matrix([[1, 2, 3]]) assert A.extract([True, False, True], [0, 1, 2]) == \ Matrix([[1, 2, 3], [7, 8, 9]]) assert A.extract([0, 1, 2], [False, False, False]) == Matrix(3, 0, []) assert A.extract([False, False, False], [0, 1, 2]) == Matrix(0, 3, []) assert A.extract([True, False, True], [False, True, False]) == \ Matrix([[2], [8]]) def test_opportunistic_simplification(): # this test relates to issue #10718, #9480, #11434 # issue #9480 m = Matrix([[-5 + 5*sqrt(2), -5], [-5*sqrt(2)/2 + 5, -5*sqrt(2)/2]]) assert m.rank() == 1 # issue #10781 m = Matrix([[3+3*sqrt(3)*I, -9],[4,-3+3*sqrt(3)*I]]) assert simplify(m.rref()[0] - Matrix([[1, -9/(3 + 3*sqrt(3)*I)], [0, 0]])) == zeros(2, 2) # issue #11434 ax,ay,bx,by,cx,cy,dx,dy,ex,ey,t0,t1 = symbols('a_x a_y b_x b_y c_x c_y d_x d_y e_x e_y t_0 t_1') m = Matrix([[ax,ay,ax*t0,ay*t0,0],[bx,by,bx*t0,by*t0,0],[cx,cy,cx*t0,cy*t0,1],[dx,dy,dx*t0,dy*t0,1],[ex,ey,2*ex*t1-ex*t0,2*ey*t1-ey*t0,0]]) assert m.rank() == 4 def test_partial_pivoting(): # example from https://en.wikipedia.org/wiki/Pivot_element # partial pivoting with back substitution gives a perfect result # naive pivoting give an error ~1e-13, so anything better than # 1e-15 is good mm=Matrix([[0.003, 59.14, 59.17], [5.291, -6.13, 46.78]]) assert (mm.rref()[0] - Matrix([[1.0, 0, 10.0], [ 0, 1.0, 1.0]])).norm() < 1e-15 # issue #11549 m_mixed = Matrix([[6e-17, 1.0, 4], [ -1.0, 0, 8], [ 0, 0, 1]]) m_float = Matrix([[6e-17, 1.0, 4.], [ -1.0, 0., 8.], [ 0., 0., 1.]]) m_inv = Matrix([[ 0, -1.0, 8.0], [1.0, 6.0e-17, -4.0], [ 0, 0, 1]]) # this example is numerically unstable and involves a matrix with a norm >= 8, # this comparing the difference of the results with 1e-15 is numerically sound. assert (m_mixed.inv() - m_inv).norm() < 1e-15 assert (m_float.inv() - m_inv).norm() < 1e-15 def test_iszero_substitution(): """ When doing numerical computations, all elements that pass the iszerofunc test should be set to numerically zero if they aren't already. """ # Matrix from issue #9060 m = Matrix([[0.9, -0.1, -0.2, 0],[-0.8, 0.9, -0.4, 0],[-0.1, -0.8, 0.6, 0]]) m_rref = m.rref(iszerofunc=lambda x: abs(x)<6e-15)[0] m_correct = Matrix([[1.0, 0, -0.301369863013699, 0],[ 0, 1.0, -0.712328767123288, 0],[ 0, 0, 0, 0]]) m_diff = m_rref - m_correct assert m_diff.norm() < 1e-15 # if a zero-substitution wasn't made, this entry will be -1.11022302462516e-16 assert m_rref[2,2] == 0 def test_issue_11238(): from sympy.geometry.point import Point xx = 8*tan(pi*Rational(13, 45))/(tan(pi*Rational(13, 45)) + sqrt(3)) yy = (-8*sqrt(3)*tan(pi*Rational(13, 45))**2 + 24*tan(pi*Rational(13, 45)))/(-3 + tan(pi*Rational(13, 45))**2) p1 = Point(0, 0) p2 = Point(1, -sqrt(3)) p0 = Point(xx,yy) m1 = Matrix([p1 - simplify(p0), p2 - simplify(p0)]) m2 = Matrix([p1 - p0, p2 - p0]) m3 = Matrix([simplify(p1 - p0), simplify(p2 - p0)]) # This system has expressions which are zero and # cannot be easily proved to be such, so without # numerical testing, these assertions will fail. Z = lambda x: abs(x.n()) < 1e-20 assert m1.rank(simplify=True, iszerofunc=Z) == 1 assert m2.rank(simplify=True, iszerofunc=Z) == 1 assert m3.rank(simplify=True, iszerofunc=Z) == 1 def test_as_real_imag(): m1 = Matrix(2,2,[1,2,3,4]) m2 = m1*S.ImaginaryUnit m3 = m1 + m2 for kls in classes: a,b = kls(m3).as_real_imag() assert list(a) == list(m1) assert list(b) == list(m1) def test_deprecated(): # Maintain tests for deprecated functions. We must capture # the deprecation warnings. When the deprecated functionality is # removed, the corresponding tests should be removed. m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) P, Jcells = m.jordan_cells() assert Jcells[1] == Matrix(1, 1, [2]) assert Jcells[0] == Matrix(2, 2, [2, 1, 0, 2]) def test_issue_14489(): from sympy.core.mod import Mod A = Matrix([-1, 1, 2]) B = Matrix([10, 20, -15]) assert Mod(A, 3) == Matrix([2, 1, 2]) assert Mod(B, 4) == Matrix([2, 0, 1]) def test_issue_14943(): # Test that __array__ accepts the optional dtype argument try: from numpy import array except ImportError: skip('NumPy must be available to test creating matrices from ndarrays') M = Matrix([[1,2], [3,4]]) assert array(M, dtype=float).dtype.name == 'float64' def test_case_6913(): m = MatrixSymbol('m', 1, 1) a = Symbol("a") a = m[0, 0]>0 assert str(a) == 'm[0, 0] > 0' def test_issue_11948(): A = MatrixSymbol('A', 3, 3) a = Wild('a') assert A.match(a) == {a: A} def test_gramschmidt_conjugate_dot(): vecs = [Matrix([1, I]), Matrix([1, -I])] assert Matrix.orthogonalize(*vecs) == \ [Matrix([[1], [I]]), Matrix([[1], [-I]])] vecs = [Matrix([1, I, 0]), Matrix([I, 0, -I])] assert Matrix.orthogonalize(*vecs) == \ [Matrix([[1], [I], [0]]), Matrix([[I/2], [S(1)/2], [-I]])] mat = Matrix([[1, I], [1, -I]]) Q, R = mat.QRdecomposition() assert Q * Q.H == Matrix.eye(2) def test_issue_8207(): a = Matrix(MatrixSymbol('a', 3, 1)) b = Matrix(MatrixSymbol('b', 3, 1)) c = a.dot(b) d = diff(c, a[0, 0]) e = diff(d, a[0, 0]) assert d == b[0, 0] assert e == 0 def test_func(): from sympy.simplify.simplify import nthroot A = Matrix([[1, 2],[0, 3]]) assert A.analytic_func(sin(x*t), x) == Matrix([[sin(t), sin(3*t) - sin(t)], [0, sin(3*t)]]) A = Matrix([[2, 1],[1, 2]]) assert (pi * A / 6).analytic_func(cos(x), x) == Matrix([[sqrt(3)/4, -sqrt(3)/4], [-sqrt(3)/4, sqrt(3)/4]]) raises(ValueError, lambda : zeros(5).analytic_func(log(x), x)) raises(ValueError, lambda : (A*x).analytic_func(log(x), x)) A = Matrix([[0, -1, -2, 3], [0, -1, -2, 3], [0, 1, 0, -1], [0, 0, -1, 1]]) assert A.analytic_func(exp(x), x) == A.exp() raises(ValueError, lambda : A.analytic_func(sqrt(x), x)) A = Matrix([[41, 12],[12, 34]]) assert simplify(A.analytic_func(sqrt(x), x)**2) == A A = Matrix([[3, -12, 4], [-1, 0, -2], [-1, 5, -1]]) assert simplify(A.analytic_func(nthroot(x, 3), x)**3) == A A = Matrix([[2, 0, 0, 0], [1, 2, 0, 0], [0, 1, 3, 0], [0, 0, 1, 3]]) assert A.analytic_func(exp(x), x) == A.exp() A = Matrix([[0, 2, 1, 6], [0, 0, 1, 2], [0, 0, 0, 3], [0, 0, 0, 0]]) assert A.analytic_func(exp(x*t), x) == expand(simplify((A*t).exp())) def test_issue_19809(): if pyodide_js: skip("can't run on pyodide") def f(): assert _dotprodsimp_state.state == None m = Matrix([[1]]) m = m * m return True with dotprodsimp(True): with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(f) assert future.result() def test_issue_23276(): M = Matrix([x, y]) assert integrate(M, (x, 0, 1), (y, 0, 1)) == Matrix([ [S.Half], [S.Half]])
c43674d1bb60a6385e584b79e7b21472834a6595477f08787304942a481ad52a
from __future__ import annotations from functools import wraps from sympy.core import S, Integer, Basic, Mul, Add from sympy.core.assumptions import check_assumptions from sympy.core.decorators import call_highest_priority from sympy.core.expr import Expr, ExprBuilder from sympy.core.logic import FuzzyBool from sympy.core.symbol import Str, Dummy, symbols, Symbol from sympy.core.sympify import SympifyError, _sympify from sympy.external.gmpy import SYMPY_INTS from sympy.functions import conjugate, adjoint from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.common import NonSquareMatrixError from sympy.matrices.matrices import MatrixKind, MatrixBase from sympy.multipledispatch import dispatch from sympy.utilities.misc import filldedent def _sympifyit(arg, retval=None): # This version of _sympifyit sympifies MutableMatrix objects def deco(func): @wraps(func) def __sympifyit_wrapper(a, b): try: b = _sympify(b) return func(a, b) except SympifyError: return retval return __sympifyit_wrapper return deco class MatrixExpr(Expr): """Superclass for Matrix Expressions MatrixExprs represent abstract matrices, linear transformations represented within a particular basis. Examples ======== >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 3, 3) >>> y = MatrixSymbol('y', 3, 1) >>> x = (A.T*A).I * A * y See Also ======== MatrixSymbol, MatAdd, MatMul, Transpose, Inverse """ __slots__: tuple[str, ...] = () # Should not be considered iterable by the # sympy.utilities.iterables.iterable function. Subclass that actually are # iterable (i.e., explicit matrices) should set this to True. _iterable = False _op_priority = 11.0 is_Matrix: bool = True is_MatrixExpr: bool = True is_Identity: FuzzyBool = None is_Inverse = False is_Transpose = False is_ZeroMatrix = False is_MatAdd = False is_MatMul = False is_commutative = False is_number = False is_symbol = False is_scalar = False kind: MatrixKind = MatrixKind() def __new__(cls, *args, **kwargs): args = map(_sympify, args) return Basic.__new__(cls, *args, **kwargs) # The following is adapted from the core Expr object @property def shape(self) -> tuple[Expr, Expr]: raise NotImplementedError @property def _add_handler(self): return MatAdd @property def _mul_handler(self): return MatMul def __neg__(self): return MatMul(S.NegativeOne, self).doit() def __abs__(self): raise NotImplementedError @_sympifyit('other', NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return MatAdd(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return MatAdd(other, self).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return MatAdd(self, -other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return MatAdd(other, -self).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return MatMul(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __matmul__(self, other): return MatMul(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return MatMul(other, self).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmatmul__(self, other): return MatMul(other, self).