Datasets:

ArXiv:
karpnv commited on
Commit
a6c5c8c
1 Parent(s): 5500cf2

Audio files in wav format

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -21,3 +21,66 @@ Also we create 3-gram KenLM language model using an open Common Crawl corpus.
21
  | Archive | Size | Link |
22
  |:----------------:|:----------:|:-------------------:|
23
  | golos_opus.tar | 20.5 GB | https://sc.link/JpD |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  | Archive | Size | Link |
22
  |:----------------:|:----------:|:-------------------:|
23
  | golos_opus.tar | 20.5 GB | https://sc.link/JpD |
24
+
25
+ ### **Audio files in wav format**
26
+
27
+ Manifest files with all the training transcription texts are in the train_crowd9.tar archive listed in the table:
28
+
29
+ | Archives | Size | Links |
30
+ |-------------------|------------|---------------------|
31
+ | train_farfield.tar| 15.4 GB | https://sc.link/1Z3 |
32
+ | train_crowd0.tar | 11 GB | https://sc.link/Lrg |
33
+ | train_crowd1.tar | 14 GB | https://sc.link/MvQ |
34
+ | train_crowd2.tar | 13.2 GB | https://sc.link/NwL |
35
+ | train_crowd3.tar | 11.6 GB | https://sc.link/Oxg |
36
+ | train_crowd4.tar | 15.8 GB | https://sc.link/Pyz |
37
+ | train_crowd5.tar | 13.1 GB | https://sc.link/Qz7 |
38
+ | train_crowd6.tar | 15.7 GB | https://sc.link/RAL |
39
+ | train_crowd7.tar | 12.7 GB | https://sc.link/VG5 |
40
+ | train_crowd8.tar | 12.2 GB | https://sc.link/WJW |
41
+ | train_crowd9.tar | 8.08 GB | https://sc.link/XKk |
42
+ | test.tar | 1.3 GB | https://sc.link/Kqr |
43
+
44
+
45
+ ### **Acoustic and language models**
46
+
47
+ Acoustic model built using [QuartzNet15x5](https://arxiv.org/pdf/1910.10261.pdf) architecture and trained using [NeMo toolkit](https://github.com/NVIDIA/NeMo/tree/r1.0.0b4)
48
+
49
+
50
+ Three n-gram language models created using [KenLM Language Model Toolkit](https://kheafield.com/code/kenlm)
51
+
52
+ * LM built on [Common Crawl](https://commoncrawl.org) Russian dataset
53
+ * LM built on Golos train set
54
+ * LM built on [Common Crawl](https://commoncrawl.org) and Golos datasets together (50/50)
55
+
56
+ | Archives | Size | Links |
57
+ |--------------------------|------------|-----------------|
58
+ | QuartzNet15x5_golos.nemo | 68 MB | https://sc.link/ZMv |
59
+ | KenLMs.tar | 4.8 GB | https://sc.link/YL0 |
60
+
61
+
62
+ Golos data and models are also available in the hub of pre-trained models, datasets, and containers - DataHub ML Space. You can train the model and deploy it on the high-performance SberCloud infrastructure in [ML Space](https://sbercloud.ru/ru/aicloud/mlspace) - full-cycle machine learning development platform for DS-teams collaboration based on the Christofari Supercomputer.
63
+
64
+
65
+ ## **Evaluation**
66
+
67
+ Percents of Word Error Rate for different test sets
68
+
69
+
70
+ | Decoder \ Test set | Crowd test | Farfield test | MCV<sup>1</sup> dev | MCV<sup>1</sup> test |
71
+ |-------------------------------------|-----------|----------|-----------|----------|
72
+ | Greedy decoder | 4.389 % | 14.949 % | 9.314 % | 11.278 % |
73
+ | Beam Search with Common Crawl LM | 4.709 % | 12.503 % | 6.341 % | 7.976 % |
74
+ | Beam Search with Golos train set LM | 3.548 % | 12.384 % | - | - |
75
+ | Beam Search with Common Crawl and Golos LM | 3.318 % | 11.488 % | 6.4 % | 8.06 % |
76
+
77
+
78
+ <sup>1</sup> [Common Voice](https://commonvoice.mozilla.org) - Mozilla's initiative to help teach machines how real people speak.
79
+
80
+ ## **Resources**
81
+
82
+ [[arxiv.org] Golos: Russian Dataset for Speech Research](https://arxiv.org/abs/2106.10161)
83
+
84
+ [[habr.com] Golos — самый большой русскоязычный речевой датасет, размеченный вручную, теперь в открытом доступе](https://habr.com/ru/company/sberdevices/blog/559496/)
85
+
86
+ [[habr.com] Как улучшить распознавание русской речи до 3% WER с помощью открытых данных](https://habr.com/ru/company/sberdevices/blog/569082/)