repository_name
stringlengths 7
107
| function_path
stringlengths 4
190
| function_identifier
stringlengths 1
236
| language
stringclasses 1
value | function
stringlengths 9
647k
| docstring
stringlengths 5
488k
| function_url
stringlengths 71
285
| context
stringlengths 0
2.51M
| license
stringclasses 5
values |
---|---|---|---|---|---|---|---|---|
2ndwatch/cloudendure-python
|
cloudendure/cloudendure_api/models/cloud_endure_list_users_results.py
|
CloudEndureListUsersResults.items
|
python
|
def items(self, items):
self._items = items
|
Sets the items of this CloudEndureListUsersResults.
:param items: The items of this CloudEndureListUsersResults. # noqa: E501
:type: list[CloudEndureListUsersResult]
|
https://github.com/2ndwatch/cloudendure-python/blob/f81d1be1422b7c19adedb06c584803eaaa811919/cloudendure/cloudendure_api/models/cloud_endure_list_users_results.py#L58-L66
|
import pprint
import re
import six
from cloudendure.cloudendure_api.models.cloud_endure_list_users_result import (
CloudEndureListUsersResult,
)
class CloudEndureListUsersResults:
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {"items": "list[CloudEndureListUsersResult]"}
attribute_map = {"items": "items"}
def __init__(self, items=None):
self._items = None
self.discriminator = None
if items is not None:
self.items = items
@property
def items(self):
return self._items
@items.setter
|
MIT License
|
oamg/leapp
|
leapp/snactor/utils.py
|
inspect
|
python
|
def inspect(tree_file, collected_types=None, type_infos=None):
tree, filename = tree_file
collected_types = collected_types or {}
type_infos = type_infos or {}
if not tree:
return ['Unable to parse: {}'.format(filename)]
errors = []
for node in ast.walk(tree):
if isinstance(node, ast.ClassDef):
base_classes, err = get_base_classes(node.bases, filename)
errors += err
if base_classes & collected_types['models']:
collected_types['models'].add(node.name)
type_infos['models'].append({
'name': node.name,
'bases': list(base_classes),
'file': filename
})
if base_classes & collected_types['actors']:
collected_types['actors'].add(node.name)
type_infos['actors'].append({
'name': node.name,
'bases': list(base_classes),
'file': filename
})
if base_classes & collected_types['tags']:
collected_types['tags'].add(node.name)
type_infos['tags'].append({
'name': node.name,
'bases': list(base_classes),
'file': filename
})
return errors
|
Inspect and collect data from AST tree
|
https://github.com/oamg/leapp/blob/c8faeb1599edb3e7265b5451c55ce6c792519078/leapp/snactor/utils.py#L59-L93
|
from __future__ import print_function
import ast
import functools
import itertools
import os
def print_section(data, section, pivot):
type_data = data[section]
print('{}'.format(section.capitalize()))
for td in type_data:
fp = format_file_path(pivot, td['file'])
first_part = ' - {}({})'.format(td['name'], ', '.join(td['bases']))
pad = '.' * (60 - len(first_part))
print('{} {} {}'.format(first_part, pad, fp))
print('')
def format_file_path(pivot, path):
if not pivot or pivot == '.':
pivot = os.getcwd()
return os.path.relpath(path, pivot)
def get_candidate_files(start='.'):
for root, unused, files in os.walk(start):
for f in files:
if not f.endswith('py'):
continue
yield os.path.join(root, f)
def ast_parse_file(filename):
with open(filename, mode='r') as fp:
try:
return ast.parse(fp.read(), filename), filename
except (SyntaxError, TypeError, ValueError):
return None, filename
def get_base_classes(bases, via):
bases_set = set()
errors = []
for base in bases:
if isinstance(base, ast.Name):
bases_set.add(base.id)
else:
errors.append('Unknown base: {} via {}'.format(base.__class__.__name__, via))
return bases_set, errors
|
Apache License 2.0
|
demisto/demisto-py
|
demisto_client/demisto_api/models/update_response.py
|
UpdateResponse.updated_ids
|
python
|
def updated_ids(self):
return self._updated_ids
|
Gets the updated_ids of this UpdateResponse. # noqa: E501
:return: The updated_ids of this UpdateResponse. # noqa: E501
:rtype: list[str]
|
https://github.com/demisto/demisto-py/blob/95d29e07693d27c133f7fe6ef9da13e4b6dbf542/demisto_client/demisto_api/models/update_response.py#L77-L84
|
import pprint
import re
import six
class UpdateResponse(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'not_updated': 'int',
'updated_ids': 'list[str]'
}
attribute_map = {
'not_updated': 'notUpdated',
'updated_ids': 'updatedIds'
}
def __init__(self, not_updated=None, updated_ids=None):
self._not_updated = None
self._updated_ids = None
self.discriminator = None
if not_updated is not None:
self.not_updated = not_updated
if updated_ids is not None:
self.updated_ids = updated_ids
@property
def not_updated(self):
return self._not_updated
@not_updated.setter
def not_updated(self, not_updated):
self._not_updated = not_updated
@property
|
Apache License 2.0
|
winhamwr/neckbeard
|
neckbeard/cloud_provisioners/aws/ec2.py
|
Ec2NodeDeployment.create_new_node
|
python
|
def create_new_node(self):
logger.info("Launching new ec2 instance")
ec2_instance = self.launch()
if self.is_active:
self.deployment.set_active_node(
'ec2', env.node_name, ec2_instance)
else:
self.deployment.set_pending_node(
'ec2', env.node_name, ec2_instance)
ebs_debug = self.ebs_confs.get('debug', {})
if not ebs_debug.get('attach_ebs_volumes', True):
logger.warning("Debug ebs_conf found")
logger.warning("Not attaching configured EBS volumes.")
return self.get_node()
vol_confs = self.ebs_confs.get('vols', {})
self.attached_volumes = self._attach_ebs_vols(
ec2_instance_id=ec2_instance.id,
vol_confs=vol_confs,
seed_ebs_snapshots=self.seed_ebs_snapshots)
node = self.get_node()
self.wait_until_created(node)
node.refresh_boto_instance()
env.host_string = node.boto_instance.public_dns_name
self._ensure_ebs_vols_mounted(ec2_instance.id, vol_confs)
return self.get_node()
|
Launch a new ec2 instance from the appropriate AMI and configure any
EBS volumes and first-run-only configurations.
|
https://github.com/winhamwr/neckbeard/blob/2fbeda8f217c43936c941bb9ce3ba6d23be675f9/neckbeard/cloud_provisioners/aws/ec2.py#L169-L212
|
import ConfigParser
import logging
import os.path
import time
from collections import namedtuple, defaultdict
from tempfile import NamedTemporaryFile
from boto import ec2
from fabric.api import sudo, env, require, put, hide, run
from fabric.contrib.files import upload_template
from neckbeard.cloud_provisioners import BaseNodeDeployment
from neckbeard.output import fab_out_opts
LOG_DIR = '/var/log/pstat'
AWS_METADATA_SERVICE = 'http://169.254.169.254/latest/meta-data/'
LAUNCH_REFRESH = 15
logger = logging.getLogger('aws.ec2')
fab_output_hides = fab_out_opts[logger.getEffectiveLevel()]
fab_quiet = fab_output_hides + ['stderr']
EC2_FSTAB_TPL = (
"""
# /etc/fstab: static file system information.
# <device> <mount_point> <fs_type> <options> <dump_freq> <pass_num>
{% for entry in fstab_entries -%}
"""
"{{ entry.device_name}} {{ entry.mount_point}} {{ entry.fs_type }} "
"{{ entry.options }} {{ entry.dump_freq}} {{ entry.pass_num}}"
"""
"""
"{%- endfor %}"
)
fstabEntry = namedtuple(
'fstabEntry',
[
'device_name',
'mount_point',
'fs_type',
'options',
'dump_freq',
'pass_num',
]
)
EC2_FSTAB_DEFAULTS = [
fstabEntry('proc', '/proc', 'proc', 'nodev,noexec,nosuid', '0', '0'),
fstabEntry('LABEL=cloudimg-rootfs', '/', 'ext3', 'defaults', '0', '0'),
fstabEntry(
'/dev/sda2',
'/mnt',
'auto',
'defaults,nobootwait,comment=cloudconfig',
'0',
'0',
),
fstabEntry(
'/dev/sda3',
'none',
'swap',
'sw,comment=cloudconfig',
'0',
'0',
),
]
class Ec2NodeDeployment(BaseNodeDeployment):
def __init__(self, *args, **kwargs):
conf = kwargs['conf']
self.ebs_confs = conf.get('ebs', {'vols': {}})
super(Ec2NodeDeployment, self).__init__(*args, **kwargs)
self.seed_ebs_snapshots = {}
self.attached_volumes = {}
def get_seed_data(self):
if not self.seed_deployment:
return
require('aws_access_key_id')
require('aws_secret_access_key')
self.seed_ebs_snapshots = self._get_seed_ebs_snapshots()
def wait_until_created(self, node):
while not self.creation_complete(node):
logging.info("Instance pending. Waiting %ss", LAUNCH_REFRESH)
time.sleep(LAUNCH_REFRESH)
def creation_complete(self, node):
start_host_string = env.host_string
start_host = env.host
node.refresh_boto_instance()
if node.boto_instance.state == 'running':
timeout = 60
tries = 0
step = LAUNCH_REFRESH
while tries * step <= timeout:
node.refresh_boto_instance()
env.host_string = node.boto_instance.public_dns_name
env.host = node.boto_instance.public_dns_name
tries += 1
try:
with hide('everything'):
sudo('uptime', pty=True)
env.host_string = start_host_string
env.host = start_host
return True
except:
logger.info(
"%s not ready for SSH. Waiting %ss",
node.boto_instance.public_dns_name,
LAUNCH_REFRESH)
time.sleep(LAUNCH_REFRESH)
env.host_string = start_host_string
env.host = start_host
return False
|
BSD 3-Clause New or Revised License
|
darchr/gem5art
|
artifact/gem5art/artifact/_artifactdb.py
|
getDBConnection
|
python
|
def getDBConnection(uri: str = '') -> ArtifactDB:
global _db
if _db is not None and not uri:
return _db
if not uri:
uri = os.environ.get("GEM5ART_DB", _default_uri)
typ = _getDBType(uri)
_db = typ(uri)
return _db
|
Returns the database connection
uri: a string representing the URI of the database. See _getDBType for
details. If no URI is given we use the default
(mongodb://localhost:27017) or the value in the GEM5ART_DB environment
variable.
If the connection has not been established, this will create a new
connection. If the connection has been established, this will replace the
connection if the uri input is non-empy.
|
https://github.com/darchr/gem5art/blob/4a0f47d1103ff68883bb0707cd888c6ac9ade775/artifact/gem5art/artifact/_artifactdb.py#L409-L434
|
from abc import ABC, abstractmethod
import copy
import json
import os
from pathlib import Path
import shutil
from typing import Any, Dict, Iterable, Union, Type, List, Tuple
from urllib.parse import urlparse
from uuid import UUID
try:
import gridfs
from pymongo import MongoClient
MONGO_SUPPORT = True
except ModuleNotFoundError:
MONGO_SUPPORT = False
class ArtifactDB(ABC):
@abstractmethod
def __init__(self, uri: str) -> None:
pass
@abstractmethod
def put(self, key: UUID, artifact: Dict[str,Union[str,UUID]]) -> None:
pass
@abstractmethod
def upload(self, key: UUID, path: Path) -> None:
pass
@abstractmethod
def __contains__(self, key: Union[UUID, str]) -> bool:
pass
@abstractmethod
def get(self, key: Union[UUID,str]) -> Dict[str,str]:
pass
@abstractmethod
def downloadFile(self, key: UUID, path: Path) -> None:
pass
def searchByName(self, name: str, limit: int) -> Iterable[Dict[str, Any]]:
raise NotImplementedError()
def searchByType(self, typ: str, limit: int) -> Iterable[Dict[str, Any]]:
raise NotImplementedError()
def searchByNameType(self, name: str, typ: str, limit: int) -> Iterable[Dict[str, Any]]:
raise NotImplementedError()
def searchByLikeNameType(self, name: str, typ: str, limit: int) -> Iterable[Dict[str, Any]]:
raise NotImplementedError()
class ArtifactMongoDB(ArtifactDB):
def __init__(self, uri :str) -> None:
self.db = MongoClient(host=uri, connect=False).artifact_database
self.artifacts = self.db.artifacts
self.fs = gridfs.GridFSBucket(self.db, disable_md5=True)
def put(self, key: UUID, artifact: Dict[str,Union[str,UUID]]) -> None:
assert artifact['_id'] == key
self.artifacts.insert_one(artifact)
def upload(self, key: UUID, path: Path) -> None:
with open(path, 'rb') as f:
self.fs.upload_from_stream_with_id(key, str(path), f)
def __contains__(self, key: Union[UUID, str]) -> bool:
if isinstance(key, UUID):
count = self.artifacts.count_documents({'_id': key}, limit = 1)
else:
count = self.artifacts.count_documents({'hash': key}, limit = 1)
return bool(count > 0)
def get(self, key: Union[UUID,str]) -> Dict[str,str]:
if isinstance(key, UUID):
return self.artifacts.find_one({'_id': key}, limit = 1)
else:
return self.artifacts.find_one({'hash': key}, limit = 1)
def downloadFile(self, key: UUID, path: Path) -> None:
with open(path, 'wb') as f:
self.fs.download_to_stream(key, f)
def searchByName(self, name: str, limit: int) -> Iterable[Dict[str, Any]]:
for d in self.artifacts.find({'name': name}, limit=limit):
yield d
def searchByType(self, typ: str, limit: int) -> Iterable[Dict[str, Any]]:
for d in self.artifacts.find({'type':typ}, limit=limit):
yield d
def searchByNameType(self, name: str, typ: str, limit: int) -> Iterable[Dict[str, Any]]:
for d in self.artifacts.find({'type':typ, 'name': name}, limit=limit):
yield d
def searchByLikeNameType(self, name: str, typ: str, limit: int) -> Iterable[Dict[str, Any]]:
data = self.artifacts.find({'type': typ,
'name': {'$regex': '{}'.format(name)}
},
limit=limit)
for d in data:
yield d
class ArtifactFileDB(ArtifactDB):
class ArtifactEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, UUID):
return str(obj)
return ArtifactFileDB.ArtifactEncoder(self, obj)
_json_file: Path
_uuid_artifact_map: Dict[str, Dict[str,str]]
_hash_uuid_map: Dict[str, List[str]]
_storage_enabled: bool
_storage_path: Path
def __init__(self, uri: str) -> None:
parsed_uri = urlparse(uri)
self._json_file = Path(parsed_uri.netloc) / Path(parsed_uri.path)
storage_path = os.environ.get("GEM5ART_STORAGE", "")
self._storage_enabled = True if storage_path else False
self._storage_path = Path(storage_path)
if self._storage_enabled and self._storage_path.exists() and not self._storage_path.is_dir():
raise Exception(f"GEM5ART_STORAGE={storage_path} exists and is not"
f" a directory")
if self._storage_enabled:
os.makedirs(self._storage_path, exist_ok = True)
self._uuid_artifact_map, self._hash_uuid_map = self._load_from_file(self._json_file)
def put(self, key: UUID, artifact: Dict[str,Union[str,UUID]]) -> None:
assert artifact['_id'] == key
assert isinstance(artifact['hash'], str)
self.insert_artifact(key, artifact['hash'], artifact)
def upload(self, key: UUID, path: Path) -> None:
if not self._storage_enabled:
return
src_path = path
dst_path = self._storage_path / str(key)
if not dst_path.exists():
shutil.copy2(src_path, dst_path)
def __contains__(self, key: Union[UUID, str]) -> bool:
if isinstance(key, UUID):
return self.has_uuid(key)
return self.has_hash(key)
def get(self, key: Union[UUID,str]) -> Dict[str,str]:
artifact: List[Dict[str, str]] = []
if isinstance(key, UUID):
artifact = list(self.get_artifact_by_uuid(key))
else:
artifact = list(self.get_artifact_by_hash(key))
return artifact[0]
def downloadFile(self, key: UUID, path: Path) -> None:
assert(path.exists())
if not self._storage_enabled:
return
src_path = self._storage_path / str(key)
dst_path = path
shutil.copy2(src_path, dst_path)
def _load_from_file(self, json_file: Path) -> Tuple[Dict[str, Dict[str,str]], Dict[str, List[str]]]:
uuid_mapping: Dict[str, Dict[str,str]] = {}
hash_mapping: Dict[str, List[str]] = {}
if json_file.exists():
with open(json_file, 'r') as f:
j = json.load(f)
for an_artifact in j:
the_uuid = an_artifact['_id']
the_hash = an_artifact['hash']
uuid_mapping[the_uuid] = an_artifact
if not the_hash in hash_mapping:
hash_mapping[the_hash] = []
hash_mapping[the_hash].append(the_uuid)
return uuid_mapping, hash_mapping
def _save_to_file(self, json_file: Path) -> None:
content = list(self._uuid_artifact_map.values())
with open(json_file, 'w') as f:
json.dump(content, f, indent=4, cls=ArtifactFileDB.ArtifactEncoder)
def has_uuid(self, the_uuid: UUID) -> bool:
return str(the_uuid) in self._uuid_artifact_map
def has_hash(self, the_hash: str) -> bool:
return the_hash in self._hash_uuid_map
def get_artifact_by_uuid(self, the_uuid: UUID) -> Iterable[Dict[str,str]]:
uuid_str = str(the_uuid)
if not uuid_str in self._uuid_artifact_map:
return
yield self._uuid_artifact_map[uuid_str]
def get_artifact_by_hash(self, the_hash: str) -> Iterable[Dict[str,str]]:
if not the_hash in self._hash_uuid_map:
return
for the_uuid in self._hash_uuid_map[the_hash]:
yield self._uuid_artifact_map[the_uuid]
def insert_artifact(self, the_uuid: UUID, the_hash: str,
the_artifact: Dict[str,Union[str,UUID]]) -> bool:
uuid_str = str(the_uuid)
if uuid_str in self._uuid_artifact_map:
return False
artifact_copy = copy.deepcopy(the_artifact)
artifact_copy['_id'] = str(artifact_copy['_id'])
self._uuid_artifact_map[uuid_str] = artifact_copy
if not the_hash in self._hash_uuid_map:
self._hash_uuid_map[the_hash] = []
self._hash_uuid_map[the_hash].append(uuid_str)
self._save_to_file(self._json_file)
return True
def find_exact(self, attr: Dict[str, str], limit: int) -> Iterable[Dict[str, Any]]:
count = 0
if count >= limit:
return
for artifact in self._uuid_artifact_map.values():
if attr.items() <= artifact.items():
yield artifact
_db = None
if MONGO_SUPPORT:
_default_uri = "mongodb://localhost:27017"
else:
_default_uri = "file://db.json"
_default_storage = ""
_db_schemes : Dict[str, Type[ArtifactDB]] = {
'file': ArtifactFileDB
}
if MONGO_SUPPORT:
_db_schemes['mongodb'] = ArtifactMongoDB
def _getDBType(uri: str) -> Type[ArtifactDB]:
result = urlparse(uri)
if result.scheme in _db_schemes:
return _db_schemes[result.scheme]
else:
raise Exception(f"Cannot find DB type for {uri}")
|
BSD 3-Clause New or Revised License
|
kelvinguu/lang2program
|
strongsup/evaluation.py
|
FmtD
|
python
|
def FmtD(x):
if abs(x - round(x)) < 1e-40:
return str(int(x))
if abs(x) < 1e-3:
return "{:.2e}".format(x)
return "{:.3f}".format(x)
|
Return a nicely formatted string for number x.
|
https://github.com/kelvinguu/lang2program/blob/dd4eb8439d29f0f72dd057946287551ed0f046a3/strongsup/evaluation.py#L228-L234
|
from collections import OrderedDict
from codecs import open
from math import sqrt
import json
import numpy as np
import os
from scipy.stats import norm
class NumberSequenceStat(object):
def __init__(self):
self.s_count = 0
self.s_min = float('inf')
self.s_max = float('-inf')
self.s_min_key = None
self.s_max_key = None
self.s_sum = 0.
self.s_sumsq = 0.
def add(self, x, key=None):
if isinstance(x, NumberSequenceStat):
assert not key
self.s_count += x.s_count
self.s_sum += x.s_sum
self.s_sumsq += x.s_sumsq
if x.s_min < self.s_min:
self.s_min = x.s_min
self.s_min_key = x.s_min_key
if x.s_max > self.s_max:
self.s_max = x.s_max
self.s_max_key = x.s_max_key
elif isinstance(x, (list, tuple)):
x = [float(u) for u in x]
self.s_count += len(x)
self.s_sum += sum(x)
self.s_sumsq += sum(u*u for u in x)
min_x = min(x)
if min_x < self.s_min:
self.s_min = min_x
self.s_min_key = key
max_x = max(x)
if max_x > self.s_max:
self.s_max = max_x
self.s_max_key = key
else:
x = float(x)
self.s_count += 1
self.s_sum += x
self.s_sumsq += x * x
if x < self.s_min:
self.s_min = x
self.s_min_key = key
if x > self.s_max:
self.s_max = x
self.s_max_key = key
@property
def count(self):
return self.s_count
@property
def mean(self):
return self.s_sum / self.s_count
@property
def sum(self):
return self.s_sum
@property
def variance(self):
return self.s_sumsq / self.s_count - self.mean ** 2
@property
def stddev(self):
return self.variance ** .5
@property
def min(self):
return self.s_min
@property
def max(self):
return self.s_max
@property
def min_key(self):
return self.s_min_key
@property
def max_key(self):
return self.s_max_key
@property
def range(self):
return self.s_max - self.s_min
def __str__(self):
if not self.s_count:
return "NaN (0)"
return "{min}{min_key} << {mean} >> {max}{max_key} ({std} std {count} count)".format(
min=FmtD(self.s_min), min_key=('@' + self.s_min_key if self.s_min_key else ''),
mean=FmtD(self.mean), std=FmtD(self.stddev),
max=FmtD(self.s_max), max_key=('@' + self.s_max_key if self.s_max_key else ''),
count=self.s_count)
def as_dict(self):
if not self.s_count:
return {'count': 0}
return {
'count': self.s_count,
'min': self.s_min,
'mean': self.mean,
'stddev': self.stddev,
'max': self.s_max,
'sum': self.s_sum,
}
class BernoulliSequenceStat(NumberSequenceStat):
def __init__(self, number_seq_stat=None):
super(BernoulliSequenceStat, self).__init__()
if number_seq_stat:
self.add(number_seq_stat)
def __str__(self):
left, right = self.confidence_interval(0.05)
ci_str = " 95% CI = [{} - {}]".format(left, right)
s = super(BernoulliSequenceStat, self).__str__()
return s + ci_str
@classmethod
def _confidence_interval_by_z_wald(cls, p_hat, n, z):
increment = z * sqrt(p_hat * (1 - p_hat) / n)
return p_hat - increment, p_hat + increment
@classmethod
def _confidence_interval_by_z_wilson(cls, p_hat, n, z):
z2 = z**2
n2 = n**2
numerator = lambda sign: p_hat + z2 / (2 * n) + sign * z * sqrt(p_hat * (1 - p_hat) / n + z2 / (4 * n2))
denominator = 1 + z2 / n
left = numerator(-1.) / denominator
right = numerator(1.) / denominator
return left, right
@classmethod
def _confidence_interval_by_alpha(cls, p_hat, n, alpha, method='wald'):
prob = 1 - 0.5 * alpha
z = norm.ppf(prob)
compute_ci = cls._confidence_interval_by_z_wald if method == 'wald' else cls._confidence_interval_by_z_wilson
return compute_ci(p_hat, n, z)
def confidence_interval(self, alpha):
p_hat = self.mean
n = self.count
return self._confidence_interval_by_alpha(p_hat, n, alpha)
def test_bernoulli_confidence_interval(method='wilson', trials=1000, ps=None):
if ps is None:
ps = np.arange(0.05, 0.95, 0.05)
n = 200
alpha = 0.1
alpha_hats = []
for p in ps:
misses = 0.
for _ in range(int(trials)):
samples = np.random.random(n) <= p
p_hat = np.mean(samples)
left, right = BernoulliSequenceStat._confidence_interval_by_alpha(p_hat, n, alpha, method=method)
if p < left or p > right:
misses += 1
alpha_hat = misses / trials
alpha_hats.append(alpha_hat)
import matplotlib.pyplot as plt
plt.plot(ps, alpha_hats)
|
Apache License 2.0
|
brikwerk/nxbt
|
nxbt/tui.py
|
ControllerTUI.toggle_auto_keypress_deactivation
|
python
|
def toggle_auto_keypress_deactivation(self, toggle):
self.auto_keypress_deactivation = toggle
|
Toggles whether or not the ControllerTUI should deactivate
a control after a period of time.
:param toggle: A True/False value that toggles auto keypress
deactivation
:type toggle: bool
|
https://github.com/brikwerk/nxbt/blob/5a7a8c0ff5ee1f075bef8924051de462179a9dd5/nxbt/tui.py#L81-L90
|
import os
import time
import psutil
from collections import deque
import multiprocessing
from blessed import Terminal
from .nxbt import Nxbt, PRO_CONTROLLER
class LoadingSpinner():
SPINNER_CHARS = ['■ □ □ □', '□ ■ □ □', '□ □ ■ □', '□ □ □ ■', '□ □ □ ■', '□ □ ■ □', '□ ■ □ □', '■ □ □ □']
def __init__(self):
self.creation_time = time.perf_counter()
self.last_update_time = self.creation_time
self.current_char_index = 0
def get_spinner_char(self):
current_time = time.perf_counter()
delta = current_time - self.last_update_time
if delta > 0.07:
self.last_update_time = current_time
if self.current_char_index == 7:
self.current_char_index = 0
else:
self.current_char_index += 1
return self.SPINNER_CHARS[self.current_char_index]
class ControllerTUI():
CONTROLS = {
"ZL": "◿□□□□",
"L": "◿□□□□",
"ZR": "□□□□◺",
"R": "□□□□◺",
"LS_UP": ".─.",
"LS_LEFT": "(",
"LS_RIGHT": ")",
"LS_DOWN": "`─'",
"RS_UP": ".─.",
"RS_LEFT": "(",
"RS_RIGHT": ")",
"RS_DOWN": "`─'",
"DPAD_UP": "△",
"DPAD_LEFT": "◁",
"DPAD_RIGHT": "▷",
"DPAD_DOWN": "▽",
"MINUS": "◎",
"PLUS": "◎",
"HOME": "□",
"CAPTURE": "□",
"A": "○",
"B": "○",
"X": "○",
"Y": "○",
}
def __init__(self, term):
self.term = term
self.DEFAULT_CONTROLS = self.CONTROLS.copy()
self.CONTROL_RELEASE_TIMERS = self.CONTROLS.copy()
for control in self.CONTROL_RELEASE_TIMERS.keys():
self.CONTROL_RELEASE_TIMERS[control] = False
self.auto_keypress_deactivation = True
self.remote_connection = False
|
MIT License
|
alterway/anonymization
|
anonymization/Anonymization.py
|
Anonymization.replace_all
|
python
|
def replace_all(self, text: str, matchs: Iterable[str], provider: str) -> str:
for match in matchs:
text = text.replace(match, self.getFake(provider, match))
return text
|
Replace all occurance in matchs in text using a Faker provider
|
https://github.com/alterway/anonymization/blob/57e6c20f8c97e902f3513b5adfdbc211791aaef0/anonymization/Anonymization.py#L28-L35
|
from collections import defaultdict
from typing import Iterable, Pattern, Callable, List, Any
import re
from faker import Factory
from .lib.diff_match_patch import diff_match_patch
class Anonymization:
def __init__(self, locale: str):
self.locale = locale
self.faker = Factory.create(locale)
self.anonDicts = {}
def getFake(self, provider: str, match: str) -> str:
if not provider in self.anonDicts:
self.anonDicts[provider] = defaultdict(getattr(self.faker, provider))
return self.anonDicts[provider][match]
|
MIT License
|
ajenti/ajenti
|
ajenti-core/aj/util/strings.py
|
str_fsize
|
python
|
def str_fsize(sz):
if sz < 1024:
return '%.1f bytes' % sz
sz /= 1024.0
if sz < 1024:
return '%.1f KB' % sz
sz /= 1024.0
if sz < 1024:
return '%.1f MB' % sz
sz /= 1024.0
if sz < 1024:
return '%.1f GB' % sz
sz /= 1024.0
return '%.1f TB' % sz
|
Formats file size as string (i.e., 1.2 Mb)
|
https://github.com/ajenti/ajenti/blob/61ad358f03f0ae6ef29a5d8b0a00f7cc6e54c56a/ajenti-core/aj/util/strings.py#L1-L17
|
MIT License
|
|
google/python-spanner-orm
|
spanner_orm/model.py
|
Model._execute_write
|
python
|
def _execute_write(
cls,
db_api: Callable[..., Any],
transaction: Optional[spanner_transaction.Transaction],
dictionaries: Iterable[Dict[str, Any]],
) -> None:
columns, values = None, []
for dictionary in dictionaries:
invalid_keys = set(dictionary.keys()) - set(cls.columns)
if invalid_keys:
raise error.SpannerError('Invalid keys set on {model}: {keys}'.format(
model=cls.__name__, keys=invalid_keys))
if columns is None:
columns = dictionary.keys()
if columns != dictionary.keys():
raise error.SpannerError(
'Attempted to update rows with different sets of keys')
for key, value in dictionary.items():
cls.validate_value(key, value, error.SpannerError)
values.append([dictionary[column] for column in columns])
args = [cls.table, columns, values]
if transaction is not None:
return db_api(transaction, *args)
else:
return cls.spanner_api().run_write(db_api, *args)
|
Validates all write value types and commits write to Spanner.
|
https://github.com/google/python-spanner-orm/blob/2d73ce62e71459fc3499e1932023704fb35ffc08/spanner_orm/model.py#L574-L602
|
import collections
import copy
from typing import Any, Callable, Dict, Iterable, List, Optional, Type, TypeVar, Union
from spanner_orm import api
from spanner_orm import condition
from spanner_orm import error
from spanner_orm import foreign_key_relationship
from spanner_orm import field
from spanner_orm import index
from spanner_orm import metadata
from spanner_orm import query
from spanner_orm import registry
from spanner_orm import relationship
from spanner_orm import table_apis
from google.api_core import exceptions
from google.cloud import spanner
from google.cloud.spanner_v1 import transaction as spanner_transaction
T = TypeVar('T')
class ModelMetaclass(type):
meta: metadata.ModelMetadata
def __new__(mcs, name: str, bases: Any, attrs: Dict[str, Any], **kwargs: Any):
parents = [base for base in bases if isinstance(base, ModelMetaclass)]
model_metadata = metadata.ModelMetadata()
for parent in parents:
if 'meta' in vars(parent):
model_metadata.add_metadata(parent.meta)
non_model_attrs = {}
for key, value in attrs.items():
if key == '__table__':
model_metadata.table = value
elif key == '__interleaved__':
model_metadata.interleaved = value
if isinstance(value, field.Field):
model_metadata.add_field(key, value)
elif isinstance(value, index.Index):
model_metadata.add_index(key, value)
elif isinstance(value, relationship.Relationship):
model_metadata.add_relation(key, value)
elif isinstance(
value,
foreign_key_relationship.ForeignKeyRelationship,
):
model_metadata.add_foreign_key_relation(key, value)
else:
non_model_attrs[key] = value
cls = super().__new__(mcs, name, bases, non_model_attrs, **kwargs)
if model_metadata.table:
model_metadata.model_class = cls
model_metadata.finalize()
cls.meta = model_metadata
return cls
def __getattr__(
cls, name: str
) -> Union[field.Field, relationship.Relationship,
foreign_key_relationship.ForeignKeyRelationship, index.Index]:
if name in cls.fields:
return cls.fields[name]
elif name in cls.relations:
return cls.relations[name]
elif name in cls.foreign_key_relations:
return cls.foreign_key_relations[name]
elif name in cls.indexes:
return cls.indexes[name]
raise AttributeError(name)
@property
def column_prefix(cls) -> str:
return cls.table.split('.')[-1]
@property
def columns(cls) -> List[str]:
return cls.meta.columns
@property
def indexes(cls) -> Dict[str, index.Index]:
return cls.meta.indexes
@property
def interleaved(cls) -> Optional[Type['Model']]:
if cls.meta.interleaved:
return registry.model_registry().get(cls.meta.interleaved)
return None
@property
def primary_keys(cls) -> List[str]:
return cls.meta.primary_keys
@property
def relations(cls) -> Dict[str, relationship.Relationship]:
return cls.meta.relations
@property
def foreign_key_relations(
cls) -> Dict[str, foreign_key_relationship.ForeignKeyRelationship]:
return cls.meta.foreign_key_relations
@property
def fields(cls) -> Dict[str, field.Field]:
return cls.meta.fields
@property
def table(cls):
return cls.meta.table
def validate_value(cls, field_name, value, error_type=error.SpannerError):
try:
cls.fields[field_name].validate(value)
except error.ValidationError as ex:
context = f'Validation error for field {field_name!r}'
raise error_type((f'{context}: {ex.args[0]}' if ex.args else context),
*ex.args[1:])
CallableReturn = TypeVar('CallableReturn')
class Model(metaclass=ModelMetaclass):
def __init__(self,
values: Dict[str, Any],
persisted: bool = False,
skip_validation: bool = False):
start_values = {}
self.__dict__['start_values'] = start_values
self.__dict__['_persisted'] = persisted
if not persisted and not skip_validation:
missing_keys = set(self._primary_keys) - set(values.keys())
if missing_keys:
raise error.SpannerError(
'All primary keys must be specified. Missing: {keys}'.format(
keys=missing_keys))
for column in self._columns:
self._metaclass.validate_value(column, values.get(column), ValueError)
for column in self._columns:
value = values.get(column)
start_values[column] = copy.copy(value)
self.__dict__[column] = value
for relation in self._relations:
if relation in values:
self.__dict__[relation] = values[relation]
for foreign_key_relation in self._foreign_key_relations:
if foreign_key_relation in values:
self.__dict__[foreign_key_relation] = values[foreign_key_relation]
def __eq__(self, other: Any) -> Union[bool, type(NotImplemented)]:
if type(self) != type(other):
return NotImplemented
return self.values == other.values
@classmethod
def spanner_api(cls) -> api.SpannerApi:
if not cls.table:
raise error.SpannerError('Class must define a table for API calls')
return api.spanner_api()
@classmethod
def all(
cls: Type[T],
*,
transaction: Optional[spanner_transaction.Transaction] = None,
) -> List[T]:
args = [cls.table, cls.columns, spanner.KeySet(all_=True)]
results = cls._execute_read(table_apis.find, transaction, args)
return cls._results_to_models(results)
@classmethod
def count(
cls,
*conditions: condition.Condition,
transaction: Optional[spanner_transaction.Transaction] = None,
) -> int:
builder = query.CountQuery(cls, conditions)
args = [builder.sql(), builder.parameters(), builder.types()]
results = cls._execute_read(table_apis.sql_query, transaction, args)
return builder.process_results(results)
@classmethod
def count_equal(
cls,
*,
transaction: Optional[spanner_transaction.Transaction] = None,
**constraints: Any,
) -> int:
conditions = []
for column, value in constraints.items():
if isinstance(value, list):
conditions.append(condition.in_list(column, value))
else:
conditions.append(condition.equal_to(column, value))
return cls.count(*conditions, transaction=transaction)
@classmethod
def find(
cls: Type[T],
*,
transaction: Optional[spanner_transaction.Transaction] = None,
**keys: Any,
) -> Optional[T]:
resources = cls.find_multi([keys], transaction=transaction)
return resources[0] if resources else None
@classmethod
def find_required(
cls: Type[T],
*,
transaction: Optional[spanner_transaction.Transaction] = None,
**keys: Any,
) -> T:
result = cls.find(**keys, transaction=transaction)
if result is None:
raise exceptions.NotFound(
f'{cls.__qualname__} has no object with primary key {keys}')
return result
@classmethod
def find_multi(
cls: Type[T],
keys: Iterable[Dict[str, Any]],
*,
transaction: Optional[spanner_transaction.Transaction] = None,
) -> List[T]:
key_values = []
for key in keys:
key_values.append([key[column] for column in cls.primary_keys])
keyset = spanner.KeySet(keys=key_values)
args = [cls.table, cls.columns, keyset]
results = cls._execute_read(table_apis.find, transaction, args)
return cls._results_to_models(results)
@classmethod
def where(
cls: Type[T],
*conditions: condition.Condition,
transaction: Optional[spanner_transaction.Transaction] = None,
) -> List[T]:
builder = query.SelectQuery(cls, conditions)
args = [builder.sql(), builder.parameters(), builder.types()]
results = cls._execute_read(table_apis.sql_query, transaction, args)
return builder.process_results(results)
@classmethod
def where_equal(
cls: Type[T],
*,
transaction: Optional[spanner_transaction.Transaction] = None,
**constraints: Any,
) -> List[T]:
conditions = []
for column, value in constraints.items():
if isinstance(value, list):
conditions.append(condition.in_list(column, value))
else:
conditions.append(condition.equal_to(column, value))
return cls.where(*conditions, transaction=transaction)
@classmethod
def _results_to_models(
cls: Type[T],
results: Iterable[Iterable[Any]],
) -> List[T]:
items = [dict(zip(cls.columns, result)) for result in results]
return [cls(item, persisted=True) for item in items]
@classmethod
def _execute_read(
cls,
db_api: Callable[..., CallableReturn],
transaction: Optional[spanner_transaction.Transaction],
args: List[Any],
) -> CallableReturn:
if transaction is not None:
return db_api(transaction, *args)
else:
return cls.spanner_api().run_read_only(db_api, *args)
@classmethod
def create(
cls,
*,
transaction: Optional[spanner_transaction.Transaction] = None,
**kwargs: Any,
) -> None:
cls._execute_write(table_apis.insert, transaction, [kwargs])
@classmethod
def create_or_update(
cls,
*,
transaction: Optional[spanner_transaction.Transaction] = None,
**kwargs: Any,
) -> None:
cls._execute_write(table_apis.upsert, transaction, [kwargs])
@classmethod
def _delete_by_keyset(
cls,
transaction: Optional[spanner_transaction.Transaction],
keyset: spanner.KeySet,
) -> None:
db_api = table_apis.delete
args = [cls.table, keyset]
if transaction is not None:
db_api(transaction, *args)
else:
cls.spanner_api().run_write(db_api, *args)
@classmethod
def delete_batch(
cls: Type[T],
models: List[T],
*,
transaction: Optional[spanner_transaction.Transaction] = None,
) -> None:
key_list = []
for model in models:
key_list.append([getattr(model, column) for column in cls.primary_keys])
cls._delete_by_keyset(
transaction=transaction,
keyset=spanner.KeySet(keys=key_list),
)
@classmethod
def delete_by_key(
cls,
*,
transaction: Optional[spanner_transaction.Transaction] = None,
**keys: Any,
) -> None:
cls._delete_by_keyset(
transaction=transaction,
keyset=spanner.KeySet(
keys=[[keys[column] for column in cls.primary_keys]]),
)
@classmethod
def save_batch(
cls: Type[T],
models: List[T],
*,
transaction: Optional[spanner_transaction.Transaction] = None,
force_write: bool = False,
) -> None:
work = collections.defaultdict(list)
for model in models:
value = {column: getattr(model, column) for column in cls.columns}
if force_write:
api_method = table_apis.upsert
elif model._persisted:
api_method = table_apis.update
else:
api_method = table_apis.insert
work[api_method].append(value)
model._persisted = True
for api_method, values in work.items():
cls._execute_write(api_method, transaction, values)
@classmethod
def update(
cls,
*,
transaction: Optional[spanner_transaction.Transaction] = None,
**kwargs: Any,
) -> None:
cls._execute_write(table_apis.update, transaction, [kwargs])
@classmethod
|
Apache License 2.0
|
openstack/osc-lib
|
osc_lib/tests/utils/__init__.py
|
TestCommand.assertListItemEqual
|
python
|
def assertListItemEqual(self, expected, actual):
self.assertEqual(len(expected), len(actual))
for item_expected, item_actual in zip(expected, actual):
self.assertItemEqual(item_expected, item_actual)
|
Compare a list of items considering formattable columns.
Each pair of observed and expected items are compared
using assertItemEqual() method.
|
https://github.com/openstack/osc-lib/blob/415a6c7b191ac665fb7763d12d1b427b7b630586/osc_lib/tests/utils/__init__.py#L172-L180
|
import contextlib
import copy
import json as jsonutils
import os
from unittest import mock
from cliff import columns as cliff_columns
import fixtures
from keystoneauth1 import loading
from openstack.config import cloud_region
from openstack.config import defaults
from oslo_utils import importutils
from requests_mock.contrib import fixture
import testtools
from osc_lib import clientmanager
from osc_lib import shell
from osc_lib.tests import fakes
def fake_execute(shell, cmd):
return shell.run(cmd.split())
def make_shell(shell_class=None):
if shell_class is None:
shell_class = shell.OpenStackShell
_shell = shell_class()
_shell.command_manager = mock.Mock()
return _shell
def opt2attr(opt):
if opt.startswith('--os-'):
attr = opt[5:]
elif opt.startswith('--'):
attr = opt[2:]
else:
attr = opt
return attr.lower().replace('-', '_')
def opt2env(opt):
return opt[2:].upper().replace('-', '_')
class EnvFixture(fixtures.Fixture):
def __init__(self, env=None):
self.new_env = env or {}
def _setUp(self):
self.orig_env, os.environ = os.environ, self.new_env
self.addCleanup(self.revert)
def revert(self):
os.environ = self.orig_env
class ParserException(Exception):
pass
class TestCase(testtools.TestCase):
def setUp(self):
testtools.TestCase.setUp(self)
if (os.environ.get("OS_STDOUT_CAPTURE") == "True" or
os.environ.get("OS_STDOUT_CAPTURE") == "1"):
stdout = self.useFixture(fixtures.StringStream("stdout")).stream
self.useFixture(fixtures.MonkeyPatch("sys.stdout", stdout))
if (os.environ.get("OS_STDERR_CAPTURE") == "True" or
os.environ.get("OS_STDERR_CAPTURE") == "1"):
stderr = self.useFixture(fixtures.StringStream("stderr")).stream
self.useFixture(fixtures.MonkeyPatch("sys.stderr", stderr))
def assertNotCalled(self, m, msg=None):
if m.called:
if not msg:
msg = 'method %s should not have been called' % m
self.fail(msg)
@contextlib.contextmanager
def subTest(self, *args, **kwargs):
try:
with super(TestCase, self).subTest(*args, **kwargs):
yield
except TypeError:
raise
except AttributeError:
yield
class TestCommand(TestCase):
def setUp(self):
super(TestCommand, self).setUp()
self.fake_stdout = fakes.FakeStdout()
self.fake_log = fakes.FakeLog()
self.app = fakes.FakeApp(self.fake_stdout, self.fake_log)
self.app.client_manager = fakes.FakeClientManager()
def check_parser(self, cmd, args, verify_args):
cmd_parser = cmd.get_parser('check_parser')
try:
parsed_args = cmd_parser.parse_args(args)
except SystemExit:
raise ParserException("Argument parse failed")
for av in verify_args:
attr, value = av
if attr:
self.assertIn(attr, parsed_args)
self.assertEqual(value, getattr(parsed_args, attr))
return parsed_args
def assertItemEqual(self, expected, actual):
self.assertEqual(len(expected), len(actual))
for col_expected, col_actual in zip(expected, actual):
if isinstance(col_expected, cliff_columns.FormattableColumn):
self.assertIsInstance(col_actual, col_expected.__class__)
self.assertEqual(col_expected.human_readable(),
col_actual.human_readable())
self.assertEqual(col_expected.machine_readable(),
col_actual.machine_readable())
else:
self.assertEqual(col_expected, col_actual)
|
Apache License 2.0
|
scidash/sciunit
|
sciunit/base.py
|
Versioned.get_repo
|
python
|
def get_repo(self, cached: bool = True) -> Repo:
module = sys.modules[self.__module__]
if hasattr(self.__class__, "_repo") and cached:
repo = self.__class__._repo
elif hasattr(module, "__file__"):
path = Path(module.__file__).resolve()
try:
repo = git.Repo(path, search_parent_directories=True)
except InvalidGitRepositoryError:
repo = None
else:
repo = None
self.__class__._repo = repo
return repo
|
Get a git repository object for this instance.