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__rpow__') def __pow__(self, other): return MatPow(self, other).doit() @_sympifyit('other', NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): raise NotImplementedError("Matrix Power not defined") @_sympifyit('other', NotImplemented) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return self * other**S.NegativeOne @_sympifyit('other', NotImplemented) @call_highest_priority('__truediv__') def __rtruediv__(self, other): raise NotImplementedError() #return MatMul(other, Pow(self, S.NegativeOne)) @property def rows(self): return self.shape[0] @property def cols(self): return self.shape[1] @property def is_square(self) -> bool | None: rows, cols = self.shape if isinstance(rows, Integer) and isinstance(cols, Integer): return rows == cols if rows == cols: return True return None def _eval_conjugate(self): from sympy.matrices.expressions.adjoint import Adjoint return Adjoint(Transpose(self)) def as_real_imag(self, deep=True, **hints): return self._eval_as_real_imag() def _eval_as_real_imag(self): real = S.Half * (self + self._eval_conjugate()) im = (self - self._eval_conjugate())/(2*S.ImaginaryUnit) return (real, im) def _eval_inverse(self): return Inverse(self) def _eval_determinant(self): return Determinant(self) def _eval_transpose(self): return Transpose(self) def _eval_power(self, exp): """ Override this in sub-classes to implement simplification of powers. The cases where the exponent is -1, 0, 1 are already covered in MatPow.doit(), so implementations can exclude these cases. """ return MatPow(self, exp) def _eval_simplify(self, **kwargs): if self.is_Atom: return self else: from sympy.simplify import simplify return self.func(*[simplify(x, **kwargs) for x in self.args]) def _eval_adjoint(self): from sympy.matrices.expressions.adjoint import Adjoint return Adjoint(self) def _eval_derivative_n_times(self, x, n): return Basic._eval_derivative_n_times(self, x, n) def _eval_derivative(self, x): # `x` is a scalar: if self.has(x): # See if there are other methods using it: return super()._eval_derivative(x) else: return ZeroMatrix(*self.shape) @classmethod def _check_dim(cls, dim): """Helper function to check invalid matrix dimensions""" ok = check_assumptions(dim, integer=True, nonnegative=True) if ok is False: raise ValueError( "The dimension specification {} should be " "a nonnegative integer.".format(dim)) def _entry(self, i, j, **kwargs): raise NotImplementedError( "Indexing not implemented for %s" % self.__class__.__name__) def adjoint(self): return adjoint(self) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product.""" return S.One, self def conjugate(self): return conjugate(self) def transpose(self): from sympy.matrices.expressions.transpose import transpose return transpose(self) @property def T(self): '''Matrix transposition''' return self.transpose() def inverse(self): if self.is_square is False: raise NonSquareMatrixError('Inverse of non-square matrix') return self._eval_inverse() def inv(self): return self.inverse() def det(self): from sympy.matrices.expressions.determinant import det return det(self) @property def I(self): return self.inverse() def valid_index(self, i, j): def is_valid(idx): return isinstance(idx, (int, Integer, Symbol, Expr)) return (is_valid(i) and is_valid(j) and (self.rows is None or (i >= -self.rows) != False and (i < self.rows) != False) and (j >= -self.cols) != False and (j < self.cols) != False) def __getitem__(self, key): if not isinstance(key, tuple) and isinstance(key, slice): from sympy.matrices.expressions.slice import MatrixSlice return MatrixSlice(self, key, (0, None, 1)) if isinstance(key, tuple) and len(key) == 2: i, j = key if isinstance(i, slice) or isinstance(j, slice): from sympy.matrices.expressions.slice import MatrixSlice return MatrixSlice(self, i, j) i, j = _sympify(i), _sympify(j) if self.valid_index(i, j) != False: return self._entry(i, j) else: raise IndexError("Invalid indices (%s, %s)" % (i, j)) elif isinstance(key, (SYMPY_INTS, Integer)): # row-wise decomposition of matrix rows, cols = self.shape # allow single indexing if number of columns is known if not isinstance(cols, Integer): raise IndexError(filldedent(''' Single indexing is only supported when the number of columns is known.''')) key = _sympify(key) i = key // cols j = key % cols if self.valid_index(i, j) != False: return self._entry(i, j) else: raise IndexError("Invalid index %s" % key) elif isinstance(key, (Symbol, Expr)): raise IndexError(filldedent(''' Only integers may be used when addressing the matrix with a single index.''')) raise IndexError("Invalid index, wanted %s[i,j]" % self) def _is_shape_symbolic(self) -> bool: return (not isinstance(self.rows, (SYMPY_INTS, Integer)) or not isinstance(self.cols, (SYMPY_INTS, Integer))) def as_explicit(self): """ Returns a dense Matrix with elements represented explicitly Returns an object of type ImmutableDenseMatrix. Examples ======== >>> from sympy import Identity >>> I = Identity(3) >>> I I >>> I.as_explicit() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== as_mutable: returns mutable Matrix type """ if self._is_shape_symbolic(): raise ValueError( 'Matrix