Datasets:
Tasks:
Graph Machine Learning
Modalities:
Text
Formats:
text
Size:
10K - 100K
ArXiv:
Tags:
art
License:
import dgl | |
import torch | |
import pickle | |
from copy import deepcopy | |
import scipy.sparse as sp | |
import numpy as np | |
def mask_test_edges(adj_orig, val_frac, test_frac): | |
# Remove diagonal elements | |
adj = deepcopy(adj_orig) | |
# set diag as all zero | |
adj.setdiag(0) | |
adj.eliminate_zeros() | |
# Check that diag is zero: | |
# assert np.diag(adj.todense()).sum() == 0 | |
adj_triu = sp.triu(adj, 1) | |
edges = sparse_to_tuple(adj_triu)[0] | |
num_test = int(np.floor(edges.shape[0] * test_frac)) | |
num_val = int(np.floor(edges.shape[0] * val_frac)) | |
all_edge_idx = list(range(edges.shape[0])) | |
np.random.shuffle(all_edge_idx) | |
val_edge_idx = all_edge_idx[:num_val] | |
test_edge_idx = all_edge_idx[num_val : (num_val + num_test)] | |
test_edges = edges[test_edge_idx] | |
val_edges = edges[val_edge_idx] | |
train_edges = edges[all_edge_idx[num_val + num_test :]] | |
noedge_mask = np.ones(adj.shape) - adj | |
noedges = np.asarray(sp.triu(noedge_mask, 1).nonzero()).T | |
all_edge_idx = list(range(noedges.shape[0])) | |
np.random.shuffle(all_edge_idx) | |
val_edge_idx = all_edge_idx[:num_val] | |
test_edge_idx = all_edge_idx[num_val : (num_val + num_test)] | |
test_edges_false = noedges[test_edge_idx] | |
val_edges_false = noedges[val_edge_idx] | |
data = np.ones(train_edges.shape[0]) | |
adj_train = sp.csr_matrix( | |
(data, (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape | |
) | |
adj_train = adj_train + adj_train.T | |
train_mask = np.ones(adj_train.shape) | |
for edges_tmp in [val_edges, val_edges_false, test_edges, test_edges_false]: | |
for e in edges_tmp: | |
assert e[0] < e[1] | |
train_mask[edges_tmp.T[0], edges_tmp.T[1]] = 0 | |
train_mask[edges_tmp.T[1], edges_tmp.T[0]] = 0 | |
train_edges = np.asarray(sp.triu(adj_train, 1).nonzero()).T | |
train_edges_false = np.asarray( | |
(sp.triu(train_mask, 1) - sp.triu(adj_train, 1)).nonzero() | |
).T | |
# NOTE: all these edge lists only contain single direction of edge! | |
return ( | |
train_edges, | |
train_edges_false, | |
val_edges, | |
val_edges_false, | |
test_edges, | |
test_edges_false, | |
) | |
def sparse_to_tuple(sparse_mx): | |
if not sp.isspmatrix_coo(sparse_mx): | |
sparse_mx = sparse_mx.tocoo() | |
coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose() | |
values = sparse_mx.data | |
shape = sparse_mx.shape | |
return coords, values, shape | |
if __name__ == "__main__": | |
g, _ = dgl.load_graphs("./processed/actor.bin") | |
g = g[0] | |
total_pos_edges = torch.randperm(g.num_edges()) | |
adj_train = g.adjacency_matrix(scipy_fmt="csr") | |
( | |
train_edges, | |
train_edges_false, | |
val_edges, | |
val_edges_false, | |
test_edges, | |
test_edges_false, | |
) = mask_test_edges(adj_train, 0.1, 0.2) | |
tvt_edges_file = "./links/actor_tvtEdges.pkl" | |
pickle.dump( | |
( | |
train_edges, | |
train_edges_false, | |
val_edges, | |
val_edges_false, | |
test_edges, | |
test_edges_false, | |
), | |
open(tvt_edges_file, "wb"), | |
) | |
node_assignment = dgl.metis_partition_assignment(g, 10) | |
torch.save(node_assignment, "./pretrain_labels/metis_label_actor.pt") | |