Args:
cached (bool, optional): Whether to use cached data. Defaults to True.
Returns:
Repo: The git repo for this instance.
|
https://github.com/scidash/sciunit/blob/68401d88b8e47d29807f8b4f9d265a23174143d9/sciunit/base.py#L164-L187
|
import sys
PLATFORM = sys.platform
PYTHON_MAJOR_VERSION = sys.version_info.major
if PYTHON_MAJOR_VERSION < 3:
raise Exception("Only Python 3 is supported")
import hashlib
import inspect
import json
import logging
from pathlib import Path
from typing import Any, List
try:
import tkinter
except ImportError:
tkinter = None
try:
from importlib.metadata import version
__version__ = version("sciunit")
except:
__version__ = None
import bs4
import git
from deepdiff import DeepDiff
from git.cmd import Git
from git.exc import GitCommandError, InvalidGitRepositoryError
from git.remote import Remote
from git.repo.base import Repo
import jsonpickle
import jsonpickle.ext.numpy as jsonpickle_numpy
from jsonpickle.handlers import BaseHandler
import numpy as np
import quantities as pq
ipy = "ipykernel" in sys.modules
here = Path(__file__).resolve().parent.name
logger = logging.getLogger("sciunit")
logger.setLevel(logging.WARNING)
class Config(dict):
def __init__(self, *args, **kwargs):
self.load()
super().__init__(*args, **kwargs)
default = {
"cmap_high": 218,
"cmap_low": 38,
"score_log_level": 1,
"log_level": logging.INFO,
"prevalidate": False,
"cwd": here,
}
_path = Path.home() / ".sciunit" / "config.json"
@property
def path(self):
return Path(self._path)
@path.setter
def path(self, val):
self._path = Path(val)
def __getitem__(self, key):
return self.get(key)
def get(self, key, default=None, update_from_disk=True):
key = key.lower()
try:
val = super().__getitem__(key)
except KeyError:
c = self.get_from_disk()
if default is None:
val = c[key]
else:
val = c.get(key, default)
if update_from_disk:
self[key.lower()] = val
return val
def set(self, key, val):
self.__setitem__(key, val)
def __setitem__(self, key, val):
key = key.lower()
super().__setitem__(key, val)
def get_from_disk(self):
try:
with open(self.path, "r") as f:
c = json.load(f)
except FileNotFoundError:
logger.warning(
"Config file not found at '%s'; creating new one" % self.path
)
self.create()
return self.get_from_disk()
except json.JSONDecodeError:
logger.warning(
"Config file JSON at '%s' was invalid; creating new one" % self.path
)
self.create()
return self.get_from_disk()
return c
def create(self, data: dict = None) -> bool:
if not data:
data = self.default
success = False
try:
config_dir = self.path.parent
config_dir.mkdir(exist_ok=True, parents=True)
data["sciunit_version"] = __version__
with open(self.path, "w") as f:
f.seek(0)
f.truncate()
json.dump(data, f)
success = True
except Exception as e:
logger.warning("Could not create config file: %s" % e)
return success
def load(self):
c = self.get_from_disk()
for key, val in c.items():
key = key.lower()
self[key] = val
def save(self):
self.create(data=self)
config = Config()
class Versioned(object):
|
MIT License
|
takelley1/ocvbot
|
ocvbot/behavior.py
|
human_behavior_rand
|
python
|
def human_behavior_rand(chance) -> None:
roll = rand.randint(1, chance)
log.debug("Human behavior rolled %s", roll)
if roll == chance:
log.info("Attempting to act human.")
roll = rand.randint(1, 2)
if roll == 1:
check_skills()
elif roll == 2:
roll = rand.randint(1, 8)
if roll == 1:
open_side_stone("attacks")
elif roll == 2:
open_side_stone("quests")
elif roll == 3:
open_side_stone("equipment")
elif roll == 4:
open_side_stone("prayers")
elif roll == 5:
open_side_stone("spellbook")
elif roll == 6:
open_side_stone("music")
elif roll == 7:
open_side_stone("friends")
elif roll == 8:
open_side_stone("settings")
return
return
|
Randomly chooses from a list of human behaviors if the roll passes.
This is done to make the bot appear more human.
Args:
chance (int): The number that must be rolled for a random
behavior to be triggered. For example, if this
parameter is 25, then there is a 1 in 25 chance
for the roll to pass.
|
https://github.com/takelley1/ocvbot/blob/1c196a65a92c29a4630e47f62ee7b3af50516ff6/ocvbot/behavior.py#L523-L561
|
import logging as log
import pathlib
import random as rand
import sys
import time
import cv2
import numpy as np
import pyautogui as pag
from ocvbot import inputs
from ocvbot import misc
from ocvbot import startup as start
from ocvbot import vision as vis
def login_basic(
username_file=start.config["main"]["username_file"],
password_file=start.config["main"]["password_file"],
cred_sleep_range: tuple[int, int] = (800, 5000),
) -> bool:
username = open(username_file, "r", encoding="utf-8").read()
username = str(username.replace("\n", ""))
password = open(password_file, "r", encoding="utf-8").read()
password = str(password.replace("\n", ""))
for _ in range(1, 3):
log.info("Logging in.")
ok_button = vis.Vision(
region=vis.client, needle="./needles/login-menu/ok-button.png", loop_num=1
).click_needle()
existing_user_button = vis.Vision(
region=vis.client,
needle="./needles/login-menu/existing-user-button.png",
loop_num=1,
).click_needle()
if existing_user_button is True or ok_button is True:
credential_screen = vis.Vision(
region=vis.client,
needle="./needles/login-menu/login-cancel-buttons.png",
loop_num=5,
).wait_for_needle()
if credential_screen is True:
inputs.Mouse(
region=(
vis.login_field_left,
vis.login_field_top,
start.LOGIN_FIELD_WIDTH,
start.LOGIN_FIELD_HEIGHT,
)
).click_coord()
misc.sleep_rand(cred_sleep_range[0], cred_sleep_range[1])
inputs.Keyboard(log_keys=False).typewriter(username)
misc.sleep_rand(cred_sleep_range[0], cred_sleep_range[1])
inputs.Mouse(
region=(
vis.pass_field_left,
vis.pass_field_top,
start.LOGIN_FIELD_WIDTH,
start.LOGIN_FIELD_HEIGHT,
)
).click_coord()
inputs.Keyboard(log_keys=False).typewriter(password)
misc.sleep_rand(cred_sleep_range[0], cred_sleep_range[1])
inputs.Keyboard().keypress(key="enter")
return True
log.critical("Could perform login!")
return False
def login_full(
login_sleep_range: tuple[int, int] = (500, 5000),
postlogin_sleep_range: tuple[int, int] = (500, 5000),
username_file=start.config["main"]["username_file"],
password_file=start.config["main"]["password_file"],
) -> bool:
log.info("Attempting to login.")
for _ in range(1, 3):
login = login_basic(username_file, password_file)
if login is False:
raise Exception("Could not perform initial login!")
misc.sleep_rand(login_sleep_range[0], login_sleep_range[1])
postlogin_screen_button = vis.Vision(
region=vis.display,
needle="./needles/login-menu/orient-postlogin.png",
conf=0.8,
loop_num=10,
loop_sleep_range=(1000, 2000),
).click_needle()
if postlogin_screen_button is True:
misc.sleep_rand(postlogin_sleep_range[0], postlogin_sleep_range[1])
logged_in = vis.Vision(
region=vis.display,
needle="./needles/minimap/orient.png",
loop_num=50,
loop_sleep_range=(1000, 2000),
).wait_for_needle()
if logged_in is True:
start.start_time = time.time()
pag.keyDown("Up")
misc.sleep_rand(3000, 7000)
pag.keyUp("Up")
return True
raise Exception("Could not detect login after postlogin screen!")
log.warning("Cannot find postlogin screen!")
invalid_credentials = vis.Vision(
region=vis.display,
needle="./needles/login-menu/invalid-credentials.png",
loop_num=1,
).wait_for_needle()
if invalid_credentials is True:
raise Exception("Invalid user credentials!")
log.critical("Cannot find postlogin screen!")
raise Exception("Unable to login!")
def logout() -> bool:
if vis.orient()[0] == "logged_out":
log.warning("Client already logged out!")
return True
log.info("Attempting to logout.")
open_side_stone("logout")
logout_button_world_switcher = False
logout_button_highlighted = False
logout_button = False
for _ in range(1, 5):
logout_button = vis.Vision(
region=vis.inv,
needle="./needles/side-stones/logout/logout.png",
conf=0.9,
loop_num=1,
).wait_for_needle(get_tuple=True)
if isinstance(logout_button, tuple) is True:
break
logout_button_highlighted = vis.Vision(
region=vis.inv,
needle="./needles/side-stones/logout/logout-highlighted.png",
conf=0.9,
loop_num=1,
).wait_for_needle(get_tuple=True)
if isinstance(logout_button_highlighted, tuple) is True:
logout_button = logout_button_highlighted
break
logout_button_world_switcher = vis.Vision(
region=vis.side_stones,
needle="./needles/side-stones/logout/logout-world-switcher.png",
conf=0.9,
loop_num=1,
).wait_for_needle(get_tuple=True)
if isinstance(logout_button_world_switcher, tuple) is True:
logout_button = logout_button_world_switcher
break
if (
logout_button is False
and logout_button_highlighted is False
and logout_button_world_switcher is False
):
raise Exception("Failed to find logout button!")
inputs.Mouse(region=logout_button).click_coord(move_away=True)
for tries in range(5):
logged_out = vis.Vision(
region=vis.client,
needle="./needles/login-menu/orient-logged-out.png",
loop_num=5,
loop_sleep_range=(1000, 1200),
).wait_for_needle()
if logged_out is True:
log.info("Logged out after trying %s times(s)", tries)
return True
else:
log.info("Unable to log out, trying again.")
inputs.Mouse(region=logout_button).click_coord(move_away=True)
raise Exception("Could not logout!")
def logout_break_range() -> bool:
current_time = round(time.time())
if current_time >= start.checkpoint_1 and start.checkpoint_1_checked is False:
log.info("Rolling for checkpoint 1...")
start.checkpoint_1_checked = True
logout_break_roll(5)
elif current_time >= start.checkpoint_2 and start.checkpoint_2_checked is False:
log.info("Rolling for checkpoint 2...")
start.checkpoint_2_checked = True
logout_break_roll(5)
elif current_time >= start.checkpoint_3 and start.checkpoint_3_checked is False:
log.info("Rolling for checkpoint 3...")
start.checkpoint_3_checked = True
logout_break_roll(5)
elif current_time >= start.checkpoint_4 and start.checkpoint_4_checked is False:
log.info("Rolling checkpoint 4...")
start.checkpoint_4_checked = True
logout_break_roll(5)
elif current_time >= start.checkpoint_5:
start.checkpoint_1_checked = False
start.checkpoint_2_checked = False
start.checkpoint_3_checked = False
start.checkpoint_4_checked = False
logout_break_roll(1)
else:
if start.checkpoint_1_checked is False:
log.info("Checkpoint 1 is at %s", time.ctime(start.checkpoint_1))
elif start.checkpoint_1_checked is True and start.checkpoint_2_checked is False:
log.info("Checkpoint 2 is at %s", time.ctime(start.checkpoint_2))
elif start.checkpoint_2_checked is True and start.checkpoint_3_checked is False:
log.info("Checkpoint 3 is at %s", time.ctime(start.checkpoint_3))
elif start.checkpoint_3_checked is True and start.checkpoint_4_checked is False:
log.info("Checkpoint 4 is at %s", time.ctime(start.checkpoint_4))
elif start.checkpoint_4_checked is True:
log.info("Checkpoint 5 is at %s", time.ctime(start.checkpoint_5))
return True
def logout_break_roll(
chance,
min_break_duration=int(start.config["main"]["min_break_duration"]),
max_break_duration=int(start.config["main"]["max_break_duration"]),
) -> None:
logout_roll = rand.randint(1, chance)
log.info("Logout roll was %s", logout_roll)
if logout_roll == chance:
log.info("Random logout called.")
logout()
start.session_num += 1
log.info("Completed session %s/%s", start.session_num, start.session_total)
if start.session_num >= start.session_total:
log.info("Final session completed! Script done.")
sys.exit(0)
else:
min_break_duration *= 60000
max_break_duration *= 60000
wait_time_seconds = misc.rand_seconds(
min_break_duration, max_break_duration
)
wait_time_minutes = wait_time_seconds / 60
current_time = time.time()
stop_time = current_time + (current_time + wait_time_seconds)
stop_time_human = time.localtime(stop_time)
log.info(
"Sleeping for %s minutes. Break will be over at %s:%s:%s",
round(wait_time_minutes),
stop_time_human[3],
stop_time_human[4],
stop_time_human[5],
)
time.sleep(wait_time_seconds)
else:
return
def open_side_stone(side_stone) -> bool:
side_stone_open = "./needles/side-stones/open/" + side_stone + ".png"
side_stone_closed = "./needles/side-stones/closed/" + side_stone + ".png"
stone_open = vis.Vision(
region=vis.side_stones, needle=side_stone_open, loop_num=1, conf=0.98
).wait_for_needle()
if stone_open is True:
log.debug("Side stone already open.")
return True
log.debug("Opening side stone...")
for tries in range(1, 5):
vis.Vision(
region=vis.side_stones,
needle=side_stone_closed,
loop_num=3,
loop_sleep_range=(100, 300),
).click_needle(sleep_range=(0, 200, 0, 200), move_away=True)
stone_open = vis.Vision(
region=vis.side_stones,
needle=side_stone_open,
loop_num=3,
conf=0.98,
loop_sleep_range=(100, 200),
).wait_for_needle()
if stone_open is True:
log.info("Opened side stone after %s tries.", tries)
return True
vis.Vision(
region=vis.game_screen, needle="./needles/buttons/close.png", loop_num=1
).click_needle()
raise Exception("Could not open side stone!")
def check_skills() -> bool:
open_side_stone("skills")
inputs.Mouse(region=vis.inv).move_to()
misc.sleep_rand(1000, 7000)
return True
|
MIT License
|
capitalone/rubicon
|
rubicon_ml/ui/model.py
|
RubiconModel.selected_project
|
python
|
def selected_project(self):
return self._selected_project
|
The currently selected Rubicon project.
Returns
-------
rubicon.Project or rubicon.client.asynchronous.Project
|
https://github.com/capitalone/rubicon/blob/86278a98cf5fd0b7e179a2949fce5a12e42fd7be/rubicon_ml/ui/model.py#L231-L238
|
import asyncio
import numpy as np
import pandas as pd
from rubicon_ml.client.asynchronous import Rubicon as AsynRubicon
class RubiconModel:
def __init__(self, rubicon):
self._rubicon = rubicon
self._projects = []
self._selected_project = None
self._experiment_table_dfs = {}
self._experiment_comparison_root_dfs = {}
def _maybe_run_async(self, rubicon_func, *args, **kwargs):
if isinstance(self._rubicon, AsynRubicon):
return asyncio.run_coroutine_threadsafe(
rubicon_func(*args, **kwargs), loop=self._rubicon.repository.filesystem.loop
).result()
else:
return rubicon_func(*args, **kwargs)
def get_anchor_options(self, commit_hash):
anchors = list(self._experiment_comparison_root_dfs[commit_hash].columns)
return [{"label": a, "value": a} for a in anchors]
def get_dimensions(self, commit_hash, selected_experiment_ids, hidden_columns, anchor):
dimensions = []
root_df = self.get_experiment_comparison_root_df(commit_hash)
if hidden_columns is not None:
root_df = root_df.drop(columns=hidden_columns, errors="ignore")
experiment_comparison_df = root_df.loc[selected_experiment_ids]
experiment_comparison_df = experiment_comparison_df.compute().convert_dtypes()
for column in experiment_comparison_df.columns:
clean_column = experiment_comparison_df[column].dropna()
if isinstance(experiment_comparison_df[column].dtype, pd.StringDtype):
unique_values = clean_column.unique()
values = clean_column.map(lambda value: np.where(unique_values == value)[0][0])
dimension = dict(
label=column,
ticktext=unique_values,
tickvals=list(range(0, len(unique_values))),
values=values,
)
elif isinstance(experiment_comparison_df[column].dtype, pd.BooleanDtype):
values = clean_column.astype(int)
dimension = dict(
label=column,
ticktext=["False", "True"],
tickvals=[0, 1],
values=values,
)
else:
values = clean_column
dimension = dict(label=column, values=values)
if column == anchor:
anchor_dimension = dimension
anchor_data = values
else:
dimensions.append(dimension)
dimensions.append(anchor_dimension)
return anchor_data, dimensions
def get_experiment_table_df(self, commit_hash):
return self._experiment_table_dfs[commit_hash]
def get_experiment_comparison_root_df(self, commit_hash):
return self._experiment_comparison_root_dfs[commit_hash]
def get_model_names(self, commit_hash):
return list(self._experiment_table_dfs[commit_hash]["model_name"].unique())
def update_projects(self):
self._projects = self._maybe_run_async(self._rubicon.projects)
def update_selected_project(self, selected_project_name):
self._selected_project, *_ = [p for p in self._projects if p.name == selected_project_name]
self._experiment_table_dfs = {}
grouped_experiment_dfs = self._maybe_run_async(
self._selected_project.to_dask_df, group_by="commit_hash"
)
et_commit_hash_display_length = 7
et_drop_columns = ["description", "name", "created_at"]
et_type_castings = {"tags": "str"}
ec_drop_columns = ["commit_hash", "model_name", "tags"]
ec_index = "id"
if len(grouped_experiment_dfs.items()) == 0:
self._experiment_table_dfs = {}
for commit_hash, df in grouped_experiment_dfs.items():
experiment_table_df = df.drop(columns=et_drop_columns)
experiment_table_df = experiment_table_df.astype(et_type_castings)
experiment_table_df["commit_hash"] = experiment_table_df["commit_hash"].map(
lambda ch: ch[:et_commit_hash_display_length] if ch is not None else None
)
self._experiment_table_dfs[commit_hash] = experiment_table_df
experiment_comparison_df = experiment_table_df.set_index(ec_index)
experiment_comparison_df = experiment_comparison_df.drop(columns=ec_drop_columns)
self._experiment_comparison_root_dfs[commit_hash] = experiment_comparison_df
@property
def project_options(self):
return [{"label": p.name, "value": p.name} for p in self._projects]
@property
|
Apache License 2.0
|
kzhai/infvoclda
|
src/infvoc/nchar.py
|
NcharModel.logprob
|
python
|
def logprob(self, word, context):
return - log(self.prob(word, context), 2)
|
Evaluate the (negative) log probability of this word in this context.
|
https://github.com/kzhai/infvoclda/blob/05a87890d613b07f7b0c2d2bb6c79aad39e2f75d/src/infvoc/nchar.py#L271-L275
|
import random
import string
import nltk
from itertools import chain
from math import log, pow
import math;
import numpy;
import re;
import sys
import time;
from nltk.probability import ConditionalProbDist, ConditionalFreqDist, MLEProbDist, LaplaceProbDist, SimpleGoodTuringProbDist
from nltk.util import ngrams
def _estimator(fdist, bins):
return SimpleGoodTuringProbDist(fdist);
class NcharModel(ModelI):
def __init__(self,
n,
train,
smoothing=1e9,
maximum_length=20,
minimum_length=3,
char_set=string.lowercase + string.punctuation + string.digits,
patch_char='#'):
self._smoothing = smoothing;
self._n = n
self._maximum_length = maximum_length;
self._minimum_length = minimum_length;
self._char_set = char_set;
estimator = lambda fdist, bins: nltk.probability.LidstoneProbDist(fdist, self._smoothing, len(self._char_set)+1);
cfd = ConditionalFreqDist()
self._ngrams = set()
self._patch_char = patch_char;
self._prefix = (self._patch_char,) * (n - 1)
length = nltk.probability.FreqDist();
word_freq_dist = nltk.probability.FreqDist();
char_list = [];
for word in train:
word = word.strip().lower();
if len(word)<self._minimum_length or len(word)>self._maximum_length:
continue;
length.inc(len(word));
word_freq_dist.inc(word, 1);
char_list.extend(self._prefix);
char_list.extend([char for char in word if char in self._char_set]);
self._length = nltk.probability.WittenBellProbDist(length, length.B()+1);
for nchar in ngrams(char_list, n):
self._ngrams.add(nchar)
context = tuple(nchar[:-1])
token = nchar[-1]
cfd[context].inc(token)
'''
if n==3:
cond = 0;
for x in self._char_set:
for y in self._char_set:
print (x, y), context_freq_dist[(x, y)], self._context.prob((x, y));
cond += self._context.prob((x, y));
print 'cond is', cond
'''
self._model = ConditionalProbDist(cfd, estimator, len(self._char_set) ** (n - 1));
'''
consonant_freq_dist = nltk.probability.FreqDist();
consonant_condition_freq_dist = nltk.probability.ConditionalFreqDist();
for word in train:
#word = re.sub(r'aeiou', ' ', word);
word = word[0] + re.sub('aeiouy', ' ', word[1:]);
consonant_list = word.split();
#consonant_list = ['#', '#'] + consonant_list;
for temp in consonant_list:
consonant_freq_dist.inc(temp, 1);
consonant_freq_dist.plot()
'''
word_prob_dist = nltk.probability.MLEProbDist(word_freq_dist);
word_model_empirical_frequency = numpy.zeros((1, self._maximum_length - self._minimum_length + 1)) + 1e-300;
word_model_square = numpy.zeros((1, self._maximum_length - self._minimum_length + 1)) + 1e-300;
total_outcomes = 0;
for x in xrange(self._minimum_length, self._maximum_length+1):
total_outcomes += len(self._char_set) ** x;
for word in word_freq_dist.keys():
word_model_empirical_frequency[0, len(word)-self._minimum_length] += word_prob_dist.prob(word) * self.probability_without_length(word);
word_model_square[0, len(word)-self._minimum_length] += self.probability_without_length(word) ** 2;
if True:
lagrangian_parameter = 2 * (1-numpy.sum(word_model_empirical_frequency / word_model_square))/numpy.sum(1.0/word_model_square)
else:
lagrangian_parameter = 1.;
self._multinomial_length = (word_model_empirical_frequency - lagrangian_parameter / 2) / word_model_square;
self._multinomial_length /= numpy.sum(self._multinomial_length);
assert numpy.all(self._multinomial_length>=0), self._multinomial_length;
if n > 1:
self._backoff = NcharModel(n-1, train, self._smoothing, maximum_length,
minimum_length, self._char_set, self._patch_char);
def probability(self, word):
geometric_mean=False;
if len(word)<self._minimum_length or len(word)>self._maximum_length:
return 0;
if geometric_mean:
prob = 1.0;
else:
prob = self._multinomial_length[0, len(word)-self._minimum_length];
word = [char for char in word];
word = tuple(word);
word = self._prefix + word;
for i in xrange(len(word) - 1, 1, -1):
prob *= self._model[word[i - (self._n - 1):i]].prob(word[i]);
if geometric_mean:
prob = pow(prob, 1.0/(len(word) - len(self._prefix)));
return prob;
'''
# This is the old version of the code, using backoff models
prob = 1;
for i in xrange(len(word)-1, -1, -1):
if i-(self._n-1)<0:
#print word[i], "|", word[:i]
prob *= self.prob(word[i], word[:i]);
else:
#print word[i], '|', word[i-(self._n-1):i];
prob *= self.prob(word[i], word[i-(self._n-1):i]);
return prob;
'''
def probability_without_length(self, word):
prob = 1.0;
word = [char for char in word];
word = tuple(word);
word = self._prefix + word;
for i in xrange(len(word) - 1, 1, -1):
prob *= self._model[word[i - (self._n - 1):i]].prob(word[i]);
return prob;
'''
Katz Backoff probability
@deprecated
'''
def prob(self, charactor, context):
context = [char for char in context];
context = tuple(context);
context = self._prefix + context;
context = context[-(self._n - 1):];
if (context + (charactor,) in self._ngrams) or (self._n == 1):
return self._model[context].prob(charactor)
else:
return self._alpha(context) * self._backoff.prob(charactor, context[1:])
'''
# This is the original code.
context = tuple(context)
if context + (charactor,) in self._ngrams:
return self[context].prob(charactor)
elif self._n > 1:
return self._alpha(context) * self._backoff.prob(charactor, context[1:])
else:
raise RuntimeError("No probability mass assigned to charactor %s in "
"context %s" % (charactor, ' '.join(context)))
'''
def _alpha(self, tokens):
return self._beta(tokens) / self._backoff._beta(tokens[1:])
def _beta(self, tokens):
if len(tokens) > 0 and tokens in self:
return self[tokens].discount()
else:
return 1
|
Apache License 2.0
|
luckydonald/pytgbot
|
code_generation/output/telegram_bot_api_server/generated/funcs.py
|
get_webhook_info
|
python
|
async def get_webhook_info(
token: str = TOKEN_VALIDATION,
) -> JSONableResponse:
from .....main import _get_bot
bot = await _get_bot(token)
result = await bot.get_webhook_info(
)
data = await to_web_api(result, bot)
return r_success(data.to_array())
|
Use this method to get current webhook status. Requires no parameters. On success, returns a WebhookInfo object. If the bot is using getUpdates, will return an object with the url field empty.
https://core.telegram.org/bots/api#getwebhookinfo
|
https://github.com/luckydonald/pytgbot/blob/e29a0b5f8f8331bd347c8e2b8e75af19b12d1bc5/code_generation/output/telegram_bot_api_server/generated/funcs.py#L179-L196
|
from pytgbot.api_types.sendable.reply_markup import InlineKeyboardMarkup
from pytgbot.api_types.sendable.reply_markup import ReplyKeyboardMarkup
from pytgbot.api_types.sendable.reply_markup import ReplyKeyboardRemove
from pytgbot.api_types.sendable.reply_markup import ForceReply
from pytgbot.api_types.sendable.input_media import InputMediaDocument
from pytgbot.api_types.sendable.input_media import InputMediaAudio
from pytgbot.api_types.sendable.input_media import InputMediaPhoto
from pytgbot.api_types.sendable.input_media import InputMediaVideo
from pytgbot.api_types.sendable.input_media import InputMedia
from pytgbot.api_types.receivable.stickers import MaskPosition
from pytgbot.api_types.sendable.passport import PassportElementError
from pytgbot.api_types.sendable.payments import ShippingOption
from pytgbot.api_types.sendable.payments import LabeledPrice
from pytgbot.api_types.receivable.media import MessageEntity
from pytgbot.api_types.sendable.command import BotCommandScope
from pytgbot.api_types.sendable.command import BotCommand
from pytgbot.api_types.receivable.peer import ChatPermissions
from pytgbot.api_types.sendable.inline import InlineQueryResult
from pytgbot.api_types.sendable.files import InputFile
from telethon.tl.functions.messages import SetTypingRequest
from luckydonaldUtils.logger import logging
from telethon.client.chats import _ChatAction
from telethon.tl.types import TypeSendMessageAction
from telethon.errors import BotMethodInvalidError
from fastapi.params import Query
from serializer import to_web_api, get_entity
from telethon import TelegramClient
from fastapi import APIRouter, HTTPException
from typing import Union, List, Optional
from enum import Enum
from .....tools.responses import r_success, JSONableResponse
from .....constants import TOKEN_VALIDATION
from ..generated.models import *
__author__ = 'luckydonald'
logger = logging.getLogger(__name__)
if __name__ == '__main__':
logging.add_colored_handler(level=logging.DEBUG)
routes = APIRouter()
FAST_API_ISSUE_884_IS_FIXED = False
if FAST_API_ISSUE_884_IS_FIXED:
from pydantic import Json
def parse_obj_as(_, obj, *__, **___):
return obj
else:
class __JsonWrapper:
from pydantic import Json
def __getitem__(self, item):
return self.Json
Json = __JsonWrapper()
from pydantic import parse_obj_as
@routes.api_route('/{token}/getUpdates', methods=['GET', 'POST'], tags=['official'])
async def get_updates(
token: str = TOKEN_VALIDATION,
offset: Optional[int] = Query(None, description='Identifier of the first update to be returned. Must be greater by one than the highest among the identifiers of previously received updates. By default, updates starting with the earliest unconfirmed update are returned. An update is considered confirmed as soon as getUpdates is called with an offset higher than its update_id. The negative offset can be specified to retrieve updates starting from -offset update from the end of the updates queue. All previous updates will forgotten.'),
limit: Optional[int] = Query(None, description='Limits the number of updates to be retrieved. Values between 1-100 are accepted. Defaults to 100.'),
timeout: Optional[int] = Query(None, description='Timeout in seconds for long polling. Defaults to 0, i.e. usual short polling. Should be positive, short polling should be used for testing purposes only.'),
allowed_updates: Optional[List[str]] = Query(None, description='A JSON-serialized list of the update types you want your bot to receive. For example, specify ["message", "edited_channel_post", "callback_query"] to only receive updates of these types. See Update for a complete list of available update types. Specify an empty list to receive all update types except chat_member (default). If not specified, the previous setting will be used.Please note that this parameter doesn\'t affect updates created before the call to the getUpdates, so unwanted updates may be received for a short period of time.'),
) -> JSONableResponse:
from .....main import _get_bot
bot = await _get_bot(token)
result = await bot.get_updates(
offset=offset,
limit=limit,
timeout=timeout,
allowed_updates=allowed_updates,
)
data = await to_web_api(result, bot)
return r_success(data.to_array())
@routes.api_route('/{token}/setWebhook', methods=['GET', 'POST'], tags=['official'])
async def set_webhook(
token: str = TOKEN_VALIDATION,
url: str = Query(..., description='HTTPS url to send updates to. Use an empty string to remove webhook integration'),
certificate: Optional[Json['InputFileModel']] = Query(None, description='Upload your public key certificate so that the root certificate in use can be checked. See our self-signed guide for details.'),
ip_address: Optional[str] = Query(None, description='The fixed IP address which will be used to send webhook requests instead of the IP address resolved through DNS'),
max_connections: Optional[int] = Query(None, description="Maximum allowed number of simultaneous HTTPS connections to the webhook for update delivery, 1-100. Defaults to 40. Use lower values to limit the load on your bot's server, and higher values to increase your bot's throughput."),
allowed_updates: Optional[List[str]] = Query(None, description='A JSON-serialized list of the update types you want your bot to receive. For example, specify ["message", "edited_channel_post", "callback_query"] to only receive updates of these types. See Update for a complete list of available update types. Specify an empty list to receive all update types except chat_member (default). If not specified, the previous setting will be used.Please note that this parameter doesn\'t affect updates created before the call to the setWebhook, so unwanted updates may be received for a short period of time.'),
drop_pending_updates: Optional[bool] = Query(None, description='Pass True to drop all pending updates'),
) -> JSONableResponse:
certificate: Optional[InputFileModel] = parse_obj_as(
Optional[InputFileModel],
obj=certificate,
)
from .....main import _get_bot
bot = await _get_bot(token)
result = await bot.set_webhook(
url=url,
certificate=certificate,
ip_address=ip_address,
max_connections=max_connections,
allowed_updates=allowed_updates,
drop_pending_updates=drop_pending_updates,
)
data = await to_web_api(result, bot)
return r_success(data.to_array())
@routes.api_route('/{token}/deleteWebhook', methods=['GET', 'POST'], tags=['official'])
async def delete_webhook(
token: str = TOKEN_VALIDATION,
drop_pending_updates: Optional[bool] = Query(None, description='Pass True to drop all pending updates'),
) -> JSONableResponse:
from .....main import _get_bot
bot = await _get_bot(token)
result = await bot.delete_webhook(
drop_pending_updates=drop_pending_updates,
)
data = await to_web_api(result, bot)
return r_success(data.to_array())
@routes.api_route('/{token}/getWebhookInfo', methods=['GET', 'POST'], tags=['official'])
|
MIT License
|
oauthlib/oauthlib
|
oauthlib/oauth2/rfc6749/clients/service_application.py
|
ServiceApplicationClient.prepare_request_body
|
python
|
def prepare_request_body(self,
private_key=None,
subject=None,
issuer=None,
audience=None,
expires_at=None,
issued_at=None,
extra_claims=None,
body='',
scope=None,
include_client_id=False,
**kwargs):
import jwt
key = private_key or self.private_key
if not key:
raise ValueError('An encryption key must be supplied to make JWT'
' token requests.')
claim = {
'iss': issuer or self.issuer,
'aud': audience or self.audience,
'sub': subject or self.subject,
'exp': int(expires_at or time.time() + 3600),
'iat': int(issued_at or time.time()),
}
for attr in ('iss', 'aud', 'sub'):
if claim[attr] is None:
raise ValueError(
'Claim must include %s but none was given.' % attr)
if 'not_before' in kwargs:
claim['nbf'] = kwargs.pop('not_before')
if 'jwt_id' in kwargs:
claim['jti'] = kwargs.pop('jwt_id')
claim.update(extra_claims or {})
assertion = jwt.encode(claim, key, 'RS256')
assertion = to_unicode(assertion)
kwargs['client_id'] = self.client_id
kwargs['include_client_id'] = include_client_id
scope = self.scope if scope is None else scope
return prepare_token_request(self.grant_type,
body=body,
assertion=assertion,
scope=scope,
**kwargs)
|
Create and add a JWT assertion to the request body.
:param private_key: Private key used for signing and encrypting.
Must be given as a string.
:param subject: (sub) The principal that is the subject of the JWT,
i.e. which user is the token requested on behalf of.
For example, ``[email protected].
:param issuer: (iss) The JWT MUST contain an "iss" (issuer) claim that
contains a unique identifier for the entity that issued
the JWT. For example, ``[email protected]``.
:param audience: (aud) A value identifying the authorization server as an
intended audience, e.g.
``https://provider.com/oauth2/token``.
:param expires_at: A unix expiration timestamp for the JWT. Defaults
to an hour from now, i.e. ``time.time() + 3600``.
:param issued_at: A unix timestamp of when the JWT was created.
Defaults to now, i.e. ``time.time()``.
:param extra_claims: A dict of additional claims to include in the JWT.
:param body: Existing request body (URL encoded string) to embed parameters
into. This may contain extra paramters. Default ''.
:param scope: The scope of the access request.
:param include_client_id: `True` to send the `client_id` in the
body of the upstream request. This is required
if the client is not authenticating with the
authorization server as described in
`Section 3.2.1`_. False otherwise (default).
:type include_client_id: Boolean
:param not_before: A unix timestamp after which the JWT may be used.
Not included unless provided. *
:param jwt_id: A unique JWT token identifier. Not included unless
provided. *
:param kwargs: Extra credentials to include in the token request.
Parameters marked with a `*` above are not explicit arguments in the
function signature, but are specially documented arguments for items
appearing in the generic `**kwargs` keyworded input.
The "scope" parameter may be used, as defined in the Assertion
Framework for OAuth 2.0 Client Authentication and Authorization Grants
[I-D.ietf-oauth-assertions] specification, to indicate the requested
scope.
Authentication of the client is optional, as described in
`Section 3.2.1`_ of OAuth 2.0 [RFC6749] and consequently, the
"client_id" is only needed when a form of client authentication that
relies on the parameter is used.
The following non-normative example demonstrates an Access Token
Request with a JWT as an authorization grant (with extra line breaks
for display purposes only):
.. code-block: http
POST /token.oauth2 HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded
grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer
&assertion=eyJhbGciOiJFUzI1NiJ9.
eyJpc3Mi[...omitted for brevity...].
J9l-ZhwP[...omitted for brevity...]
.. _`Section 3.2.1`: https://tools.ietf.org/html/rfc6749#section-3.2.1
|
https://github.com/oauthlib/oauthlib/blob/f655d73f9dcbc1f7a1475038d6703870ef99c1fb/oauthlib/oauth2/rfc6749/clients/service_application.py#L64-L189
|
import time
from oauthlib.common import to_unicode
from ..parameters import prepare_token_request
from .base import Client
class ServiceApplicationClient(Client):
grant_type = 'urn:ietf:params:oauth:grant-type:jwt-bearer'
def __init__(self, client_id, private_key=None, subject=None, issuer=None,
audience=None, **kwargs):
super().__init__(client_id, **kwargs)
self.private_key = private_key
self.subject = subject
self.issuer = issuer
self.audience = audience
|
BSD 3-Clause New or Revised License
|
zulip/zulip-terminal
|
tests/conftest.py
|
no_asynch
|
python
|
def no_asynch(mocker: MockerFixture) -> None:
mocker.patch("zulipterminal.helper.asynch")
|
Make all function calls synchronous.
|
https://github.com/zulip/zulip-terminal/blob/fc80aa7b038176d0a0297f7674c517d6de38388a/tests/conftest.py#L35-L39
|
from collections import OrderedDict, defaultdict
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
import pytest
from pytest_mock import MockerFixture
from urwid import Widget
from zulipterminal.api_types import Message
from zulipterminal.config.keys import (
ZT_TO_URWID_CMD_MAPPING,
keys_for_command,
primary_key_for_command,
)
from zulipterminal.helper import Index, TidiedUserInfo
from zulipterminal.helper import initial_index as helper_initial_index
from zulipterminal.ui_tools.boxes import MessageBox
from zulipterminal.ui_tools.buttons import StreamButton, TopicButton, UserButton
from zulipterminal.urwid_types import urwid_Size
from zulipterminal.version import (
MINIMUM_SUPPORTED_SERVER_VERSION,
SUPPORTED_SERVER_VERSIONS,
)
@pytest.fixture(autouse=True)
def no_requests(monkeypatch: pytest.MonkeyPatch) -> None:
monkeypatch.delattr("requests.sessions.Session.request")
@pytest.fixture(autouse=True)
|
Apache License 2.0
|
amarvin/fantasy-football-bot
|
ffbot/utils.py
|
load
|
python
|
def load():
folder = join(".", "data")
files = [f for f in listdir(folder) if isfile(join(folder, f))]
latest_file = max([join(folder, f) for f in files], key=getctime)
latest_filename = split(latest_file)[1]
week = re.findall(r"\d+", latest_filename)[-1]
week = int(week)
df = pd.read_csv(latest_file)
return df, week
|
Load latest scraped data
|
https://github.com/amarvin/fantasy-football-bot/blob/9600a7c973ed634830c399568b8e6b10b9a566b3/ffbot/utils.py#L25-L40
|
from datetime import datetime
from os import listdir, makedirs
from os.path import exists, getctime, isfile, join, split
import re
import pandas as pd
def save(df, week):
folder = "data"
if not exists(folder):
makedirs(folder)
startTime = datetime.now()
filename = join(folder, "{:%Y-%m-%d %H%M} week {}.csv".format(startTime, week))
df.to_csv(filename, index=False)
|
MIT License
|
beer-garden/beer-garden
|
src/app/beer_garden/scheduler.py
|
run_job
|
python
|
def run_job(job_id, request_template, **kwargs):
import beer_garden.router
request_template.metadata["_bg_job_id"] = job_id
if "event" in kwargs and kwargs["event"] is not None:
try:
injection_dict = InjectionDict()
build_injection_dict(injection_dict, kwargs["event"], prefix="event")
try:
db_job = db.query_unique(Job, id=job_id)
if db_job:
build_injection_dict(
injection_dict, db_job.trigger, prefix="trigger"
)
except Exception as ex:
logger.exception(f"Could not fetch job for parameter injection: {ex}")
inject_values(request_template.parameters, injection_dict)
except Exception as ex:
logger.exception(f"Could not inject parameters: {ex}")
db_job = db.query_unique(Job, id=job_id)
wait_event = threading.Event()
if not db_job:
logger.error(f"Could not find job {job_id} in database, job will not be run")
return
try:
logger.debug(f"About to execute {db_job!r}")
request = beer_garden.router.route(
Operation(
operation_type="REQUEST_CREATE",
model=request_template,
model_type="RequestTemplate",
kwargs={"wait_event": wait_event},
)
)
timeout = db_job.timeout or None
if not wait_event.wait(timeout=timeout):
logger.warning(f"Execution of job {db_job} timed out.")
return
request = get_request(request.id)
updates = {}
if request.status == "ERROR":
updates["inc__error_count"] = 1
logger.debug(f"{db_job!r} request completed with ERROR status")
elif request.status == "SUCCESS":
logger.debug(f"{db_job!r} request completed with SUCCESS status")
updates["inc__success_count"] = 1
db.modify(db_job, **updates)
except Exception as ex:
logger.exception(f"Error executing {db_job}: {ex}")
job = beer_garden.application.scheduler.get_job(job_id)
if (
job
and job.next_run_time is not None
and getattr(job.trigger, "reschedule_on_finish", False)
):
beer_garden.application.scheduler.reschedule_job(job_id, trigger=job.trigger)
|
Spawned by the scheduler, this will kick off a new request.
This method is meant to be run in a separate process.