with symbolic shape ' 'cannot be represented explicitly.') from sympy.matrices.immutable import ImmutableDenseMatrix return ImmutableDenseMatrix([[self[i, j] for j in range(self.cols)] for i in range(self.rows)]) def as_mutable(self): """ Returns a dense, mutable matrix with elements represented explicitly Examples ======== >>> from sympy import Identity >>> I = Identity(3) >>> I I >>> I.shape (3, 3) >>> I.as_mutable() Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== as_explicit: returns ImmutableDenseMatrix """ return self.as_explicit().as_mutable() def __array__(self): from numpy import empty a = empty(self.shape, dtype=object) for i in range(self.rows): for j in range(self.cols): a[i, j] = self[i, j] return a def equals(self, other): """ Test elementwise equality between matrices, potentially of different types >>> from sympy import Identity, eye >>> Identity(3).equals(eye(3)) True """ return self.as_explicit().equals(other) def canonicalize(self): return self def as_coeff_mmul(self): return S.One, MatMul(self) @staticmethod def from_index_summation(expr, first_index=None, last_index=None, dimensions=None): r""" Parse expression of matrices with explicitly summed indices into a matrix expression without indices, if possible. This transformation expressed in mathematical notation: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Optional parameter ``first_index``: specify which free index to use as the index starting the expression. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum >>> from sympy.abc import i, j, k, l, N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A.T*B Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) Trace(A) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> MatrixExpr.from_index_summation(expr) A*B.T*A.T """ from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix first_indices = [] if first_index is not None: first_indices.append(first_index) if last_index is not None: first_indices.append(last_index) arr = convert_indexed_to_array(expr, first_indices=first_indices) return convert_array_to_matrix(arr) def applyfunc(self, func): from .applyfunc import ElementwiseApplyFunction return ElementwiseApplyFunction(func, self) @dispatch(MatrixExpr, Expr) def _eval_is_eq(lhs, rhs): # noqa:F811 return False @dispatch(MatrixExpr, MatrixExpr) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 if lhs.shape != rhs.shape: return False if (lhs - rhs).is_ZeroMatrix: return True def get_postprocessor(cls): def _postprocessor(expr): # To avoid circular imports, we can't have MatMul/MatAdd on the top level mat_class = {Mul: MatMul, Add: MatAdd}[cls] nonmatrices = [] matrices = [] for term in expr.args: if isinstance(term, MatrixExpr): matrices.append(term) else: nonmatrices.append(term) if not matrices: return cls._from_args(nonmatrices) if nonmatrices: if cls == Mul: for i in range(len(matrices)): if not matrices[i].is_MatrixExpr: # If one of the matrices explicit, absorb the scalar into it # (doit will combine all explicit matrices into one, so it # doesn't matter which) matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices)) nonmatrices = [] break else: # Maintain the ability to create Add(scalar, matrix) without # raising an exception. That way different algorithms can # replace matrix expressions with non-commutative symbols to # manipulate them like non-commutative scalars. return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)]) if mat_class == MatAdd: return mat_class(*matrices).doit(deep=False) return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False) return _postprocessor Basic._constructor_postprocessor_mapping[MatrixExpr] = { "Mul": [get_postprocessor(Mul)], "Add": [get_postprocessor(Add)], } def _matrix_derivative(expr, x, old_algorithm=False): if isinstance(expr, MatrixBase) or isinstance(x, MatrixBase): # Do not use array expressions for explicit matrices: old_algorithm = True if old_algorithm: return _matrix_derivative_old_algorithm(expr, x) from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix array_expr = convert_matrix_to_array(expr) diff_array_expr = array_derive(array_expr, x) diff_matrix_expr = convert_array_to_matrix(diff_array_expr) return diff_matrix_expr def _matrix_derivative_old_algorithm(expr, x): from sympy.tensor.array.array_derivatives import ArrayDerivative lines = expr._eval_derivative_matrix_lines(x) parts = [i.build() for i in lines] from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix parts = [[convert_array_to_matrix(j) for j in i] for i in parts] def _get_shape(elem): if isinstance(elem, MatrixExpr): return elem.shape return 1, 1 def get_rank(parts): return sum([j not in (1, None) for i in parts for j in _get_shape(i)]) ranks = [get_rank(i) for i in parts] rank = ranks[0] def contract_one_dims(parts): if len(parts) == 1: return parts[0] else: p1, p2 = parts[:2] if p2.is_Matrix: p2 = p2.T if p1 == Identity(1): pbase = p2 elif p2 == Identity(1): pbase = p1 else: pbase = p1*p2 if len(parts) == 2: return pbase else: # len(parts) > 2 if pbase.is_Matrix: raise ValueError("") return pbase*Mul.fromiter(parts[2:]) if rank <= 2: return Add.fromiter([contract_one_dims(i) for i in parts]) return ArrayDerivative(expr, x) class MatrixElement(Expr): parent = property(lambda self: self.args[0]) i = property(lambda self: self.args[1]) j = property(lambda self: self.args[2]) _diff_wrt = True is_symbol = True is_commutative = True def __new__(cls, name, n, m): n, m = map(_sympify, (n, m)) from sympy.matrices.matrices import MatrixBase if isinstance(name, str): name = Symbol(name) else: if isinstance(name, MatrixBase): if n.is_Integer and m.is_Integer: return name[n, m] name = _sympify(name) # change mutable into immutable else: name = _sympify(name) if not isinstance(name.kind, MatrixKind): raise TypeError("First argument of MatrixElement should be a matrix") if not getattr(name, 'valid_index', lambda n, m: True)(n, m): raise IndexError('indices out of range') obj = Expr.__new__(cls, name, n, m) return obj @property def symbol(self): return self.args[0] def doit(self, **hints): deep = hints.get('deep', True) if deep: args = [arg.doit(**hints) for arg in self.args] else: args = self.args return args[0][args[1], args[2]] @property def indices(self): return self.args[1:] def _eval_derivative(self, v): if not isinstance(v, MatrixElement): from sympy.matrices.matrices import MatrixBase if isinstance(self.parent, MatrixBase): return self.parent.diff(v)[self.i, self.j] return S.Zero M = self.args[0] m, n = self.parent.shape if M == v.args[0]: return KroneckerDelta(self.args[1], v.args[1], (0, m-1)) * \ KroneckerDelta(self.args[2], v.args[2], (0, n-1)) if isinstance(M, Inverse): from sympy.concrete.summations import Sum i, j = self.args[1:] i1, i2 = symbols("z1, z2", cls=Dummy) Y = M.args[0] r1, r2 = Y.shape return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1)) if self.has(v.args[0]): return None return S.Zero class MatrixSymbol(MatrixExpr): """Symbolic representation of a Matrix object Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions Examples ======== >>> from sympy import MatrixSymbol, Identity >>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix >>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix >>> A.shape (3, 4) >>> 2*A*B + Identity(3) I + 2*A*B """ is_commutative = False is_symbol = True _diff_wrt = True def __new__(cls, name, n, m): n, m = _sympify(n), _sympify(m) cls._check_dim(m) cls._check_dim(n) if isinstance(name, str): name = Str(name) obj = Basic.__new__(cls, name, n, m) return obj @property def shape(self): return self.args[1], self.args[2] @property def name(self): return self.args[0].name def _entry(self, i, j, **kwargs): return MatrixElement(self, i, j) @property def free_symbols(self): return {self} def _eval_simplify(self, **kwargs): return self def _eval_derivative(self, x): # x is a scalar: return ZeroMatrix(self.shape[0], self.shape[1]) def _eval_derivative_matrix_lines(self, x): if self != x: first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero return [_LeftRightArgs( [first, second], )] else: first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One return [_LeftRightArgs( [first, second], )] def matrix_symbols(expr): return [sym for sym in expr.free_symbols if sym.is_Matrix] class _LeftRightArgs: r""" Helper class to compute matrix derivatives. The logic: when an expression is derived by a matrix `X_{mn}`, two lines of matrix multiplications are created: the one contracted to `m` (first line), and the one contracted to `n` (second line). Transposition flips the side by which new matrices are connected to the lines. The trace connects the end of the two lines. """ def __init__(self, lines, higher=S.One): self._lines = [i for i in lines] self._first_pointer_parent = self._lines self._first_pointer_index = 0 self._first_line_index = 0 self._second_pointer_parent = self._lines self._second_pointer_index = 1 self._second_line_index = 1 self.higher = higher @property def first_pointer(self): return self._first_pointer_parent[self._first_pointer_index] @first_pointer.setter def first_pointer(self, value): self._first_pointer_parent[self._first_pointer_index] = value @property def second_pointer(self): return self._second_pointer_parent[self._second_pointer_index] @second_pointer.setter def second_pointer(self, value): self._second_pointer_parent[self._second_pointer_index] = value def __repr__(self): built = [self._build(i) for i in self._lines] return "_LeftRightArgs(lines=%s, higher=%s)" % ( built, self.higher, ) def transpose(self): self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index return self @staticmethod def _build(expr): if isinstance(expr, ExprBuilder): return expr.build() if isinstance(expr, list): if len(expr) == 1: return expr[0] else: return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]]) else: return expr def build(self): data = [self._build(i) for i in self._lines] if self.higher != 1: data += [self._build(self.higher)] data = [i for i in data] return data def matrix_form(self): if self.first != 1 and self.higher != 1: raise ValueError("higher dimensional array cannot be represented") def _get_shape(elem): if isinstance(elem, MatrixExpr): return elem.shape return (None, None) if _get_shape(self.first)[1] != _get_shape(self.second)[1]: # Remove one-dimensional identity matrices: # (this is needed by `a.diff(a)` where `a` is a vector) if _get_shape(self.second) == (1, 1): return self.first*self.second[0, 0] if _get_shape(self.first) == (1, 1): return self.first[1, 1]*self.second.T raise ValueError("incompatible shapes") if self.first != 1: return self.first*self.second.T else: return self.higher def rank(self): """ Number of dimensions different from trivial (warning: not related to matrix rank). """ rank = 0 if self.first != 1: rank += sum([i != 1 for i in self.first.shape]) if self.second != 1: rank += sum([i != 1 for i in self.second.shape]) if self.higher != 1: rank += 2 return rank def _multiply_pointer(self, pointer, other): from ...tensor.array.expressions.array_expressions import ArrayTensorProduct from ...tensor.array.expressions.array_expressions import ArrayContraction subexpr = ExprBuilder( ArrayContraction, [ ExprBuilder( ArrayTensorProduct, [ pointer, other ] ), (1, 2) ], validator=ArrayContraction._validate ) return subexpr def append_first(self, other): self.first_pointer *= other def append_second(self, other): self.second_pointer *= other def _make_matrix(x): from sympy.matrices.immutable import ImmutableDenseMatrix if isinstance(x, MatrixExpr): return x return ImmutableDenseMatrix([[x]]) from .matmul import MatMul from .matadd import MatAdd from .matpow import MatPow from .transpose import Transpose from .inverse import Inverse from .special import ZeroMatrix, Identity from .determinant import Determinant
f6605e6806435fbf896d8b3ab4c0a536e183ca011354dfdd0974a51e6c808708
""" Some examples have been taken from: http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf """ from sympy import KroneckerProduct from sympy.combinatorics import Permutation from sympy.concrete.summations import Sum from sympy.core.numbers import Rational from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin, tan) from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.expressions.determinant import Determinant from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product) from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.special import OneMatrix from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions.special import (Identity, ZeroMatrix) from sympy.tensor.array.array_derivatives import ArrayDerivative from sympy.matrices.expressions import hadamard_power from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims i, j, k = symbols("i j k") m, n = symbols("m n") X = MatrixSymbol("X", k, k) x = MatrixSymbol("x", k, 1) y = MatrixSymbol("y", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) D = MatrixSymbol("D", k, k) a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) c = MatrixSymbol("c", k, 1) d = MatrixSymbol("d", k, 1) KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1)) def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2): # TODO: this is commented because it slows down the tests. return expr = expr.xreplace({k: dim}) x = x.xreplace({k: dim}) diffexpr = diffexpr.xreplace({k: dim}) expr = expr.as_explicit() x = x.as_explicit() diffexpr = diffexpr.as_explicit() assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr def test_matrix_derivative_by_scalar(): assert A.diff(i) == ZeroMatrix(k, k) assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1) assert x.diff(i) == ZeroMatrix(k, 1) assert (x.T*y).diff(i) == ZeroMatrix(1, 1) assert (x*x.T).diff(i) == ZeroMatrix(k, k) assert (x + y).diff(i) == ZeroMatrix(k, 1) assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1) assert hadamard_power(x, i).diff(i).dummy_eq( HadamardProduct(x.applyfunc(log), HadamardPower(x, i))) assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1) assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y) assert (i*x).diff(i) == x assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1) assert Trace(i**2*X).diff(i) == 2*i*Trace(X) mu = symbols("mu") expr = (2*mu*x) assert expr.diff(x) == 2*mu*Identity(k) def test_one_matrix(): assert MatMul(x.T, OneMatrix(k, 1)).diff(x) == OneMatrix(k, 1) def test_matrix_derivative_non_matrix_result(): # This is a 4-dimensional array: I = Identity(k) AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2)) assert A.diff(A) == AdA assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3)) assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2)) assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA) assert (A + B).diff(A) == AdA def test_matrix_derivative_trivial_cases(): # Cookbook example 33: # TODO: find a way to represent a four-dimensional zero-array: assert X.diff(A) == ArrayDerivative(X, A) def test_matrix_derivative_with_inverse(): # Cookbook example 61: expr = a.T*Inverse(X)*b assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T # Cookbook example 62: expr = Determinant(Inverse(X)) # Not implemented yet: # assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T # Cookbook example 63: expr = Trace(A*Inverse(X)*B) assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T # Cookbook example 64: expr = Trace(Inverse(X + A)) assert expr.diff(X) == -(Inverse(X + A)).T**2 def test_matrix_derivative_vectors_and_scalars(): assert x.diff(x) == Identity(k) assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i) assert x.T.diff(x) == Identity(k) # Cookbook example 69: expr = x.T*a assert expr.diff(x) == a assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0] expr = a.T*x assert expr.diff(x) == a # Cookbook example 70: expr = a.T*X*b assert expr.diff(X) == a*b.T # Cookbook example 71: expr = a.T*X.T*b assert expr.diff(X) == b*a.T # Cookbook example 72: expr = a.T*X*a assert expr.diff(X) == a*a.T expr = a.T*X.T*a assert expr.diff(X) == a*a.T # Cookbook example 77: expr = b.T*X.T*X*c assert expr.diff(X) == X*b*c.T + X*c*b.T # Cookbook example 78: expr = (B*x + b).T*C*(D*x + d) assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b) # Cookbook example 81: expr = x.T*B*x assert expr.diff(x) == B*x + B.T*x # Cookbook example 82: expr = b.T*X.T*D*X*c assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T # Cookbook example 83: expr = (X*b + c).T*D*(X*b + c) assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T assert str(expr[0, 0].diff(X[m, n]).doit()) == \ 'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))' # See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957 expr = x*x.T*x I = Identity(k) assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T def test_matrix_derivatives_of_traces(): expr = Trace(A)*A I = Identity(k) assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2))) assert expr[i, j].diff(A[m, n]).doit() == ( KDelta(i, m)*KDelta(j, n)*Trace(A) + KDelta(m, n)*A[i, j] ) ## First order: # Cookbook example 99: expr = Trace(X) assert expr.diff(X) == Identity(k) assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n) # Cookbook example 100: expr = Trace(X*A) assert expr.diff(X) == A.T assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m] # Cookbook example 101: expr = Trace(A*X*B) assert expr.diff(X) == A.T*B.T assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n]) # Cookbook example 102: expr = Trace(A*X.T*B) assert expr.diff(X) == B*A # Cookbook example 103: expr = Trace(X.T*A) assert expr.diff(X) == A # Cookbook example 104: expr = Trace(A*X.T) assert expr.diff(X) == A # Cookbook example 105: # TODO: TensorProduct is not supported #expr = Trace(TensorProduct(A, X)) #assert expr.diff(X) == Trace(A)*Identity(k) ## Second order: # Cookbook example 106: expr = Trace(X**2) assert expr.diff(X) == 2*X.T # Cookbook example 107: expr = Trace(X**2*B) assert expr.diff(X) == (X*B + B*X).T expr = Trace(MatMul(X, X, B)) assert expr.diff(X) == (X*B + B*X).T # Cookbook example 108: expr = Trace(X.T*B*X) assert expr.diff(X) == B*X + B.T*X # Cookbook example 109: expr = Trace(B*X*X.T) assert expr.diff(X) == B*X + B.T*X # Cookbook example 110: expr = Trace(X*X.T*B) assert expr.diff(X) == B*X + B.T*X # Cookbook example 111: expr = Trace(X*B*X.T) assert expr.diff(X) == X*B.T + X*B # Cookbook example 112: expr = Trace(B*X.T*X) assert expr.diff(X) == X*B.T + X*B # Cookbook example 113: expr = Trace(X.T*X*B) assert expr.diff(X) == X*B.T + X*B # Cookbook example 114: expr = Trace(A*X*B*X) assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T # Cookbook example 115: expr = Trace(X.T*X) assert expr.diff(X) == 2*X expr = Trace(X*X.T) assert expr.diff(X) == 2*X # Cookbook example 116: expr = Trace(B.T*X.T*C*X*B) assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T # Cookbook example 117: expr = Trace(X.T*B*X*C) assert expr.diff(X) == B*X*C + B.T*X*C.T # Cookbook example 118: expr = Trace(A*X*B*X.T*C) assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B # Cookbook example 119: expr = Trace((A*X*B + C)*(A*X*B + C).T) assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T # Cookbook example 120: # TODO: no support for TensorProduct. # expr = Trace(TensorProduct(X, X)) # expr = Trace(X)*Trace(X) # expr.diff(X) == 2*Trace(X)*Identity(k) # Higher Order # Cookbook example 121: expr = Trace(X**k) #assert expr.diff(X) == k*(X**(k-1)).T # Cookbook example 122: expr = Trace(A*X**k) #assert expr.diff(X) == # Needs indices # Cookbook example 123: expr = Trace(B.T*X.T*C*X*X.T*C*X*B) assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T # Other # Cookbook