File size: 7,729 Bytes
e8c5875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
This module computes evaluation metrics for MSMARCO dataset on the ranking task. Intenral hard coded eval files version. DO NOT PUBLISH!
Command line:
python msmarco_eval_ranking.py <path_to_candidate_file>

Creation Date : 06/12/2018
Last Modified : 4/09/2019
Authors : Daniel Campos <[email protected]>, Rutger van Haasteren <[email protected]>
"""
import sys
import statistics

from collections import Counter


def load_reference_from_stream(f):
    """Load Reference reference relevant passages
    Args:f (stream): stream to load.
    Returns:qids_to_relevant_passageids (dict): dictionary mapping from query_id (int) to relevant passages (list of ints).
    """
    qids_to_relevant_passageids = {}
    for l in f:
        try:
            l = l.strip().split('\t')
            qid = int(l[0])
            if qid in qids_to_relevant_passageids:
                pass
            else:
                qids_to_relevant_passageids[qid] = []
            qids_to_relevant_passageids[qid].append(int(l[1]))
        except:
            raise IOError('\"%s\" is not valid format' % l)
    return qids_to_relevant_passageids


def load_reference(path_to_reference):
    """Load Reference reference relevant passages
    Args:path_to_reference (str): path to a file to load.
    Returns:qids_to_relevant_passageids (dict): dictionary mapping from query_id (int) to relevant passages (list of ints).
    """
    with open(path_to_reference, 'r') as f:
        qids_to_relevant_passageids = load_reference_from_stream(f)
    return qids_to_relevant_passageids


def load_candidate_from_stream(f):
    """Load candidate data from a stream.
    Args:f (stream): stream to load.
    Returns:qid_to_ranked_candidate_passages (dict): dictionary mapping from query_id (int) to a list of 1000 passage ids(int) ranked by relevance and importance
    """
    qid_to_ranked_candidate_passages = {}
    for l in f:
        try:
            l = l.strip().split('\t')
            qid = int(l[0])
            pid = int(l[1])
            rank = int(l[2])
            if qid in qid_to_ranked_candidate_passages:
                pass
            else:
                # By default, all PIDs in the list of 1000 are 0. Only override those that are given
                tmp = [0] * 1000
                qid_to_ranked_candidate_passages[qid] = tmp
            qid_to_ranked_candidate_passages[qid][rank - 1] = pid
        except:
            raise IOError('\"%s\" is not valid format' % l)
    return qid_to_ranked_candidate_passages


def load_candidate(path_to_candidate):
    """Load candidate data from a file.
    Args:path_to_candidate (str): path to file to load.
    Returns:qid_to_ranked_candidate_passages (dict): dictionary mapping from query_id (int) to a list of 1000 passage ids(int) ranked by relevance and importance
    """

    with open(path_to_candidate, 'r') as f:
        qid_to_ranked_candidate_passages = load_candidate_from_stream(f)
    return qid_to_ranked_candidate_passages


def quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages):
    """Perform quality checks on the dictionaries

    Args:
    p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping
        Dict as read in with load_reference or load_reference_from_stream
    p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates
    Returns:
        bool,str: Boolean whether allowed, message to be shown in case of a problem
    """
    message = ''
    allowed = True

    # Create sets of the QIDs for the submitted and reference queries
    candidate_set = set(qids_to_ranked_candidate_passages.keys())
    ref_set = set(qids_to_relevant_passageids.keys())

    # Check that we do not have multiple passages per query
    for qid in qids_to_ranked_candidate_passages:
        # Remove all zeros from the candidates
        duplicate_pids = set(
            [item for item, count in Counter(qids_to_ranked_candidate_passages[qid]).items() if count > 1])

        if len(duplicate_pids - set([0])) > 0:
            message = "Cannot rank a passage multiple times for a single query. QID={qid}, PID={pid}".format(
                qid=qid, pid=list(duplicate_pids)[0])
            allowed = False

    return allowed, message


def compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages):
    """Compute MRR metric
    Args:
    p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping
        Dict as read in with load_reference or load_reference_from_stream
    p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates
    Returns:
        dict: dictionary of metrics {'MRR': <MRR Score>}
    """
    topk=[5,10,20,50,100,200,500,1000]
    accuracy = { k : [] for k in topk }
    MaxMRRRank=max(topk)

    ranking = []
    for qid in qids_to_ranked_candidate_passages:
        if qid in qids_to_relevant_passageids:
            ranking.append(10**9)
            target_pid = qids_to_relevant_passageids[qid]
            candidate_pid = qids_to_ranked_candidate_passages[qid]
            for i in range(0, MaxMRRRank):
                if candidate_pid[i] in target_pid:
                    ranking.pop()
                    ranking.append(i + 1)
                    break
            for k in topk:
                accuracy[k].append(0 if ranking[-1] > k else 1)
        if len(ranking) == 0:
            raise IOError("No matching QIDs found. Are you sure you are scoring the evaluation set?")


    return accuracy


def compute_metrics_from_files(path_to_reference, path_to_candidate, perform_checks=True):
    """Compute MRR metric
    Args:
    p_path_to_reference_file (str): path to reference file.
        Reference file should contain lines in the following format:
            QUERYID\tPASSAGEID
            Where PASSAGEID is a relevant passage for a query. Note QUERYID can repeat on different lines with different PASSAGEIDs
    p_path_to_candidate_file (str): path to candidate file.
        Candidate file sould contain lines in the following format:
            QUERYID\tPASSAGEID1\tRank
            If a user wishes to use the TREC format please run the script with a -t flag at the end. If this flag is used the expected format is
            QUERYID\tITER\tDOCNO\tRANK\tSIM\tRUNID
            Where the values are separated by tabs and ranked in order of relevance
    Returns:
        dict: dictionary of metrics {'MRR': <MRR Score>}
    """

    qids_to_relevant_passageids = load_reference(path_to_reference)
    qids_to_ranked_candidate_passages = load_candidate(path_to_candidate)
    if perform_checks:
        allowed, message = quality_checks_qids(qids_to_relevant_passageids, qids_to_ranked_candidate_passages)
        if message != '': print(message)

    return compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages)


def main():
    """Command line:
    python msmarco_eval_ranking.py <path to reference> <path_to_candidate_file>
    """
    import scipy.stats as stats
    topk=[5,10,20,50,100,200,500,1000]
    path_to_candidate_a = "InfoCSE_ICT.tsv.marco"
    path_to_reference = "marco/qrels.dev.tsv"
    all_scores_a = compute_metrics_from_files(path_to_reference, path_to_candidate_a)
    for method in ["SimCSE","ConSERT","MirrorBERT","ICT","CPC","DeCLUTR","CONPONO"]:
        path_to_candidate_b = "{}.tsv.marco".format(method)
        print(path_to_candidate_b)
        all_scores_b = compute_metrics_from_files(path_to_reference, path_to_candidate_b)
        for k in topk:
            stat_val, p_val = stats.ttest_ind(all_scores_a[k], all_scores_b[k])
            print(str(k) + ': ' + str(p_val / 2))

if __name__ == '__main__':
    main()