Args:
job_id: The Beer-Garden job ID that triggered this event.
request_template: Request template specified by the job.
|
https://github.com/beer-garden/beer-garden/blob/2ea0944d7528a8127bc1b79d16d8fdc668f1c8e4/src/app/beer_garden/scheduler.py#L432-L515
|
import json
import logging
import threading
from datetime import datetime, timedelta
from operator import attrgetter, methodcaller
from os.path import isdir
from typing import Dict, List, Optional
import mongoengine
import pymongo
import pymongo.database
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.triggers.interval import IntervalTrigger as APInterval
from brewtils.models import Event, Events, FileTrigger, Job, Operation
from brewtils.schema_parser import SchemaParser
from bson import ObjectId, json_util
from pathtools.patterns import match_any_paths
from pymongo.client_session import ClientSession
from pymongo.collection import Collection
from pymongo.cursor import Cursor
from pymongo.results import InsertManyResult
from watchdog.events import (
EVENT_TYPE_CREATED,
EVENT_TYPE_DELETED,
EVENT_TYPE_MODIFIED,
EVENT_TYPE_MOVED,
PatternMatchingEventHandler,
)
from watchdog.observers.polling import PollingObserver as Observer
from watchdog.utils import has_attribute, unicode_paths
import beer_garden
import beer_garden.config as config
import beer_garden.db.api as db
from beer_garden.db.mongo.api import from_brewtils
from beer_garden.db.mongo.jobstore import construct_trigger
from beer_garden.events import publish_event
from beer_garden.requests import get_request
logger = logging.getLogger(__name__)
class InjectionDict(dict):
def __missing__(self, key):
return "{" + key + "}"
def build_injection_dict(dictionary, obj, prefix="", separator="/"):
for item in dir(obj):
if not callable(getattr(obj, item)):
if prefix != "":
dictionary[prefix + separator + item] = getattr(obj, item)
else:
dictionary[item] = getattr(obj, item)
def inject_values(request, dictionary):
if isinstance(request, dict):
for k, v in request.items():
try:
request[k] = inject_values(v, dictionary)
except (ReferenceError, IndexError):
pass
return request
elif isinstance(request, str):
try:
return request.format_map(dictionary)
except (AttributeError, KeyError, ValueError):
return request
elif isinstance(request, list):
for i, item in enumerate(request):
try:
request[i] = inject_values(item, dictionary)
except IndexError:
pass
return request
else:
return request
class PatternMatchingEventHandlerWithArgs(PatternMatchingEventHandler):
_args = []
_kwargs = {}
_coalesce = False
_src_path_timing = {}
_min_delta_time = timedelta(microseconds=500_000)
def __init__(self, args=None, kwargs=None, coalesce=False, **thru):
self._args = args if args is not None else []
self._kwargs = kwargs if kwargs is not None else {}
self._coalesce = coalesce
super().__init__(**thru)
def dispatch(self, event):
current_time = datetime.now()
if self.ignore_directories and event.is_directory:
return
paths = []
if has_attribute(event, "dest_path"):
paths.append(unicode_paths.decode(event.dest_path))
if event.src_path:
paths.append(unicode_paths.decode(event.src_path))
if match_any_paths(
paths,
included_patterns=self.patterns,
excluded_patterns=self.ignore_patterns,
case_sensitive=self.case_sensitive,
):
_method_map = {
EVENT_TYPE_MODIFIED: self.on_modified,
EVENT_TYPE_MOVED: self.on_moved,
EVENT_TYPE_CREATED: self.on_created,
EVENT_TYPE_DELETED: self.on_deleted,
}
event_type = event.event_type
event_tuple = (event.src_path, event_type)
if not self._coalesce:
self.on_any_event(*self._args, event=event, **self._kwargs)
_method_map[event_type](*self._args, event=event, **self._kwargs)
elif event_tuple in self._src_path_timing:
if (
current_time - self._src_path_timing[event_tuple]
> self._min_delta_time
):
self._src_path_timing[event_tuple] = datetime.now()
self.on_any_event(*self._args, event=event, **self._kwargs)
_method_map[event_type](*self._args, event=event, **self._kwargs)
else:
self._src_path_timing[event_tuple] = datetime.now()
self.on_any_event(*self._args, event=event, **self._kwargs)
_method_map[event_type](*self._args, event=event, **self._kwargs)
def on_created(self, *args, event=None, **kwargs):
super().on_created(event)
def on_any_event(self, *args, event=None, **kwargs):
super().on_any_event(event)
def on_deleted(self, *args, event=None, **kwargs):
super().on_deleted(event)
def on_modified(self, *args, event=None, **kwargs):
super().on_modified(event)
def on_moved(self, *args, event=None, **kwargs):
super().on_moved(event)
def pass_through(class_objects=None):
def wrapper(my_class):
for obj in class_objects:
scheduler = getattr(my_class, obj, None)
if scheduler is not None:
method_list = [
func
for func in dir(scheduler)
if callable(getattr(scheduler, func))
]
for name in method_list:
if name[0] != "_" and not hasattr(my_class, name):
method = getattr(scheduler, name)
setattr(my_class, name, method)
return my_class
return wrapper
@pass_through(class_objects=["_sync_scheduler", "_async_scheduler"])
class MixedScheduler(object):
_sync_scheduler = BackgroundScheduler()
_async_scheduler = Observer()
_async_jobs = {}
_async_paused_jobs = set()
running = False
def _process_watches(self, jobs):
for job in jobs:
if isinstance(job.trigger, FileTrigger):
self.add_job(
run_job,
trigger=job.trigger,
coalesce=job.coalesce,
kwargs={"job_id": job.id, "request_template": job.request_template},
)
def __init__(self, interval_config=None):
self._sync_scheduler.configure(**interval_config)
def initialize_from_db(self):
all_jobs = db.query(Job, filter_params={"trigger_type": "file"})
self._process_watches(all_jobs)
def start(self):
self._sync_scheduler.start()
self._async_scheduler.start()
self.running = True
def shutdown(self, **kwargs):
self.stop(**kwargs)
def stop(self, **kwargs):
self._sync_scheduler.shutdown(**kwargs)
self._async_scheduler.stop()
self.running = False
def reschedule_job(self, job_id, **kwargs):
if job_id not in self._async_jobs:
self._sync_scheduler.reschedule_job(job_id, **kwargs)
def get_job(self, job_id):
if job_id in self._async_jobs:
return db.query_unique(Job, id=job_id)
else:
return self._sync_scheduler.get_job(job_id)
def pause_job(self, job_id, **kwargs):
if job_id in self._async_jobs:
if job_id not in self._async_paused_jobs:
(event_handler, watch) = self._async_jobs.get(job_id)
self._async_scheduler.remove_handler_for_watch(event_handler, watch)
self._async_paused_jobs.add(job_id)
else:
self._sync_scheduler.pause_job(job_id, **kwargs)
def resume_job(self, job_id, **kwargs):
if job_id in self._async_jobs:
if job_id in self._async_paused_jobs:
(event_handler, watch) = self._async_jobs.get(job_id)
self._async_scheduler.add_handler_for_watch(event_handler, watch)
self._async_paused_jobs.remove(job_id)
else:
self._sync_scheduler.resume_job(job_id, **kwargs)
def remove_job(self, job_id, **kwargs):
if job_id in self._async_jobs:
self._async_jobs.pop(job_id)
if job_id in self._async_paused_jobs:
self._async_paused_jobs.remove(job_id)
db.delete(db.query_unique(Job, id=job_id))
else:
self._sync_scheduler.remove_job(job_id, **kwargs)
def _add_triggers(self, handler, triggers, func):
for name in triggers.keys():
if hasattr(handler, name) and triggers.get(name):
setattr(handler, name, func)
return handler
def add_job(self, func, trigger=None, **kwargs):
if trigger is None:
logger.exception("Scheduler called with None-type trigger.")
return
if not isinstance(trigger, FileTrigger):
self._sync_scheduler.add_job(
func,
trigger=construct_trigger(kwargs.pop("trigger_type"), trigger),
**kwargs,
)
else:
if not isdir(trigger.path):
logger.exception(f"User passed an invalid trigger path {trigger.path}")
return
args = [
kwargs.get("kwargs").get("job_id"),
kwargs.get("kwargs").get("request_template"),
]
event_handler = PatternMatchingEventHandlerWithArgs(
args=args,
coalesce=kwargs.get("coalesce", False),
patterns=trigger.pattern,
)
event_handler = self._add_triggers(event_handler, trigger.callbacks, func)
if trigger.path is not None and event_handler is not None:
watch = self._async_scheduler.schedule(
event_handler, trigger.path, recursive=trigger.recursive
)
self._async_jobs[args[0]] = (event_handler, watch)
class IntervalTrigger(APInterval):
def __init__(self, *args, **kwargs):
self.reschedule_on_finish = kwargs.pop("reschedule_on_finish", False)
super(IntervalTrigger, self).__init__(*args, **kwargs)
|
MIT License
|
apache/allura
|
Allura/allura/model/auth.py
|
User.send_user_mention_notification
|
python
|
def send_user_mention_notification(self, mentioned_by, artifact):
tmpl = g.jinja2_env.get_template('allura:templates/mail/usermentions_email.md')
subject = '[%s:%s] Your name was mentioned' % (
c.project.shortname, c.app.config.options.mount_point)
item_url = artifact.url()
if artifact.type_s == 'Post':
item_url = artifact.url_paginated()
tmpl_context = {
'site_domain': config['domain'],
'base_url': config['base_url'],
'user': c.user,
'artifact_link': h.absurl(item_url),
'artifact_linktext': artifact.link_text(),
'mentioned_by': mentioned_by
}
allura.tasks.mail_tasks.sendsimplemail.post(
toaddr=self.get_pref('email_address'),
fromaddr=g.noreply,
reply_to=g.noreply,
message_id=h.gen_message_id(),
subject=subject,
text=tmpl.render(tmpl_context))
|
Send user mention notification to {self} user.
|
https://github.com/apache/allura/blob/04f14f15a9a9364e18c61f68acdaa241a470186b/Allura/allura/model/auth.py#L480-L504
|
from __future__ import unicode_literals
from __future__ import absolute_import
import logging
import calendar
import typing
import six
from markupsafe import Markup
from six.moves.urllib.parse import urlparse
from email import header
from hashlib import sha256
from datetime import timedelta, datetime, time
import os
import re
from pytz import timezone
import pymongo
from pymongo.errors import DuplicateKeyError
from bson import ObjectId
from tg import config
from tg import tmpl_context as c, app_globals as g
from tg import request
from ming import schema as S
from ming import Field
from ming.orm import session, state
from ming.orm import FieldProperty, RelationProperty, ForeignIdProperty
from ming.orm.declarative import MappedClass
from ming.orm.ormsession import ThreadLocalORMSession
from ming.utils import LazyProperty
import allura.tasks.mail_tasks
from allura.lib import helpers as h
from allura.lib import plugin
from allura.lib import utils
from allura.lib.decorators import memoize
from allura.lib.search import SearchIndexable
from .session import main_orm_session, main_explicitflush_orm_session
from .session import project_orm_session
from .timeline import ActivityNode, ActivityObject
if typing.TYPE_CHECKING:
from ming.odm.mapper import Query
log = logging.getLogger(__name__)
class AlluraUserProperty(ForeignIdProperty):
def __init__(self, **kwargs):
super(AlluraUserProperty, self).__init__('User', allow_none=True, **kwargs)
class EmailAddress(MappedClass):
re_format = re.compile(r'^.*\s+<(.*)>\s*$')
class __mongometa__:
name = str('email_address')
session = main_orm_session
indexes = ['nonce', ]
unique_indexes = [('email', 'claimed_by_user_id'), ]
query: 'Query[EmailAddress]'
_id = FieldProperty(S.ObjectId)
email = FieldProperty(str)
claimed_by_user_id = FieldProperty(S.ObjectId, if_missing=None)
confirmed = FieldProperty(bool, if_missing=False)
nonce = FieldProperty(str)
valid_address = FieldProperty(bool, if_missing=None)
valid_details = FieldProperty(S.Anything, if_missing=None)
valid_check_date = FieldProperty(datetime, if_missing=None)
@classmethod
def get(cls, **kw):
if kw.get('email'):
email = cls.canonical(kw['email'])
if email is not None:
kw['email'] = email
else:
return None
return cls.query.get(**kw)
@classmethod
def find(cls, q=None):
if q:
if q.get('email'):
email = cls.canonical(q['email'])
if email is not None:
q['email'] = email
else:
return utils.EmptyCursor()
return cls.query.find(q)
return cls.query.find()
def claimed_by_user(self, include_pending=False):
q = {'_id': self.claimed_by_user_id,
'disabled': False,
'pending': False}
if include_pending:
q.pop('pending', None)
return User.query.get(**q)
@classmethod
def create(cls, addr):
addr = cls.canonical(addr)
if addr is not None:
return cls(email=addr)
@classmethod
def canonical(cls, addr):
mo = cls.re_format.match(addr)
if mo:
addr = mo.group(1)
if '@' in addr:
try:
user, domain = addr.strip().split('@')
return '%s@%s' % (user, domain.lower())
except ValueError:
return addr.strip()
else:
return None
def send_claim_attempt(self):
confirmed_email = self.find(dict(email=self.email, confirmed=True)).all()
if confirmed_email:
log.info('Sending claim attempt email to %s', self.email)
text = g.jinja2_env.get_template('allura:templates/mail/claimed_existing_email.txt').render(dict(
email=self,
user=confirmed_email[0].claimed_by_user(),
config=config
))
allura.tasks.mail_tasks.send_system_mail_to_user(self.email,
'%s - Email address claim attempt' % config['site_name'],
text)
def set_nonce_hash(self):
self.nonce = sha256(os.urandom(10)).hexdigest()
return True
def send_verification_link(self):
self.set_nonce_hash()
log.info('Sending verification link to %s', self.email)
text = '''
To verify the email address %s belongs to the user %s,
please visit the following URL:
%s
''' % (self.email,
self.claimed_by_user(include_pending=True).username,
h.absurl('/auth/verify_addr?a={}'.format(h.urlquote(self.nonce))),
)
log.info('Verification email:\n%s', text)
allura.tasks.mail_tasks.sendsimplemail.post(
fromaddr=g.noreply,
reply_to=g.noreply,
toaddr=self.email,
subject='%s - Email address verification' % config['site_name'],
message_id=h.gen_message_id(),
text=text)
class AuthGlobals(MappedClass):
class __mongometa__:
name = str('auth_globals')
session = main_orm_session
query: 'Query[AuthGlobals]'
_id = FieldProperty(int)
next_uid = FieldProperty(int, if_missing=10000)
@classmethod
def upsert(cls):
r = cls.query.get()
if r is not None:
return r
try:
r = cls(_id=0)
session(r).flush(r)
return r
except pymongo.errors.DuplicateKeyError:
session(r).flush(r)
r = cls.query.get()
return r
@classmethod
def get_next_uid(cls):
cls.upsert()
g = cls.query.find_and_modify(
query={}, update={'$inc': {'next_uid': 1}},
new=True)
return g.next_uid
class FieldPropertyDisplayName(FieldProperty):
def __get__(self, instance, cls=None):
if instance is None:
return self
try:
display_name = instance._cache_display_name
except AttributeError:
display_name = instance._cache_display_name = instance.get_pref('display_name')
return display_name
class User(MappedClass, ActivityNode, ActivityObject, SearchIndexable):
SALT_LEN = 8
class __mongometa__:
name = str('user')
session = main_orm_session
indexes = ['tool_data.AuthPasswordReset.hash']
unique_indexes = ['username']
custom_indexes = [
dict(fields=('tool_data.phone_verification.number_hash',), sparse=True),
]
query: 'Query[User]'
type_s = 'User'
_id = FieldProperty(S.ObjectId)
sfx_userid = FieldProperty(S.Deprecated)
username = FieldProperty(str)
email_addresses = FieldProperty([str])
password = FieldProperty(str)
last_password_updated = FieldProperty(datetime)
projects = FieldProperty(S.Deprecated)
tool_preferences = FieldProperty(S.Deprecated)
tool_data = FieldProperty({str: {str: None}})
disabled = FieldProperty(bool, if_missing=False)
pending = FieldProperty(bool, if_missing=False)
preferences = FieldProperty(dict(
results_per_page=int,
email_address=str,
email_format=str,
disable_user_messages=bool,
mention_notifications=bool,
multifactor=bool,
))
display_name: str = FieldPropertyDisplayName(str)
sex = FieldProperty(
S.OneOf('Male', 'Female', 'Other', 'Unknown',
if_missing='Unknown'))
birthdate = FieldProperty(S.DateTime, if_missing=None)
availability = FieldProperty([dict(
week_day=str,
start_time=dict(h=int, m=int),
end_time=dict(h=int, m=int))])
localization = FieldProperty(dict(city=str, country=str))
timezone = FieldProperty(str)
sent_user_message_times = FieldProperty([S.DateTime])
inactiveperiod = FieldProperty([dict(
start_date=S.DateTime,
end_date=S.DateTime)])
socialnetworks = FieldProperty([dict(socialnetwork=str, accounturl=str)])
telnumbers = FieldProperty([str])
skypeaccount = FieldProperty(str)
webpages = FieldProperty([str])
skills = FieldProperty([dict(
category_id=S.ObjectId,
level=S.OneOf('low', 'high', 'medium'),
comment=str)])
stats_id = FieldProperty(S.ObjectId, if_missing=None)
last_access = FieldProperty(dict(
login_date=S.DateTime,
login_ip=str,
login_ua=str,
session_date=S.DateTime,
session_ip=str,
session_ua=str))
def __repr__(self):
return ('<User username={s.username!r} display_name={s.display_name!r} _id={s._id!r} '
'disabled={s.disabled!r} pending={s.pending!r}>'.format(s=self))
def index(self):
provider = plugin.AuthenticationProvider.get(None)
localization = '%s/%s' % (
self.get_pref('localization')['country'],
self.get_pref('localization')['city'])
socialnetworks = ' '.join(['%s: %s' % (n['socialnetwork'], n['accounturl'])
for n in self.get_pref('socialnetworks')])
fields = dict(
id=self.index_id(),
title='User %s' % self.username,
url_s=self.url(),
type_s=self.type_s,
username_s=self.username,
email_addresses_t=' '.join([e for e in self.email_addresses if e]),
last_password_updated_dt=self.last_password_updated,
disabled_b=self.disabled,
pending_b=self.pending,
results_per_page_i=self.get_pref('results_per_page'),
email_address_s=self.get_pref('email_address'),
email_format_s=self.get_pref('email_format'),
disable_user_messages_b=self.get_pref('disable_user_messages'),
display_name_t=self.get_pref('display_name'),
sex_s=self.get_pref('sex'),
birthdate_dt=self.get_pref('birthdate'),
localization_s=localization,
timezone_s=self.get_pref('timezone'),
socialnetworks_t=socialnetworks,
telnumbers_t=' '.join([t for t in self.get_pref('telnumbers') if t]),
skypeaccount_s=self.get_pref('skypeaccount'),
webpages_t=' '.join([p for p in self.get_pref('webpages') if p]),
skills_t=' '.join([s['skill'].fullpath for s in self.get_skills() if s.get('skill')]),
last_access_login_date_dt=self.last_access['login_date'],
last_access_login_ip_s=self.last_access['login_ip'],
last_access_login_ua_t=self.last_access['login_ua'],
last_access_session_date_dt=self.last_access['session_date'],
last_access_session_ip_s=self.last_access['session_ip'],
last_access_session_ua_t=self.last_access['session_ua'],
)
return dict(provider.index_user(self), **fields)
def track_login(self, req):
user_ip = utils.ip_address(req)
user_agent = req.headers.get('User-Agent')
self.last_access['login_date'] = datetime.utcnow()
self.last_access['login_ip'] = user_ip
self.last_access['login_ua'] = user_agent
session(self).flush(self)
def track_active(self, req):
user_ip = utils.ip_address(req)
user_agent = req.headers.get('User-Agent')
now = datetime.utcnow()
last_date = self.last_access['session_date']
date_changed = last_date is None or last_date.date() != now.date()
ip_changed = user_ip != self.last_access['session_ip']
ua_changed = user_agent != self.last_access['session_ua']
if date_changed or ip_changed or ua_changed:
self.last_access['session_date'] = datetime.utcnow()
self.last_access['session_ip'] = user_ip
self.last_access['session_ua'] = user_agent
session(self).flush(self)
def add_login_detail(self, detail):
try:
session(detail).flush(detail)
except DuplicateKeyError:
session(detail).expunge(detail)
def backfill_login_details(self, auth_provider):
msg_regex = re.compile(r'.*^({})'.format('|'.join([re.escape(line_prefix)
for line_prefix
in auth_provider.trusted_auditlog_line_prefixes])),
re.MULTILINE | re.DOTALL)
for auditlog in AuditLog.for_user(self, message=msg_regex):
if not msg_regex.search(auditlog.message):
continue
login_detail = auth_provider.login_details_from_auditlog(auditlog)
if login_detail:
self.add_login_detail(login_detail)
def send_password_reset_email(self, email_address=None, subject_tmpl='{site_name} Password recovery'):
if email_address is None:
email_address = self.get_pref('email_address')
reset_url = self.make_password_reset_url()
log.info('Sending password recovery link to %s', email_address)
subject = subject_tmpl.format(site_name=config['site_name'])
text = g.jinja2_env.get_template('allura:templates/mail/forgot_password.txt').render(dict(
user=self,
config=config,
reset_url=reset_url,
))
allura.tasks.mail_tasks.send_system_mail_to_user(email_address, subject, text)
def make_password_reset_url(self):
hash = h.nonce(42)
self.set_tool_data('AuthPasswordReset',
hash=hash,
hash_expiry=datetime.utcnow() +
timedelta(seconds=int(config.get('auth.recovery_hash_expiry_period', 600))))
reset_url = h.absurl('/auth/forgotten_password/{}'.format(hash))
return reset_url
def can_send_user_message(self):
now = datetime.utcnow()
time_interval = timedelta(seconds=g.user_message_time_interval)
self.sent_user_message_times = [t for t in self.sent_user_message_times
if t + time_interval > now]
return len(self.sent_user_message_times) < g.user_message_max_messages
def time_to_next_user_message(self):
if self.can_send_user_message():
return 0
return (self.sent_user_message_times[0] +
timedelta(seconds=g.user_message_time_interval) -
datetime.utcnow())
def send_user_message(self, user, subject, message, cc):
tmpl = g.jinja2_env.get_template(
'allura:ext/user_profile/templates/message.html')
tmpl_context = {
'message_text': message,
'site_name': config['site_name'],
'base_url': config['base_url'],
'user': c.user,
}
allura.tasks.mail_tasks.sendsimplemail.post(
toaddr=user.get_pref('email_address'),
fromaddr=self.get_pref('email_address'),
reply_to=self.get_pref('email_address'),
message_id=h.gen_message_id(),
subject=subject,
text=tmpl.render(tmpl_context),
cc=cc)
self.sent_user_message_times.append(datetime.utcnow())
|
Apache License 2.0
|
steemit/hivemind
|
hive/server/condenser_api/methods.py
|
get_replies_by_last_update
|
python
|
async def get_replies_by_last_update(context, start_author: str = None, start_permlink: str = '',
limit: int = 20, truncate_body: int = 0):
assert start_author, '`start_author` cannot be blank'
ids = await cursor.pids_by_replies_to_account(
context['db'],
valid_account(start_author),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
|
Get all replies made to any of author's posts.
|
https://github.com/steemit/hivemind/blob/d99b852e1ad321aeb67eaec5fb03f7bfb32c75d6/hive/server/condenser_api/methods.py#L310-L319
|
from functools import wraps
import hive.server.condenser_api.cursor as cursor
from hive.server.condenser_api.objects import load_posts, load_posts_reblogs
from hive.server.common.helpers import (
ApiError,
return_error_info,
valid_account,
valid_permlink,
valid_tag,
valid_offset,
valid_limit,
valid_follow_type)
@return_error_info
async def get_account_votes(context, account):
raise ApiError("get_account_votes is no longer supported, for details see "
"https://steemit.com/steemit/@steemitdev/additional-public-api-change")
def _legacy_follower(follower, following, follow_type):
return dict(follower=follower, following=following, what=[follow_type])
def _legacy_follower_with_reputation (follower, reputation, following, follow_type):
what = ['','']
if follow_type & 1 != 0:
what[0] = 'blog'
if follow_type & 2 != 0:
what[1] = 'ignore'
return dict(follower=follower, reputation=reputation, following=following, what=what)
@return_error_info
async def get_followers(context, account: str, start: str, follow_type: str = None,
limit: int = None, **kwargs):
if not follow_type and 'type' in kwargs:
follow_type = kwargs['type']
if not follow_type:
follow_type = 'blog'
followers = await cursor.get_followers(
context['db'],
valid_account(account),
valid_account(start, allow_empty=True),
valid_follow_type(follow_type),
valid_limit(limit, 1000))
return [_legacy_follower_with_reputation(row['name'], row['reputation'],account,row['state']) for row in followers]
@return_error_info
async def get_followers_by_page(context, account: str, page: int, page_size: int = None,
follow_type: str = None, **kwargs):
if not follow_type and 'type' in kwargs:
follow_type = kwargs['type']
if not follow_type:
follow_type = 'blog'
followers = await cursor.get_followers_by_page(
context['db'],
valid_account(account),
valid_offset(page),
valid_limit(page_size, 100),
valid_follow_type(follow_type))
return [_legacy_follower_with_reputation(row['name'], row['reputation'],account,row['state']) for row in followers]
@return_error_info
async def get_following(context, account: str, start: str, follow_type: str = None,
limit: int = None, **kwargs):
if not follow_type and 'type' in kwargs:
follow_type = kwargs['type']
if not follow_type:
follow_type = 'blog'
following = await cursor.get_following(
context['db'],
valid_account(account),
valid_account(start, allow_empty=True),
valid_follow_type(follow_type),
valid_limit(limit, 1000))
return [_legacy_follower_with_reputation(account,row['reputation'],row['name'],row['state']) for row in following]
@return_error_info
async def get_following_by_page(context, account: str, page: int, page_size: int = None,
follow_type: str = None, **kwargs):
if not follow_type and 'type' in kwargs:
follow_type = kwargs['type']
if not follow_type:
follow_type = 'blog'
following = await cursor.get_following_by_page(
context['db'],
valid_account(account),
valid_offset(page),
valid_limit(page_size, 100),
valid_follow_type(follow_type))
return [_legacy_follower_with_reputation(account,row['reputation'],row['name'],row['state']) for row in following]
@return_error_info
async def get_follow_count(context, account: str):
count = await cursor.get_follow_counts(
context['db'],
valid_account(account))
return dict(account=account,
following_count=count['following'],
follower_count=count['followers'])
@return_error_info
async def get_reblogged_by(context, author: str, permlink: str):
return await cursor.get_reblogged_by(
context['db'],
valid_account(author),
valid_permlink(permlink))
@return_error_info
async def get_account_reputations(context, account_lower_bound: str = None, limit: int = None):
return {'reputations': await cursor.get_account_reputations(
context['db'],
account_lower_bound,
valid_limit(limit, 1000))}
@return_error_info
async def get_content(context, author: str, permlink: str):
db = context['db']
valid_account(author)
valid_permlink(permlink)
post_id = await cursor.get_post_id(db, author, permlink)
if not post_id:
return {'id': 0, 'author': '', 'permlink': ''}
posts = await load_posts(db, [post_id])
assert posts, 'post was not found in cache'
return posts[0]
@return_error_info
async def get_content_replies(context, author: str, permlink: str):
db = context['db']
valid_account(author)
valid_permlink(permlink)
parent_id = await cursor.get_post_id(db, author, permlink)
if parent_id:
child_ids = await cursor.get_child_ids(db, parent_id)
if child_ids:
return await load_posts(db, child_ids)
return []
def nested_query_compat(function):
@wraps(function)
def wrapper(*args, **kwargs):
if args and not kwargs and len(args) == 2 and isinstance(args[1], dict):
return function(args[0], **args[1])
return function(*args, **kwargs)
return wrapper
@return_error_info
@nested_query_compat
async def get_discussions_by_trending(context, start_author: str = '', start_permlink: str = '',
limit: int = 20, tag: str = None,
truncate_body: int = 0, filter_tags: list = None):
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_query(
context['db'],
'trending',
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100),
valid_tag(tag, allow_empty=True))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_hot(context, start_author: str = '', start_permlink: str = '',
limit: int = 20, tag: str = None,
truncate_body: int = 0, filter_tags: list = None):
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_query(
context['db'],
'hot',
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100),
valid_tag(tag, allow_empty=True))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_promoted(context, start_author: str = '', start_permlink: str = '',
limit: int = 20, tag: str = None,
truncate_body: int = 0, filter_tags: list = None):
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_query(
context['db'],
'promoted',
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100),
valid_tag(tag, allow_empty=True))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_created(context, start_author: str = '', start_permlink: str = '',
limit: int = 20, tag: str = None,
truncate_body: int = 0, filter_tags: list = None):
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_query(
context['db'],
'created',
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100),
valid_tag(tag, allow_empty=True))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_blog(context, tag: str = None, start_author: str = '',
start_permlink: str = '', limit: int = 20,
truncate_body: int = 0, filter_tags: list = None):
assert tag, '`tag` cannot be blank'
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_blog(
context['db'],
valid_account(tag),
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_feed(context, tag: str = None, start_author: str = '',
start_permlink: str = '', limit: int = 20,
truncate_body: int = 0, filter_tags: list = None):
assert tag, '`tag` cannot be blank'
assert not filter_tags, 'filter_tags not supported'
res = await cursor.pids_by_feed_with_reblog(
context['db'],
valid_account(tag),
valid_account(start_author, allow_empty=True),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100))
return await load_posts_reblogs(context['db'], res, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
async def get_discussions_by_comments(context, start_author: str = None, start_permlink: str = '',
limit: int = 20, truncate_body: int = 0,
filter_tags: list = None):
assert start_author, '`start_author` cannot be blank'
assert not filter_tags, 'filter_tags not supported'
ids = await cursor.pids_by_account_comments(
context['db'],
valid_account(start_author),
valid_permlink(start_permlink, allow_empty=True),
valid_limit(limit, 100))
return await load_posts(context['db'], ids, truncate_body=truncate_body)
@return_error_info
@nested_query_compat
|
MIT License
|
pyopenapi/pyswagger
|
pyswagger/utils.py
|
_diff_
|
python
|
def _diff_(src, dst, ret=None, jp=None, exclude=[], include=[]):
def _dict_(src, dst, ret, jp):
ss, sd = set(src.keys()), set(dst.keys())
si, se = set(include or []), set(exclude or [])
ss, sd = (ss & si, sd & si) if si else (ss, sd)
ss, sd = (ss - se, sd - se) if se else (ss, sd)
for k in sd - ss:
ret.append((jp_compose(k, base=jp), None, None,))
for k in ss - sd:
ret.append((jp_compose(k, base=jp), None, None,))
for k in ss & sd:
_diff_(src[k], dst[k], ret, jp_compose(k, base=jp), exclude, include)
def _list_(src, dst, ret, jp):
if len(src) < len(dst):
ret.append((jp, len(src), len(dst),))
elif len(src) > len(dst):
ret.append((jp, len(src), len(dst),))
else:
if len(src) == 0:
return
def r(x, y):
if type(y) != type(x):
raise ValueError('different type: {0}, {1}'.format(type(y).__name__, type(x).__name__))
return x
ts = type(functools.reduce(r, src))
td = type(functools.reduce(r, dst))
while True:
if issubclass(ts, six.string_types) and issubclass(td, six.string_types):
break
if issubclass(ts, six.integer_types) and issubclass(td, six.integer_types):
break
if ts == td:
break
ret.append((jp, str(ts), str(td),))
return
if ts != dict:
ss, sd = sorted(src), sorted(dst)
else:
ss, sd = src, dst
for idx, (s, d) in enumerate(zip(src, dst)):
_diff_(s, d, ret, jp_compose(str(idx), base=jp), exclude, include)
ret = [] if ret == None else ret
jp = '' if jp == None else jp
if isinstance(src, dict):
if not isinstance(dst, dict):
ret.append((jp, type(src).__name__, type(dst).__name__,))
else:
_dict_(src, dst, ret, jp)
elif isinstance(src, list):
if not isinstance(dst, list):
ret.append((jp, type(src).__name__, type(dst).__name__,))
else:
_list_(src, dst, ret, jp)
elif src != dst:
ret.append((jp, src, dst,))
return ret
|
compare 2 dict/list, return a list containing
json-pointer indicating what's different, and what's diff exactly.
- list length diff: (jp, length of src, length of dst)
- dict key diff: (jp, None, None)
- when src is dict or list, and dst is not: (jp, type(src), type(dst))
- other: (jp, src, dst)
|
https://github.com/pyopenapi/pyswagger/blob/333c4ca08e758cd2194943d9904a3eda3fe43977/pyswagger/utils.py#L482-L565
|
from __future__ import absolute_import
from .consts import private
from .errs import CycleDetectionError
import six
import imp
import sys
import datetime
import re
import os
import operator
import functools
import collections
def scope_compose(scope, name, sep=private.SCOPE_SEPARATOR):
if name == None:
new_scope = scope
else:
new_scope = scope if scope else name
if scope and name:
new_scope = scope + sep + name
return new_scope
def scope_split(scope, sep=private.SCOPE_SEPARATOR):
return scope.split(sep) if scope else [None]
class ScopeDict(dict):
def __init__(self, *a, **k):
self.__sep = private.SCOPE_SEPARATOR
super(ScopeDict, self).__init__(*a, **k)
@property
def sep(self):
raise TypeError('sep property is write-only')
@sep.setter
def sep(self, sep):
self.__sep = sep
def __getitem__(self, *keys):
k = six.moves.reduce(lambda k1, k2: scope_compose(k1, k2, sep=self.__sep), keys[0]) if isinstance(keys[0], tuple) else keys[0]
try:
return super(ScopeDict, self).__getitem__(k)
except KeyError as e:
ret = []
for ik in self.keys():
if ik.endswith(k):
ret.append(ik)
if len(ret) == 1:
return super(ScopeDict, self).__getitem__(ret[0])
elif len(ret) > 1:
last_k = k.rsplit(self.__sep, 1)[-1]
matched = [r for r in ret if r.rsplit(self.__sep, 1)[-1] == last_k]
if len(matched) == 1:
return super(ScopeDict, self).__getitem__(matched[0])
raise ValueError('Multiple occurrence of key: {0}'.format(k))
raise e
class CycleGuard(object):
def __init__(self):
self.__visited = []
def update(self, obj):
if obj in self.__visited:
raise CycleDetectionError('Cycle detected: {0}'.format(getattr(obj, '$ref', None)))
self.__visited.append(obj)
class FixedTZ(datetime.tzinfo):
def __init__(self, h=0, m=0):
self.__offset = datetime.timedelta(hours=h, minutes=m)
def utcoffset(self, dt):
return self.__offset + self.dst(dt)
def tzname(self, dt):
return "UTC"
def dst(self, dt):
return datetime.timedelta(0)
_iso8601_fmt = re.compile(''.join([
'(?P<year>\d{4})-(?P<month>\d{2})-(?P<day>\d{2})',
'T',
'(?P<hour>\d{2}):(?P<minute>\d{2})(:(?P<second>\d{1,2})(\.(?P<microsecond>\d{1,6}))?)?',
'(?P<tz>Z|[+-]\d{2}:\d{2})?'
]))
_iso8601_fmt_date = re.compile('(?P<year>\d{4})-(?P<month>\d{2})-(?P<day>\d{2})')
def from_iso8601(s):
m = _iso8601_fmt.match(s)
if not m:
m = _iso8601_fmt_date.match(s)
if not m:
raise ValueError('not a valid iso 8601 format string:[{0}]'.format(s))
g = m.groupdict()
def _default_zero(key):
v = g.get(key, None)
return int(v) if v else 0
def _default_none(key):
v = g.get(key, None)
return int(v) if v else None
year = _default_zero('year')
month = _default_zero('month')
day = _default_zero('day')
hour = _default_none('hour')
minute = _default_none('minute')
second = _default_none('second')
microsecond = g.get('microsecond', None)
if microsecond is not None:
microsecond = int(microsecond + '0' * (6 - len(microsecond)))
tz_s = g.get('tz')
if not (year and month and day):
raise ValueError('missing y-m-d: [{0}]'.format(s))
if hour == None and minute == None and second == None:
return datetime.datetime(year, month, day)
tz = None
if tz_s:
if hour is None and minute is None:
raise ValueError('missing h:m when tzinfo is provided: [{0}]'.format(s))
negtive = hh = mm = 0
if tz_s != 'Z':
negtive = -1 if tz_s[0] == '-' else 1
hh = int(tz_s[1:3])
mm = int(tz_s[4:6]) if len(tz_s) > 5 else 0
tz = FixedTZ(h=hh*negtive, m=mm*negtive)
return datetime.datetime(
year=year,
month=month,
day=day,
hour=hour or 0,
minute=minute or 0,
second=second or 0,
microsecond=microsecond or 0,
tzinfo=tz
)
def import_string(name):
mod = fp = None
try:
return sys.modules[name]
except KeyError:
pass
try:
fp, pathname, desc = imp.find_module(name)
mod = imp.load_module(name, fp, pathname, desc)
except ImportError:
mod = None
finally:
if fp:
fp.close()
return mod
def jp_compose(s, base=None):
if s == None:
return base
ss = [s] if isinstance(s, six.string_types) else s
ss = [s.replace('~', '~0').replace('/', '~1') for s in ss]
if base:
ss.insert(0, base)
return '/'.join(ss)
def jp_split(s):
if s == '' or s == None:
return []
def _decode(s):
s = s.replace('~1', '/')
return s.replace('~0', '~')
return [_decode(ss) for ss in s.split('/')]
def jr_split(s):
p = six.moves.urllib.parse.urlparse(s)
return (
normalize_url(six.moves.urllib.parse.urlunparse(p[:5]+('',))),
'#'+p.fragment if p.fragment else '#'
)
def deref(obj, guard=None):
cur, guard = obj, guard or CycleGuard()
guard.update(cur)
while cur and getattr(cur, 'ref_obj', None) != None:
cur = cur.ref_obj
guard.update(cur)
return cur
def final(obj):
return obj.final if getattr(obj, 'final', None) else obj
def get_dict_as_tuple(d):
for k, v in six.iteritems(d):
return k, v
return None
def nv_tuple_list_replace(l, v):
_found = False
for i, x in enumerate(l):
if x[0] == v[0]:
l[i] = v
_found = True
if not _found:
l.append(v)
def path2url(p):
if sys.version_info.major >= 3 and sys.version_info.minor >= 4:
import pathlib
return pathlib.Path(p).as_uri()
else:
return six.moves.urllib.parse.urljoin(
'file:', six.moves.urllib.request.pathname2url(p)
)
_windows_path_prefix = re.compile(r'(^[A-Za-z]:\\)')
def normalize_url(url):
if not url:
return url
matched = _windows_path_prefix.match(url)
if matched:
return path2url(url)
p = six.moves.urllib.parse.urlparse(url)
if p.scheme == '':
if p.netloc == '' and p.path != '':
url = path2url(os.path.abspath(url))
else:
raise ValueError('url should be a http-url or file path -- ' + url)
return url
def url_dirname(url):
p = six.moves.urllib.parse.urlparse(url)
for e in [private.FILE_EXT_JSON, private.FILE_EXT_YAML]:
if p.path.endswith(e):
return six.moves.urllib.parse.urlunparse(
p[:2]+
(os.path.dirname(p.path),)+
p[3:]
)
return url
def url_join(url, path):
p = six.moves.urllib.parse.urlparse(url)
t = None
if p.path and p.path[-1] == '/':
if path and path[0] == '/':
path = path[1:]
t = ''.join([p.path, path])
else:
t = ('' if path and path[0] == '/' else '/').join([p.path, path])
return six.moves.urllib.parse.urlunparse(
p[:2]+
(t,)+
p[3:]
)
def normalize_jr(jr, url=None):
if jr == None:
return jr
idx = jr.find('#')
path, jp = (jr[:idx], jr[idx+1:]) if idx != -1 else (jr, None)
if len(path) > 0:
p = six.moves.urllib.parse.urlparse(path)
if p.scheme == '' and url:
p = six.moves.urllib.parse.urlparse(url)
path = six.moves.urllib.parse.urlunparse(p[:2]+('/'.join([os.path.dirname(p.path), path]),)+p[3:])
path = derelativise_url(path)
else:
path = url
if path:
return ''.join([path, '#', jp]) if jp else path
else:
return '#' + jp
def _fullmatch(regex, chunk):
m = re.match(regex, chunk)
if m and m.span()[1] == len(chunk):
return m
def derelativise_url(url):
parsed = six.moves.urllib.parse.urlparse(url)
newpath=[]
for chunk in parsed.path[1:].split('/'):
if chunk == '.':
continue
elif chunk == '..':
newpath=newpath[:-1]
continue
elif _fullmatch(r'\.{3,}', chunk) is not None:
newpath=newpath[:-1]
continue
newpath += [chunk]
return six.moves.urllib.parse.urlunparse(parsed[:2]+('/'+('/'.join(newpath)),)+parsed[3:])
def get_swagger_version(obj):
if isinstance(obj, dict):
if 'swaggerVersion' in obj:
return obj['swaggerVersion']
elif 'swagger' in obj:
return obj['swagger']
return None
else:
return obj.swaggerVersion if hasattr(obj, 'swaggerVersion') else obj.swagger
def walk(start, ofn, cyc=None):
ctx, stk = {}, [start]
cyc = [] if cyc == None else cyc
while len(stk):
top = stk[-1]
if top not in ctx:
ctx.update({top:list(ofn(top))})
if len(ctx[top]):
n = ctx[top][0]
if n in stk:
nc = stk[stk.index(n):]
ni = nc.index(min(nc))
nc = nc[ni:] + nc[:ni] + [min(nc)]
if nc not in cyc:
cyc.append(nc)
ctx[top].pop(0)
else:
stk.append(n)
else:
ctx.pop(top)
stk.pop()
if len(stk):
ctx[stk[-1]].remove(top)
return cyc
|
MIT License
|
cerenaut/sparse-unsupervised-capsules
|
models/layers/layers.py
|
_squash
|
python
|
def _squash(input_tensor):
with tf.name_scope('norm_non_linearity'):
norm = tf.norm(input_tensor, axis=2, keepdims=True)
norm_squared = norm * norm
return (input_tensor / norm) * (norm_squared / (1 + norm_squared))
|
Applies norm nonlinearity (squash) to a capsule layer.
Args:
input_tensor: Input tensor. Shape is [batch, num_channels, num_atoms]
for a fully connected capsule layer or
[batch, num_channels, num_atoms, height, width] for a convolutional
capsule layer.