example 124: expr = Trace(A*X**(-1)*B) assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T # Cookbook example 125: expr = Trace(Inverse(X.T*C*X)*A) # Warning: result in the cookbook is equivalent if B and C are symmetric: assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T # Cookbook example 126: expr = Trace((X.T*C*X).inv()*(X.T*B*X)) assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv() # Cookbook example 127: expr = Trace((A + X.T*C*X).inv()*(X.T*B*X)) # Warning: result in the cookbook is equivalent if B and C are symmetric: assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X) def test_derivatives_of_complicated_matrix_expr(): expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T assert expr.diff(X) == result def test_mixed_deriv_mixed_expressions(): expr = 3*Trace(A) assert expr.diff(A) == 3*Identity(k) expr = k deriv = expr.diff(A) assert isinstance(deriv, ZeroMatrix) assert deriv == ZeroMatrix(k, k) expr = Trace(A)**2 assert expr.diff(A) == (2*Trace(A))*Identity(k) expr = Trace(A)*A I = Identity(k) assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2))) expr = Trace(Trace(A)*A) assert expr.diff(A) == (2*Trace(A))*Identity(k) expr = Trace(Trace(Trace(A)*A)*A) assert expr.diff(A) == (3*Trace(A)**2)*Identity(k) def test_derivatives_matrix_norms(): expr = x.T*y assert expr.diff(x) == y assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0] expr = (x.T*y)**S.Half assert expr.diff(x) == y/(2*sqrt(x.T*y)) expr = (x.T*x)**S.Half assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2) expr = (c.T*a*x.T*b)**S.Half assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2 expr = (c.T*a*x.T*b)**Rational(1, 3) assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3 expr = (a.T*X*b)**S.Half assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T expr = d.T*x*(a.T*X*b)**S.Half*y.T*c assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T def test_derivatives_elementwise_applyfunc(): expr = x.applyfunc(tan) assert expr.diff(x).dummy_eq( DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1))) assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m) _check_derivative_with_explicit_matrix(expr, x, expr.diff(x)) expr = (i**2*x).applyfunc(sin) assert expr.diff(i).dummy_eq( HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos))) assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0]) _check_derivative_with_explicit_matrix(expr, i, expr.diff(i)) expr = (log(i)*A*B).applyfunc(sin) assert expr.diff(i).dummy_eq( HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos))) _check_derivative_with_explicit_matrix(expr, i, expr.diff(i)) expr = A*x.applyfunc(exp) # TODO: restore this result (currently returning the transpose): # assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T) _check_derivative_with_explicit_matrix(expr, x, expr.diff(x)) expr = x.T*A*x + k*y.applyfunc(sin).T*x assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin)) _check_derivative_with_explicit_matrix(expr, x, expr.diff(x)) expr = x.applyfunc(sin).T*y # TODO: restore (currently returning the transpose): # assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y) _check_derivative_with_explicit_matrix(expr, x, expr.diff(x)) expr = (a.T * X * b).applyfunc(sin) assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T) _check_derivative_with_explicit_matrix(expr, X, expr.diff(X)) expr = a.T * X.applyfunc(sin) * b assert expr.diff(X).dummy_eq( DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b)) _check_derivative_with_explicit_matrix(expr, X, expr.diff(X)) expr = a.T * (A*X*B).applyfunc(sin) * b assert expr.diff(X).dummy_eq( A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T) _check_derivative_with_explicit_matrix(expr, X, expr.diff(X)) expr = a.T * (A*X*b).applyfunc(sin) * b.T # TODO: not implemented #assert expr.diff(X) == ... #_check_derivative_with_explicit_matrix(expr, X, expr.diff(X)) expr = a.T*A*X.applyfunc(sin)*B*b assert expr.diff(X).dummy_eq( HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos))) expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b # TODO: wrong # assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b # TODO: wrong # assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b) def test_derivatives_of_hadamard_expressions(): # Hadamard Product expr = hadamard_product(a, x, b) assert expr.diff(x) == DiagMatrix(hadamard_product(b, a)) expr = a.T*hadamard_product(A, X, B)*b assert expr.diff(X) == HadamardProduct(a*b.T, A, B) # Hadamard Power expr = hadamard_power(x, 2) assert expr.diff(x).doit() == 2*DiagMatrix(x) expr = hadamard_power(x.T, 2) assert expr.diff(x).doit() == 2*DiagMatrix(x) expr = hadamard_power(x, S.Half) assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2))) expr = hadamard_power(a.T*X*b, 2) assert expr.diff(X) == 2*a*a.T*X*b*b.T expr = hadamard_power(a.T*X*b, S.Half) assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T