Returns:
A tensor with same shape as input (rank 3) for output of this layer.
|
https://github.com/cerenaut/sparse-unsupervised-capsules/blob/5b98fbb84408d566ae4ef0878008931a65832386/models/layers/layers.py#L36-L51
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import tensorflow as tf
from models.layers import variables
|
Apache License 2.0
|
nwunderly/starlette-discord
|
starlette_discord/client.py
|
DiscordOAuthSession.cached_user
|
python
|
def cached_user(self):
return self._cached_user
|
:class:`dict`: The session's cached user, if an `identify()` request has previously been made.
|
https://github.com/nwunderly/starlette-discord/blob/c1c779698c25d3295828bc3a38a54c513b10a95b/starlette_discord/client.py#L76-L78
|
from starlette.responses import RedirectResponse
from oauthlib.common import generate_token
from .oauth import OAuth2Session
from .models import User, Guild, Connection
DISCORD_URL = 'https://discord.com'
API_URL = DISCORD_URL + '/api/v8'
class DiscordOAuthSession(OAuth2Session):
def __init__(self, client_id, client_secret, scope, redirect_uri, *, code, token):
if (not (code or token)) or (code and token):
raise ValueError("Either 'code' or 'token' parameter must be provided, but not both.")
elif token:
if not isinstance(token, dict):
raise TypeError("Parameter 'token' must be an instance of dict with at least the 'access_token' key.'")
if 'access_token' not in token:
raise ValueError("Parameter 'token' requires 'access_token' key.")
elif not token.get('token_type'):
token['token_type'] = 'Bearer'
self._discord_auth_code = code
self._discord_client_secret = client_secret
self._discord_token = token
self._cached_user = None
self._cached_guilds = None
self._cached_connections = None
super().__init__(
client_id=client_id,
scope=scope,
redirect_uri=redirect_uri,
token=token
)
@property
def token(self):
return super().token
@token.setter
def token(self, value):
self._client.token = value
self._client.populate_token_attributes(value)
@property
|
MIT License
|
westpa/westpa
|
src/oldtools/aframe/iter_range.py
|
IterRangeMixin.n_iter_blocks
|
python
|
def n_iter_blocks(self):
npoints = self.last_iter - self.first_iter + 1
if npoints % self.iter_step == 0:
return npoints // self.iter_step
else:
return npoints // self.iter_step + 1
|
Return the number of blocks of iterations (as returned by ``iter_block_iter``) selected by --first/--last/--step.
|
https://github.com/westpa/westpa/blob/cda177c5dea2cee571d71c4b04fcc625dc5f689c/src/oldtools/aframe/iter_range.py#L85-L91
|
import logging
log = logging.getLogger(__name__)
import numpy
import westpa
from oldtools.aframe import AnalysisMixin, ArgumentError
class IterRangeMixin(AnalysisMixin):
def __init__(self):
super(IterRangeMixin,self).__init__()
self.first_iter = None
self.last_iter = None
self.iter_step = 1
include_args = self.include_args.setdefault('IterRangeMixin',{})
include_args.setdefault('first_iter', True)
include_args.setdefault('last_iter', True)
include_args.setdefault('iter_step',True)
def add_args(self, parser, upcall = True):
if upcall:
try:
upfunc = super(IterRangeMixin,self).add_args
except AttributeError:
pass
else:
upfunc(parser)
group = parser.add_argument_group('analysis range')
if self.include_args['IterRangeMixin']['first_iter']:
group.add_argument('--start', '--begin', '--first', dest='first_iter', type=int, metavar='N_ITER', default=1,
help='''Begin analysis at iteration N_ITER (default: %(default)d).''')
if self.include_args['IterRangeMixin']['last_iter']:
group.add_argument('--stop', '--end', '--last', dest='last_iter', type=int, metavar='N_ITER',
help='''Conclude analysis with N_ITER, inclusive (default: last completed iteration).''')
if self.include_args['IterRangeMixin']['iter_step']:
group.add_argument('--step', dest='iter_step', type=int, metavar='STEP',
help='''Analyze/report in blocks of STEP iterations.''')
def process_args(self, args, upcall = True):
if self.include_args['IterRangeMixin']['first_iter']:
self.first_iter = args.first_iter or 1
if self.include_args['IterRangeMixin']['last_iter']:
self.last_iter = args.last_iter
if self.include_args['IterRangeMixin']['iter_step']:
self.iter_step = args.iter_step or 1
if upcall:
try:
upfunc = super(IterRangeMixin,self).process_args
except AttributeError:
pass
else:
upfunc(args)
def check_iter_range(self):
assert hasattr(self, 'data_manager') and self.data_manager is not None
self.first_iter = int(max(self.first_iter, 1))
if self.last_iter is None or self.last_iter > self.data_manager.current_iteration - 1:
self.last_iter = int(self.data_manager.current_iteration - 1)
if self.first_iter == self.last_iter:
raise ArgumentError('first and last iterations are the same')
westpa.rc.pstatus('Processing iterations from {self.first_iter:d} to {self.last_iter:d}, inclusive (step size {self.iter_step:d})'.format(self=self))
def iter_block_iter(self):
for blkfirst in range(self.first_iter, self.last_iter+1, self.iter_step):
yield(blkfirst, min(self.last_iter, blkfirst+self.iter_step-1)+1)
|
MIT License
|
baiwenjia/ukbb_cardiac
|
common/image_utils.py
|
data_augmenter
|
python
|
def data_augmenter(image, label, shift, rotate, scale, intensity, flip):
image2 = np.zeros(image.shape, dtype=np.float32)
label2 = np.zeros(label.shape, dtype=np.int32)
for i in range(image.shape[0]):
shift_val = [np.clip(np.random.normal(), -3, 3) * shift,
np.clip(np.random.normal(), -3, 3) * shift]
rotate_val = np.clip(np.random.normal(), -3, 3) * rotate
scale_val = 1 + np.clip(np.random.normal(), -3, 3) * scale
intensity_val = 1 + np.clip(np.random.normal(), -3, 3) * intensity
row, col = image.shape[1:3]
M = cv2.getRotationMatrix2D((row / 2, col / 2), rotate_val, 1.0 / scale_val)
M[:, 2] += shift_val
for c in range(image.shape[3]):
image2[i, :, :, c] = ndimage.interpolation.affine_transform(image[i, :, :, c],
M[:, :2], M[:, 2], order=1)
label2[i, :, :] = ndimage.interpolation.affine_transform(label[i, :, :],
M[:, :2], M[:, 2], order=0)
image2[i] *= intensity_val
if flip:
if np.random.uniform() >= 0.5:
image2[i] = image2[i, ::-1, :, :]
label2[i] = label2[i, ::-1, :]
else:
image2[i] = image2[i, :, ::-1, :]
label2[i] = label2[i, :, ::-1]
return image2, label2
|
Online data augmentation
Perform affine transformation on image and label,
which are 4D tensor of shape (N, H, W, C) and 3D tensor of shape (N, H, W).
|
https://github.com/baiwenjia/ukbb_cardiac/blob/2b6d6371be9a666a41627926324030c31897f877/common/image_utils.py#L80-L120
|
import cv2
import numpy as np
import nibabel as nib
import tensorflow as tf
from scipy import ndimage
import scipy.ndimage.measurements as measure
def tf_categorical_accuracy(pred, truth):
return tf.reduce_mean(tf.cast(tf.equal(pred, truth), dtype=tf.float32))
def tf_categorical_dice(pred, truth, k):
A = tf.cast(tf.equal(pred, k), dtype=tf.float32)
B = tf.cast(tf.equal(truth, k), dtype=tf.float32)
return 2 * tf.reduce_sum(tf.multiply(A, B)) / (tf.reduce_sum(A) + tf.reduce_sum(B))
def crop_image(image, cx, cy, size):
X, Y = image.shape[:2]
r = int(size / 2)
x1, x2 = cx - r, cx + r
y1, y2 = cy - r, cy + r
x1_, x2_ = max(x1, 0), min(x2, X)
y1_, y2_ = max(y1, 0), min(y2, Y)
crop = image[x1_: x2_, y1_: y2_]
if crop.ndim == 3:
crop = np.pad(crop,
((x1_ - x1, x2 - x2_), (y1_ - y1, y2 - y2_), (0, 0)),
'constant')
elif crop.ndim == 4:
crop = np.pad(crop,
((x1_ - x1, x2 - x2_), (y1_ - y1, y2 - y2_), (0, 0), (0, 0)),
'constant')
else:
print('Error: unsupported dimension, crop.ndim = {0}.'.format(crop.ndim))
exit(0)
return crop
def normalise_intensity(image, thres_roi=10.0):
val_l = np.percentile(image, thres_roi)
roi = (image >= val_l)
mu, sigma = np.mean(image[roi]), np.std(image[roi])
eps = 1e-6
image2 = (image - mu) / (sigma + eps)
return image2
def rescale_intensity(image, thres=(1.0, 99.0)):
val_l, val_h = np.percentile(image, thres)
image2 = image
image2[image < val_l] = val_l
image2[image > val_h] = val_h
image2 = (image2.astype(np.float32) - val_l) / (val_h - val_l)
return image2
|
Apache License 2.0
|
fangshi1991/zipline_chstock
|
zipline/protocol.py
|
SIDData.datetime
|
python
|
def datetime(self):
return self.dt
|
Provides an alias from data['foo'].datetime -> data['foo'].dt
`datetime` was previously provided by adding a seperate `datetime`
member of the SIDData object via a generator that wrapped the incoming
data feed and added the field to each equity event.
This alias is intended to be temporary, to provide backwards
compatibility with existing algorithms, but should be considered
deprecated, and may be removed in the future.
|
https://github.com/fangshi1991/zipline_chstock/blob/7911642780fa57f92e1705b9c0acaeb837b3d98f/zipline/protocol.py#L313-L325
|
from copy import copy
from six import iteritems, iterkeys
import pandas as pd
import numpy as np
from .utils.enum import enum
from .utils.math_utils import nanstd, nanmean, nansum
from zipline.utils.algo_instance import get_algo_instance
from zipline.utils.serialization_utils import (
VERSION_LABEL
)
DATASOURCE_TYPE = enum(
'AS_TRADED_EQUITY',
'MERGER',
'SPLIT',
'DIVIDEND',
'TRADE',
'TRANSACTION',
'ORDER',
'EMPTY',
'DONE',
'CUSTOM',
'BENCHMARK',
'COMMISSION',
'CLOSE_POSITION'
)
DIVIDEND_FIELDS = [
'declared_date',
'ex_date',
'gross_amount',
'net_amount',
'pay_date',
'payment_sid',
'ratio',
'sid',
]
DIVIDEND_PAYMENT_FIELDS = [
'id',
'payment_sid',
'cash_amount',
'share_count',
]
def dividend_payment(data=None):
return pd.Series(
data=data,
name=data['id'] if data is not None else None,
index=DIVIDEND_PAYMENT_FIELDS,
dtype=object,
)
class Event(object):
def __init__(self, initial_values=None):
if initial_values:
self.__dict__ = initial_values
def __getitem__(self, name):
return getattr(self, name)
def __setitem__(self, name, value):
setattr(self, name, value)
def __delitem__(self, name):
delattr(self, name)
def keys(self):
return self.__dict__.keys()
def __eq__(self, other):
return hasattr(other, '__dict__') and self.__dict__ == other.__dict__
def __contains__(self, name):
return name in self.__dict__
def __repr__(self):
return "Event({0})".format(self.__dict__)
def to_series(self, index=None):
return pd.Series(self.__dict__, index=index)
class Order(Event):
pass
class Portfolio(object):
def __init__(self):
self.capital_used = 0.0
self.starting_cash = 0.0
self.portfolio_value = 0.0
self.pnl = 0.0
self.returns = 0.0
self.cash = 0.0
self.positions = Positions()
self.start_date = None
self.positions_value = 0.0
def __getitem__(self, key):
return self.__dict__[key]
def __repr__(self):
return "Portfolio({0})".format(self.__dict__)
def __getstate__(self):
state_dict = copy(self.__dict__)
state_dict['positions'] = dict(self.positions)
STATE_VERSION = 1
state_dict[VERSION_LABEL] = STATE_VERSION
return state_dict
def __setstate__(self, state):
OLDEST_SUPPORTED_STATE = 1
version = state.pop(VERSION_LABEL)
if version < OLDEST_SUPPORTED_STATE:
raise BaseException("Portfolio saved state is too old.")
self.positions = Positions()
self.positions.update(state.pop('positions'))
self.__dict__.update(state)
class Account(object):
def __init__(self):
self.settled_cash = 0.0
self.accrued_interest = 0.0
self.buying_power = float('inf')
self.equity_with_loan = 0.0
self.total_positions_value = 0.0
self.regt_equity = 0.0
self.regt_margin = float('inf')
self.initial_margin_requirement = 0.0
self.maintenance_margin_requirement = 0.0
self.available_funds = 0.0
self.excess_liquidity = 0.0
self.cushion = 0.0
self.day_trades_remaining = float('inf')
self.leverage = 0.0
self.net_leverage = 0.0
self.net_liquidation = 0.0
def __getitem__(self, key):
return self.__dict__[key]
def __repr__(self):
return "Account({0})".format(self.__dict__)
def __getstate__(self):
state_dict = copy(self.__dict__)
STATE_VERSION = 1
state_dict[VERSION_LABEL] = STATE_VERSION
return state_dict
def __setstate__(self, state):
OLDEST_SUPPORTED_STATE = 1
version = state.pop(VERSION_LABEL)
if version < OLDEST_SUPPORTED_STATE:
raise BaseException("Account saved state is too old.")
self.__dict__.update(state)
class Position(object):
def __init__(self, sid):
self.sid = sid
self.amount = 0
self.cost_basis = 0.0
self.last_sale_price = 0.0
def __getitem__(self, key):
return self.__dict__[key]
def __repr__(self):
return "Position({0})".format(self.__dict__)
def __getstate__(self):
state_dict = copy(self.__dict__)
STATE_VERSION = 1
state_dict[VERSION_LABEL] = STATE_VERSION
return state_dict
def __setstate__(self, state):
OLDEST_SUPPORTED_STATE = 1
version = state.pop(VERSION_LABEL)
if version < OLDEST_SUPPORTED_STATE:
raise BaseException("Protocol Position saved state is too old.")
self.__dict__.update(state)
class Positions(dict):
def __missing__(self, key):
pos = Position(key)
self[key] = pos
return pos
class SIDData(object):
_history_cache_dt = None
_history_cache = {}
_returns_cache_dt = None
_returns_cache = None
_minute_bar_cache_dt = None
_minute_bar_cache = {}
def __init__(self, sid, initial_values=None):
self._sid = sid
self._freqstr = None
self._initial_len = len(self.__dict__) + 1
if initial_values:
self.__dict__.update(initial_values)
@property
|
Apache License 2.0
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/device_tracker/linksys_ap.py
|
LinksysAPDeviceScanner.get_device_name
|
python
|
def get_device_name(self, device):
return None
|
Return the name (if known) of the device.
Linksys does not provide an API to get a name for a device,
so we just return None
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/device_tracker/linksys_ap.py#L65-L72
|
import base64
import logging
import requests
import voluptuous as vol
import homeassistant.helpers.config_validation as cv
from homeassistant.components.device_tracker import (
DOMAIN, PLATFORM_SCHEMA, DeviceScanner)
from homeassistant.const import (
CONF_HOST, CONF_PASSWORD, CONF_USERNAME, CONF_VERIFY_SSL)
INTERFACES = 2
DEFAULT_TIMEOUT = 10
REQUIREMENTS = ['beautifulsoup4==4.6.0']
_LOGGER = logging.getLogger(__name__)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_HOST): cv.string,
vol.Required(CONF_PASSWORD): cv.string,
vol.Required(CONF_USERNAME): cv.string,
vol.Optional(CONF_VERIFY_SSL, default=True): cv.boolean,
})
def get_scanner(hass, config):
try:
return LinksysAPDeviceScanner(config[DOMAIN])
except ConnectionError:
return None
class LinksysAPDeviceScanner(DeviceScanner):
def __init__(self, config):
self.host = config[CONF_HOST]
self.username = config[CONF_USERNAME]
self.password = config[CONF_PASSWORD]
self.verify_ssl = config[CONF_VERIFY_SSL]
self.last_results = []
response = self._make_request()
if not response.status_code == 200:
raise ConnectionError("Cannot connect to Linksys Access Point")
def scan_devices(self):
self._update_info()
return self.last_results
|
MIT License
|
pytransitions/transitions
|
transitions/core.py
|
State.add_callback
|
python
|
def add_callback(self, trigger, func):
callback_list = getattr(self, 'on_' + trigger)
callback_list.append(func)
|
Add a new enter or exit callback.
Args:
trigger (str): The type of triggering event. Must be one of
'enter' or 'exit'.
func (str): The name of the callback function.
|
https://github.com/pytransitions/transitions/blob/1893a822763f9266a9691f0b285e1d77ff755082/transitions/core.py#L137-L145
|
try:
from builtins import object
except ImportError:
pass
try:
from enum import Enum, EnumMeta
except ImportError:
class Enum:
pass
class EnumMeta:
pass
import inspect
import itertools
import logging
from collections import OrderedDict, defaultdict, deque
from functools import partial
from six import string_types
import warnings
_LOGGER = logging.getLogger(__name__)
_LOGGER.addHandler(logging.NullHandler())
warnings.filterwarnings(action='default', message=r".*transitions version.*", category=DeprecationWarning)
def listify(obj):
if obj is None:
return []
try:
return obj if isinstance(obj, (list, tuple, EnumMeta)) else [obj]
except ReferenceError:
return [obj]
def _prep_ordered_arg(desired_length, arguments=None):
arguments = listify(arguments) if arguments is not None else [None]
if len(arguments) != desired_length and len(arguments) != 1:
raise ValueError("Argument length must be either 1 or the same length as "
"the number of transitions.")
if len(arguments) == 1:
return arguments * desired_length
return arguments
class State(object):
dynamic_methods = ['on_enter', 'on_exit']
def __init__(self, name, on_enter=None, on_exit=None,
ignore_invalid_triggers=None):
self._name = name
self.ignore_invalid_triggers = ignore_invalid_triggers
self.on_enter = listify(on_enter) if on_enter else []
self.on_exit = listify(on_exit) if on_exit else []
@property
def name(self):
if isinstance(self._name, Enum):
return self._name.name
else:
return self._name
@property
def value(self):
return self._name
def enter(self, event_data):
_LOGGER.debug("%sEntering state %s. Processing callbacks...", event_data.machine.name, self.name)
event_data.machine.callbacks(self.on_enter, event_data)
_LOGGER.info("%sFinished processing state %s enter callbacks.", event_data.machine.name, self.name)
def exit(self, event_data):
_LOGGER.debug("%sExiting state %s. Processing callbacks...", event_data.machine.name, self.name)
event_data.machine.callbacks(self.on_exit, event_data)
_LOGGER.info("%sFinished processing state %s exit callbacks.", event_data.machine.name, self.name)
|
MIT License
|
cisco/mindmeld
|
examples/custom_action/example_server/swagger_server/models/params.py
|
Params.time_zone
|
python
|
def time_zone(self, time_zone: str):
self._time_zone = time_zone
|
Sets the time_zone of this Params.
The time zone of the request
:param time_zone: The time_zone of this Params.
:type time_zone: str
|
https://github.com/cisco/mindmeld/blob/d3a0606b5eaa92733dd12674438d45de4b124c63/examples/custom_action/example_server/swagger_server/models/params.py#L163-L172
|
from __future__ import absolute_import
from typing import List
from .base_model_ import Model
from .. import util
class Params(Model):
def __init__(
self,
target_dialogue_state: str = None,
dynamic_resource: object = None,
allowed_intents: List[str] = None,
time_zone: str = None,
language: str = None,
locale: str = None,
timestamp: int = None,
):
self.swagger_types = {
"target_dialogue_state": str,
"dynamic_resource": object,
"allowed_intents": List[str],
"time_zone": str,
"language": str,
"locale": str,
"timestamp": int,
}
self.attribute_map = {
"target_dialogue_state": "target_dialogue_state",
"dynamic_resource": "dynamic_resource",
"allowed_intents": "allowed_intents",
"time_zone": "time_zone",
"language": "language",
"locale": "locale",
"timestamp": "timestamp",
}
self._target_dialogue_state = target_dialogue_state
self._dynamic_resource = dynamic_resource
self._allowed_intents = allowed_intents
self._time_zone = time_zone
self._language = language
self._locale = locale
self._timestamp = timestamp
@classmethod
def from_dict(cls, dikt) -> "Params":
return util.deserialize_model(dikt, cls)
@property
def target_dialogue_state(self) -> str:
return self._target_dialogue_state
@target_dialogue_state.setter
def target_dialogue_state(self, target_dialogue_state: str):
self._target_dialogue_state = target_dialogue_state
@property
def dynamic_resource(self) -> object:
return self._dynamic_resource
@dynamic_resource.setter
def dynamic_resource(self, dynamic_resource: object):
self._dynamic_resource = dynamic_resource
@property
def allowed_intents(self) -> List[str]:
return self._allowed_intents
@allowed_intents.setter
def allowed_intents(self, allowed_intents: List[str]):
self._allowed_intents = allowed_intents
@property
def time_zone(self) -> str:
return self._time_zone
@time_zone.setter
|
Apache License 2.0
|
touwastar/galaxy_plugin_bethesda
|
betty/aiohttp/client.py
|
ClientSession.version
|
python
|
def version(self) -> Tuple[int, int]:
return self._version
|
The session HTTP protocol version.
|
https://github.com/touwastar/galaxy_plugin_bethesda/blob/d505f8286248cc623cd5ee9b1e0cd3bfa840c590/betty/aiohttp/client.py#L922-L924
|
import asyncio
import base64
import hashlib
import json
import os
import sys
import traceback
import warnings
from types import SimpleNamespace, TracebackType
from typing import (
Any,
Coroutine,
Generator,
Generic,
Iterable,
List,
Mapping,
Optional,
Set,
Tuple,
Type,
TypeVar,
Union,
)
import attr
from multidict import CIMultiDict, MultiDict, MultiDictProxy, istr
from yarl import URL
from . import hdrs, http, payload
from .abc import AbstractCookieJar
from .client_exceptions import (
ClientConnectionError,
ClientConnectorCertificateError,
ClientConnectorError,
ClientConnectorSSLError,
ClientError,
ClientHttpProxyError,
ClientOSError,
ClientPayloadError,
ClientProxyConnectionError,
ClientResponseError,
ClientSSLError,
ContentTypeError,
InvalidURL,
ServerConnectionError,
ServerDisconnectedError,
ServerFingerprintMismatch,
ServerTimeoutError,
TooManyRedirects,
WSServerHandshakeError,
)
from .client_reqrep import (
ClientRequest,
ClientResponse,
Fingerprint,
RequestInfo,
_merge_ssl_params,
)
from .client_ws import ClientWebSocketResponse
from .connector import BaseConnector, TCPConnector, UnixConnector
from .cookiejar import CookieJar
from .helpers import (
DEBUG,
PY_36,
BasicAuth,
CeilTimeout,
TimeoutHandle,
get_running_loop,
proxies_from_env,
sentinel,
strip_auth_from_url,
)
from .http import WS_KEY, HttpVersion, WebSocketReader, WebSocketWriter
from .http_websocket import (
WSHandshakeError,
WSMessage,
ws_ext_gen,
ws_ext_parse,
)
from .streams import FlowControlDataQueue
from .tracing import Trace, TraceConfig
from .typedefs import JSONEncoder, LooseCookies, LooseHeaders, StrOrURL
__all__ = (
'ClientConnectionError',
'ClientConnectorCertificateError',
'ClientConnectorError',
'ClientConnectorSSLError',
'ClientError',
'ClientHttpProxyError',
'ClientOSError',
'ClientPayloadError',
'ClientProxyConnectionError',
'ClientResponseError',
'ClientSSLError',
'ContentTypeError',
'InvalidURL',
'ServerConnectionError',
'ServerDisconnectedError',
'ServerFingerprintMismatch',
'ServerTimeoutError',
'TooManyRedirects',
'WSServerHandshakeError',
'ClientRequest',
'ClientResponse',
'Fingerprint',
'RequestInfo',
'BaseConnector',
'TCPConnector',
'UnixConnector',
'ClientWebSocketResponse',
'ClientSession',
'ClientTimeout',
'request')
try:
from ssl import SSLContext
except ImportError:
SSLContext = object
@attr.s(frozen=True, slots=True)
class ClientTimeout:
total = attr.ib(type=Optional[float], default=None)
connect = attr.ib(type=Optional[float], default=None)
sock_read = attr.ib(type=Optional[float], default=None)
sock_connect = attr.ib(type=Optional[float], default=None)
DEFAULT_TIMEOUT = ClientTimeout(total=5*60)
_RetType = TypeVar('_RetType')
class ClientSession:
ATTRS = frozenset([
'_source_traceback', '_connector',
'requote_redirect_url', '_loop', '_cookie_jar',
'_connector_owner', '_default_auth',
'_version', '_json_serialize',
'_requote_redirect_url',
'_timeout', '_raise_for_status', '_auto_decompress',
'_trust_env', '_default_headers', '_skip_auto_headers',
'_request_class', '_response_class',
'_ws_response_class', '_trace_configs'])
_source_traceback = None
_connector = None
def __init__(self, *, connector: Optional[BaseConnector]=None,
loop: Optional[asyncio.AbstractEventLoop]=None,
cookies: Optional[LooseCookies]=None,
headers: Optional[LooseHeaders]=None,
skip_auto_headers: Optional[Iterable[str]]=None,
auth: Optional[BasicAuth]=None,
json_serialize: JSONEncoder=json.dumps,
request_class: Type[ClientRequest]=ClientRequest,
response_class: Type[ClientResponse]=ClientResponse,
ws_response_class: Type[ClientWebSocketResponse]=ClientWebSocketResponse,
version: HttpVersion=http.HttpVersion11,
cookie_jar: Optional[AbstractCookieJar]=None,
connector_owner: bool=True,
raise_for_status: bool=False,
read_timeout: Union[float, object]=sentinel,
conn_timeout: Optional[float]=None,
timeout: Union[object, ClientTimeout]=sentinel,
auto_decompress: bool=True,
trust_env: bool=False,
requote_redirect_url: bool=True,
trace_configs: Optional[List[TraceConfig]]=None) -> None:
if loop is None:
if connector is not None:
loop = connector._loop
loop = get_running_loop(loop)
if connector is None:
connector = TCPConnector(loop=loop)
if connector._loop is not loop:
raise RuntimeError(
"Session and connector has to use same event loop")
self._loop = loop
if loop.get_debug():
self._source_traceback = traceback.extract_stack(sys._getframe(1))
if cookie_jar is None:
cookie_jar = CookieJar(loop=loop)
self._cookie_jar = cookie_jar
if cookies is not None:
self._cookie_jar.update_cookies(cookies)
self._connector = connector
self._connector_owner = connector_owner
self._default_auth = auth
self._version = version
self._json_serialize = json_serialize
if timeout is sentinel:
self._timeout = DEFAULT_TIMEOUT
if read_timeout is not sentinel:
warnings.warn("read_timeout is deprecated, "
"use timeout argument instead",
DeprecationWarning,
stacklevel=2)
self._timeout = attr.evolve(self._timeout, total=read_timeout)
if conn_timeout is not None:
self._timeout = attr.evolve(self._timeout,
connect=conn_timeout)
warnings.warn("conn_timeout is deprecated, "
"use timeout argument instead",
DeprecationWarning,
stacklevel=2)
else:
self._timeout = timeout
if read_timeout is not sentinel:
raise ValueError("read_timeout and timeout parameters "
"conflict, please setup "
"timeout.read")
if conn_timeout is not None:
raise ValueError("conn_timeout and timeout parameters "
"conflict, please setup "
"timeout.connect")
self._raise_for_status = raise_for_status
self._auto_decompress = auto_decompress
self._trust_env = trust_env
self._requote_redirect_url = requote_redirect_url
if headers:
headers = CIMultiDict(headers)
else:
headers = CIMultiDict()
self._default_headers = headers
if skip_auto_headers is not None:
self._skip_auto_headers = frozenset([istr(i)
for i in skip_auto_headers])
else:
self._skip_auto_headers = frozenset()
self._request_class = request_class
self._response_class = response_class
self._ws_response_class = ws_response_class
self._trace_configs = trace_configs or []
for trace_config in self._trace_configs:
trace_config.freeze()
def __init_subclass__(cls: Type['ClientSession']) -> None:
warnings.warn("Inheritance class {} from ClientSession "
"is discouraged".format(cls.__name__),
DeprecationWarning,
stacklevel=2)
if DEBUG:
def __setattr__(self, name: str, val: Any) -> None:
if name not in self.ATTRS:
warnings.warn("Setting custom ClientSession.{} attribute "
"is discouraged".format(name),
DeprecationWarning,
stacklevel=2)
super().__setattr__(name, val)
def __del__(self, _warnings: Any=warnings) -> None:
if not self.closed:
if PY_36:
kwargs = {'source': self}
else:
kwargs = {}
_warnings.warn("Unclosed client session {!r}".format(self),
ResourceWarning,
**kwargs)
context = {'client_session': self,
'message': 'Unclosed client session'}
if self._source_traceback is not None:
context['source_traceback'] = self._source_traceback
self._loop.call_exception_handler(context)
def request(self,
method: str,
url: StrOrURL,
**kwargs: Any) -> '_RequestContextManager':
return _RequestContextManager(self._request(method, url, **kwargs))
async def _request(
self,
method: str,
str_or_url: StrOrURL, *,
params: Optional[Mapping[str, str]]=None,
data: Any=None,
json: Any=None,
cookies: Optional[LooseCookies]=None,
headers: LooseHeaders=None,
skip_auto_headers: Optional[Iterable[str]]=None,
auth: Optional[BasicAuth]=None,
allow_redirects: bool=True,
max_redirects: int=10,
compress: Optional[str]=None,
chunked: Optional[bool]=None,
expect100: bool=False,
raise_for_status: Optional[bool]=None,
read_until_eof: bool=True,
proxy: Optional[StrOrURL]=None,
proxy_auth: Optional[BasicAuth]=None,
timeout: Union[ClientTimeout, object]=sentinel,
verify_ssl: Optional[bool]=None,
fingerprint: Optional[bytes]=None,
ssl_context: Optional[SSLContext]=None,
ssl: Optional[Union[SSLContext, bool, Fingerprint]]=None,
proxy_headers: Optional[LooseHeaders]=None,
trace_request_ctx: Optional[SimpleNamespace]=None
) -> ClientResponse:
if self.closed:
raise RuntimeError('Session is closed')
ssl = _merge_ssl_params(ssl, verify_ssl, ssl_context, fingerprint)
if data is not None and json is not None:
raise ValueError(
'data and json parameters can not be used at the same time')
elif json is not None:
data = payload.JsonPayload(json, dumps=self._json_serialize)
if not isinstance(chunked, bool) and chunked is not None:
warnings.warn(
'Chunk size is deprecated #1615', DeprecationWarning)
redirects = 0
history = []
version = self._version
headers = self._prepare_headers(headers)
proxy_headers = self._prepare_headers(proxy_headers)
try:
url = URL(str_or_url)
except ValueError:
raise InvalidURL(str_or_url)
skip_headers = set(self._skip_auto_headers)
if skip_auto_headers is not None:
for i in skip_auto_headers:
skip_headers.add(istr(i))
if proxy is not None:
try:
proxy = URL(proxy)
except ValueError:
raise InvalidURL(proxy)
if timeout is sentinel:
real_timeout = self._timeout
else:
if not isinstance(timeout, ClientTimeout):
real_timeout = ClientTimeout(total=timeout)
else:
real_timeout = timeout
tm = TimeoutHandle(self._loop, real_timeout.total)
handle = tm.start()
traces = [
Trace(
self,
trace_config,
trace_config.trace_config_ctx(
trace_request_ctx=trace_request_ctx)
)
for trace_config in self._trace_configs
]
for trace in traces:
await trace.send_request_start(
method,
url,
headers
)
timer = tm.timer()
try:
with timer:
while True:
url, auth_from_url = strip_auth_from_url(url)
if auth and auth_from_url:
raise ValueError("Cannot combine AUTH argument with "
"credentials encoded in URL")
if auth is None:
auth = auth_from_url
if auth is None:
auth = self._default_auth
if (headers is not None and
auth is not None and
hdrs.AUTHORIZATION in headers):
raise ValueError("Cannot combine AUTHORIZATION header "
"with AUTH argument or credentials "
"encoded in URL")
session_cookies = self._cookie_jar.filter_cookies(url)
if cookies is not None:
tmp_cookie_jar = CookieJar()
tmp_cookie_jar.update_cookies(cookies)
req_cookies = tmp_cookie_jar.filter_cookies(url)
if req_cookies:
session_cookies.load(req_cookies)
cookies = session_cookies
if proxy is not None:
proxy = URL(proxy)
elif self._trust_env:
for scheme, proxy_info in proxies_from_env().items():
if scheme == url.scheme:
proxy = proxy_info.proxy
proxy_auth = proxy_info.proxy_auth
break
req = self._request_class(
method, url, params=params, headers=headers,
skip_auto_headers=skip_headers, data=data,
cookies=cookies, auth=auth, version=version,
compress=compress, chunked=chunked,
expect100=expect100, loop=self._loop,
response_class=self._response_class,
proxy=proxy, proxy_auth=proxy_auth, timer=timer,
session=self,
ssl=ssl, proxy_headers=proxy_headers, traces=traces)
try:
with CeilTimeout(real_timeout.connect,
loop=self._loop):
assert self._connector is not None
conn = await self._connector.connect(
req,
traces=traces,
timeout=real_timeout
)
except asyncio.TimeoutError as exc:
raise ServerTimeoutError(
'Connection timeout '
'to host {0}'.format(url)) from exc
assert conn.transport is not None
assert conn.protocol is not None
conn.protocol.set_response_params(
timer=timer,
skip_payload=method.upper() == 'HEAD',
read_until_eof=read_until_eof,
auto_decompress=self._auto_decompress,
read_timeout=real_timeout.sock_read)
try:
try:
resp = await req.send(conn)
try:
await resp.start(conn)
except BaseException:
resp.close()
raise
except BaseException:
conn.close()
raise
except ClientError:
raise
except OSError as exc:
raise ClientOSError(*exc.args) from exc
self._cookie_jar.update_cookies(resp.cookies, resp.url)
if resp.status in (
301, 302, 303, 307, 308) and allow_redirects:
for trace in traces:
await trace.send_request_redirect(
method,
url,
headers,
resp
)
redirects += 1
history.append(resp)
if max_redirects and redirects >= max_redirects:
resp.close()
raise TooManyRedirects(
history[0].request_info, tuple(history))
if (resp.status == 303 and
resp.method != hdrs.METH_HEAD) or (resp.status in (301, 302) and
resp.method == hdrs.METH_POST):
method = hdrs.METH_GET
data = None
if headers.get(hdrs.CONTENT_LENGTH):
headers.pop(hdrs.CONTENT_LENGTH)
r_url = (resp.headers.get(hdrs.LOCATION) or
resp.headers.get(hdrs.URI))
if r_url is None:
break
else:
resp.release()
try:
r_url = URL(
r_url, encoded=not self._requote_redirect_url)
except ValueError:
raise InvalidURL(r_url)
scheme = r_url.scheme
if scheme not in ('http', 'https', ''):
resp.close()
raise ValueError(
'Can redirect only to http or https')
elif not scheme:
r_url = url.join(r_url)
if url.origin() != r_url.origin():
auth = None
headers.pop(hdrs.AUTHORIZATION, None)
url = r_url
params = None
resp.release()
continue
break
if raise_for_status is None:
raise_for_status = self._raise_for_status
if raise_for_status:
resp.raise_for_status()
if handle is not None:
if resp.connection is not None:
resp.connection.add_callback(handle.cancel)
else:
handle.cancel()
resp._history = tuple(history)
for trace in traces:
await trace.send_request_end(
method,
url,
headers,
resp
)
return resp
except BaseException as e:
tm.close()
if handle:
handle.cancel()
handle = None
for trace in traces:
await trace.send_request_exception(
method,
url,
headers,
e
)
raise
def ws_connect(
self,
url: StrOrURL, *,
method: str=hdrs.METH_GET,
protocols: Iterable[str]=(),
timeout: float=10.0,
receive_timeout: Optional[float]=None,
autoclose: bool=True,
autoping: bool=True,
heartbeat: Optional[float]=None,
auth: Optional[BasicAuth]=None,
origin: Optional[str]=None,
headers: Optional[LooseHeaders]=None,
proxy: Optional[StrOrURL]=None,
proxy_auth: Optional[BasicAuth]=None,
ssl: Union[SSLContext, bool, None, Fingerprint]=None,
verify_ssl: Optional[bool]=None,
fingerprint: Optional[bytes]=None,
ssl_context: Optional[SSLContext]=None,
proxy_headers: Optional[LooseHeaders]=None,
compress: int=0,
max_msg_size: int=4*1024*1024) -> '_WSRequestContextManager':
return _WSRequestContextManager(
self._ws_connect(url,
method=method,
protocols=protocols,
timeout=timeout,
receive_timeout=receive_timeout,
autoclose=autoclose,
autoping=autoping,
heartbeat=heartbeat,
auth=auth,
origin=origin,
headers=headers,
proxy=proxy,
proxy_auth=proxy_auth,
ssl=ssl,
verify_ssl=verify_ssl,
fingerprint=fingerprint,
ssl_context=ssl_context,
proxy_headers=proxy_headers,
compress=compress,
max_msg_size=max_msg_size))
async def _ws_connect(
self,
url: StrOrURL, *,
method: str=hdrs.METH_GET,
protocols: Iterable[str]=(),
timeout: float=10.0,
receive_timeout: Optional[float]=None,
autoclose: bool=True,
autoping: bool=True,
heartbeat: Optional[float]=None,
auth: Optional[BasicAuth]=None,
origin: Optional[str]=None,
headers: Optional[LooseHeaders]=None,
proxy: Optional[StrOrURL]=None,
proxy_auth: Optional[BasicAuth]=None,
ssl: Union[SSLContext, bool, None, Fingerprint]=None,
verify_ssl: Optional[bool]=None,
fingerprint: Optional[bytes]=None,
ssl_context: Optional[SSLContext]=None,
proxy_headers: Optional[LooseHeaders]=None,
compress: int=0,
max_msg_size: int=4*1024*1024
) -> ClientWebSocketResponse:
if headers is None:
real_headers = CIMultiDict()
else:
real_headers = CIMultiDict(headers)
default_headers = {
hdrs.UPGRADE: hdrs.WEBSOCKET,
hdrs.CONNECTION: hdrs.UPGRADE,
hdrs.SEC_WEBSOCKET_VERSION: '13',
}
for key, value in default_headers.items():
real_headers.setdefault(key, value)
sec_key = base64.b64encode(os.urandom(16))
real_headers[hdrs.SEC_WEBSOCKET_KEY] = sec_key.decode()
if protocols:
real_headers[hdrs.SEC_WEBSOCKET_PROTOCOL] = ','.join(protocols)
if origin is not None:
real_headers[hdrs.ORIGIN] = origin
if compress:
extstr = ws_ext_gen(compress=compress)
real_headers[hdrs.SEC_WEBSOCKET_EXTENSIONS] = extstr
ssl = _merge_ssl_params(ssl, verify_ssl, ssl_context, fingerprint)
resp = await self.request(method, url,
headers=real_headers,
read_until_eof=False,
auth=auth,
proxy=proxy,
proxy_auth=proxy_auth,
ssl=ssl,
proxy_headers=proxy_headers)
try:
if resp.status != 101:
raise WSServerHandshakeError(
resp.request_info,
resp.history,
message='Invalid response status',
status=resp.status,
headers=resp.headers)
if resp.headers.get(hdrs.UPGRADE, '').lower() != 'websocket':
raise WSServerHandshakeError(
resp.request_info,
resp.history,
message='Invalid upgrade header',
status=resp.status,
headers=resp.headers)
if resp.headers.get(hdrs.CONNECTION, '').lower() != 'upgrade':
raise WSServerHandshakeError(
resp.request_info,
resp.history,
message='Invalid connection header',
status=resp.status,
headers=resp.headers)
key = resp.headers.get(hdrs.SEC_WEBSOCKET_ACCEPT, '')
match = base64.b64encode(
hashlib.sha1(sec_key + WS_KEY).digest()).decode()
if key != match:
raise WSServerHandshakeError(
resp.request_info,
resp.history,
message='Invalid challenge response',
status=resp.status,
headers=resp.headers)
protocol = None
if protocols and hdrs.SEC_WEBSOCKET_PROTOCOL in resp.headers:
resp_protocols = [
proto.strip() for proto in
resp.headers[hdrs.SEC_WEBSOCKET_PROTOCOL].split(',')]
for proto in resp_protocols:
if proto in protocols:
protocol = proto
break
notakeover = False
if compress:
compress_hdrs = resp.headers.get(hdrs.SEC_WEBSOCKET_EXTENSIONS)
if compress_hdrs:
try:
compress, notakeover = ws_ext_parse(compress_hdrs)
except WSHandshakeError as exc:
raise WSServerHandshakeError(
resp.request_info,
resp.history,
message=exc.args[0],
status=resp.status,
headers=resp.headers)
else:
compress = 0
notakeover = False
conn = resp.connection
assert conn is not None
proto = conn.protocol
assert proto is not None
transport = conn.transport
assert transport is not None
reader = FlowControlDataQueue(
proto, limit=2 ** 16, loop=self._loop)
proto.set_parser(WebSocketReader(reader, max_msg_size), reader)
writer = WebSocketWriter(
proto, transport, use_mask=True,
compress=compress, notakeover=notakeover)
except BaseException:
resp.close()
raise
else:
return self._ws_response_class(reader,
writer,
protocol,
resp,
timeout,
autoclose,
autoping,
self._loop,
receive_timeout=receive_timeout,
heartbeat=heartbeat,
compress=compress,
client_notakeover=notakeover)
def _prepare_headers(
self,
headers: Optional[LooseHeaders]) -> 'CIMultiDict[str]':
result = CIMultiDict(self._default_headers)
if headers:
if not isinstance(headers, (MultiDictProxy, MultiDict)):
headers = CIMultiDict(headers)
added_names = set()
for key, value in headers.items():
if key in added_names:
result.add(key, value)
else:
result[key] = value
added_names.add(key)
return result
def get(self, url: StrOrURL, *, allow_redirects: bool=True,
**kwargs: Any) -> '_RequestContextManager':
return _RequestContextManager(
self._request(hdrs.METH_GET, url,
allow_redirects=allow_redirects,
**kwargs))
def options(self, url: StrOrURL, *, allow_redirects: bool=True,
**kwargs: Any) -> '_RequestContextManager':
return _RequestContextManager(
self._request(hdrs.METH_OPTIONS, url,
allow_redirects=allow_redirects,
**kwargs))
def head(self, url: StrOrURL, *, allow_redirects: bool=False,
**kwargs: Any) -> '_RequestContextManager':
return _RequestContextManager(
self._request(hdrs.METH_HEAD, url,
allow_redirects=allow_redirects,
**kwargs))
def post(self, url: StrOrURL,
*, data: Any=None, **kwargs: Any) -> '_RequestContextManager':
return _RequestContextManager(
self._request(hdrs.METH_POST, url,
data=data,
**kwargs))
def put(self, url: StrOrURL,
*, data: Any=None, **kwargs: Any) -> '_RequestContextManager':
return _RequestContextManager(
self._request(hdrs.METH_PUT, url,
data=data,
**kwargs))
def patch(self, url: StrOrURL,
*, data: Any=None, **kwargs: Any) -> '_RequestContextManager':
return _RequestContextManager(
self._request(hdrs.METH_PATCH, url,
data=data,
**kwargs))
def delete(self, url: StrOrURL, **kwargs: Any) -> '_RequestContextManager':
return _RequestContextManager(
self._request(hdrs.METH_DELETE, url,
**kwargs))
async def close(self) -> None:
if not self.closed:
if self._connector is not None and self._connector_owner:
await self._connector.close()
self._connector = None
@property
def closed(self) -> bool:
return self._connector is None or self._connector.closed
@property
def connector(self) -> Optional[BaseConnector]:
return self._connector
@property
def cookie_jar(self) -> AbstractCookieJar:
return self._cookie_jar
@property
|
MIT License
|
jpvanhal/inflection
|
inflection/__init__.py
|
ordinalize
|
python
|
def ordinalize(number: int) -> str:
return "{}{}".format(number, ordinal(number))
|
Turn a number into an ordinal string used to denote the position in an
ordered sequence such as 1st, 2nd, 3rd, 4th.
Examples::
>>> ordinalize(1)
'1st'
>>> ordinalize(2)
'2nd'
>>> ordinalize(1002)
'1002nd'
>>> ordinalize(1003)
'1003rd'
>>> ordinalize(-11)
'-11th'
>>> ordinalize(-1021)
'-1021st'
|
https://github.com/jpvanhal/inflection/blob/b00d4d348b32ef5823221b20ee4cbd1d2d924462/inflection/__init__.py#L236-L257
|
import re
import unicodedata
__version__ = '0.5.1'
PLURALS = [
(r"(?i)(quiz)$", r'\1zes'),
(r"(?i)^(oxen)$", r'\1'),
(r"(?i)^(ox)$", r'\1en'),
(r"(?i)(m|l)ice$", r'\1ice'),
(r"(?i)(m|l)ouse$", r'\1ice'),
(r"(?i)(passer)s?by$", r'\1sby'),
(r"(?i)(matr|vert|ind)(?:ix|ex)$", r'\1ices'),
(r"(?i)(x|ch|ss|sh)$", r'\1es'),
(r"(?i)([^aeiouy]|qu)y$", r'\1ies'),
(r"(?i)(hive)$", r'\1s'),
(r"(?i)([lr])f$", r'\1ves'),
(r"(?i)([^f])fe$", r'\1ves'),
(r"(?i)sis$", 'ses'),
(r"(?i)([ti])a$", r'\1a'),
(r"(?i)([ti])um$", r'\1a'),
(r"(?i)(buffal|potat|tomat)o$", r'\1oes'),
(r"(?i)(bu)s$", r'\1ses'),
(r"(?i)(alias|status)$", r'\1es'),
(r"(?i)(octop|vir)i$", r'\1i'),
(r"(?i)(octop|vir)us$", r'\1i'),
(r"(?i)^(ax|test)is$", r'\1es'),
(r"(?i)s$", 's'),
(r"$", 's'),
]
SINGULARS = [
(r"(?i)(database)s$", r'\1'),
(r"(?i)(quiz)zes$", r'\1'),
(r"(?i)(matr)ices$", r'\1ix'),
(r"(?i)(vert|ind)ices$", r'\1ex'),
(r"(?i)(passer)sby$", r'\1by'),
(r"(?i)^(ox)en", r'\1'),
(r"(?i)(alias|status)(es)?$", r'\1'),
(r"(?i)(octop|vir)(us|i)$", r'\1us'),
(r"(?i)^(a)x[ie]s$", r'\1xis'),
(r"(?i)(cris|test)(is|es)$", r'\1is'),
(r"(?i)(shoe)s$", r'\1'),
(r"(?i)(o)es$", r'\1'),
(r"(?i)(bus)(es)?$", r'\1'),
(r"(?i)(m|l)ice$", r'\1ouse'),
(r"(?i)(x|ch|ss|sh)es$", r'\1'),
(r"(?i)(m)ovies$", r'\1ovie'),
(r"(?i)(s)eries$", r'\1eries'),
(r"(?i)([^aeiouy]|qu)ies$", r'\1y'),
(r"(?i)([lr])ves$", r'\1f'),
(r"(?i)(tive)s$", r'\1'),
(r"(?i)(hive)s$", r'\1'),
(r"(?i)([^f])ves$", r'\1fe'),
(r"(?i)(t)he(sis|ses)$", r"\1hesis"),
(r"(?i)(s)ynop(sis|ses)$", r"\1ynopsis"),
(r"(?i)(p)rogno(sis|ses)$", r"\1rognosis"),
(r"(?i)(p)arenthe(sis|ses)$", r"\1arenthesis"),
(r"(?i)(d)iagno(sis|ses)$", r"\1iagnosis"),
(r"(?i)(b)a(sis|ses)$", r"\1asis"),
(r"(?i)(a)naly(sis|ses)$", r"\1nalysis"),
(r"(?i)([ti])a$", r'\1um'),
(r"(?i)(n)ews$", r'\1ews'),
(r"(?i)(ss)$", r'\1'),
(r"(?i)s$", ''),
]
UNCOUNTABLES = {
'equipment',
'fish',
'information',
'jeans',
'money',
'rice',
'series',
'sheep',
'species'}
def _irregular(singular: str, plural: str) -> None:
def caseinsensitive(string: str) -> str:
return ''.join('[' + char + char.upper() + ']' for char in string)
if singular[0].upper() == plural[0].upper():
PLURALS.insert(0, (
r"(?i)({}){}$".format(singular[0], singular[1:]),
r'\1' + plural[1:]
))
PLURALS.insert(0, (
r"(?i)({}){}$".format(plural[0], plural[1:]),
r'\1' + plural[1:]
))
SINGULARS.insert(0, (
r"(?i)({}){}$".format(plural[0], plural[1:]),
r'\1' + singular[1:]
))
else:
PLURALS.insert(0, (
r"{}{}$".format(singular[0].upper(),
caseinsensitive(singular[1:])),
plural[0].upper() + plural[1:]
))
PLURALS.insert(0, (
r"{}{}$".format(singular[0].lower(),
caseinsensitive(singular[1:])),
plural[0].lower() + plural[1:]
))
PLURALS.insert(0, (
r"{}{}$".format(plural[0].upper(), caseinsensitive(plural[1:])),
plural[0].upper() + plural[1:]
))
PLURALS.insert(0, (
r"{}{}$".format(plural[0].lower(), caseinsensitive(plural[1:])),
plural[0].lower() + plural[1:]
))
SINGULARS.insert(0, (
r"{}{}$".format(plural[0].upper(), caseinsensitive(plural[1:])),
singular[0].upper() + singular[1:]
))
SINGULARS.insert(0, (
r"{}{}$".format(plural[0].lower(), caseinsensitive(plural[1:])),
singular[0].lower() + singular[1:]
))
def camelize(string: str, uppercase_first_letter: bool = True) -> str:
if uppercase_first_letter:
return re.sub(r"(?:^|_)(.)", lambda m: m.group(1).upper(), string)
else:
return string[0].lower() + camelize(string)[1:]
def dasherize(word: str) -> str:
return word.replace('_', '-')
def humanize(word: str) -> str:
word = re.sub(r"_id$", "", word)
word = word.replace('_', ' ')
word = re.sub(r"(?i)([a-z\d]*)", lambda m: m.group(1).lower(), word)
word = re.sub(r"^\w", lambda m: m.group(0).upper(), word)
return word
def ordinal(number: int) -> str:
number = abs(int(number))
if number % 100 in (11, 12, 13):
return "th"
else:
return {
1: "st",
2: "nd",
3: "rd",
}.get(number % 10, "th")
|
MIT License
|
googleworkspace/python-samples
|
drive/quickstart/quickstart.py
|
main
|
python
|
def main():
creds = None
if os.path.exists('token.json'):
creds = Credentials.from_authorized_user_file('token.json', SCOPES)
if not creds or not creds.valid:
if creds and creds.expired and creds.refresh_token:
creds.refresh(Request())
else:
flow = InstalledAppFlow.from_client_secrets_file(
'credentials.json', SCOPES)
creds = flow.run_local_server(port=0)
with open('token.json', 'w') as token:
token.write(creds.to_json())
service = build('drive', 'v3', credentials=creds)
results = service.files().list(
pageSize=10, fields="nextPageToken, files(id, name)").execute()
items = results.get('files', [])
if not items:
print('No files found.')
else:
print('Files:')
for item in items:
print(u'{0} ({1})'.format(item['name'], item['id']))
|
Shows basic usage of the Drive v3 API.
Prints the names and ids of the first 10 files the user has access to.
|
https://github.com/googleworkspace/python-samples/blob/3dc8f66f77a11b70e72f5b368c9545a6481dd7ca/drive/quickstart/quickstart.py#L26-L60
|
from __future__ import print_function
import os.path
from googleapiclient.discovery import build
from google_auth_oauthlib.flow import InstalledAppFlow
from google.auth.transport.requests import Request
from google.oauth2.credentials import Credentials
SCOPES = ['https://www.googleapis.com/auth/drive.metadata.readonly']
|
Apache License 2.0
|
masqu3rad3/tik_manager
|
tik_manager/pyseq.py
|
Sequence.__attrs__
|
python
|
def __attrs__(self):
return {
'l': self.length,
's': self.start,
'e': self.end,
'f': self.frames,
'm': self.missing,
'M': functools.partial(self._get_framerange, self.missing(), missing=True),
'd': lambda *x: self.size,
'D': self.directory,
'p': self._get_padding,
'r': functools.partial(self._get_framerange, self.frames(), missing=False),
'R': functools.partial(self._get_framerange, self.frames(), missing=True),
'h': self.head,
't': self.tail
}
|
Replaces format directives with callables to get their values.
|
https://github.com/masqu3rad3/tik_manager/blob/59821670e87a2af753a59cc70924c5f0aad8ad51/tik_manager/pyseq.py#L361-L377
|
import os
import re
import logging
import warnings
import functools
from glob import glob
from glob import iglob
from datetime import datetime
import fnmatch
__version__ = "0.5.1"
global_format = '%4l %h%p%t %R'
default_format = '%h%r%t'
strict_pad = True
digits_re = re.compile(r'\d+')
format_re = re.compile(r'%(?P<pad>\d+)?(?P<var>\w+)')
range_join = os.environ.get('PYSEQ_RANGE_SEP', ', ')
__all__ = [
'SequenceError', 'FormatError', 'Item', 'Sequence', 'diff', 'uncompress',
'getSequences', 'get_sequences', 'walk'
]
log = logging.getLogger('pyseq')
log.addHandler(logging.StreamHandler())
log.setLevel(int(os.environ.get('PYSEQ_LOG_LEVEL', logging.INFO)))
warnings.simplefilter('always', DeprecationWarning)
try:
unicode = unicode
except NameError:
str = str
unicode = str
bytes = bytes
basestring = (str,bytes)
else:
str = str
unicode = unicode
bytes = str
basestring = basestring
def _natural_key(x):
return [int(c) if c.isdigit() else c.lower() for c in re.split("(\d+)", x)]
def _ext_key(x):
name, ext = os.path.splitext(x)
return [ext] + _natural_key(name)
def natural_sort(items):
return sorted(items, key=_natural_key)
class SequenceError(Exception):
pass
class FormatError(Exception):
pass
def deprecated(func):
def inner(*args, **kwargs):
warnings.warn("Call to deprecated method {}".format(func.__name__),
category=DeprecationWarning, stacklevel=2)
return func(*args, **kwargs)
inner.__name__ = func.__name__
inner.__doc__ = func.__doc__
inner.__dict__.update(func.__dict__)
return inner
class Item(str):
def __init__(self, item):
super(Item, self).__init__()
log.debug('adding %s', item)
self.item = item
self.__path = getattr(item, 'path', None)
if self.__path is None:
self.__path = os.path.abspath(str(item))
self.__dirname, self.__filename = os.path.split(self.__path)
self.__digits = digits_re.findall(self.name)
self.__parts = digits_re.split(self.name)
self.__stat = None
self.frame = None
self.head = self.name
self.tail = ''
self.pad = None
def __eq__(self, other):
return self.path == other.path
def __ne__(self, other):
return self.path != other.path
def __lt__(self, other):
return self.frame < other.frame
def __gt__(self, other):
return self.frame > other.frame
def __ge__(self, other):
return self.frame >= other.frame
def __le__(self, other):
return self.frame <= other.frame
def __str__(self):
return str(self.name)
def __repr__(self):
return '<pyseq.Item "%s">' % self.name
def __getattr__(self, key):
return getattr(self.item, key)
@property
def path(self):
return self.__path
@property
def name(self):
return self.__filename
@property
def dirname(self):
return self.__dirname
@property
def digits(self):
return self.__digits
@property
def parts(self):
return self.__parts
@property
def exists(self):
return os.path.isfile(self.__path)
@property
def size(self):
return self.stat.st_size
@property
def mtime(self):
return self.stat.st_mtime
@property
def stat(self):
if self.__stat is None:
self.__stat = os.stat(self.__path)
return self.__stat
@deprecated
def isSibling(self, item):
return self.is_sibling(item)
def is_sibling(self, item):
if not isinstance(item, Item):
item = Item(item)
d = diff(self, item)
is_sibling = (len(d) == 1) and (self.parts == item.parts)
if is_sibling:
frame = d[0]['frames'][0]
self.frame = int(frame)
self.pad = len(frame)
self.head = self.name[:d[0]['start']]
self.tail = self.name[d[0]['end']:]
frame = d[0]['frames'][1]
item.frame = int(frame)
item.pad = len(frame)
item.head = item.name[:d[0]['start']]
item.tail = item.name[d[0]['end']:]
return is_sibling
class Sequence(list):
def __init__(self, items):
items = items[::]
super(Sequence, self).__init__([Item(items.pop(0))])
self.__missing = []
self.__dirty = False
self.__frames = None
while items:
f = Item(items.pop(0))
try:
self.append(f)
log.debug('+Item belongs to sequence.')
except SequenceError:
log.debug('-Item does not belong to sequence.')
continue
except KeyboardInterrupt:
log.info("Stopping.")
break
|
BSD 3-Clause New or Revised License
|
albertsuarez/searchly
|
src/searchly/helper/log.py
|
error
|
python
|
def error(msg):
__logger_stdout.error(msg)
|
Log [ERROR] level log messages.
:param msg: Message to error.
:return: Message notified as error.
|
https://github.com/albertsuarez/searchly/blob/bcdb3727cb64b69a3bbe6023b93cc9e9154d051e/src/searchly/helper/log.py#L46-L52
|
import logging
import sys
__logger_stdout = logging.getLogger('searchly')
__formatter = logging.Formatter('{%(name)s} - <%(asctime)s> - [%(levelname)-7s] - %(message)s')
__handler_stdout = logging.StreamHandler(sys.stdout)
__handler_stdout.setFormatter(__formatter)
__logger_stdout.addHandler(__handler_stdout)
__logger_stdout.setLevel(logging.INFO)
def debug(msg):
if __logger_stdout.isEnabledFor(logging.DEBUG):
__logger_stdout.debug(msg)
def info(msg):
__logger_stdout.info(msg)
def warn(msg):
__logger_stdout.warning(msg)
|
MIT License
|
noirbizarre/flask-fs
|
tasks.py
|
compose
|
python
|
def compose(ctx, cmd):
return ctx.run('docker-compose {0}'.format(cmd), pty=True)
|
Run a docker-compose command
|
https://github.com/noirbizarre/flask-fs/blob/092e9327384b8411c9bb38ca257ecb558584d201/tasks.py#L11-L13
|
from __future__ import unicode_literals, absolute_import
from invoke import run, task
from os.path import join, abspath, dirname
ROOT = abspath(join(dirname(__file__)))
|
MIT License
|
google-tasks-backup/tasks-backup
|
oauth2client/client.py
|
credentials_from_clientsecrets_and_code
|
python
|
def credentials_from_clientsecrets_and_code(filename, scope, code,
message = None,
redirect_uri='postmessage',
http=None,
cache=None):
flow = flow_from_clientsecrets(filename, scope, message=message, cache=cache,
redirect_uri=redirect_uri)
credentials = flow.step2_exchange(code, http=http)
return credentials
|
Returns OAuth2Credentials from a clientsecrets file and an auth code.
Will create the right kind of Flow based on the contents of the clientsecrets
file or will raise InvalidClientSecretsError for unknown types of Flows.
Args:
filename: string, File name of clientsecrets.
scope: string or list of strings, scope(s) to request.
code: string, An authorization code, most likely passed down from
the client
message: string, A friendly string to display to the user if the
clientsecrets file is missing or invalid. If message is provided then
sys.exit will be called in the case of an error. If message in not
provided then clientsecrets.InvalidClientSecretsError will be raised.
redirect_uri: string, this is generally set to 'postmessage' to match the
redirect_uri that the client specified
http: httplib2.Http, optional http instance to use to do the fetch
cache: An optional cache service client that implements get() and set()
methods. See clientsecrets.loadfile() for details.
Returns:
An OAuth2Credentials object.
Raises:
FlowExchangeError if the authorization code cannot be exchanged for an
access token
UnknownClientSecretsFlowError if the file describes an unknown kind of Flow.
clientsecrets.InvalidClientSecretsError if the clientsecrets file is
invalid.
|
https://github.com/google-tasks-backup/tasks-backup/blob/ffcb2044eb6089d20e1be3f93025fa33c2efbe3e/oauth2client/client.py#L965-L1003
|
__author__ = '[email protected] (Joe Gregorio)'
import base64
import clientsecrets
import copy
import datetime
import httplib2
import logging
import os
import sys
import time
import urllib
import urlparse
from oauth2client import util
from oauth2client.anyjson import simplejson
HAS_OPENSSL = False
try:
from oauth2client.crypt import Signer
from oauth2client.crypt import make_signed_jwt
from oauth2client.crypt import verify_signed_jwt_with_certs
HAS_OPENSSL = True
except ImportError:
pass
try:
from urlparse import parse_qsl
except ImportError:
from cgi import parse_qsl
logger = logging.getLogger(__name__)
EXPIRY_FORMAT = '%Y-%m-%dT%H:%M:%SZ'
ID_TOKEN_VERIFICATON_CERTS = 'https://www.googleapis.com/oauth2/v1/certs'
OOB_CALLBACK_URN = 'urn:ietf:wg:oauth:2.0:oob'
class Error(Exception):
pass
class FlowExchangeError(Error):
pass
class AccessTokenRefreshError(Error):
pass
class UnknownClientSecretsFlowError(Error):
pass
class AccessTokenCredentialsError(Error):
pass
class VerifyJwtTokenError(Error):
pass
def _abstract():
raise NotImplementedError('You need to override this function')
class MemoryCache(object):
def __init__(self):
self.cache = {}
def get(self, key):
return self.cache.get(key)
def set(self, key, value):
self.cache[key] = value
def delete(self, key):
self.cache.pop(key, None)
class Credentials(object):
NON_SERIALIZED_MEMBERS = ['store']
def authorize(self, http):
_abstract()
def refresh(self, http):
_abstract()
def apply(self, headers):
_abstract()
def _to_json(self, strip):
t = type(self)
d = copy.copy(self.__dict__)
for member in strip:
if member in d:
del d[member]
if 'token_expiry' in d and isinstance(d['token_expiry'], datetime.datetime):
d['token_expiry'] = d['token_expiry'].strftime(EXPIRY_FORMAT)
d['_class'] = t.__name__
d['_module'] = t.__module__
return simplejson.dumps(d)
def to_json(self):
return self._to_json(Credentials.NON_SERIALIZED_MEMBERS)
@classmethod
def new_from_json(cls, s):
data = simplejson.loads(s)
module = data['_module']
try:
m = __import__(module)
except ImportError:
module = module.replace('.apiclient', '')
m = __import__(module)
m = __import__(module, fromlist=module.split('.')[:-1])
kls = getattr(m, data['_class'])
from_json = getattr(kls, 'from_json')
return from_json(s)
@classmethod
def from_json(cls, s):
return Credentials()
class Flow(object):
pass
class Storage(object):
def acquire_lock(self):
pass
def release_lock(self):
pass
def locked_get(self):
_abstract()
def locked_put(self, credentials):
_abstract()
def locked_delete(self):
_abstract()
def get(self):
self.acquire_lock()
try:
return self.locked_get()
finally:
self.release_lock()
def put(self, credentials):
self.acquire_lock()
try:
self.locked_put(credentials)
finally:
self.release_lock()
def delete(self):
self.acquire_lock()
try:
return self.locked_delete()
finally:
self.release_lock()
class OAuth2Credentials(Credentials):
@util.positional(8)
def __init__(self, access_token, client_id, client_secret, refresh_token,
token_expiry, token_uri, user_agent, id_token=None):
self.access_token = access_token
self.client_id = client_id
self.client_secret = client_secret
self.refresh_token = refresh_token
self.store = None
self.token_expiry = token_expiry
self.token_uri = token_uri
self.user_agent = user_agent
self.id_token = id_token
self.invalid = False
def authorize(self, http):
request_orig = http.request
@util.positional(1)
def new_request(uri, method='GET', body=None, headers=None,
redirections=httplib2.DEFAULT_MAX_REDIRECTS,
connection_type=None):
if not self.access_token:
logger.info('OAuth2Credentials.authorize.new_request: Attempting refresh to obtain initial access_token')
self._refresh(request_orig)
if headers is None:
headers = {}
self.apply(headers)
if self.user_agent is not None:
if 'user-agent' in headers:
headers['user-agent'] = self.user_agent + ' ' + headers['user-agent']
else:
headers['user-agent'] = self.user_agent
resp, content = request_orig(uri, method, body, headers,
redirections, connection_type)
if resp.status in [401, 403]:
logger.info('OAuth2Credentials.authorize.new_request: Refreshing due to a %s' % str(resp.status))
self._refresh(request_orig)
self.apply(headers)
return request_orig(uri, method, body, headers,
redirections, connection_type)
else:
return (resp, content)
http.request = new_request
setattr(http.request, 'credentials', self)
return http
def refresh(self, http):
self._refresh(http.request)
def apply(self, headers):
headers['Authorization'] = 'Bearer ' + self.access_token
def to_json(self):
return self._to_json(Credentials.NON_SERIALIZED_MEMBERS)
@classmethod
def from_json(cls, s):
data = simplejson.loads(s)
if 'token_expiry' in data and not isinstance(data['token_expiry'],
datetime.datetime):
try:
data['token_expiry'] = datetime.datetime.strptime(
data['token_expiry'], EXPIRY_FORMAT)
except:
data['token_expiry'] = None
retval = OAuth2Credentials(
data['access_token'],
data['client_id'],
data['client_secret'],
data['refresh_token'],
data['token_expiry'],
data['token_uri'],
data['user_agent'],
id_token=data.get('id_token', None))
retval.invalid = data['invalid']
return retval
@property
def access_token_expired(self):
if self.invalid:
return True
if not self.token_expiry:
return False
now = datetime.datetime.utcnow()
if now >= self.token_expiry:
logger.info('OAuth2Credentials.access_token_expired: access_token is expired. Now: %s, token_expiry: %s',
now, self.token_expiry)
return True
return False
def set_store(self, store):
self.store = store
def _updateFromCredential(self, other):
self.__dict__.update(other.__getstate__())
def __getstate__(self):
d = copy.copy(self.__dict__)
del d['store']
return d
def __setstate__(self, state):
self.__dict__.update(state)
self.store = None
def _generate_refresh_request_body(self):
body = urllib.urlencode({
'grant_type': 'refresh_token',
'client_id': self.client_id,
'client_secret': self.client_secret,
'refresh_token': self.refresh_token,
})
return body
def _generate_refresh_request_headers(self):
headers = {
'content-type': 'application/x-www-form-urlencoded',
}
if self.user_agent is not None:
headers['user-agent'] = self.user_agent
return headers
def _refresh(self, http_request):
if not self.store:
self._do_refresh_request(http_request)
else:
self.store.acquire_lock()
try:
new_cred = self.store.locked_get()
if (new_cred and not new_cred.invalid and
new_cred.access_token != self.access_token):
logger.info('OAuth2Credentials._refresh: Updated access_token read from Storage')
self._updateFromCredential(new_cred)
else:
self._do_refresh_request(http_request)
finally:
self.store.release_lock()
def _do_refresh_request(self, http_request):
body = self._generate_refresh_request_body()
headers = self._generate_refresh_request_headers()
logger.info('OAuth2Credentials._do_refresh_request: Refreshing access_token')
resp, content = http_request(
self.token_uri, method='POST', body=body, headers=headers)
if resp.status == 200:
d = simplejson.loads(content)
self.access_token = d['access_token']
self.refresh_token = d.get('refresh_token', self.refresh_token)
if 'expires_in' in d:
self.token_expiry = datetime.timedelta(
seconds=int(d['expires_in'])) + datetime.datetime.utcnow()
else:
self.token_expiry = None
if self.store:
self.store.locked_put(self)
else:
logger.info('OAuth2Credentials._do_refresh_request: Failed to retrieve access token: %s' % content)
error_msg = 'Invalid response %s.' % resp['status']
try:
d = simplejson.loads(content)
if 'error' in d:
error_msg = d['error']
self.invalid = True
if self.store:
self.store.locked_put(self)
except StandardError:
pass
raise AccessTokenRefreshError(error_msg)
class AccessTokenCredentials(OAuth2Credentials):
def __init__(self, access_token, user_agent):
super(AccessTokenCredentials, self).__init__(
access_token,
None,
None,
None,
None,
None,
user_agent)
@classmethod
def from_json(cls, s):
data = simplejson.loads(s)
retval = AccessTokenCredentials(
data['access_token'],
data['user_agent'])
return retval
def _refresh(self, http_request):
raise AccessTokenCredentialsError(
"The access_token is expired or invalid and can't be refreshed.")
class AssertionCredentials(OAuth2Credentials):
@util.positional(2)
def __init__(self, assertion_type, user_agent=None,
token_uri='https://accounts.google.com/o/oauth2/token',
**unused_kwargs):
super(AssertionCredentials, self).__init__(
None,
None,
None,
None,
None,
token_uri,
user_agent)
self.assertion_type = assertion_type
def _generate_refresh_request_body(self):
assertion = self._generate_assertion()
body = urllib.urlencode({
'assertion_type': self.assertion_type,
'assertion': assertion,
'grant_type': 'assertion',
})
return body
def _generate_assertion(self):
_abstract()
if HAS_OPENSSL:
class SignedJwtAssertionCredentials(AssertionCredentials):
MAX_TOKEN_LIFETIME_SECS = 3600
@util.positional(4)
def __init__(self,
service_account_name,
private_key,
scope,
private_key_password='notasecret',
user_agent=None,
token_uri='https://accounts.google.com/o/oauth2/token',
**kwargs):
super(SignedJwtAssertionCredentials, self).__init__(
'http://oauth.net/grant_type/jwt/1.0/bearer',
user_agent=user_agent,
token_uri=token_uri,
)
if type(scope) is list:
scope = ' '.join(scope)
self.scope = scope
self.private_key = base64.b64encode(private_key)
self.private_key_password = private_key_password
self.service_account_name = service_account_name
self.kwargs = kwargs
@classmethod
def from_json(cls, s):
data = simplejson.loads(s)
retval = SignedJwtAssertionCredentials(
data['service_account_name'],
base64.b64decode(data['private_key']),
data['scope'],
private_key_password=data['private_key_password'],
user_agent=data['user_agent'],
token_uri=data['token_uri'],
**data['kwargs']
)
retval.invalid = data['invalid']
retval.access_token = data['access_token']
return retval
def _generate_assertion(self):
now = long(time.time())
payload = {
'aud': self.token_uri,
'scope': self.scope,
'iat': now,
'exp': now + SignedJwtAssertionCredentials.MAX_TOKEN_LIFETIME_SECS,
'iss': self.service_account_name
}
payload.update(self.kwargs)
logger.debug("SignedJwtAssertionCredentials._generate_assertion ==>")
logger.debug(str(payload))
private_key = base64.b64decode(self.private_key)
return make_signed_jwt(
Signer.from_string(private_key, self.private_key_password), payload)
_cached_http = httplib2.Http(MemoryCache())
@util.positional(2)
def verify_id_token(id_token, audience, http=None,
cert_uri=ID_TOKEN_VERIFICATON_CERTS):
if http is None:
http = _cached_http
resp, content = http.request(cert_uri)
if resp.status == 200:
certs = simplejson.loads(content)
return verify_signed_jwt_with_certs(id_token, certs, audience)
else:
raise VerifyJwtTokenError('Status code: %d' % resp.status)
def _urlsafe_b64decode(b64string):
b64string = b64string.encode('ascii')
padded = b64string + '=' * (4 - len(b64string) % 4)
return base64.urlsafe_b64decode(padded)
def _extract_id_token(id_token):
segments = id_token.split('.')
if (len(segments) != 3):
raise VerifyJwtTokenError(
'Wrong number of segments in token: %s' % id_token)
return simplejson.loads(_urlsafe_b64decode(segments[1]))
def _parse_exchange_token_response(content):
resp = {}
try:
resp = simplejson.loads(content)
except StandardError:
resp = dict(parse_qsl(content))
if resp and 'expires' in resp:
resp['expires_in'] = resp.pop('expires')
return resp
@util.positional(4)
def credentials_from_code(client_id, client_secret, scope, code,
redirect_uri='postmessage', http=None, user_agent=None,
token_uri='https://accounts.google.com/o/oauth2/token'):
flow = OAuth2WebServerFlow(client_id, client_secret, scope,
redirect_uri=redirect_uri, user_agent=user_agent,
auth_uri='https://accounts.google.com/o/oauth2/auth',
token_uri=token_uri)
credentials = flow.step2_exchange(code, http=http)
return credentials
@util.positional(3)
|
Apache License 2.0
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/helpers/template.py
|
DomainStates.__len__
|
python
|
def __len__(self):
return len(self._hass.states.async_entity_ids(self._domain))
|
Return number of states.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/helpers/template.py#L249-L251
|
from datetime import datetime
import json
import logging
import math
import random
import re
import jinja2
from jinja2 import contextfilter
from jinja2.sandbox import ImmutableSandboxedEnvironment
from homeassistant.const import (
ATTR_LATITUDE, ATTR_LONGITUDE, ATTR_UNIT_OF_MEASUREMENT, MATCH_ALL,
STATE_UNKNOWN)
from homeassistant.core import State, valid_entity_id
from homeassistant.exceptions import TemplateError
from homeassistant.helpers import location as loc_helper
from homeassistant.loader import bind_hass
from homeassistant.util import convert
from homeassistant.util import dt as dt_util
from homeassistant.util import location as loc_util
from homeassistant.util.async_ import run_callback_threadsafe
_LOGGER = logging.getLogger(__name__)
_SENTINEL = object()
DATE_STR_FORMAT = "%Y-%m-%d %H:%M:%S"
_RE_NONE_ENTITIES = re.compile(r"distance\(|closest\(", re.I | re.M)
_RE_GET_ENTITIES = re.compile(
r"(?:(?:states\.|(?:is_state|is_state_attr|state_attr|states)"
r"\((?:[\ \'\"]?))([\w]+\.[\w]+)|([\w]+))", re.I | re.M
)
@bind_hass
def attach(hass, obj):
if isinstance(obj, list):
for child in obj:
attach(hass, child)
elif isinstance(obj, dict):
for child in obj.values():
attach(hass, child)
elif isinstance(obj, Template):
obj.hass = hass
def render_complex(value, variables=None):
if isinstance(value, list):
return [render_complex(item, variables)
for item in value]
elif isinstance(value, dict):
return {key: render_complex(item, variables)
for key, item in value.items()}
return value.async_render(variables)
def extract_entities(template, variables=None):
if template is None or _RE_NONE_ENTITIES.search(template):
return MATCH_ALL
extraction = _RE_GET_ENTITIES.findall(template)
extraction_final = []
for result in extraction:
if result[0] == 'trigger.entity_id' and 'trigger' in variables and 'entity_id' in variables['trigger']:
extraction_final.append(variables['trigger']['entity_id'])
elif result[0]:
extraction_final.append(result[0])
if variables and result[1] in variables and isinstance(variables[result[1]], str) and valid_entity_id(variables[result[1]]):
extraction_final.append(variables[result[1]])
if extraction_final:
return list(set(extraction_final))
return MATCH_ALL
class Template(object):
def __init__(self, template, hass=None):
if not isinstance(template, str):
raise TypeError('Expected template to be a string')
self.template = template
self._compiled_code = None
self._compiled = None
self.hass = hass
def ensure_valid(self):
if self._compiled_code is not None:
return
try:
self._compiled_code = ENV.compile(self.template)
except jinja2.exceptions.TemplateSyntaxError as err:
raise TemplateError(err)
def extract_entities(self, variables=None):
return extract_entities(self.template, variables)
def render(self, variables=None, **kwargs):
if variables is not None:
kwargs.update(variables)
return run_callback_threadsafe(
self.hass.loop, self.async_render, kwargs).result()
def async_render(self, variables=None, **kwargs):
if self._compiled is None:
self._ensure_compiled()
if variables is not None:
kwargs.update(variables)
try:
return self._compiled.render(kwargs).strip()
except jinja2.TemplateError as err:
raise TemplateError(err)
def render_with_possible_json_value(self, value, error_value=_SENTINEL):
return run_callback_threadsafe(
self.hass.loop, self.async_render_with_possible_json_value, value,
error_value).result()
def async_render_with_possible_json_value(self, value,
error_value=_SENTINEL):
if self._compiled is None:
self._ensure_compiled()
variables = {
'value': value
}
try:
variables['value_json'] = json.loads(value)
except ValueError:
pass
try:
return self._compiled.render(variables).strip()
except jinja2.TemplateError as ex:
_LOGGER.error("Error parsing value: %s (value: %s, template: %s)",
ex, value, self.template)
return value if error_value is _SENTINEL else error_value
def _ensure_compiled(self):
self.ensure_valid()
assert self.hass is not None, 'hass variable not set on template'
template_methods = TemplateMethods(self.hass)
global_vars = ENV.make_globals({
'closest': template_methods.closest,
'distance': template_methods.distance,
'is_state': self.hass.states.is_state,
'is_state_attr': template_methods.is_state_attr,
'state_attr': template_methods.state_attr,
'states': AllStates(self.hass),
})
self._compiled = jinja2.Template.from_code(
ENV, self._compiled_code, global_vars, None)
return self._compiled
def __eq__(self, other):
return (self.__class__ == other.__class__ and
self.template == other.template and
self.hass == other.hass)
class AllStates(object):
def __init__(self, hass):
self._hass = hass
def __getattr__(self, name):
return DomainStates(self._hass, name)
def __iter__(self):
return iter(
_wrap_state(state) for state in
sorted(self._hass.states.async_all(),
key=lambda state: state.entity_id))
def __len__(self):
return len(self._hass.states.async_entity_ids())
def __call__(self, entity_id):
state = self._hass.states.get(entity_id)
return STATE_UNKNOWN if state is None else state.state
class DomainStates(object):
def __init__(self, hass, domain):
self._hass = hass
self._domain = domain
def __getattr__(self, name):
return _wrap_state(
self._hass.states.get('{}.{}'.format(self._domain, name)))
def __iter__(self):
return iter(sorted(
(_wrap_state(state) for state in self._hass.states.async_all()
if state.domain == self._domain),
key=lambda state: state.entity_id))
|
MIT License
|
azure/azure-devops-cli-extension
|
azure-devops/azext_devops/devops_sdk/v5_0/feed/feed_client.py
|
FeedClient.create_feed
|
python
|
def create_feed(self, feed):
content = self._serialize.body(feed, 'Feed')
response = self._send(http_method='POST',
location_id='c65009a7-474a-4ad1-8b42-7d852107ef8c',
version='5.0-preview.1',
content=content)
return self._deserialize('Feed', response)
|
CreateFeed.
[Preview API] Create a feed, a container for various package types.
:param :class:`<Feed> <azure.devops.v5_0.feed.models.Feed>` feed: A JSON object containing both required and optional attributes for the feed. Name is the only required value.
:rtype: :class:`<Feed> <azure.devops.v5_0.feed.models.Feed>`
|
https://github.com/azure/azure-devops-cli-extension/blob/5f33f7d81a9c2d2990044fbd9ffa6b535cbda528/azure-devops/azext_devops/devops_sdk/v5_0/feed/feed_client.py#L82-L93
|
from msrest import Serializer, Deserializer
from ...client import Client
from . import models
class FeedClient(Client):
def __init__(self, base_url=None, creds=None):
super(FeedClient, self).__init__(base_url, creds)
client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
self._serialize = Serializer(client_models)
self._deserialize = Deserializer(client_models)
resource_area_identifier = '7ab4e64e-c4d8-4f50-ae73-5ef2e21642a5'
def get_badge(self, feed_id, package_id):
route_values = {}
if feed_id is not None:
route_values['feedId'] = self._serialize.url('feed_id', feed_id, 'str')
if package_id is not None:
route_values['packageId'] = self._serialize.url('package_id', package_id, 'str')
response = self._send(http_method='GET',
location_id='61d885fd-10f3-4a55-82b6-476d866b673f',
version='5.0-preview.1',
route_values=route_values)
return self._deserialize('str', response)
def get_feed_change(self, feed_id):
route_values = {}
if feed_id is not None:
route_values['feedId'] = self._serialize.url('feed_id', feed_id, 'str')
response = self._send(http_method='GET',
location_id='29ba2dad-389a-4661-b5d3-de76397ca05b',
version='5.0-preview.1',
route_values=route_values)
return self._deserialize('FeedChange', response)
def get_feed_changes(self, include_deleted=None, continuation_token=None, batch_size=None):
query_parameters = {}
if include_deleted is not None:
query_parameters['includeDeleted'] = self._serialize.query('include_deleted', include_deleted, 'bool')
if continuation_token is not None:
query_parameters['continuationToken'] = self._serialize.query('continuation_token', continuation_token, 'long')
if batch_size is not None:
query_parameters['batchSize'] = self._serialize.query('batch_size', batch_size, 'int')
response = self._send(http_method='GET',
location_id='29ba2dad-389a-4661-b5d3-de76397ca05b',
version='5.0-preview.1',
query_parameters=query_parameters)
return self._deserialize('FeedChangesResponse', response)
|
MIT License
|
rsokl/mygrad
|
tests/nnet/layers/test_conv.py
|
convolve_numpy
|
python
|
def convolve_numpy(input_image, conv_filter, stride, dilation=None):
conv_shape = conv_filter.shape[1:]
in_shape = input_image.shape[1:]
if dilation is None:
dilation = (1,) * len(stride)
out_shape = tuple(get_outshape(in_shape, conv_shape, stride, dilation))
out = np.empty(out_shape, np.float32)
for ind in np.ndindex(out_shape):
slices = (slice(None),) + tuple(
slice(i * s, i * s + w * d, d)
for i, w, s, d in zip(ind, conv_shape, stride, dilation)
)
out[ind] = np.sum(conv_filter * input_image[slices])
return out
|
Convolve `input_image` with `conv_filter` at a stride of `stride`.
Parameters
----------
input_image : numpy.ndarray, shape=(C, H, ...)
The input over which to perform convolution.
conv_filter : numpy.ndarray, shape=(C, Hf, ...)
The convolutional filter to slide across the image.
stride : Sequence[int]
The stride at which to apply `conv_filter` across `input_image`.
Returns
-------
numpy.ndarray, shape=(H', ...)
The result of convolving `input_image` with `conv_filter` at a stride of `stride`,
where (H', W') is the result of `get_outshape`.
|
https://github.com/rsokl/mygrad/blob/4256b6f286e52eaa819fd6657decc705ce3dd32a/tests/nnet/layers/test_conv.py#L99-L131
|
from typing import Tuple
import hypothesis.extra.numpy as hnp
import hypothesis.strategies as st
import numpy as np
import pytest
from hypothesis import HealthCheck, assume, given, settings
from numpy.testing import assert_allclose
from pytest import raises
import mygrad as mg
from mygrad import Tensor
from mygrad.nnet.layers import conv_nd
from ...utils.numerical_gradient import numerical_gradient_full
from ...wrappers.uber import backprop_test_factory, fwdprop_test_factory
@pytest.mark.parametrize(
"shapes",
[
st.tuples(
hnp.array_shapes(min_dims=0, max_dims=2), hnp.array_shapes(min_dims=3)
),
hnp.array_shapes(min_dims=3).flatmap(
lambda x: st.tuples(
st.just(x),
hnp.array_shapes(min_dims=2).filter(lambda s: len(s) != len(x)),
)
),
hnp.array_shapes(min_dims=3).flatmap(
lambda x: st.tuples(
st.just(x),
hnp.array_shapes(min_dims=len(x), max_dims=len(x)).filter(
lambda s: s[1] != x[1]
),
)
),
],
)
@given(data=st.data())
def test_input_validation(
shapes: st.SearchStrategy[Tuple[Tuple[int, ...], Tuple[int, ...]]],
data: st.DataObject,
):
x_shape, k_shape = data.draw(shapes, label="x_shape, k_shape")
x = mg.zeros(x_shape, dtype="float")
k = mg.zeros(k_shape, dtype="float")
with raises(ValueError):
conv_nd(x, k, stride=1)
def get_outshape(x_shape, w_shape, stride, dilation):
x_shape = np.array(x_shape)
w_shape = np.array(w_shape)
stride = np.array(stride)
dilation = np.array(dilation)
out_shape = (x_shape - ((w_shape - 1) * dilation + 1)) / stride + 1
if not all(i.is_integer() and i > 0 for i in out_shape):
msg = "Stride and kernel dimensions are incompatible: \n"
msg += "Input dimensions: {}\n".format(tuple(x_shape))
msg += "Stride dimensions: {}\n".format(tuple(stride))
msg += "Kernel dimensions: {}\n".format(tuple(w_shape))
msg += "Dilation dimensions: {}\n".format(tuple(dilation))
return None
return out_shape.astype(np.int32)
|
MIT License
|
agdsn/pycroft
|
pycroft/helpers/facilities.py
|
determine_building
|
python
|
def determine_building(shortname=None, id=None):
if shortname:
return Building.q.filter(Building.short_name == shortname).one()
if id:
return Building.get(id)
raise ValueError("Either shortname or id must be given to identify the building!")
|
Determine building from shortname or id in this order.
:param str shortname: The short name of the building
:param int id: The id of the building
:return: The unique building
:raises: ValueError if none of both provided
|
https://github.com/agdsn/pycroft/blob/ed34865c15d6c81dff3b9142af13badfa9404261/pycroft/helpers/facilities.py#L27-L44
|
import re
from pycroft.model.facilities import Building
def sort_buildings(buildings):
def make_sort_key(building):
s = re.split(r'(\d+)([a-zA-Z]?)', building.number)
if len(s) != 4: return building.street, building.number
return building.street, (int(s[1]), s[2].lower())
sorted_buildings = sorted(buildings, key=make_sort_key)
return sorted_buildings
|
Apache License 2.0
|
pmelchior/scarlet
|
scarlet/interpolation.py
|
get_filter_bounds
|
python
|
def get_filter_bounds(coords):
z = np.zeros((len(coords),), dtype=int)
y_start = np.max([z, coords[:, 0]], axis=0)
y_end = -np.min([z, coords[:, 0]], axis=0)
x_start = np.max([z, coords[:, 1]], axis=0)
x_end = -np.min([z, coords[:, 1]], axis=0)
return y_start, y_end, x_start, x_end
|
Get the slices in x and y to apply a filter
Parameters
----------
coords: array
The coordinates of the filter,
defined by `get_filter_coords`.
Returns
-------
y_start, y_end, x_start, x_end: int
The start and end of each slice that is passed to `apply_filter`.
|
https://github.com/pmelchior/scarlet/blob/134fac69465c2eea46b6909c6f401e1b17cdd85b/scarlet/interpolation.py#L44-L65
|
import numpy as np
from .cache import Cache
from .wavelet import apply_wavelet_denoising
from . import fft
def get_filter_coords(filter_values, center=None):
if len(filter_values.shape) != 2:
raise ValueError("`filter_values` must be 2D")
if center is None:
if filter_values.shape[0] % 2 == 0 or filter_values.shape[1] % 2 == 0:
msg = """Ambiguous center of the `filter_values` array,
you must use a `filter_values` array
with an odd number of rows and columns or
calculate `coords` on your own."""
raise ValueError(msg)
center = [filter_values.shape[0] // 2, filter_values.shape[1] // 2]
x = np.arange(filter_values.shape[1])
y = np.arange(filter_values.shape[0])
x, y = np.meshgrid(x, y)
x -= center[1]
y -= center[0]
coords = np.dstack([y, x])
return coords
|
MIT License
|
thu-ml/zhusuan
|
zhusuan/utils.py
|
log_sum_exp
|
python
|
def log_sum_exp(x, axis=None, keepdims=False):
x = tf.convert_to_tensor(x)
x_max = tf.reduce_max(x, axis=axis, keepdims=True)
ret = tf.log(tf.reduce_sum(tf.exp(x - x_max), axis=axis,
keepdims=True)) + x_max
if not keepdims:
ret = tf.reduce_sum(ret, axis=axis)
return ret
|
Deprecated: Use tf.reduce_logsumexp().
Tensorflow numerically stable log sum of exps across the `axis`.
:param x: A Tensor.
:param axis: An int or list or tuple. The dimensions to reduce.
If `None` (the default), reduces all dimensions.
:param keepdims: Bool. If true, retains reduced dimensions with length 1.
Default to be False.
:return: A Tensor after the computation of log sum exp along given axes of
x.
|
https://github.com/thu-ml/zhusuan/blob/4386b2a12ae4f4ed8e694e504e51d7dcdfd6f22a/zhusuan/utils.py#L153-L174
|
from __future__ import absolute_import
from __future__ import division
from functools import wraps
import tensorflow as tf
__all__ = [
'TensorArithmeticMixin',
'log_mean_exp',
'merge_dicts',
]
class TensorArithmeticMixin(object):
def __abs__(self):
return tf.abs(self)
def __neg__(self):
return tf.negative(self)
def __add__(self, other):
return tf.add(self, other)
def __radd__(self, other):
return tf.add(other, self)
def __sub__(self, other):
return tf.subtract(self, other)
def __rsub__(self, other):
return tf.subtract(other, self)
def __mul__(self, other):
return tf.multiply(self, other)
def __rmul__(self, other):
return tf.multiply(other, self)
def __div__(self, other):
return tf.divide(self, other)
def __rdiv__(self, other):
return tf.divide(other, self)
def __truediv__(self, other):
return tf.truediv(self, other)
def __rtruediv__(self, other):
return tf.truediv(other, self)
def __floordiv__(self, other):
return tf.floordiv(self, other)
def __rfloordiv__(self, other):
return tf.floordiv(other, self)
def __mod__(self, other):
return tf.mod(self, other)
def __rmod__(self, other):
return tf.mod(other, self)
def __pow__(self, other):
return tf.pow(self, other)
def __rpow__(self, other):
return tf.pow(other, self)
def __invert__(self):
return tf.logical_not(self)
def __and__(self, other):
return tf.logical_and(self, other)
def __rand__(self, other):
return tf.logical_and(other, self)
def __or__(self, other):
return tf.logical_or(self, other)
def __ror__(self, other):
return tf.logical_or(other, self)
def __xor__(self, other):
return tf.logical_xor(self, other)
def __rxor__(self, other):
return tf.logical_xor(other, self)
def __lt__(self, other):
return tf.less(self, other)
def __le__(self, other):
return tf.less_equal(self, other)
def __gt__(self, other):
return tf.greater(self, other)
def __ge__(self, other):
return tf.greater_equal(self, other)
def __getitem__(self, item):
return (tf.convert_to_tensor(self))[item]
def __hash__(self):
return id(self)
def __eq__(self, other):
return id(self) == id(other)
def __iter__(self):
raise TypeError(
"{} object is not iterable.".format(self.__class__.__name__))
def __bool__(self):
raise TypeError(
"Using a `{}` object as a Python `bool` is not allowed. "
"Use `if t is not None:` instead of `if t:` to test if a "
"tensor is defined, and use TensorFlow ops such as "
"tf.cond to execute subgraphs conditioned on the value of "
"a tensor.".format(self.__class__.__name__)
)
def __nonzero__(self):
raise TypeError(
"Using a `{}` object as a Python `bool` is not allowed. "
"Use `if t is not None:` instead of `if t:` to test if a "
"tensor is defined, and use TensorFlow ops such as "
"tf.cond to execute subgraphs conditioned on the value of "
"a tensor.".format(self.__class__.__name__)
)
|
MIT License
|
spcl/dace
|
dace/symbolic.py
|
pystr_to_symbolic
|
python
|
def pystr_to_symbolic(expr, symbol_map=None, simplify=None):
from dace.frontend.python.astutils import unparse
if isinstance(expr, (SymExpr, sympy.Basic)):
return expr
if isinstance(expr, str) and dtypes.validate_name(expr):
return symbol(expr)
symbol_map = symbol_map or {}
locals = {
'min': sympy.Min,
'max': sympy.Max,
'True': sympy.true,
'False': sympy.false,
'GtE': sympy.Ge,
'LtE': sympy.Le,
'NotEq': sympy.Ne,
'And': sympy.Function('AND'),
'Or': sympy.Function('OR'),
'var': sympy.Symbol('var'),
'root': sympy.Symbol('root'),
}
locals.update(_sympy_clash)
if isinstance(expr, str) and re.search(
r'\bnot\b|\band\b|\bor\b|\bNone\b|==|!=', expr):
expr = unparse(SympyBooleanConverter().visit(ast.parse(expr).body[0]))
try:
return sympy_to_dace(sympy.sympify(expr, locals, evaluate=simplify),
symbol_map)
except TypeError:
expr = expr.replace('[', '(')
expr = expr.replace(']', ')')
return sympy_to_dace(sympy.sympify(expr, locals, evaluate=simplify),
symbol_map)
|
Takes a Python string and converts it into a symbolic expression.
|
https://github.com/spcl/dace/blob/4c6695daaa43df22548b987024d1b681e92c7983/dace/symbolic.py#L779-L822
|
import ast
from functools import lru_cache
import sympy
import pickle
import re
from typing import Any, Callable, Dict, Optional, Set, Tuple, Union
import warnings
import numpy
import sympy.abc
import sympy.printing.str
from dace import dtypes
DEFAULT_SYMBOL_TYPE = dtypes.int32
_sympy_clash = {k: v if v else getattr(sympy.abc, k)
for k, v in sympy.abc._clash.items()}
class symbol(sympy.Symbol):
s_currentsymbol = 0
def __new__(cls, name=None, dtype=DEFAULT_SYMBOL_TYPE, **assumptions):
if name is None:
name = "sym_" + str(symbol.s_currentsymbol)
symbol.s_currentsymbol += 1
elif name.startswith('__DACE'):
raise NameError('Symbols cannot start with __DACE')
elif not dtypes.validate_name(name):
raise NameError('Invalid symbol name "%s"' % name)
if not isinstance(dtype, dtypes.typeclass):
raise TypeError('dtype must be a DaCe type, got %s' % str(dtype))
dkeys = [k for k, v in dtypes.DTYPE_TO_TYPECLASS.items() if v == dtype]
is_integer = [
issubclass(k, int) or issubclass(k, numpy.integer) for k in dkeys
]
if 'integer' in assumptions or not numpy.any(is_integer):
self = sympy.Symbol.__xnew__(cls, name, **assumptions)
else:
self = sympy.Symbol.__xnew__(cls, name, integer=True, **assumptions)
self.dtype = dtype
self._constraints = []
self.value = None
return self
def set(self, value):
warnings.warn('symbol.set is deprecated, use keyword arguments',
DeprecationWarning)
if value is not None:
self.check_constraints(value)
self.value = self.dtype(value)
def __getstate__(self):
return dict(
self.assumptions0, **{
'value': self.value,
'dtype': self.dtype,
'_constraints': self._constraints
})
def is_initialized(self):
return self.value is not None
def get(self):
warnings.warn('symbol.get is deprecated, use keyword arguments',
DeprecationWarning)
if self.value is None:
raise UnboundLocalError('Uninitialized symbol value for \'' +
self.name + '\'')
return self.value
def set_constraints(self, constraint_list):
try:
iter(constraint_list)
self._constraints = constraint_list
except TypeError:
self._constraints = [constraint_list]
if symbol.s_values[self.name] is not None:
try:
self.check_constraints(symbol.s_values[self.name])
except RuntimeError:
self.reset()
raise
def add_constraints(self, constraint_list):
try:
iter(constraint_list)
symbol.s_constraints[self.name].extend(constraint_list)
except TypeError:
symbol.s_constraints[self.name].append(constraint_list)
if symbol.s_values[self.name] is not None:
try:
self.check_constraints(symbol.s_values[self.name])
except RuntimeError:
self.reset()
raise
@property
def constraints(self):
return self._constraints
def check_constraints(self, value):
fail = None
for constraint in self.constraints:
try:
eval_cons = constraint.subs({self: value})
if not eval_cons:
fail = constraint
break
except (AttributeError, TypeError, ValueError):
raise RuntimeError(
'Cannot validate constraint %s for symbol %s' %
(str(constraint), self.name))
if fail is not None:
raise RuntimeError(
'Value %s invalidates constraint %s for symbol %s' %
(str(value), str(fail), self.name))
def get_or_return(self, uninitialized_ret):
return self.value or uninitialized_ret
class SymExpr(object):
def __init__(self,
main_expr: Union[str, 'SymExpr'],
approx_expr: Optional[Union[str, 'SymExpr']] = None):
self._main_expr = pystr_to_symbolic(main_expr)
if approx_expr is None:
self._approx_expr = self._main_expr
else:
self._approx_expr = pystr_to_symbolic(approx_expr)
def __new__(cls, *args, **kwargs):
main_expr, approx_expr = None, None
if len(args) == 0:
if 'main_expr' in kwargs:
main_expr = kwargs['main_expr']
if 'approx_expr' in kwargs:
approx_expr = kwargs['approx_expr']
if len(args) == 1:
main_expr = args[0]
if 'approx_expr' in kwargs:
approx_expr = kwargs['approx_expr']
if len(args) == 2:
main_expr, approx_expr = args
if main_expr and (approx_expr is None or main_expr == approx_expr):
if isinstance(main_expr, str):
return pystr_to_symbolic(main_expr)
return main_expr
return super(SymExpr, cls).__new__(cls)
@property
def expr(self):
return self._main_expr
@property
def approx(self):
return self._approx_expr
def subs(self, repldict):
return SymExpr(self._main_expr.subs(repldict),
self._approx_expr.subs(repldict))
def match(self, *args, **kwargs):
return self._main_expr.match(*args, **kwargs)
def __hash__(self):
return hash((self.expr, self.approx))
def __str__(self):
if self.expr != self.approx:
return str(self.expr) + " (~" + str(self.approx) + ")"
else:
return str(self.expr)
def __add__(self, other):
if isinstance(other, SymExpr):
return SymExpr(self.expr + other.expr, self.approx + other.approx)
if isinstance(other, sympy.Expr):
return SymExpr(self.expr + other, self.approx + other)
return self + pystr_to_symbolic(other)
__radd__ = __add__
def __sub__(self, other):
if isinstance(other, SymExpr):
return SymExpr(self.expr - other.expr, self.approx - other.approx)
if isinstance(other, sympy.Expr):
return SymExpr(self.expr - other, self.approx - other)
return self - pystr_to_symbolic(other)
def __rsub__(self, other):
if isinstance(other, SymExpr):
return SymExpr(other.expr - self.expr, other.approx - self.approx)
if isinstance(other, sympy.Expr):
return SymExpr(other - self.expr, other - self.approx)
return pystr_to_symbolic(other) - self
def __mul__(self, other):
if isinstance(other, SymExpr):
return SymExpr(self.expr * other.expr, self.approx * other.approx)
if isinstance(other, sympy.Expr):
return SymExpr(self.expr * other, self.approx * other)
return self * pystr_to_symbolic(other)
__rmul__ = __mul__
def __div__(self, other):
if isinstance(other, SymExpr):
return SymExpr(self.expr / other.expr, self.approx / other.approx)
if isinstance(other, sympy.Expr):
return SymExpr(self.expr / other, self.approx / other)
return self / pystr_to_symbolic(other)
__truediv__ = __div__
def __floordiv__(self, other):
if isinstance(other, SymExpr):
return SymExpr(self.expr // other.expr, self.approx // other.approx)
if isinstance(other, sympy.Expr):
return SymExpr(self.expr // other, self.approx // other)
return self // pystr_to_symbolic(other)
def __mod__(self, other):
if isinstance(other, SymExpr):
return SymExpr(self.expr % other.expr, self.approx % other.approx)
if isinstance(other, sympy.Expr):
return SymExpr(self.expr % other, self.approx % other)
return self % pystr_to_symbolic(other)
def __pow__(self, other):
if isinstance(other, SymExpr):
return SymExpr(self.expr**other.expr, self.approx**other.approx)
if isinstance(other, sympy.Expr):
return SymExpr(self.expr**other, self.approx**other)
return self**pystr_to_symbolic(other)
def __eq__(self, other):
if isinstance(other, sympy.Expr):
return self.expr == other
if isinstance(other, SymExpr):
return self.expr == other.expr and self.approx == other.approx
return self == pystr_to_symbolic(other)
def __lt__(self, other):
if isinstance(other, sympy.Expr):
return self.expr < other
if isinstance(other, SymExpr):
return self.expr < other.expr
return self < pystr_to_symbolic(other)
def __gt__(self, other):
if isinstance(other, sympy.Expr):
return self.expr > other
if isinstance(other, SymExpr):
return self.expr > other.expr
return self > pystr_to_symbolic(other)
SymbolicType = Union[sympy.Basic, SymExpr]
def symvalue(val):
if isinstance(val, symbol):
return val.get()
return val
def _checkEqualIvo(lst):
return not lst or lst.count(lst[0]) == len(lst)
def symtype(expr):
stypes = [s.dtype for s in symlist(expr).values()]
if len(stypes) == 0:
return DEFAULT_SYMBOL_TYPE
elif _checkEqualIvo(stypes):
return stypes[0]
else:
raise TypeError(
'Cannot infer symbolic type from expression "%s"'
' with symbols [%s]' % (str(expr), ', '.join(
[str(s) + ": " + str(s.dtype) for s in symlist(expr)])))
def symlist(values):
result = {}
try:
values = iter(values)
except TypeError:
values = [values]
for expr in values:
if isinstance(expr, SymExpr):
true_expr = expr.expr
elif isinstance(expr, sympy.Basic):
true_expr = expr
else:
continue
for atom in true_expr.atoms():
if isinstance(atom, symbol):
result[atom.name] = atom
return result
def evaluate(expr: Union[sympy.Basic, int, float],
symbols: Dict[Union[symbol, str], Union[int, float]]) -> Union[int, float, numpy.number]:
if isinstance(expr, SymExpr):
return evaluate(expr.expr, symbols)
if issymbolic(expr, set(map(str, symbols.keys()))):
raise TypeError('Expression cannot be evaluated to a constant')
if isinstance(expr, (int, float, numpy.number)):
return expr
syms = {(sname if isinstance(sname, sympy.Symbol) else symbol(sname)):
sval.get() if isinstance(sval, symbol) else sval
for sname, sval in symbols.items()}
return expr.subs(syms)
def issymbolic(value, constants=None):
constants = constants or {}
if isinstance(value, SymExpr):
return issymbolic(value.expr)
if isinstance(value, symbol) and value.name not in constants:
return True
if isinstance(value, sympy.Basic):
for atom in value.atoms():
if isinstance(atom, symbol) and atom.name not in constants:
return True
return False
def overapproximate(expr):
if isinstance(expr, SymExpr):
if expr.expr != expr.approx:
return expr.approx
else:
return overapproximate(expr.expr)
if not isinstance(expr, sympy.Basic):
return expr
a = sympy.Wild('a')
b = sympy.Wild('b')
c = sympy.Wild('c')
match = expr.match(sympy.Min(a, b) + c)
if match is not None and len(match) == 3:
newexpr = sympy.Min(match[a] + match[c], match[b] + match[c])
match = newexpr.match(sympy.Min(a, b))
if match is not None and len(match) == 2:
if issymbolic(match[a]) and not issymbolic(match[b]):
return match[b]
if issymbolic(match[b]) and not issymbolic(match[a]):
return match[a]
a = sympy.Wild('a', properties=[lambda k: k.is_Symbol or k.is_Integer])
b = sympy.Wild('b', properties=[lambda k: k.is_Symbol or k.is_Integer])
int_floor = sympy.Function('int_floor')
match = expr.match(sympy.ceiling(b * int_floor(a - 1, b)) + b)
if match is not None and len(match) == 2:
return match[a]
return expr
def resolve_symbol_to_constant(symb, start_sdfg):
if not issymbolic(symb):
return symb
else:
sdfg = start_sdfg
while sdfg is not None:
if not issymbolic(symb, sdfg.constants):
return evaluate(symb, sdfg.constants)
else:
sdfg = sdfg.parent_sdfg
return None
def symbols_in_ast(tree):
to_visit = list(tree.__dict__.items())
symbols = []
while len(to_visit) > 0:
(key, val) = to_visit.pop()
if key == "func":
continue
if isinstance(val, ast.Name):
symbols.append(val.id)
continue
if isinstance(val, ast.expr):
to_visit += list(val.__dict__.items())
if isinstance(val, list):
to_visit += [(key, v) for v in val]
return dtypes.deduplicate(symbols)
def symbol_name_or_value(val):
if isinstance(val, symbol):
return val.name
return str(val)
def sympy_to_dace(exprs, symbol_map=None):
repl = {}
symbol_map = symbol_map or {}
oneelem = False
try:
iter(exprs)
except TypeError:
oneelem = True
exprs = [exprs]
exprs = list(exprs)
for i, expr in enumerate(exprs):
if isinstance(expr, sympy.Basic):
for atom in expr.atoms():
if isinstance(atom, sympy.Symbol):
try:
repl[atom] = symbol_map[atom.name]
except KeyError:
repl[atom] = symbol(atom.name, **atom.assumptions0)
exprs[i] = expr.subs(repl)
if oneelem:
return exprs[0]
return exprs
def is_sympy_userfunction(expr):
try:
return issubclass(type(type(expr)),
sympy.core.function.UndefinedFunction)
except AttributeError:
return issubclass(type(type(expr)), sympy.function.UndefinedFunction)
def swalk(expr, enter_functions=False):
yield expr
for arg in expr.args:
if not enter_functions and is_sympy_userfunction(arg):
yield arg
continue
yield from swalk(arg)
_builtin_userfunctions = {
'int_floor', 'int_ceil', 'min', 'Min', 'max', 'Max', 'not', 'Not', 'Eq',
'NotEq', 'Ne', 'AND', 'OR'
}
def contains_sympy_functions(expr):
if is_sympy_userfunction(expr):
if str(expr.func) in _builtin_userfunctions:
return False
return True
if not isinstance(expr, sympy.Basic):
return False
for arg in expr.args:
if contains_sympy_functions(arg):
return True
return False
def free_symbols_and_functions(expr: Union[SymbolicType, str]) -> Set[str]:
if isinstance(expr, str):
if dtypes.validate_name(expr):
return {expr}
expr = pystr_to_symbolic(expr)
if not isinstance(expr, sympy.Basic):
return set()
result = {str(k) for k in expr.free_symbols}
for atom in swalk(expr):
if (is_sympy_userfunction(atom)
and str(atom.func) not in _builtin_userfunctions):
result.add(str(atom.func))
return result
def sympy_numeric_fix(expr):
if not isinstance(expr, sympy.Basic) or isinstance(expr, sympy.Number):
try:
if numpy.int64(expr) == expr:
return int(expr)
except OverflowError:
try:
if numpy.float64(expr) == expr:
return expr
except OverflowError:
if expr > 0:
return sympy.oo
else:
return -sympy.oo
return expr
def sympy_intdiv_fix(expr):
nexpr = expr
if not isinstance(expr, sympy.Basic):
return expr
a = sympy.Wild('a', properties=[lambda k: k.is_Symbol or k.is_Integer])
b = sympy.Wild('b', properties=[lambda k: k.is_Symbol or k.is_Integer])
c = sympy.Wild('c')
d = sympy.Wild('d')
e = sympy.Wild('e',
properties=[
lambda k: isinstance(k, sympy.Basic) and not isinstance(
k, sympy.Atom)
])
int_ceil = sympy.Function('int_ceil')
int_floor = sympy.Function('int_floor')
processed = 1
while processed > 0:
processed = 0
for ceil in nexpr.find(sympy.ceiling):
m = ceil.match(sympy.ceiling(a / b))
if m is not None:
nexpr = nexpr.subs(ceil, int_ceil(m[a], m[b]))
processed += 1
continue
m = ceil.match(sympy.ceiling(int_ceil(c, d) / b))
if m is not None:
nexpr = nexpr.subs(ceil, int_ceil(int_ceil(m[c], m[d]), m[b]))
processed += 1
continue
m = ceil.match(sympy.ceiling(a / int_ceil(c, d)))
if m is not None:
nexpr = nexpr.subs(ceil, int_ceil(m[a], int_ceil(m[c], m[d])))
processed += 1
continue
m = ceil.match(sympy.ceiling(a * int_floor(c, d)))
if m is not None:
nexpr = nexpr.subs(ceil, m[a] * int_floor(m[c], m[d]))
processed += 1
continue
m = ceil.match(sympy.ceiling(a * int_ceil(c, d)))
if m is not None:
nexpr = nexpr.subs(ceil, m[a] * int_ceil(m[c], m[d]))
processed += 1
continue
m = ceil.match(sympy.ceiling(e / b))
if m is not None:
nexpr = nexpr.subs(ceil, int_ceil(m[e], m[b]))
processed += 1
continue
for floor in nexpr.find(sympy.floor):
m = floor.match(sympy.floor(a / b))
if m is not None:
nexpr = nexpr.subs(floor, int_floor(m[a], m[b]))
processed += 1
continue
m = floor.match(sympy.floor(int_floor(c, d) / b))
if m is not None:
nexpr = nexpr.subs(floor, int_floor(int_floor(m[c], m[d]),
m[b]))
processed += 1
continue
m = floor.match(sympy.floor(a / int_floor(c, d)))
if m is not None:
nexpr = nexpr.subs(floor, int_floor(m[a], int_floor(m[c],
m[d])))
processed += 1
continue
m = floor.match(sympy.floor(e / b))
if m is not None:
nexpr = nexpr.subs(floor, int_floor(m[e], m[b]))
processed += 1
continue
return nexpr
def sympy_divide_fix(expr):
nexpr = expr
if not isinstance(expr, sympy.Basic):
return expr
int_floor = sympy.Function('int_floor')
processed = 1
while processed > 0:
processed = 0
for candidate in nexpr.find(sympy.Mul):
for i, arg in enumerate(candidate.args):
if isinstance(arg, sympy.Number) and abs(arg) >= 1:
continue
if isinstance(arg, sympy.Number) and (1 / arg) == int(1 / arg):
ri = i
break
else:
continue
nexpr = nexpr.subs(
candidate,
int_floor(
sympy.Mul(*(candidate.args[:ri] + candidate.args[ri + 1:])),
int(1 / candidate.args[ri])))
processed += 1
return nexpr
def simplify_ext(expr):
if not isinstance(expr, sympy.Basic):
return expr
a = sympy.Wild('a')
b = sympy.Wild('b')
c = sympy.Wild('c')
dic = expr.match(sympy.Min(a, b) + c)
if dic:
return sympy.Min(dic[a] + dic[c], dic[b] + dic[c])
dic = expr.match(sympy.Max(a, b) + c)
if dic:
return sympy.Max(dic[a] + dic[c], dic[b] + dic[c])
return expr
class SympyBooleanConverter(ast.NodeTransformer):
_ast_to_sympy_comparators = {
ast.Eq: 'Eq',
ast.Gt: 'Gt',
ast.GtE: 'Ge',
ast.Lt: 'Lt',
ast.LtE: 'Le',
ast.NotEq: 'Ne',
ast.In: 'In',
ast.Is: 'Is',
ast.IsNot: 'IsNot',
ast.NotIn: 'NotIn',
}
def visit_UnaryOp(self, node):
if isinstance(node.op, ast.Not):
func_node = ast.copy_location(
ast.Name(id=type(node.op).__name__, ctx=ast.Load()), node)
new_node = ast.Call(func=func_node,
args=[self.visit(node.operand)],
keywords=[])
return ast.copy_location(new_node, node)
return node
def visit_BoolOp(self, node):
func_node = ast.copy_location(
ast.Name(id=type(node.op).__name__, ctx=ast.Load()), node)
new_node = ast.Call(func=func_node,
args=[self.visit(value) for value in node.values],
keywords=[])
return ast.copy_location(new_node, node)
def visit_Compare(self, node: ast.Compare):
if len(node.ops) > 1 or len(node.comparators) > 1:
raise NotImplementedError
op = node.ops[0]
arguments = [node.left, node.comparators[0]]
func_node = ast.copy_location(
ast.Name(
id=SympyBooleanConverter._ast_to_sympy_comparators[type(op)],
ctx=ast.Load()), node)
new_node = ast.Call(func=func_node,
args=[self.visit(arg) for arg in arguments],
keywords=[])
return ast.copy_location(new_node, node)
def visit_Constant(self, node):
if node.value is None:
return ast.copy_location(ast.Name(id='NoneSymbol', ctx=ast.Load()),
node)
return self.generic_visit(node)
def visit_NameConstant(self, node):
return self.visit_Constant(node)
@lru_cache(2048)
|
BSD 3-Clause New or Revised License
|
purestorage-openconnect/py-pure-client
|
pypureclient/flasharray/FA_2_10/api/ports_api.py
|
PortsApi.api210_ports_get_with_http_info
|
python
|
def api210_ports_get_with_http_info(
self,
authorization=None,
x_request_id=None,
filter=None,
limit=None,
names=None,
offset=None,
sort=None,
total_item_count=None,
async_req=False,
_return_http_data_only=False,
_preload_content=True,
_request_timeout=None,
):
if names is not None:
if not isinstance(names, list):
names = [names]
if sort is not None:
if not isinstance(sort, list):
sort = [sort]
params = {k: v for k, v in six.iteritems(locals()) if v is not None}
if params.get('filter'):
params['filter'] = str(params['filter'])
if params.get('sort'):
params['sort'] = [str(_x) for _x in params['sort']]
if 'limit' in params and params['limit'] < 1:
raise ValueError("Invalid value for parameter `limit` when calling `api210_ports_get`, must be a value greater than or equal to `1`")
if 'offset' in params and params['offset'] < 0:
raise ValueError("Invalid value for parameter `offset` when calling `api210_ports_get`, must be a value greater than or equal to `0`")
collection_formats = {}
path_params = {}
query_params = []
if 'filter' in params:
query_params.append(('filter', params['filter']))
if 'limit' in params:
query_params.append(('limit', params['limit']))
if 'names' in params:
query_params.append(('names', params['names']))
collection_formats['names'] = 'csv'
if 'offset' in params:
query_params.append(('offset', params['offset']))
if 'sort' in params:
query_params.append(('sort', params['sort']))
collection_formats['sort'] = 'csv'
if 'total_item_count' in params:
query_params.append(('total_item_count', params['total_item_count']))
header_params = {}
if 'authorization' in params:
header_params['Authorization'] = params['authorization']
if 'x_request_id' in params:
header_params['X-Request-ID'] = params['x_request_id']
form_params = []
local_var_files = {}
body_params = None
header_params['Accept'] = self.api_client.select_header_accept(
['application/json'])
header_params['Content-Type'] = self.api_client.select_header_content_type(
['application/json'])
auth_settings = []
return self.api_client.call_api(
'/api/2.10/ports', 'GET',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='PortGetResponse',
auth_settings=auth_settings,
async_req=async_req,
_return_http_data_only=_return_http_data_only,
_preload_content=_preload_content,
_request_timeout=_request_timeout,
collection_formats=collection_formats,
)
|
List ports
Displays host name, iSCSI Qualified Names (IQNs), NVMe Qualified Names (NQNs), IPv4 address of the portal, Fibre Channel World Wide Names (WWNs), and failover ports, including those that were discovered by Purity//FA and those that have been manually assigned by system administrators.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.api210_ports_get_with_http_info(async_req=True)
>>> result = thread.get()
:param str authorization: Access token (in JWT format) required to use any API endpoint (except `/oauth2`, `/login`, and `/logout`)
:param str x_request_id: Supplied by client during request or generated by server.
:param str filter: Narrows down the results to only the response objects that satisfy the filter criteria.
:param int limit: Limits the size of the response to the specified number of objects on each page. To return the total number of resources, set `limit=0`. The total number of resources is returned as a `total_item_count` value. If the page size requested is larger than the system maximum limit, the server returns the maximum limit, disregarding the requested page size.
:param list[str] names: Performs the operation on the unique name specified. Enter multiple names in comma-separated format. For example, `name01,name02`.
:param int offset: The starting position based on the results of the query in relation to the full set of response objects returned.
:param list[str] sort: Returns the response objects in the order specified. Set `sort` to the name in the response by which to sort. Sorting can be performed on any of the names in the response, and the objects can be sorted in ascending or descending order. By default, the response objects are sorted in ascending order. To sort in descending order, append the minus sign (`-`) to the name. A single request can be sorted on multiple objects. For example, you can sort all volumes from largest to smallest volume size, and then sort volumes of the same size in ascending order by volume name. To sort on multiple names, list the names as comma-separated values.
:param bool total_item_count: If set to `true`, the `total_item_count` matching the specified query parameters is calculated and returned in the response. If set to `false`, the `total_item_count` is `null` in the response. This may speed up queries where the `total_item_count` is large. If not specified, defaults to `false`.
:param bool async_req: Request runs in separate thread and method returns multiprocessing.pool.ApplyResult.
:param bool _return_http_data_only: Returns only data field.
:param bool _preload_content: Response is converted into objects.
:param int _request_timeout: Total request timeout in seconds.
It can also be a tuple of (connection time, read time) timeouts.
:return: PortGetResponse
If the method is called asynchronously,
returns the request thread.
|
https://github.com/purestorage-openconnect/py-pure-client/blob/2d9fdef0b73321cea9613e7d1eb881b42845099b/pypureclient/flasharray/FA_2_10/api/ports_api.py#L29-L143
|
from __future__ import absolute_import
import re
import six
from typing import List, Optional
from .. import models
class PortsApi(object):
def __init__(self, api_client):
self.api_client = api_client
|
BSD 2-Clause Simplified License
|
googlecloudplatform/perfkitbenchmarker
|
perfkitbenchmarker/providers/azure/azure_virtual_machine.py
|
AzureVirtualMachine._Suspend
|
python
|
def _Suspend(self):
raise NotImplementedError()
|
Suspends the VM.
|
https://github.com/googlecloudplatform/perfkitbenchmarker/blob/c14a122016d414351d41167029c79c9a19709384/perfkitbenchmarker/providers/azure/azure_virtual_machine.py#L671-L673
|
import abc
import collections
import itertools
import json
import logging
import posixpath
import re
import threading
from absl import flags
from perfkitbenchmarker import custom_virtual_machine_spec
from perfkitbenchmarker import disk
from perfkitbenchmarker import errors
from perfkitbenchmarker import linux_virtual_machine
from perfkitbenchmarker import placement_group
from perfkitbenchmarker import resource
from perfkitbenchmarker import virtual_machine
from perfkitbenchmarker import vm_util
from perfkitbenchmarker import windows_virtual_machine
from perfkitbenchmarker.configs import option_decoders
from perfkitbenchmarker.providers import azure
from perfkitbenchmarker.providers.azure import azure_disk
from perfkitbenchmarker.providers.azure import azure_network
from perfkitbenchmarker.providers.azure import util
from six.moves import range
import yaml
FLAGS = flags.FLAGS
NUM_LOCAL_VOLUMES = {
'Standard_L8s_v2': 1,
'Standard_L16s_v2': 2,
'Standard_L32s_v2': 4,
'Standard_L64s_v2': 8,
'Standard_L80s_v2': 10
}
_SCHEDULED_EVENTS_CMD = ('curl -H Metadata:true http://169.254.169.254/metadata'
'/scheduledevents?api-version=2019-01-01')
_SCHEDULED_EVENTS_CMD_WIN = ('Invoke-RestMethod -Headers @{"Metadata"="true"} '
'-Uri http://169.254.169.254/metadata/'
'scheduledevents?api-version=2019-01-01 | '
'ConvertTo-Json')
class AzureVmSpec(virtual_machine.BaseVmSpec):
CLOUD = azure.CLOUD
def __init__(self, *args, **kwargs):
super(AzureVmSpec, self).__init__(*args, **kwargs)
if isinstance(self.machine_type,
custom_virtual_machine_spec.AzurePerformanceTierDecoder):
self.tier = self.machine_type.tier
self.compute_units = self.machine_type.compute_units
self.machine_type = None
else:
self.tier = None
self.compute_units = None
@classmethod
def _ApplyFlags(cls, config_values, flag_values):
super(AzureVmSpec, cls)._ApplyFlags(config_values, flag_values)
if flag_values['machine_type'].present:
config_values['machine_type'] = yaml.safe_load(flag_values.machine_type)
if flag_values['azure_accelerated_networking'].present:
config_values['accelerated_networking'] = (
flag_values.azure_accelerated_networking)
if flag_values['azure_low_priority_vms'].present:
config_values['low_priority'] = flag_values.azure_low_priority_vms
@classmethod
def _GetOptionDecoderConstructions(cls):
result = super(AzureVmSpec, cls)._GetOptionDecoderConstructions()
result.update({
'machine_type':
(custom_virtual_machine_spec.AzureMachineTypeDecoder, {}),
'accelerated_networking': (option_decoders.BooleanDecoder, {
'default': False
}),
'boot_disk_size': (option_decoders.IntDecoder, {
'default': None
}),
'boot_disk_type': (option_decoders.StringDecoder, {
'default': None
}),
'low_priority': (option_decoders.BooleanDecoder, {
'default': False
}),
})
return result
class AzurePublicIPAddress(resource.BaseResource):
def __init__(self, region, availability_zone, name, dns_name=None):
super(AzurePublicIPAddress, self).__init__()
self.region = region
self.availability_zone = availability_zone
self.name = name
self._deleted = False
self.resource_group = azure_network.GetResourceGroup()
self.dns_name = dns_name
def _Create(self):
cmd = [
azure.AZURE_PATH, 'network', 'public-ip', 'create', '--location',
self.region, '--name', self.name
] + self.resource_group.args
if self.availability_zone:
cmd += ['--zone', self.availability_zone, '--sku', 'Standard']
if self.dns_name:
cmd += ['--dns-name', self.dns_name]
_, stderr, retcode = vm_util.IssueCommand(cmd, raise_on_failure=False)
if retcode and re.search(r'Cannot create more than \d+ public IP addresses',
stderr):
raise errors.Benchmarks.QuotaFailure(
virtual_machine.QUOTA_EXCEEDED_MESSAGE + stderr)
def _Exists(self):
if self._deleted:
return False
stdout, _, _ = vm_util.IssueCommand(
[
azure.AZURE_PATH, 'network', 'public-ip', 'show', '--output',
'json', '--name', self.name
] + self.resource_group.args,
raise_on_failure=False)
try:
json.loads(stdout)
return True
except ValueError:
return False
def GetIPAddress(self):
stdout, _ = vm_util.IssueRetryableCommand([
azure.AZURE_PATH, 'network', 'public-ip', 'show', '--output', 'json',
'--name', self.name
] + self.resource_group.args)
response = json.loads(stdout)
return response['ipAddress']
def _Delete(self):
self._deleted = True
class AzureNIC(resource.BaseResource):
def __init__(self,
subnet,
name,
public_ip,
accelerated_networking,
network_security_group=None,
private_ip=None):
super(AzureNIC, self).__init__()
self.subnet = subnet
self.name = name
self.public_ip = public_ip
self.private_ip = private_ip
self._deleted = False
self.resource_group = azure_network.GetResourceGroup()
self.region = self.subnet.vnet.region
self.args = ['--nics', self.name]
self.accelerated_networking = accelerated_networking
self.network_security_group = network_security_group
def _Create(self):
cmd = [
azure.AZURE_PATH, 'network', 'nic', 'create', '--location',
self.region, '--vnet-name', self.subnet.vnet.name, '--subnet',
self.subnet.name, '--public-ip-address', self.public_ip, '--name',
self.name
] + self.resource_group.args
if self.private_ip:
cmd += ['--private-ip-address', self.private_ip]
if self.accelerated_networking:
cmd += ['--accelerated-networking', 'true']
if self.network_security_group:
cmd += ['--network-security-group', self.network_security_group.name]
vm_util.IssueCommand(cmd)
def _Exists(self):
if self._deleted:
return False
stdout, _, _ = vm_util.IssueCommand(
[
azure.AZURE_PATH, 'network', 'nic', 'show', '--output', 'json',
'--name', self.name
] + self.resource_group.args,
raise_on_failure=False)
try:
json.loads(stdout)
return True
except ValueError:
return False
def GetInternalIP(self):
stdout, _ = vm_util.IssueRetryableCommand([
azure.AZURE_PATH, 'network', 'nic', 'show', '--output', 'json',
'--name', self.name
] + self.resource_group.args)
response = json.loads(stdout)
return response['ipConfigurations'][0]['privateIpAddress']
def _Delete(self):
self._deleted = True
class AzureDedicatedHostGroup(resource.BaseResource):
def __init__(self, name, region, resource_group, availability_zone):
super(AzureDedicatedHostGroup, self).__init__()
self.name = name + 'Group'
self.region = region
self.resource_group = resource_group
self.availability_zone = availability_zone
def _Create(self):
create_cmd = ([
azure.AZURE_PATH,
'vm',
'host',
'group',
'create',
'--name',
self.name,
'--location',
self.region,
'--platform-fault-domain-count',
'1',
] + self.resource_group.args)
if self.availability_zone:
create_cmd.extend(['--zone', self.availability_zone])
vm_util.IssueCommand(create_cmd)
def _Delete(self):
delete_cmd = ([
azure.AZURE_PATH,
'vm',
'host',
'group',
'delete',
'--host-group',
self.name,
] + self.resource_group.args)
vm_util.IssueCommand(delete_cmd)
def _Exists(self):
show_cmd = [
azure.AZURE_PATH, 'vm', 'host', 'group', 'show', '--output', 'json',
'--name', self.name
] + self.resource_group.args
stdout, _, _ = vm_util.IssueCommand(show_cmd, raise_on_failure=False)
try:
json.loads(stdout)
return True
except ValueError:
return False
def _GetSkuType(machine_type):
sku = ''
if re.match('Standard_D[0-9]*s_v3', machine_type):
sku = 'DSv3-Type1'
elif re.match('Standard_E[0-9]*s_v3', machine_type):
sku = 'ESv3-Type1'
else:
raise ValueError('Dedicated hosting does not support machine type %s.' %
machine_type)
return sku
class AzureDedicatedHost(resource.BaseResource):
_lock = threading.Lock()
host_group_map = {}
def __init__(self, name, region, resource_group, sku_type,
availability_zone):
super(AzureDedicatedHost, self).__init__()
self.name = name + '-Host'
self.region = region
self.resource_group = resource_group
self.sku_type = sku_type
self.availability_zone = availability_zone
self.host_group = None
self.fill_fraction = 0.0
def _CreateDependencies(self):
with self._lock:
if self.region not in self.host_group_map:
new_host_group = AzureDedicatedHostGroup(self.name, self.region,
self.resource_group,
self.availability_zone)
new_host_group.Create()
self.host_group_map[self.region] = new_host_group.name
self.host_group = self.host_group_map[self.region]
def _Create(self):
create_cmd = ([
azure.AZURE_PATH,
'vm',
'host',
'create',
'--host-group',
self.host_group,
'--name',
self.name,
'--sku',
self.sku_type,
'--location',
self.region,
'--platform-fault-domain',
'0',
] + self.resource_group.args)
vm_util.IssueCommand(create_cmd)
def _Delete(self):
delete_cmd = ([
azure.AZURE_PATH,
'vm',
'host',
'delete',
'--host-group',
self.host_group,
'--name',
self.name,
'--yes',
] + self.resource_group.args)
vm_util.IssueCommand(delete_cmd)
def _Exists(self):
show_cmd = [
azure.AZURE_PATH,
'vm',
'host',
'show',
'--output',
'json',
'--name',
self.name,
'--host-group',
self.host_group,
] + self.resource_group.args
stdout, _, _ = vm_util.IssueCommand(show_cmd, raise_on_failure=False)
try:
json.loads(stdout)
return True
except ValueError:
return False
class AzureVirtualMachine(virtual_machine.BaseVirtualMachine):
CLOUD = azure.CLOUD
_lock = threading.Lock()
host_map = collections.defaultdict(list)
def __init__(self, vm_spec):
super(AzureVirtualMachine, self).__init__(vm_spec)
self.region = util.GetRegionFromZone(self.zone)
self.availability_zone = util.GetAvailabilityZoneFromZone(self.zone)
self.use_dedicated_host = vm_spec.use_dedicated_host
self.num_vms_per_host = vm_spec.num_vms_per_host
self.network = azure_network.AzureNetwork.GetNetwork(self)
self.firewall = azure_network.AzureFirewall.GetFirewall()
self.max_local_disks = NUM_LOCAL_VOLUMES.get(self.machine_type) or 1
self._lun_counter = itertools.count()
self._deleted = False
self.resource_group = azure_network.GetResourceGroup()
self.public_ip = AzurePublicIPAddress(self.region, self.availability_zone,
self.name + '-public-ip')
self.nic = AzureNIC(self.network.subnet, self.name + '-nic',
self.public_ip.name, vm_spec.accelerated_networking,
self.network.nsg)
self.storage_account = self.network.storage_account
self.image = vm_spec.image or type(self).IMAGE_URN
self.host = None
if self.use_dedicated_host:
self.host_series_sku = _GetSkuType(self.machine_type)
self.host_list = None
self.low_priority = vm_spec.low_priority
self.low_priority_status_code = None
self.spot_early_termination = False
self.ultra_ssd_enabled = False
disk_spec = disk.BaseDiskSpec('azure_os_disk')
disk_spec.disk_type = (
vm_spec.boot_disk_type or self.storage_account.storage_type)
if vm_spec.boot_disk_size:
disk_spec.disk_size = vm_spec.boot_disk_size
self.os_disk = azure_disk.AzureDisk(
disk_spec,
self,
None,
is_image=True)
@property
@classmethod
@abc.abstractmethod
def IMAGE_URN(cls):
raise NotImplementedError()
def _CreateDependencies(self):
self.public_ip.Create()
self.nic.Create()
if self.use_dedicated_host:
with self._lock:
self.host_list = self.host_map[(self.host_series_sku, self.region)]
if (not self.host_list or (self.num_vms_per_host and
self.host_list[-1].fill_fraction +
1.0 / self.num_vms_per_host > 1.0)):
new_host = AzureDedicatedHost(self.name, self.region,
self.resource_group,
self.host_series_sku,
self.availability_zone)
self.host_list.append(new_host)
new_host.Create()
self.host = self.host_list[-1]
if self.num_vms_per_host:
self.host.fill_fraction += 1.0 / self.num_vms_per_host
def _RequiresUltraDisk(self):
return any(disk_spec.disk_type == azure_disk.ULTRA_STORAGE
for disk_spec in self.disk_specs)
def _Create(self):
if self.os_disk.disk_size:
disk_size_args = ['--os-disk-size-gb', str(self.os_disk.disk_size)]
else:
disk_size_args = []
tags = {}
tags.update(self.vm_metadata)
tags.update(util.GetResourceTags(self.resource_group.timeout_minutes))
tag_args = ['--tags'] + util.FormatTags(tags)
create_cmd = ([
azure.AZURE_PATH, 'vm', 'create', '--location', self.region,
'--image', self.image, '--size', self.machine_type, '--admin-username',
self.user_name, '--storage-sku', self.os_disk.disk_type, '--name',
self.name
] + disk_size_args + self.resource_group.args + self.nic.args + tag_args)
if self._RequiresUltraDisk():
self.ultra_ssd_enabled = True
create_cmd.extend(['--ultra-ssd-enabled'])
if self.availability_zone:
create_cmd.extend(['--zone', self.availability_zone])
if self.use_dedicated_host:
create_cmd.extend(
['--host-group', self.host.host_group, '--host', self.host.name])
num_hosts = len(self.host_list)
if self.network.placement_group:
create_cmd.extend(self.network.placement_group.AddVmArgs())
if self.low_priority:
create_cmd.extend(['--priority', 'Spot'])
if self.password:
create_cmd.extend(['--admin-password', self.password])
else:
create_cmd.extend(['--ssh-key-value', self.ssh_public_key])
azure_vm_create_timeout = 1800
_, stderr, retcode = vm_util.IssueCommand(
create_cmd, timeout=azure_vm_create_timeout, raise_on_failure=False)
if retcode:
if ('Error Code: QuotaExceeded' in stderr or
re.search(r'exceeding approved \S+ \S+ quota', stderr) or
'exceeding quota limit' in stderr):
raise errors.Benchmarks.QuotaFailure(
virtual_machine.QUOTA_EXCEEDED_MESSAGE + stderr)
elif self.low_priority and 'OverconstrainedAllocationRequest' in stderr:
raise errors.Benchmarks.InsufficientCapacityCloudFailure(stderr)
if (self.use_dedicated_host and retcode and
'AllocationFailed' in stderr):
if self.num_vms_per_host:
raise errors.Resource.CreationError(
'Failed to create host: %d vms of type %s per host exceeds '
'memory capacity limits of the host' %
(self.num_vms_per_host, self.machine_type))
else:
logging.warning(
'Creation failed due to insufficient host capacity. A new host will '
'be created and instance creation will be retried.')
with self._lock:
if num_hosts == len(self.host_list):
new_host = AzureDedicatedHost(self.name, self.region,
self.resource_group,
self.host_series_sku,
self.availability_zone)
self.host_list.append(new_host)
new_host.Create()
self.host = self.host_list[-1]
raise errors.Resource.RetryableCreationError()
if (not self.use_dedicated_host and retcode and
('AllocationFailed' in stderr or
'OverconstrainedZonalAllocationRequest' in stderr)):
raise errors.Benchmarks.InsufficientCapacityCloudFailure(stderr)
if retcode:
raise errors.Resource.CreationError(
'Failed to create VM: %s return code: %s' % (stderr, retcode))
def _Exists(self):
if self._deleted:
return False
show_cmd = [
azure.AZURE_PATH, 'vm', 'show', '--output', 'json', '--name', self.name
] + self.resource_group.args
stdout, _, _ = vm_util.IssueCommand(show_cmd, raise_on_failure=False)
try:
json.loads(stdout)
return True
except ValueError:
return False
def _Delete(self):
self._deleted = True
def _Start(self):
start_cmd = ([azure.AZURE_PATH, 'vm', 'start', '--name', self.name] +
self.resource_group.args)
vm_util.IssueCommand(start_cmd)
self.ip_address = self.public_ip.GetIPAddress()
def _Stop(self):
stop_cmd = ([azure.AZURE_PATH, 'vm', 'stop', '--name', self.name] +
self.resource_group.args)
vm_util.IssueCommand(stop_cmd)
deallocate_cmd = (
[azure.AZURE_PATH, 'vm', 'deallocate', '--name', self.name] +
self.resource_group.args)
vm_util.IssueCommand(deallocate_cmd)
|
Apache License 2.0
|
sqlfluff/sqlfluff
|
src/sqlfluff/cli/commands.py
|
get_config
|
python
|
def get_config(**kwargs) -> FluffConfig:
if "dialect" in kwargs:
try:
dialect_selector(kwargs["dialect"])
except SQLFluffUserError as err:
click.echo(
colorize(
f"Error loading dialect '{kwargs['dialect']}': {str(err)}",
color=Color.red,
)
)
sys.exit(66)
except KeyError:
click.echo(
colorize(
f"Error: Unknown dialect '{kwargs['dialect']}'", color=Color.red
)
)
sys.exit(66)
overrides = {k: kwargs[k] for k in kwargs if kwargs[k] is not None}
try:
return FluffConfig.from_root(overrides=overrides)
except SQLFluffUserError as err:
click.echo(
colorize(
f"Error loading config: {str(err)}",
color=Color.red,
)
)
sys.exit(66)
|
Get a config object from kwargs.
|
https://github.com/sqlfluff/sqlfluff/blob/ce4e5a344526f7ee61a0950adc079e4d3b5af438/src/sqlfluff/cli/commands.py#L206-L238
|
import sys
import json
import logging
import time
from typing import (
Callable,
Tuple,
NoReturn,
Optional,
List,
)
import oyaml as yaml
import click
import pstats
from io import StringIO
import colorama
from sqlfluff.cli.formatters import (
format_rules,
format_violation,
format_linting_result_header,
format_linting_stats,
colorize,
format_dialect_warning,
format_dialects,
CallbackFormatter,
)
from sqlfluff.cli.helpers import cli_table, get_package_version
from sqlfluff.core import (
Linter,
FluffConfig,
SQLLintError,
SQLTemplaterError,
SQLFluffUserError,
dialect_selector,
dialect_readout,
TimingSummary,
)
from sqlfluff.core.enums import FormatType, Color
from sqlfluff.core.linter import ParsedString
class RedWarningsFilter(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool:
if record.levelno >= logging.WARNING:
record.msg = f"{colorize(record.msg, Color.red)} "
return True
def set_logging_level(
verbosity: int, logger: Optional[logging.Logger] = None, stderr_output: bool = False
) -> None:
fluff_logger = logging.getLogger("sqlfluff")
fluff_logger.propagate = False
colorama.init()
handler = logging.StreamHandler(stream=sys.stderr if stderr_output else sys.stdout)
handler.setFormatter(logging.Formatter("\u001b[0m%(levelname)-10s %(message)s"))
handler.addFilter(RedWarningsFilter())
if logger:
focus_logger = logging.getLogger(f"sqlfluff.{logger}")
focus_logger.addHandler(handler)
else:
fluff_logger.addHandler(handler)
parser_logger = logging.getLogger("sqlfluff.parser")
if verbosity < 3:
fluff_logger.setLevel(logging.WARNING)
parser_logger.setLevel(logging.NOTSET)
elif verbosity == 3:
fluff_logger.setLevel(logging.INFO)
parser_logger.setLevel(logging.WARNING)
elif verbosity == 4:
fluff_logger.setLevel(logging.DEBUG)
parser_logger.setLevel(logging.INFO)
elif verbosity > 4:
fluff_logger.setLevel(logging.DEBUG)
parser_logger.setLevel(logging.DEBUG)
def common_options(f: Callable) -> Callable:
f = click.version_option()(f)
f = click.option(
"-v",
"--verbose",
count=True,
help=(
"Verbosity, how detailed should the output be. This is *stackable*, so `-vv`"
" is more verbose than `-v`. For the most verbose option try `-vvvv` or `-vvvvv`."
),
)(f)
f = click.option(
"-n",
"--nocolor",
is_flag=True,
help="No color - if this is set then the output will be without ANSI color codes.",
)(f)
return f
def core_options(f: Callable) -> Callable:
f = click.option(
"--dialect", default=None, help="The dialect of SQL to lint (default=ansi)"
)(f)
f = click.option(
"--templater", default=None, help="The templater to use (default=jinja)"
)(f)
f = click.option(
"--rules",
default=None,
help=(
"Narrow the search to only specific rules. For example "
"specifying `--rules L001` will only search for rule `L001` (Unnecessary "
"trailing whitespace). Multiple rules can be specified with commas e.g. "
"`--rules L001,L002` will specify only looking for violations of rule "
"`L001` and rule `L002`."
),
)(f)
f = click.option(
"--exclude-rules",
default=None,
help=(
"Exclude specific rules. For example "
"specifying `--exclude-rules L001` will remove rule `L001` (Unnecessary "
"trailing whitespace) from the set of considered rules. This could either "
"be the whitelist, or the general set if there is no specific whitelist. "
"Multiple rules can be specified with commas e.g. "
"`--exclude-rules L001,L002` will exclude violations of rule "
"`L001` and rule `L002`."
),
)(f)
f = click.option(
"--ignore",
default=None,
help=(
"Ignore particular families of errors so that they don't cause a failed "
"run. For example `--ignore parsing` would mean that any parsing errors "
"are ignored and don't influence the success or fail of a run. Multiple "
"options are possible if comma separated e.g. `--ignore parsing,templating`."
),
)(f)
f = click.option(
"--bench",
is_flag=True,
help="Set this flag to engage the benchmarking tool output.",
)(f)
f = click.option(
"--logger",
type=click.Choice(
["templater", "lexer", "parser", "linter", "rules"], case_sensitive=False
),
help="Choose to limit the logging to one of the loggers.",
)(f)
return f
|
MIT License
|
jest-community/jest-pytest
|
src/__tests__/integration/home-assistant/homeassistant/components/mailbox/demo.py
|
DemoMailbox.async_get_media
|
python
|
def async_get_media(self, msgid):
if msgid not in self._messages:
raise StreamError("Message not found")
audio_path = os.path.join(
os.path.dirname(__file__), '..', 'tts', 'demo.mp3')
with open(audio_path, 'rb') as file:
return file.read()
|
Return the media blob for the msgid.
|
https://github.com/jest-community/jest-pytest/blob/b197b0b31e3ca5c411202d97583cbd2d2b0b92e9/src/__tests__/integration/home-assistant/homeassistant/components/mailbox/demo.py#L54-L62
|
import asyncio
import logging
import os
from hashlib import sha1
import homeassistant.util.dt as dt
from homeassistant.components.mailbox import (Mailbox, CONTENT_TYPE_MPEG,
StreamError)
_LOGGER = logging.getLogger(__name__)
DOMAIN = "DemoMailbox"
@asyncio.coroutine
def async_get_handler(hass, config, discovery_info=None):
return DemoMailbox(hass, DOMAIN)
class DemoMailbox(Mailbox):
def __init__(self, hass, name):
super().__init__(hass, name)
self._messages = {}
txt = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. "
for idx in range(0, 10):
msgtime = int(dt.as_timestamp(
dt.utcnow()) - 3600 * 24 * (10 - idx))
msgtxt = "Message {}. {}".format(
idx + 1, txt * (1 + idx * (idx % 2)))
msgsha = sha1(msgtxt.encode('utf-8')).hexdigest()
msg = {"info": {"origtime": msgtime,
"callerid": "John Doe <212-555-1212>",
"duration": "10"},
"text": msgtxt,
"sha": msgsha}
self._messages[msgsha] = msg
@property
def media_type(self):
return CONTENT_TYPE_MPEG
@asyncio.coroutine
|
MIT License
|
kkevsterrr/geneva
|
evaluator.py
|
Evaluator.update_ports
|
python
|
def update_ports(self, environment):
command = ["docker", "exec", "--privileged", environment["server"]["container"].name, "netstat", "-ano"]
output = self.exec_cmd_output(command)
requested_port = self.args.get("port")
self.logger.debug("Testing if port %s is open in the docker container" % requested_port)
while (":%s" % requested_port) in output:
self.logger.warn("Port %s is in use, choosing a new port" % requested_port)
requested_port = random.randint(1000, 65000)
output = self.exec_cmd_output(command)
self.logger.debug("Using port %s" % requested_port)
self.args.update({"port": requested_port})
self.client_args.update({"port": requested_port})
self.server_args.update({"port": requested_port})
|
Checks that the chosen port is open inside the docker container - if not, it chooses a new port.
Args:
environment (dict): Dictionary describing docker environment
|
https://github.com/kkevsterrr/geneva/blob/36d3585545d4cb3450ea0b166d8d5f20a64ed8d8/evaluator.py#L324-L342
|
import argparse
import copy
import logging
import multiprocessing
import os
import random
import socket
import subprocess
import sys
import threading
import time
import re
import warnings
import requests
import urllib3
import actions.utils
import censors.censor_driver
warnings.filterwarnings(action='ignore',module='.*paramiko.*')
docker = None
BASEPATH = os.path.dirname(os.path.abspath(__file__))
PROJECT_ROOT = BASEPATH
class Evaluator():
def __init__(self, command, logger):
self.args = get_args(command)
self.test_plugin = self.args["test_type"]
assert self.test_plugin, "Cannot import an empty plugin"
self.public_ip = self.args.get("public_ip", "")
self.external_client = self.args["external_client"]
self.censor = self.args.get("censor")
if not self.external_client and not self.censor:
self.args["external_server"] = True
self.external_server = self.args["external_server"]
if not self.external_server and self.external_client:
assert self.args.get("public_ip", ""), "Cannot use an external client to this server without specifying the public IP."
self.public_ip = self.args.get("public_ip", "")
worker = actions.utils.get_worker(self.public_ip, logger)
if worker:
self.public_ip = worker["ip"]
self.args.update({'server': self.public_ip})
command += ["--server", self.public_ip]
self.run_canary_phase = True
self.client_args = copy.deepcopy(self.args)
self.server_args = copy.deepcopy(self.args)
self.client_cls = None
self.server_cls = None
self.plugin = None
self.override_evaluation = False
try:
_, plugin_cls = actions.utils.import_plugin(self.test_plugin, "plugin")
parsed_args = plugin_cls.get_args(command)
self.args.update({k:v for k,v in parsed_args.items() if v or (not v and k not in self.args)})
self.plugin = plugin_cls(self.args)
self.run_canary_phase = not self.plugin.override_evaluation
self.override_evaluation = self.plugin.override_evaluation
except ImportError:
pass
self.client_cls = collect_plugin(self.test_plugin, "client", command, self.args, self.client_args)
self.server_cls = collect_plugin(self.test_plugin, "server", command, self.args, self.server_args)
self.workers = self.args["workers"]
self.stop = False
self.skip_empty = not self.args["no_skip_empty"]
self.output_directory = self.args["output_directory"]
self.routing_ip = self.args.get("routing_ip", None)
self.runs = self.args.get("runs", 1)
self.fitness_by = self.args.get("fitness_by", "avg")
self.forwarder = {}
self.act_as_middlebox = self.args.get("act_as_middlebox")
if self.act_as_middlebox:
assert self.args.get("forward_ip")
assert self.args.get("sender_ip")
assert self.args.get("routing_ip")
self.forwarder["forward_ip"] = self.args["forward_ip"]
self.forwarder["sender_ip"] = self.args["sender_ip"]
self.forwarder["routing_ip"] = self.args["routing_ip"]
self.environments = []
if not os.path.exists(self.output_directory):
os.mkdir(self.output_directory)
self.use_docker = False
if self.args["censor"]:
import docker
self.use_docker = True
self.docker_client = docker.from_env()
self.apiclient = docker.APIClient()
self.logger = logger
def evaluate(self, ind_list):
self.assign_ids(ind_list)
if self.override_evaluation:
self.logger.debug("Beginning evaluation in plugin")
return self.plugin.evaluate(self.args, self, ind_list, self.logger)
if self.workers > 1 and self.use_docker:
split = [ind_list[i::self.workers] for i in range(0, self.workers)]
procs = []
for i in range(0, len(split)):
if not split[i]:
continue
if self.use_docker:
try:
environment = self.create_test_environment(i)
except (docker.errors.APIError, requests.exceptions.ConnectionError, urllib3.exceptions.ProtocolError):
self.logger.exception("Failed to create evaluator environment - is docker running?")
return
proc = multiprocessing.Process(target=self.worker, args=(split[i], str(i), environment))
proc.start()
procs.append(proc)
try:
for proc in procs:
proc.join()
except KeyboardInterrupt:
self.shutdown()
else:
environment = {}
if self.use_docker:
try:
environment = self.create_test_environment("main")
except (docker.errors.APIError, requests.exceptions.ConnectionError, urllib3.exceptions.ProtocolError):
self.logger.exception("Failed to create evaluator environment - is docker running?")
return
self.worker(ind_list, "main", environment)
for ind in ind_list:
self.read_fitness(ind)
self.terminate_docker()
return ind_list
def run_test(self, environment, ind):
if len(ind) == 0 and ind.environment_id != "canary" and self.skip_empty:
self.logger.info("[skipped] Fitness %d: %s" % (-1000, str(ind)))
ind.fitness = -1000
return "skipped", -1000
fitnesses = []
for run in range(0, self.runs):
self.logger.debug("Launching %s plugin (run %d) for %s" % (self.test_plugin, run + 1, str(ind)))
environment["id"] = ind.environment_id
self.client_args.update({"environment_id": ind.environment_id})
self.server_args.update({"environment_id": ind.environment_id})
if not self.args["server_side"]:
self.client_args.update({"strategy" : str(ind)})
self.server_args.update({"no_engine" : True})
else:
self.server_args.update({"strategy" : str(ind)})
self.client_args.update({"no_engine" : True})
if self.args["censor"]:
self.client_args.update({"server": environment["server"]["ip"]})
self.client_args.update({"wait_for_censor": True})
self.server_args.update({"wait_for_shutdown": True})
self.update_ports(environment)
try:
if self.plugin:
self.logger.debug("Running standalone plugin.")
self.args.update({"strategy": str(ind)})
self.plugin.start(self.args, self, environment, ind, self.logger)
self.read_fitness(ind)
else:
self.logger.debug("Launching client and server directly.")
if self.server_cls and not self.external_server and not self.act_as_middlebox:
server = self.start_server(self.server_args, environment, self.logger)
fitness = self.run_client(self.client_args, environment, self.logger)
if self.server_cls and not self.external_server and not self.act_as_middlebox:
self.stop_server(environment, server)
self.read_fitness(ind)
if self.args["server_side"]:
ind.fitness = server.punish_fitness(ind.fitness, self.logger)
actions.utils.write_fitness(ind.fitness, self.output_directory, environment["id"])
except actions.utils.SkipStrategyException as exc:
self.logger.debug("Strategy evaluation ending.")
ind.fitness = exc.fitness
fitnesses.append(ind.fitness)
break
fitnesses.append(ind.fitness)
if self.runs > 1:
self.logger.debug("\t(%d/%d) Fitness %s: %s" % (run + 1, self.runs, str(ind.fitness), str(ind)))
self.logger.debug("Storing fitness of %s by: %s" % (fitnesses, self.fitness_by))
if self.fitness_by == "min":
ind.fitness = min(fitnesses)
elif self.fitness_by == "max":
ind.fitness = max(fitnesses)
elif self.fitness_by == "avg":
ind.fitness = round(sum(fitnesses)/len(fitnesses), 2)
actions.utils.write_fitness(ind.fitness, self.output_directory, environment["id"])
self.logger.info("[%s] Fitness %s: %s" % (ind.environment_id, str(ind.fitness), str(ind)))
return ind.environment_id, ind.fitness
def run_client(self, args, environment, logger):
fitness = None
if environment.get("remote"):
fitness = self.run_remote_client(args, environment, logger)
elif environment.get("docker"):
self.run_docker_client(args, environment, logger)
else:
self.run_local_client(args, environment, logger)
fitpath = os.path.join(BASEPATH, self.output_directory, actions.utils.FLAGFOLDER, environment["id"]) + ".fitness"
if not os.path.exists(fitpath):
actions.utils.write_fitness(fitness, self.output_directory, environment["id"])
return fitness
def run_docker_client(self, args, environment, logger):
command = ["docker", "exec", "--privileged", environment["client"]["container"].name, "python", "code/plugins/plugin_client.py", "--server", environment["server"]["ip"]]
base_cmd = actions.utils.build_command(args)
command += base_cmd
self.exec_cmd(command)
|
BSD 3-Clause New or Revised License
|
open-mss/mss
|
mslib/msui/topview.py
|
MSSTopViewWindow.setup_top_view
|
python
|
def setup_top_view(self):
toolitems = ["(select to open control)", "Web Map Service", "Satellite Tracks", "Remote Sensing", "KML Overlay",
"Airports/Airspaces"]
self.cbTools.clear()
self.cbTools.addItems(toolitems)
self.update_predefined_maps()
kwargs = self.changeMapSection(only_kwargs=True)
self.mpl.canvas.init_map(**kwargs)
self.setFlightTrackModel(self.waypoints_model)
self.waypoints_model.dataChanged.connect(self.update_roundtrip_enabled)
self.update_roundtrip_enabled()
self.mpl.navbar.push_current()
self.openTool(WMS + 1)
|
Initialise GUI elements. (This method is called before signals/slots
are connected).
|
https://github.com/open-mss/mss/blob/179acb945ada3cc7adec37794439fd2defade3b9/mslib/msui/topview.py#L227-L251
|
import functools
import logging
from mslib.utils.config import config_loader, save_settings_qsettings, load_settings_qsettings
from mslib.utils.coordinate import get_projection_params
from PyQt5 import QtGui, QtWidgets, QtCore
from mslib.msui.mss_qt import ui_topview_window as ui
from mslib.msui.mss_qt import ui_topview_mapappearance as ui_ma
from mslib.msui.viewwindows import MSSMplViewWindow
from mslib.msui import wms_control as wc
from mslib.msui import satellite_dockwidget as sat
from mslib.msui import remotesensing_dockwidget as rs
from mslib.msui import kmloverlay_dockwidget as kml
from mslib.msui import airdata_dockwidget as ad
from mslib.msui.icons import icons
from mslib.msui.flighttrack import Waypoint
WMS = 0
SATELLITE = 1
REMOTESENSING = 2
KMLOVERLAY = 3
AIRDATA = 4
class MSS_TV_MapAppearanceDialog(QtWidgets.QDialog, ui_ma.Ui_MapAppearanceDialog):
def __init__(self, parent=None, settings_dict=None, wms_connected=False):
super(MSS_TV_MapAppearanceDialog, self).__init__(parent)
self.setupUi(self)
if settings_dict is None:
settings_dict = {"draw_graticule": True,
"draw_coastlines": True,
"fill_waterbodies": True,
"fill_continents": True,
"draw_flighttrack": True,
"draw_marker": True,
"label_flighttrack": True,
"tov_plot_title_size": "default",
"tov_axes_label_size": "default",
"colour_water": (0, 0, 0, 0),
"colour_land": (0, 0, 0, 0),
"colour_ft_vertices": (0, 0, 0, 0),
"colour_ft_waypoints": (0, 0, 0, 0)
}
settings_dict["fill_waterbodies"] = True
self.wms_connected = wms_connected
if self.wms_connected:
self.cbFillContinents.setChecked(False)
self.cbFillWaterBodies.setChecked(False)
self.cbFillContinents.setEnabled(False)
self.cbFillContinents.setStyleSheet("color: black")
self.cbFillWaterBodies.setStyleSheet("color: black")
else:
self.cbFillWaterBodies.setChecked(settings_dict["fill_waterbodies"])
self.cbFillWaterBodies.setEnabled(False)
self.cbFillContinents.setChecked(settings_dict["fill_continents"])
self.cbFillContinents.setEnabled(True)
self.cbDrawGraticule.setChecked(settings_dict["draw_graticule"])
self.cbDrawCoastlines.setChecked(settings_dict["draw_coastlines"])
self.cbDrawFlightTrack.setChecked(settings_dict["draw_flighttrack"])
self.cbDrawMarker.setChecked(settings_dict["draw_marker"])
self.cbLabelFlightTrack.setChecked(settings_dict["label_flighttrack"])
for button, ids in [(self.btWaterColour, "colour_water"),
(self.btLandColour, "colour_land"),
(self.btWaypointsColour, "colour_ft_waypoints"),
(self.btVerticesColour, "colour_ft_vertices")]:
palette = QtGui.QPalette(button.palette())
colour = QtGui.QColor()
colour.setRgbF(*settings_dict[ids])
palette.setColor(QtGui.QPalette.Button, colour)
button.setPalette(palette)
self.btWaterColour.clicked.connect(functools.partial(self.setColour, "water"))
self.btLandColour.clicked.connect(functools.partial(self.setColour, "land"))
self.btWaypointsColour.clicked.connect(functools.partial(self.setColour, "ft_waypoints"))
self.btVerticesColour.clicked.connect(functools.partial(self.setColour, "ft_vertices"))
for i in range(self.tov_cbtitlesize.count()):
if self.tov_cbtitlesize.itemText(i) == settings_dict["tov_plot_title_size"]:
self.tov_cbtitlesize.setCurrentIndex(i)
for i in range(self.tov_cbaxessize.count()):
if self.tov_cbaxessize.itemText(i) == settings_dict["tov_axes_label_size"]:
self.tov_cbaxessize.setCurrentIndex(i)
def get_settings(self):
settings_dict = {
"draw_graticule": self.cbDrawGraticule.isChecked(),
"draw_coastlines": self.cbDrawCoastlines.isChecked(),
"fill_waterbodies": self.cbFillWaterBodies.isChecked(),
"fill_continents": self.cbFillContinents.isChecked(),
"draw_flighttrack": self.cbDrawFlightTrack.isChecked(),
"draw_marker": self.cbDrawMarker.isChecked(),
"label_flighttrack": self.cbLabelFlightTrack.isChecked(),
"tov_plot_title_size": self.tov_cbtitlesize.currentText(),
"tov_axes_label_size": self.tov_cbaxessize.currentText(),
"colour_water":
QtGui.QPalette(self.btWaterColour.palette()).color(QtGui.QPalette.Button).getRgbF(),
"colour_land":
QtGui.QPalette(self.btLandColour.palette()).color(QtGui.QPalette.Button).getRgbF(),
"colour_ft_vertices":
QtGui.QPalette(self.btVerticesColour.palette()).color(QtGui.QPalette.Button).getRgbF(),
"colour_ft_waypoints":
QtGui.QPalette(self.btWaypointsColour.palette()).color(QtGui.QPalette.Button).getRgbF(),
}
return settings_dict
def setColour(self, which):
if which == "water":
button = self.btWaterColour
elif which == "land":
button = self.btLandColour
elif which == "ft_vertices":
button = self.btVerticesColour
elif which == "ft_waypoints":
button = self.btWaypointsColour
palette = QtGui.QPalette(button.palette())
colour = palette.color(QtGui.QPalette.Button)
colour = QtWidgets.QColorDialog.getColor(colour)
if colour.isValid():
palette.setColor(QtGui.QPalette.Button, colour)
button.setPalette(palette)
class MSSTopViewWindow(MSSMplViewWindow, ui.Ui_TopViewWindow):
name = "Top View"
def __init__(self, parent=None, model=None, _id=None):
super(MSSTopViewWindow, self).__init__(parent, model, _id)
logging.debug(_id)
self.setupUi(self)
self.setWindowIcon(QtGui.QIcon(icons('64x64')))
self.docks = [None, None, None, None, None]
self.settings_tag = "topview"
self.load_settings()
self.setup_top_view()
self.wms_connected = False
self.btMapRedraw.clicked.connect(self.mpl.canvas.redraw_map)
self.cbChangeMapSection.activated.connect(self.changeMapSection)
self.btSettings.clicked.connect(self.settings_dialogue)
self.btRoundtrip.clicked.connect(self.make_roundtrip)
self.cbTools.currentIndexChanged.connect(self.openTool)
def __del__(self):
del self.mpl.canvas.waypoints_interactor
|
Apache License 2.0
|
chuckus/chromewhip
|
chromewhip/protocol/overlay.py
|
Overlay.highlightQuad
|
python
|
def highlightQuad(cls,
quad: Union['DOM.Quad'],
color: Optional['DOM.RGBA'] = None,
outlineColor: Optional['DOM.RGBA'] = None,
):
return (
cls.build_send_payload("highlightQuad", {
"quad": quad,
"color": color,
"outlineColor": outlineColor,
}),
None
)
|
Highlights given quad. Coordinates are absolute with respect to the main frame viewport.
:param quad: Quad to highlight
:type quad: DOM.Quad
:param color: The highlight fill color (default: transparent).
:type color: DOM.RGBA
:param outlineColor: The highlight outline color (default: transparent).
:type outlineColor: DOM.RGBA
|
https://github.com/chuckus/chromewhip/blob/7249f64f96df3c6ca0859a3da06ce7ddcebbfded/chromewhip/protocol/overlay.py#L170-L190
|
import logging
from typing import Any, Optional, Union
from chromewhip.helpers import PayloadMixin, BaseEvent, ChromeTypeBase
log = logging.getLogger(__name__)
from chromewhip.protocol import dom as DOM
from chromewhip.protocol import page as Page
from chromewhip.protocol import runtime as Runtime
class HighlightConfig(ChromeTypeBase):
def __init__(self,
showInfo: Optional['bool'] = None,
showStyles: Optional['bool'] = None,
showRulers: Optional['bool'] = None,
showExtensionLines: Optional['bool'] = None,
contentColor: Optional['DOM.RGBA'] = None,
paddingColor: Optional['DOM.RGBA'] = None,
borderColor: Optional['DOM.RGBA'] = None,
marginColor: Optional['DOM.RGBA'] = None,
eventTargetColor: Optional['DOM.RGBA'] = None,
shapeColor: Optional['DOM.RGBA'] = None,
shapeMarginColor: Optional['DOM.RGBA'] = None,
cssGridColor: Optional['DOM.RGBA'] = None,
):
self.showInfo = showInfo
self.showStyles = showStyles
self.showRulers = showRulers
self.showExtensionLines = showExtensionLines
self.contentColor = contentColor
self.paddingColor = paddingColor
self.borderColor = borderColor
self.marginColor = marginColor
self.eventTargetColor = eventTargetColor
self.shapeColor = shapeColor
self.shapeMarginColor = shapeMarginColor
self.cssGridColor = cssGridColor
InspectMode = str
class Overlay(PayloadMixin):
@classmethod
def disable(cls):
return (
cls.build_send_payload("disable", {
}),
None
)
@classmethod
def enable(cls):
return (
cls.build_send_payload("enable", {
}),
None
)
@classmethod
def getHighlightObjectForTest(cls,
nodeId: Union['DOM.NodeId'],
includeDistance: Optional['bool'] = None,
includeStyle: Optional['bool'] = None,
):
return (
cls.build_send_payload("getHighlightObjectForTest", {
"nodeId": nodeId,
"includeDistance": includeDistance,
"includeStyle": includeStyle,
}),
cls.convert_payload({
"highlight": {
"class": dict,
"optional": False
},
})
)
@classmethod
def hideHighlight(cls):
return (
cls.build_send_payload("hideHighlight", {
}),
None
)
@classmethod
def highlightFrame(cls,
frameId: Union['Page.FrameId'],
contentColor: Optional['DOM.RGBA'] = None,
contentOutlineColor: Optional['DOM.RGBA'] = None,
):
return (
cls.build_send_payload("highlightFrame", {
"frameId": frameId,
"contentColor": contentColor,
"contentOutlineColor": contentOutlineColor,
}),
None
)
@classmethod
def highlightNode(cls,
highlightConfig: Union['HighlightConfig'],
nodeId: Optional['DOM.NodeId'] = None,
backendNodeId: Optional['DOM.BackendNodeId'] = None,
objectId: Optional['Runtime.RemoteObjectId'] = None,
selector: Optional['str'] = None,
):
return (
cls.build_send_payload("highlightNode", {
"highlightConfig": highlightConfig,
"nodeId": nodeId,
"backendNodeId": backendNodeId,
"objectId": objectId,
"selector": selector,
}),
None
)
@classmethod
|
MIT License
|
guildai/guildai
|
guild/query/qparse.py
|
p_flag_name
|
python
|
def p_flag_name(p):
p[0] = p[1]
|
flag_name : UNQUOTED
|
https://github.com/guildai/guildai/blob/79d39402201168b7e94007d8e66ecf504e7aa71c/guild/query/qparse.py#L138-L140
|
from __future__ import absolute_import
from __future__ import division
import yaml
from guild import _yacc
from . import Select, Scalar, Attr, Flag
from . import ParseError
from . import qlex
tokens = qlex.tokens
def p_query(p):
p[0] = p[1]
def p_select_stmt(p):
p[0] = Select(cols=p[2])
def p_col_list_head(p):
p[0] = [p[1]]
def p_col_list(p):
p[0] = p[1] + [p[3]]
def p_col(p):
p[0] = p[1]
def p_named_col(p):
col = p[1]
col.named_as = p[3]
p[0] = col
def p_col_name(p):
p[0] = p[1]
def p_implicit_scalar_col(p):
p[0] = Scalar(p[1])
def p_explicit_scalar_col(p):
p[0] = Scalar(p[2])
def p_qualified_implicit_scalar_col(p):
p[0] = Scalar(p[2], p[1])
def p_scalar_step_col(p):
scalar = p[1]
scalar.step = True
p[0] = scalar
def p_scalar_key(p):
p[0] = p[1]
def p_scalar_qualifier(p):
p[0] = p[1]
def p_dot_attr_col(p):
p[0] = Attr(p[2])
def p_attr_col(p):
p[0] = Attr(p[2])
def p_attr_name(p):
p[0] = p[1]
def p_equals_flag_col(p):
p[0] = Flag(p[2])
def p_flag_col(p):
p[0] = Flag(p[2])
|
Apache License 2.0
|
arxiv/arxiv-browse
|
browse/controllers/home_page/__init__.py
|
get_home_page
|
python
|
def get_home_page() -> Response:
response_data: Dict[str, Any] = {}
response_headers: Dict[str, Any] = {}
try:
response_data['document_count'] = _get_document_count()
except Exception as ex:
logger.warning(f'Could not get abs page data: {ex}')
raise InternalServerError from ex
response_data['groups'] = taxonomy.definitions.GROUPS
response_data['archives'] = taxonomy.definitions.ARCHIVES_ACTIVE
response_data['categories'] = taxonomy.definitions.CATEGORIES_ACTIVE
return response_data, status.HTTP_200_OK, response_headers
|
Get the data needed to generated the home page.
|
https://github.com/arxiv/arxiv-browse/blob/e68ea09833c30c30426678ad79250b6f0c56b52a/browse/controllers/home_page/__init__.py#L23-L37
|
import os
import re
from flask import current_app
from typing import Any, Dict, Optional, Tuple
from werkzeug.exceptions import InternalServerError
from browse.services.database import get_document_count
from arxiv import status, taxonomy
from arxiv.base import logging
from arxiv.base.globals import get_application_config
app_config = get_application_config()
logger = logging.getLogger(__name__)
Response = Tuple[Dict[str, Any], int, Dict[str, Any]]
RE_TOTAL_PAPERS = re.compile(r'^total_papers\s+(?P<count>[0-9]+)',
re.MULTILINE)
|
MIT License
|
openstack/cyborg
|
cyborg/conductor/manager.py
|
ConductorManager.device_profile_create
|
python
|
def device_profile_create(self, context, obj_devprof):
obj_devprof.create(context)
return obj_devprof
|
Signal to conductor service to create a device_profile.
:param context: request context.
:param obj_devprof: a created (but not saved) device_profile object.
:returns: created device_profile object.
|
https://github.com/openstack/cyborg/blob/17b18248f45aafa0cbc04a3307bd83f3deceb8e1/cyborg/conductor/manager.py#L50-L58
|
from oslo_log import log as logging
import oslo_messaging as messaging
import uuid
from cyborg.common import exception
from cyborg.common import placement_client
from cyborg.conf import CONF
from cyborg.objects.attach_handle import AttachHandle
from cyborg.objects.attribute import Attribute
from cyborg.objects.control_path import ControlpathID
from cyborg.objects.deployable import Deployable
from cyborg.objects.device import Device
from cyborg.objects.driver_objects.driver_device import DriverDeployable
from cyborg.objects.driver_objects.driver_device import DriverDevice
from cyborg.objects.ext_arq import ExtARQ
LOG = logging.getLogger(__name__)
class ConductorManager(object):
RPC_API_VERSION = '1.0'
target = messaging.Target(version=RPC_API_VERSION)
def __init__(self, topic, host=None):
super(ConductorManager, self).__init__()
self.topic = topic
self.host = host or CONF.host
self.placement_client = placement_client.PlacementClient()
def periodic_tasks(self, context, raise_on_error=False):
pass
|
Apache License 2.0
|
lixiny/cpf
|
hocontact/models/picr.py
|
PicrHourglassPointNet.picr_forward
|
python
|
def picr_forward(self, cam_intr, object_vert_3d, low_level_feature_map, image_resolution):
results = {}
if self.training:
batch_size = object_vert_3d.shape[0]
rand_rot = (
self.generate_random_rotation(self.maximal_angle).expand(batch_size, -1, -1).to(object_vert_3d.device)
)
mean_obj_v = torch.mean(object_vert_3d, dim=1, keepdim=True)
object_vert_3d = (
torch.bmm(rand_rot, (object_vert_3d - mean_obj_v).permute(0, 2, 1)).permute(0, 2, 1) + mean_obj_v
)
dir_vec = self.generate_random_direction()
rand_dist = torch.normal(torch.Tensor([self.mean_offset]), torch.Tensor([self.std_offset]))
offset = rand_dist * dir_vec
offset = offset.to(object_vert_3d.device)
object_vert_3d = object_vert_3d + offset
reprojected_vert = torch.bmm(cam_intr, object_vert_3d.transpose(1, 2)).transpose(1, 2)
reprojected_vert = reprojected_vert[:, :, :2] / reprojected_vert[:, :, 2:]
image_center_coord = image_resolution / 2
image_resolution = image_resolution.view((1, 1, 2))
image_center_coord = image_center_coord.view((1, 1, 2))
reprojected_grid = (reprojected_vert - image_center_coord) / image_center_coord
in_image_mask = (
(reprojected_grid[:, :, 0] >= -1.0)
& (reprojected_grid[:, :, 0] <= 1.0)
& (reprojected_grid[:, :, 1] >= -1.0)
& (reprojected_grid[:, :, 1] <= 1.0)
)
in_image_mask = in_image_mask.float()
reprojected_grid = reprojected_grid.unsqueeze(2)
collected_features = F.grid_sample(
low_level_feature_map, reprojected_grid, align_corners=True
)
focal = cam_intr[:, :1, :1]
object_vert_3d_z = object_vert_3d[:, :, 2:]
normed_object_vert_3d_z = ((object_vert_3d_z - 0.4) / focal) / self.obj_scale_factor
normed_object_vert_3d_z = normed_object_vert_3d_z.unsqueeze(1)
collected_features = torch.cat((collected_features, normed_object_vert_3d_z), dim=1)
vertex_contact_pred, contact_region_pred, anchor_elasti_pred = self.contact_head(collected_features)
results.update(
{
"recov_vertex_contact": vertex_contact_pred,
"recov_contact_in_image_mask": in_image_mask,
"recov_contact_region": contact_region_pred,
"recov_anchor_elasti": anchor_elasti_pred,
}
)
return results
|
low_level_feature_map = TENSOR[NBATCH, 64, 1/4 IMGH, 1/4 IMGW]
object_vert_3d = TENSOR[NBATCH, NPOINT, 3]
image_resolution = TENSOR[2]
|
https://github.com/lixiny/cpf/blob/69129a3a2ec76347752241850da5ced09d795b1d/hocontact/models/picr.py#L143-L212
|
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from manopth.rodrigues_layer import batch_rodrigues
from hocontact.hodatasets.hoquery import TransQueries
from hocontact.models.bases import hourglass
from hocontact.models.contacthead import PointNetContactHead
from hocontact.models.honet import HONet
from hocontact.utils.netutils import freeze_batchnorm_stats
class PicrHourglassPointNet(nn.Module):
def __init__(
self,
hg_stacks=2,
hg_blocks=1,
hg_classes=64,
obj_scale_factor=0.0001,
honet_resnet_version=18,
honet_center_idx=9,
honet_mano_lambda_recov_joints3d=0.5,
honet_mano_lambda_recov_verts3d=0,
honet_mano_lambda_shape=5e-07,
honet_mano_lambda_pose_reg=5e-06,
honet_obj_lambda_recov_verts3d=0.5,
honet_obj_trans_factor=100,
honet_mano_fhb_hand=False,
mean_offset=0.010,
std_offset=0.005,
maximal_angle=math.pi / 24,
):
super(PicrHourglassPointNet, self).__init__()
self.obj_scale_factor = obj_scale_factor
self.ho_net = HONet(
resnet_version=honet_resnet_version,
mano_center_idx=honet_center_idx,
mano_lambda_recov_joints3d=honet_mano_lambda_recov_joints3d,
mano_lambda_recov_verts3d=honet_mano_lambda_recov_verts3d,
mano_lambda_shape=honet_mano_lambda_shape,
mano_lambda_pose_reg=honet_mano_lambda_pose_reg,
obj_lambda_recov_verts3d=honet_obj_lambda_recov_verts3d,
obj_trans_factor=honet_obj_trans_factor,
obj_scale_factor=obj_scale_factor,
mano_fhb_hand=honet_mano_fhb_hand,
)
for param in self.ho_net.parameters():
param.requires_grad = False
self.ho_net.eval()
freeze_batchnorm_stats(self.ho_net)
self.base_net = hourglass.StackedHourglass(hg_stacks, hg_blocks, hg_classes)
self.intermediate_feature_size = hg_classes
self.contact_head = PointNetContactHead(feat_dim=self.intermediate_feature_size + 1, n_region=17, n_anchor=4)
self.mean_offset = mean_offset
self.std_offset = std_offset
self.maximal_angle = maximal_angle
@staticmethod
def generate_random_direction():
azi = torch.rand(1) * 2 * math.pi
cos_inc = 1 - 2 * torch.rand(1)
sin_inc = torch.sqrt(1 - cos_inc ** 2)
vec = torch.tensor([sin_inc * torch.cos(azi), sin_inc * torch.sin(azi), cos_inc])
return vec.float()
@staticmethod
def generate_random_rotation(max_angle):
axisang = PicrHourglassPointNet.generate_random_direction()
angle = torch.rand(1) * max_angle
axisang = axisang * angle
rot_mat = batch_rodrigues(axisang.unsqueeze(0)).view(1, 3, 3)
return rot_mat
def forward(self, sample, rank=None):
self.ho_net.eval()
with torch.no_grad():
honet_results = self.ho_net(sample, rank=rank)
if rank is None:
device = torch.device("cuda")
else:
device = torch.device(f"cuda:{rank}")
ls_results = []
image = sample[TransQueries.IMAGE]
image_resolution = torch.from_numpy(np.array([image.shape[3], image.shape[2]])).float()
image = image.to(device)
image_resolution = image_resolution.to(device)
ls_hg_feature, _ = self.base_net(image)
has_contact_supv = True
objverts3d = honet_results["recov_obj_verts3d"]
cam_intr = sample[TransQueries.CAM_INTR].float()
cam_intr = cam_intr.to(device)
if has_contact_supv:
for i_stack in range(self.base_net.nstacks):
i_hg_feature = ls_hg_feature[i_stack]
i_contact_results = self.picr_forward(cam_intr, objverts3d, i_hg_feature, image_resolution)
ls_results.append(i_contact_results)
extra_results = {
"hand_tsl": honet_results["hand_center3d"],
"hand_joints_3d": honet_results["recov_joints3d"],
"hand_verts_3d": honet_results["recov_hand_verts3d"],
"hand_full_pose": honet_results["full_pose"],
"hand_shape": honet_results["shape"],
"obj_tsl": honet_results["obj_center3d"],
"obj_rot": honet_results["obj_prerot"],
"obj_verts_3d": honet_results["recov_obj_verts3d"],
}
ls_results[-1].update(extra_results)
evalutil_results = {
"recov_obj_verts3d": honet_results["recov_obj_verts3d"],
"obj_verts2d": honet_results["obj_verts2d"],
}
ls_results[-1].update(evalutil_results)
return ls_results
|
MIT License
|
tensorflow/cloud
|
src/python/tensorflow_cloud/core/gcp.py
|
get_machine_type
|
python
|
def get_machine_type(cpu_cores, memory, accelerator_type):
if accelerator_type.value == "TPU_V2" or accelerator_type.value == "TPU_V3":
return "cloud_tpu"
machine_type_map = {
(4, 15): "n1-standard-4",
(8, 30): "n1-standard-8",
(16, 60): "n1-standard-16",
(32, 120): "n1-standard-32",
(64, 240): "n1-standard-64",
(96, 360): "n1-standard-96",
(2, 13): "n1-highmem-2",
(4, 26): "n1-highmem-4",
(8, 52): "n1-highmem-8",
(16, 104): "n1-highmem-16",
(32, 208): "n1-highmem-32",
(64, 416): "n1-highmem-64",
(96, 624): "n1-highmem-96",
(16, 14.4): "n1-highcpu-16",
(32, 28.8): "n1-highcpu-32",
(64, 57.6): "n1-highcpu-64",
(96, 86.4): "n1-highcpu-96",
}
return machine_type_map[(cpu_cores, memory)]
|
Returns the GCP AI Platform machine type.
|
https://github.com/tensorflow/cloud/blob/caf55b13e0f70c63ff9c5a6063eada31bab5639a/src/python/tensorflow_cloud/core/gcp.py#L93-L116
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import google.auth
def get_project_name():
_, project_id = google.auth.default()
if project_id is None:
raise RuntimeError("Could not determine the GCP project id.")
return project_id
def validate_machine_configuration(
cpu_cores, memory, accelerator_type, accelerator_count
):
valid_configurations = _get_valid_machine_configurations()
if accelerator_type.value == "TPU_V2" or accelerator_type.value == "TPU_V3":
cpu_cores = None
memory = None
current_config = (
cpu_cores, memory, accelerator_type.value, accelerator_count)
if current_config not in valid_configurations:
raise ValueError(
"Invalid machine configuration: cpu_cores:{}, memory:{}, "
"accelerator_type:{}, accelerator_count:{}. Please see the "
"following AI platform comptibility table for all valid "
"configurations: "
"https://cloud.google.com/ml-engine/docs/using-gpus#"
"compute-engine-machine-types-with-gpu. If you are using TPU "
"accelerator, please specify accelerator count as 8.".format(
cpu_cores, memory, str(accelerator_type), accelerator_count
)
)
def get_region():
return "us-central1"
def get_accelerator_type(accl_type):
accl_type_map = {
"CPU": "ACCELERATOR_TYPE_UNSPECIFIED",
"K80": "NVIDIA_TESLA_K80",
"P100": "NVIDIA_TESLA_P100",
"V100": "NVIDIA_TESLA_V100",
"P4": "NVIDIA_TESLA_P4",
"T4": "NVIDIA_TESLA_T4",
"TPU_V2": "TPU_V2",
"TPU_V3": "TPU_V3",
}
return accl_type_map[accl_type]
|
Apache License 2.0
|
swissdatasciencecenter/renku-python
|
renku/cli/workflow.py
|
execute
|
python
|
def execute(
provider,
config,
set_params,
values,
name_or_id,
):
from renku.core.commands.workflow import execute_workflow_command
communicator = ClickCallback()
result = (
execute_workflow_command()
.with_communicator(communicator)
.build()
.execute(
name_or_id=name_or_id,
provider=provider,
config=config,
values=values,
set_params=set_params,
)
)
if result.output:
click.echo(
"Unchanged files:\n\n\t{0}".format("\n\t".join(click.style(path, fg="yellow") for path in result.output))
)
|
Execute a given workflow.
|
https://github.com/swissdatasciencecenter/renku-python/blob/5e43e2eff67cdf20fc2805799fe2822e23bc503d/renku/cli/workflow.py#L954-L982
|
import os
import pydoc
import shutil
import sys
from pathlib import Path
from typing import TYPE_CHECKING
import click
from lazy_object_proxy import Proxy
from rich.console import Console
from rich.markdown import Markdown
from renku.cli.utils.callback import ClickCallback
from renku.core import errors
from renku.core.commands.echo import ERROR
from renku.core.commands.format.workflow import WORKFLOW_COLUMNS, WORKFLOW_FORMATS
from renku.core.commands.view_model.activity_graph import ACTIVITY_GRAPH_COLUMNS
if TYPE_CHECKING:
from renku.core.commands.view_model.composite_plan import CompositePlanViewModel
from renku.core.commands.view_model.plan import PlanViewModel
def _supported_formats():
from renku.core.plugins.workflow import supported_formats
return supported_formats()
def _available_workflow_providers():
from renku.core.plugins.provider import available_workflow_providers
return available_workflow_providers()
def _print_plan(plan: "PlanViewModel"):
click.echo(click.style("Id: ", bold=True, fg="magenta") + click.style(plan.id, bold=True))
click.echo(click.style("Name: ", bold=True, fg="magenta") + click.style(plan.name, bold=True))
if plan.description:
Console().print(Markdown(plan.description))
click.echo(click.style("Command: ", bold=True, fg="magenta") + click.style(plan.full_command, bold=True))
click.echo(click.style("Success Codes: ", bold=True, fg="magenta") + click.style(plan.success_codes, bold=True))
if plan.inputs:
click.echo(click.style("Inputs: ", bold=True, fg="magenta"))
for run_input in plan.inputs:
click.echo(click.style(f"\t- {run_input.name}:", bold=True))
if run_input.description:
click.echo(click.style(f"\t\t{run_input.description}"))
click.echo(
click.style("\t\tDefault Value: ", bold=True, fg="magenta")
+ click.style(run_input.default_value, bold=True)
)
if run_input.position:
click.echo(
click.style("\t\tPosition: ", bold=True, fg="magenta") + click.style(run_input.position, bold=True)
)
if run_input.prefix:
click.echo(
click.style("\t\tPrefix: ", bold=True, fg="magenta") + click.style(run_input.prefix, bold=True)
)
if plan.outputs:
click.echo(click.style("Outputs: ", bold=True, fg="magenta"))
for run_output in plan.outputs:
click.echo(click.style(f"\t- {run_output.name}:", bold=True))
if run_output.description:
click.echo(click.style(f"\t\t{run_output.description}"))
click.echo(
click.style("\t\tDefault Value: ", bold=True, fg="magenta")
+ click.style(run_output.default_value, bold=True)
)
if run_output.position:
click.echo(
click.style("\t\tPosition: ", bold=True, fg="magenta") + click.style(run_output.position, bold=True)
)
if run_output.prefix:
click.echo(
click.style("\t\tPrefix: ", bold=True, fg="magenta") + click.style(run_output.prefix, bold=True)
)
if plan.parameters:
click.echo(click.style("Parameters: ", bold=True, fg="magenta"))
for run_parameter in plan.parameters:
click.echo(click.style(f"\t- {run_parameter.name}:", bold=True))
if run_parameter.description:
click.echo(click.style(f"\t\t{run_parameter.description}"))
click.echo(
click.style("\t\tDefault Value: ", bold=True, fg="magenta")
+ click.style(run_parameter.default_value, bold=True)
)
if run_parameter.position:
click.echo(
click.style("\t\tPosition: ", bold=True, fg="magenta")
+ click.style(run_parameter.position, bold=True)
)
if run_parameter.prefix:
click.echo(
click.style("\t\tPrefix: ", bold=True, fg="magenta") + click.style(run_parameter.prefix, bold=True)
)
def _print_composite_plan(composite_plan: "CompositePlanViewModel"):
click.echo(click.style("Id: ", bold=True, fg="magenta") + click.style(composite_plan.id, bold=True))
click.echo(click.style("Name: ", bold=True, fg="magenta") + click.style(composite_plan.name, bold=True))
if composite_plan.description:
Console().print(Markdown(composite_plan.description))
click.echo(click.style("Steps: ", bold=True, fg="magenta"))
for step in composite_plan.steps:
click.echo(click.style(f"\t- {step.name}:", bold=True))
click.echo(click.style("\t\tId: ", bold=True, fg="magenta") + click.style(f"{step.id}", bold=True))
if composite_plan.mappings:
click.echo(click.style("Mappings: ", bold=True, fg="magenta"))
for mapping in composite_plan.mappings:
click.echo(click.style(f"\t- {mapping.name}:", bold=True))
if mapping.description:
click.echo(click.style(f"\t\t{mapping.description}"))
click.echo(
click.style("\t\tDefault Value: ", bold=True, fg="magenta")
+ click.style(mapping.default_value, bold=True)
)
click.echo(click.style("\tMaps to: ", bold=True, fg="magenta"))
for maps_to in mapping.maps_to:
click.style(maps_to, bold=True)
if composite_plan.links:
click.echo(click.style("Links: ", bold=True, fg="magenta"))
for link in composite_plan.links:
click.echo(click.style("\t- From: ", bold=True, fg="magenta") + click.style(link.source, bold=True))
click.echo(click.style("\t\t To: ", bold=True, fg="magenta"))
for sink in link.sinks:
click.echo(click.style(f"\t\t- {sink}", bold=True))
@click.group()
def workflow():
pass
@workflow.command("ls")
@click.option("--format", type=click.Choice(WORKFLOW_FORMATS), default="tabular", help="Choose an output format.")
@click.option(
"-c",
"--columns",
type=click.STRING,
default="id,name,command",
metavar="<columns>",
help="Comma-separated list of column to display: {}.".format(", ".join(WORKFLOW_COLUMNS.keys())),
show_default=True,
)
def list_workflows(format, columns):
from renku.core.commands.workflow import list_workflows_command
result = list_workflows_command().build().execute(format=format, columns=columns)
click.echo(result.output)
@workflow.command()
@click.argument("name_or_id", metavar="<name_or_id>")
def show(name_or_id):
from renku.core.commands.view_model.plan import PlanViewModel
from renku.core.commands.workflow import show_workflow_command
plan = show_workflow_command().build().execute(name_or_id=name_or_id).output
if plan:
if isinstance(plan, PlanViewModel):
_print_plan(plan)
else:
_print_composite_plan(plan)
else:
click.secho(ERROR + f"Workflow '{name_or_id}' not found.")
@workflow.command()
@click.argument("name", metavar="<name>")
@click.option("--force", is_flag=True, help="Override the existence check.")
def remove(name, force):
from renku.core.commands.workflow import remove_workflow_command
remove_workflow_command().build().execute(name=name, force=force)
@workflow.command()
@click.option("-d", "--description", help="Workflow step's description.")
@click.option("mappings", "-m", "--map", multiple=True, help="Mapping for a workflow parameter.")
@click.option("defaults", "-s", "--set", multiple=True, help="Default value for a workflow parameter.")
@click.option("links", "-l", "--link", multiple=True, help="Link source and sink parameters to connect steps.")
@click.option("-p", "--describe-param", multiple=True, help="Add description for a workflow parameter.")
@click.option("--map-inputs", is_flag=True, help="Exposes all child inputs as inputs on the CompositePlan.")
@click.option("--map-outputs", is_flag=True, help="Exposes all child outputs as outputs on the CompositePlan.")
@click.option("--map-params", is_flag=True, help="Exposes all child parameters as parameters on the CompositePlan.")
@click.option("--map-all", is_flag=True, help="Combination of --map-inputs, --map-outputs, --map-params.")
@click.option("--link-all", is_flag=True, help="Automatically link steps based on default values.")
@click.option("--keyword", multiple=True, help="List of keywords for the workflow.")
@click.option(
"--from",
"sources",
type=click.Path(exists=True, dir_okay=False),
multiple=True,
help="Start a composite plan from this file as input.",
)
@click.option(
"--to",
"sinks",
type=click.Path(exists=True, dir_okay=True),
multiple=True,
help="End a composite plan at this file as output.",
)
@click.argument("name", required=True)
@click.argument("steps", nargs=-1, type=click.UNPROCESSED)
def compose(
description,
mappings,
defaults,
links,
describe_param,
map_inputs,
map_outputs,
map_params,
map_all,
link_all,
keyword,
sources,
sinks,
name,
steps,
):
from renku.core.commands.workflow import compose_workflow_command
if (sources or sinks) and steps:
click.secho(ERROR + "--from/--to cannot be used at the same time as passing run/step names.")
exit(1)
elif not (sources or sinks or steps):
click.secho(ERROR + "Either --from/--to passing run/step names is required.")
exit(1)
if map_all:
map_inputs = map_outputs = map_params = True
result = (
compose_workflow_command()
.build()
.execute(
name=name,
description=description,
mappings=mappings,
defaults=defaults,
links=links,
param_descriptions=describe_param,
map_inputs=map_inputs,
map_outputs=map_outputs,
map_params=map_params,
link_all=link_all,
keywords=keyword,
steps=steps,
sources=sources,
sinks=sinks,
)
)
if not result.error:
_print_composite_plan(result.output)
@workflow.command()
@click.argument("workflow_name", metavar="<name or uuid>")
@click.option("--name", metavar="<new name>", help="New name of the workflow")
@click.option("--description", metavar="<new desc>", help="New description of the workflow")
@click.option(
"--set",
"set_params",
multiple=True,
metavar="<parameter>=<value>",
help="Set default <value> for a <parameter>/add new parameter",
)
@click.option(
"--map",
"map_params",
multiple=True,
metavar="<parameter>=<parameter or expression>",
help="New mapping on the workflow",
)
@click.option(
"--rename-param",
"rename_params",
multiple=True,
metavar='<parameter>="name"',
help="New name for parameter",
)
@click.option(
"--describe-param",
"describe_params",
multiple=True,
metavar='<parameter>="description"',
help="New description of the workflow",
)
def edit(workflow_name, name, description, set_params, map_params, rename_params, describe_params):
from renku.core.commands.view_model.plan import PlanViewModel
from renku.core.commands.workflow import edit_workflow_command
result = (
edit_workflow_command()
.build()
.execute(
name=workflow_name,
new_name=name,
description=description,
set_params=set_params,
map_params=map_params,
rename_params=rename_params,
describe_params=describe_params,
)
)
if not result.error:
plan = result.output
if isinstance(plan, PlanViewModel):
_print_plan(plan)
else:
_print_composite_plan(plan)
@workflow.command()
@click.argument("workflow_name", metavar="<name or uuid>")
@click.option(
"--format",
default="cwl",
type=click.Choice(Proxy(_supported_formats), case_sensitive=False),
show_default=True,
help="Workflow language format.",
)
@click.option(
"-o",
"--output",
metavar="<path>",
type=click.Path(exists=False),
default=None,
help="Save to <path> instead of printing to terminal",
)
@click.option(
"--values",
metavar="<file>",
type=click.Path(exists=True, dir_okay=False),
default=None,
help="YAML file containing parameter mappings to be used.",
)
def export(workflow_name, format, output, values):
from renku.core.commands.workflow import export_workflow_command
communicator = ClickCallback()
result = (
export_workflow_command()
.with_communicator(communicator)
.build()
.execute(name_or_id=workflow_name, format=format, output=output, values=values)
)
if not output:
click.echo(result.output)
@workflow.command()
@click.argument("paths", type=click.Path(exists=True, dir_okay=True), nargs=-1)
@click.pass_context
def inputs(ctx, paths):
from renku.core.commands.workflow import workflow_inputs_command
result = workflow_inputs_command().build().execute(paths=paths)
input_paths = result.output
click.echo("\n".join(input_paths))
if paths:
if not input_paths or any(
p not in input_paths and all(Path(o) not in Path(p).parents for o in input_paths) for p in paths
):
ctx.exit(1)
@workflow.command()
@click.argument("paths", type=click.Path(exists=True, dir_okay=True), nargs=-1)
@click.pass_context
def outputs(ctx, paths):
from renku.core.commands.workflow import workflow_outputs_command
result = workflow_outputs_command().build().execute(paths=paths)
output_paths = result.output
click.echo("\n".join(output_paths))
if paths:
if not output_paths or any(
p not in output_paths and all(Path(o) not in Path(p).parents for o in output_paths) for p in paths
):
ctx.exit(1)
@workflow.command()
@click.option(
"provider",
"-p",
"--provider",
default="cwltool",
show_default=True,
type=click.Choice(Proxy(_available_workflow_providers), case_sensitive=False),
help="The workflow engine to use.",
)
@click.option("config", "-c", "--config", metavar="<config file>", help="YAML file containing config for the provider.")
@click.option(
"set_params",
"-s",
"--set",
multiple=True,
metavar="<parameter>=<value>",
help="Set <value> for a <parameter> to be used in execution.",
)
@click.option(
"--values",
metavar="<file>",
type=click.Path(exists=True, dir_okay=False),
help="YAML file containing parameter mappings to be used.",
)
@click.argument("name_or_id", required=True)
|
Apache License 2.0
|
unishared/videonotes
|
main.py
|
MediaInMemoryUpload.__init__
|
python
|
def __init__(self, body, mimetype='application/octet-stream',
chunksize=256 * 1024, resumable=False):
self._body = body
self._mimetype = mimetype
self._resumable = resumable
self._chunksize = chunksize
|
Create a new MediaBytesUpload.
Args:
body: string, Bytes of body content.
mimetype: string, Mime-type of the file or default of
'application/octet-stream'.
chunksize: int, File will be uploaded in chunks of this many bytes. Only
used if resumable=True.
resumable: bool, True if this is a resumable upload. False means upload
in a single request.
|
https://github.com/unishared/videonotes/blob/803cdd97b90823fb17f50dd55999aa7d1fec6c3a/main.py#L460-L476
|
import sys
sys.path.insert(0, 'lib')
__author__ = '[email protected] (Ali Afshar)'
__author__ = '[email protected] Arnaud BRETON (UniShared)'
from evernote_handlers import AuthEvernoteHandler, ExportEvernoteHandler
from base_handlers import BaseHandler, BaseDriveHandler
from utils import FileUtils, DriveState, UrlUtils
import os
import httplib2
import random
from google.appengine.api import urlfetch
import time
from BufferedSmtpHandler import BufferingSMTPHandler
from httplib import HTTPException
from apiclient.errors import HttpError
import webapp2
from apiclient.http import MediaUpload
from oauth2client.client import flow_from_clientsecrets
from oauth2client.client import AccessTokenRefreshError
from oauth2client.appengine import simplejson as json
import logging
from utils import SibPath
from configuration import configuration_dict
logger = logging.getLogger("error")
logger.setLevel(logging.ERROR)
logger.addHandler(BufferingSMTPHandler(5))
urlfetch.set_default_fetch_deadline(45)
httplib2.Http(timeout=45)
SESSION_SECRET = open(SibPath('session.secret')).read()
class HomePage(BaseHandler):
TEMPLATE = 'index.html'
def get(self, *args):
return self.RenderTemplate(HomePage.TEMPLATE)
class EditPage(BaseDriveHandler):
TEMPLATE = 'index.html'
def get(self, *args):
user_agent = self.request.headers.get('User-Agent', None)
if user_agent == 'facebookexternalhit/1.1 (+http://www.facebook.com/externalhit_uatext.php)':
logging.debug('Returning template for scraper %s', user_agent)
return self.RenderTemplate(EditPage.TEMPLATE)
drive_state = DriveState.FromRequest(self.request)
logging.debug('Drive state %s', drive_state.action)
if drive_state.action == 'open' and len(drive_state.ids) > 0:
code = self.request.get('code')
if code:
code = '?code=%s' % code
self.redirect('/edit/%s%s' % (drive_state.ids[0], code))
return
elif 'resource_id' in self.session and self.session['resource_id']:
logging.debug('Restoring resource ID')
resource_id = self.session['resource_id']
del self.session['resource_id']
return self.redirect('/edit/' + resource_id)
elif drive_state.action == 'create':
if drive_state.parent:
self.redirect('/edit/?parent={0}'.format(drive_state.parent))
return
creds = self.GetCodeCredentials() or self.GetSessionCredentials()
if not creds:
logging.debug('No credentials')
resource_id_in_url = self.request.url.split('?', 1)[0].rsplit('/', 1)[1]
if resource_id_in_url:
logging.debug('Saving resource ID from URL %s', resource_id_in_url)
self.session['resource_id'] = resource_id_in_url
logging.debug('Redirecting to auth handler')
return self.redirect('/auth')
return self.RenderTemplate(EditPage.TEMPLATE)
class ServiceHandler(BaseDriveHandler):
def get(self):
try:
f = self.get_file(self.request.get('file_id'))
f = FileUtils.transformations(f)
self.RespondJSON(f)
except AccessTokenRefreshError:
logging.info('AccessTokenRefreshError')
return self.abort(401)
def post(self):
service = self.CreateDrive()
if service is None:
return
logging.debug('Get JSON data')
data = self.RequestJSON()
logging.debug('JSON data retrieved %s', json.dumps(data))
content = FileUtils.get_content_from_data(data)
max_try = 5
for n in range(0, max_try):
try:
if 'templateId' in data:
body = {'title': 'Your notes'}
resource = service.files().copy(fileId=data['templateId'], body=body).execute()
else:
resource = {
'title': data['title'],
'description': data['description'],
'mimeType': data['mimeType'],
}
if 'parent' in data and data['parent']:
logging.debug('Creating from a parent folder %s', data['parent'])
default_folder_id = data['parent']
else:
if 'defaultFolderId' in self.session and self.session['defaultFolderId']:
default_folder_id = self.session['defaultFolderId']
else:
default_folder_list = service.files().list(q='title="VideoNot.es"').execute()
if default_folder_list and 'items' in default_folder_list and len(default_folder_list['items']):
default_folder_id = default_folder_list['items'][0]['id']
self.session['defaultFolderId'] = default_folder_id
else:
folder_ressource = {
'title': 'VideoNot.es',
'mimeType': 'application/vnd.google-apps.folder'
}
default_folder = service.files().insert(body=folder_ressource).execute()
default_folder_id = default_folder['id']
self.session['defaultFolderId'] = default_folder_id
resource['parents'] = [{'id':default_folder_id}]
logging.debug('Calling Drive API with content %s', str(content))
resource = service.files().insert(
body=resource,
media_body=MediaInMemoryUpload(
content,
data['mimeType'],
resumable=True)
).execute()
if BaseHandler.is_production():
anyone_permission = {
'type': 'anyone',
'role': 'reader',
'withLink': True
}
try:
logging.info('Add anyone as a reader')
service.permissions().insert(fileId=resource['id'], body=anyone_permission).execute()
except HttpError:
logging.info('Error when adding anyone as a reader')
logging.debug('New ID created %s', resource['id'])
return self.RespondJSON({'id': resource['id']})
except AccessTokenRefreshError:
logging.info('AccessTokenRefreshError')
return self.abort(401)
except HttpError, http_error:
logging.getLogger("error").exception("Try #%d: Exception occurred when creating file", n)
if http_error.resp.status == 403:
return self.abort(403)
else:
time.sleep((2 ** n) + (random.randint(0, 1000) / 1000))
except HTTPException:
logging.getLogger("error").exception("Try #%d: Exception occurred when creating file", n)
time.sleep((2 ** n) + (random.randint(0, 1000) / 1000))
logging.getLogger("error").exception("Exception occurred when creating file after %d tries", max_try)
return self.abort(500)
def put(self):
service = self.CreateDrive()
if service is None:
return
logging.debug('Get JSON data')
data = self.RequestJSON()
logging.debug('JSON data retrieved %s', json.dumps(data))
logging.info('Updating file %s', data['id'])
content = FileUtils.get_content_from_data(data)
max_try = 5
for n in range(0, max_try):
try:
if content is not None:
resource = service.files().update(
fileId=data['id'],
newRevision=self.request.get('newRevision', False),
body=data,
media_body=MediaInMemoryUpload(
content, data['mimeType'], resumable=True)
).execute()
else:
resource = service.files().update(
fileId=data['id'],
newRevision=self.request.get('newRevision', False),
body=data).execute()
return self.RespondJSON({'id': resource['id']})
except HttpError, http_error:
logging.getLogger("error").exception("Try #%d: Exception occurred when updating file", n)
if http_error.resp.status == 403:
return self.abort(403)
else:
time.sleep((2 ** n) + (random.randint(0, 1000) / 1000))
except HTTPException:
logging.getLogger("error").exception("Try #%d: Exception occurred when updating file", n)
time.sleep((2 ** n) + (random.randint(0, 1000) / 1000))
except AccessTokenRefreshError:
logging.info('AccessTokenRefreshError')
return self.abort(401)
logging.getLogger("error").exception("Exception occurred when updating file after %d tries", max_try)
return self.abort(500)
class AuthHandler(BaseDriveHandler):
def get(self):
creds = self.GetCodeCredentials() or self.GetSessionCredentials()
if not creds:
logging.debug('No credentials, redirecting to Oauth2 URL')
next = self.request.get('next')
if next and BaseHandler.is_authorized_domain(next):
self.session['next'] = next
file_id = self.request.get('file_id')
if file_id:
self.session['fileId'] = file_id
redirect_uri = self.RedirectAuth()
return self.redirect(redirect_uri)
if 'next' in self.session:
next = self.session['next']
del self.session['next']
params = {'videonotes_start': 1}
if 'fileId' in self.session:
file_id = self.session['fileId']
del self.session['fileId']
if file_id:
params.update({'videonotes_id': file_id})
redirect_url = UrlUtils.add_query_parameter(next, params)
return self.redirect(str(redirect_url))
else:
return self.redirect('/edit/')
class UserHandler(BaseDriveHandler):
def get(self):
service = self.CreateUserInfo()
if service is None:
return self.abort(401)
try:
logging.debug('Get user informations')
result = service.userinfo().get().execute()
self.RespondJSON(result)
except AccessTokenRefreshError:
return self.abort(401)
class ProxyHandler(BaseHandler):
def get(self):
url = self.request.get('q')
logging.debug('Fetch URL %s', url)
if BaseHandler.is_authorized_domain(url):
logging.debug('Authorized domain URL %s', url)
result = urlfetch.fetch(url)
if result.status_code == 200:
self.response.out.write(result.content.strip())
else:
logging.getLogger("error").error('Unauthorized domain %s', url)
return self.abort(403)
class AboutHandler(BaseDriveHandler):
def get(self):
service = self.CreateDrive()
if service is None:
return
try:
result = service.about().get().execute()
self.RespondJSON(result)
except AccessTokenRefreshError:
return self.abort(401)
class ConfigHandler(BaseHandler):
def get(self):
production = BaseHandler.is_production()
logging.debug('Get configuration, production %s', production)
segment_io_account = configuration_dict['segmentio']
logging.debug('Segment IO account %s', segment_io_account)
app_id = flow_from_clientsecrets('client_secrets_{0}.json'.format(self.get_version()), scope='').client_id.split('.')[0].split('-')[0]
logging.debug('App id %s', app_id)
config = {'segmentio': segment_io_account, 'appId': app_id}
return self.RespondJSON(config)
class MediaInMemoryUpload(MediaUpload):
|
MIT License
|
altair-viz/altair-transform
|
altair_transform/vegaexpr.py
|
timeFormat
|
python
|
def timeFormat(value, specifier):
raise NotImplementedError()
|
Formats a datetime value (either a Date object or timestamp) as a string, according to the local time. The specifier must be a valid d3-time-format specifier. For example: timeFormat(timestamp, '%A').
|
https://github.com/altair-viz/altair-transform/blob/b65bf854de1e80f931e063d8fb2ec938773826fb/altair_transform/vegaexpr.py#L481-L483
|
import datetime as dt
from functools import reduce, wraps
import itertools
import math
import operator
import random
import sys
import time as timemod
from typing import Any, Callable, Dict, Optional, List, Union, overload
import numpy as np
import pandas as pd
from dateutil import tz
from altair_transform.utils import evaljs, undefined, JSRegex
def eval_vegajs(expression: str, datum: pd.DataFrame = None) -> pd.DataFrame:
namespace = {"datum": datum} if datum is not None else {}
namespace.update(VEGAJS_NAMESPACE)
return evaljs(expression, namespace)
def vectorize(func: Callable) -> Callable:
@wraps(func)
def wrapper(*args, **kwargs):
series_args = [
arg
for arg in itertools.chain(args, kwargs.values())
if isinstance(arg, pd.Series)
]
if not series_args:
return func(*args, **kwargs)
else:
index = reduce(operator.or_, [s.index for s in series_args])
def _get(x, i):
return x.get(i, math.nan) if isinstance(x, pd.Series) else x
return pd.Series(
[
func(
*(_get(arg, i) for arg in args),
**{k: _get(v, i) for k, v in kwargs.items()},
)
for i in index
],
index=index,
)
if hasattr(func, "__annotations__"):
wrapper.__annotations__ = {
key: Union[pd.Series, val] for key, val in func.__annotations__.items()
}
return wrapper
@vectorize
def isArray(value: Any) -> bool:
return isinstance(value, (list, np.ndarray))
@vectorize
def isBoolean(value: Any) -> bool:
return isinstance(value, (bool, np.bool_))
@vectorize
def isDate(value: Any) -> bool:
return isinstance(value, dt.datetime)
@vectorize
def isDefined(value: Any) -> bool:
return value is not undefined
@vectorize
def isNumber(value: Any) -> bool:
return np.issubdtype(type(value), np.number)
@vectorize
def isObject(value: Any) -> bool:
return value is None or isinstance(value, dict)
@vectorize
def isRegExp(value: Any) -> bool:
return isinstance(value, JSRegex)
@vectorize
def isString(value: Any) -> bool:
return isinstance(value, str)
@vectorize
def isValid(value: Any) -> bool:
return not (value is None or value is undefined or pd.isna(value))
@vectorize
def toBoolean(value: Any) -> bool:
return bool(value)
@vectorize
def toDate(value: Any) -> Optional[float]:
if isinstance(value, (float, int)):
return value
if value is None or value == "":
return None
return pd.to_datetime(value).timestamp() * 1000
@vectorize
def toNumber(value: Any) -> Optional[float]:
if value is None or value == "":
return None
return float(value)
@vectorize
def toString(value: Any) -> Optional[str]:
if value is None or value == "":
return None
if isinstance(value, float) and value % 1 == 0:
return str(int(value))
return str(value)
def now() -> float:
return round(timemod.time() * 1000, 0)
@overload
def datetime() -> dt.datetime:
...
@overload
def datetime(timestamp: float) -> dt.datetime:
...
@overload
def datetime(
year: float,
month: int,
day: int = 0,
hour: int = 0,
min: int = 0,
sec: int = 0,
millisec: float = 0,
) -> dt.datetime:
...
@vectorize
def datetime(*args):
if len(args) == 0:
return dt.datetime.now()
elif len(args) == 1:
return dt.datetime.fromtimestamp(0.001 * args[0])
elif len(args) == 2:
return dt.datetime(*args, 1)
elif len(args) <= 7:
args = list(map(int, args))
args[1] += 1
if len(args) == 2:
args.append(0)
if len(args) == 7:
args[6] = int(args[6] * 1000)
return dt.datetime(*args)
else:
raise ValueError("Too many arguments")
@vectorize
def date(datetime: dt.datetime) -> int:
return datetime.day
@vectorize
def day(datetime: dt.datetime) -> int:
return (datetime.weekday() + 1) % 7
@vectorize
def year(datetime: dt.datetime) -> int:
return datetime.year
@vectorize
def quarter(datetime: dt.datetime) -> int:
return (datetime.month - 1) // 3
@vectorize
def month(datetime: dt.datetime) -> int:
return datetime.month - 1
@vectorize
def hours(datetime: dt.datetime) -> int:
return datetime.hour
@vectorize
def minutes(datetime: dt.datetime) -> int:
return datetime.minute
@vectorize
def seconds(datetime: dt.datetime) -> int:
return datetime.second
@vectorize
def milliseconds(datetime: dt.datetime) -> float:
return datetime.microsecond / 1000
@vectorize
def time(datetime: dt.datetime) -> float:
return datetime.timestamp() * 1000
@vectorize
def timezoneoffset(datetime):
raise NotImplementedError("timezoneoffset()")
@vectorize
def utc(
year: int,
month: int = 0,
day: int = 1,
hour: int = 0,
min: int = 0,
sec: int = 0,
millisec: int = 0,
) -> float:
return (
dt.datetime(
int(year),
int(month) + 1,
int(day),
int(hour),
int(min),
int(sec),
int(millisec * 1000),
tzinfo=dt.timezone.utc,
).timestamp()
* 1000
)
@vectorize
def utcdate(datetime: dt.datetime) -> int:
return date(datetime.astimezone(tz.tzutc()))
@vectorize
def utcday(datetime: dt.datetime) -> int:
return day(datetime.astimezone(tz.tzutc()))
@vectorize
def utcyear(datetime: dt.datetime) -> int:
return year(datetime.astimezone(tz.tzutc()))
@vectorize
def utcquarter(datetime: dt.datetime) -> int:
return quarter(datetime.astimezone(tz.tzutc()))
@vectorize
def utcmonth(datetime: dt.datetime) -> int:
return month(datetime.astimezone(tz.tzutc()))
@vectorize
def utchours(datetime: dt.datetime) -> int:
return hours(datetime.astimezone(tz.tzutc()))
@vectorize
def utcminutes(datetime: dt.datetime) -> int:
return minutes(datetime.astimezone(tz.tzutc()))
@vectorize
def utcseconds(datetime: dt.datetime) -> int:
return seconds(datetime.astimezone(tz.tzutc()))
def utcmilliseconds(datetime: dt.datetime) -> float:
return milliseconds(datetime.astimezone(tz.tzutc()))
@vectorize
def dayFormat(day: int) -> str:
days = [
"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
]
return days[day % 7]
@vectorize
def dayAbbrevFormat(day: int) -> str:
days = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]
return days[day % 7]
@vectorize
def format(value, specifier):
raise NotImplementedError()
@vectorize
def monthFormat(month: int) -> str:
months = [
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
]
return months[month % 12]
@vectorize
def monthAbbrevFormat(month: int) -> str:
months = [
"Jan",
"Feb",
"Ma",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec",
]
return months[month % 12]
@vectorize
|
MIT License
|
erdos-project/pylot
|
pylot/perception/detection/detection_eval_operator.py
|
CocoDetectionScoringModule.get_scores
|
python
|
def get_scores(self):
self.get_summary_counter += 1
if (self.get_summary_counter -
1) % self._flags.detection_eval_freq != 0:
return {}
if len(self.coco_eval.images) < self._flags.detection_eval_lookback:
return {}
result_dict = self.coco_eval.evaluate_last_n(
self._flags.detection_eval_lookback)
return {"coco_" + k: v for k, v in result_dict.items()}
|
Every FLAGS.detection_eval_freq calls to this function (starting
with the first call) it returns eval aggregate of the last
FLAGS.detection_eval_lookback images as a dictionary.
|
https://github.com/erdos-project/pylot/blob/858869fec82238ccc3eba0947b0ea37e6202b054/pylot/perception/detection/detection_eval_operator.py#L50-L66
|
import json
from datetime import datetime
import erdos
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pylot.perception.base_perception_eval_operator import BasePerceptionEvalOperator, ScoringModule
from pylot.utils import verify_keys_in_dict
class DetectionEvalOperator(BasePerceptionEvalOperator):
def __init__(self, prediction_stream: erdos.ReadStream,
ground_truth_stream: erdos.ReadStream,
finished_indicator_stream: erdos.WriteStream,
evaluate_timely: bool, matching_policy: str, frame_gap: int,
flags):
super().__init__(prediction_stream, ground_truth_stream,
finished_indicator_stream, evaluate_timely,
matching_policy, frame_gap,
CocoDetectionScoringModule, flags)
class CocoDetectionScoringModule(ScoringModule):
def __init__(self, flags):
self._flags = flags
self._logger = erdos.utils.setup_logging(
"coco_detection_scoring_module", self._flags.log_file_name)
label_list = ["person", "bicycle", "car", "motorcycle"]
self.coco_eval = OnlineCOCOEval(label_list)
self.get_summary_counter = 0
|
Apache License 2.0
|
langmead-lab/reference_flow
|
src/update_genome.py
|
update_allele
|
python
|
def update_allele(
orig,
alts,
allele,
indels,
head,
loc,
f_var,
hap,
hap_str,
offset,
offset_other,
chrom
):
if len(orig) != len(alts[allele-1]):
v_type = 'INDEL'
else:
v_type = 'SNP'
flag_skip = False
if indels:
if loc == head - 1 and (len(orig) < len(alts[allele - 1])):
print ('Warning: overlapped INS at {0}, {1} for hap{2}'.format(loc, chrom, hap_str))
new_offset = add_alt(hap, loc-1, orig, alts[allele-1], offset, True)
elif loc >= head:
new_offset = add_alt(hap, loc-1, orig, alts[allele-1], offset, False)
else:
flag_skip = True
print ('Warning: conflict at {0}, {1} for hap{2}'.format(loc, chrom, hap_str))
else:
new_offset = 0
hap[loc+offset-1] = alts[allele-1]
if not flag_skip:
f_var.write(
'%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n' %
(hap_str, chrom, v_type, str(loc), str(loc+offset), orig, alts[allele-1], str(new_offset), str(offset_other) )
)
offset = new_offset
head = loc + len(orig)
return head, hap, offset
|
Update an allele
|
https://github.com/langmead-lab/reference_flow/blob/85fa12abcfc12f421f67d31c268ffd35d1427875/src/update_genome.py#L131-L177
|
import sys
import argparse
import random
import copy
from collections import OrderedDict
def get_mutation_type(orig, alts):
assert orig.count(',') == 0
if alts.count(',') == 0:
if len(orig) == len(alts) and len(orig) == 1:
return 'SNP'
elif len(orig) == len(alts) and len(orig) != 1:
return 'MNP'
elif len(orig) != len(alts):
return 'INDEL'
return 'MULT'
def get_allele_freq(info, num_haps, data_source, gnomad_ac_field):
attrs = info.split(';')
if data_source == '1kg':
for a in attrs:
if a[:3] == 'AC=':
try:
count = int(a[3:])
except:
a = a[3:].split(',')
inta = [int(i) for i in a]
count = max(inta)
return float(count) / num_haps
elif data_source == 'gnomad':
for a in attrs:
field = a.split('=')[0]
if field == gnomad_ac_field:
return float(a.split('=')[1]) / num_haps
return -1
def process_vcf_header(line, indiv, f_vcf, data_source, is_ld):
labels = line.rstrip().split('\t')
col = None
num_haps = None
if indiv != None:
for i in range(9, len(labels)):
if labels[i] == indiv:
col = i
if not col:
print('Error! Couldn\'t find individual %s in VCF' % indiv)
exit(1)
f_vcf.write('\t'.join(labels[:9]) + f'\t{labels[col]}\n')
else:
if data_source == '1kg':
if is_ld:
f_vcf.write('\t'.join(labels[:9]) + '\tLD_SAMPLE\n')
else:
f_vcf.write('\t'.join(labels[:9]) + '\n')
else:
f_vcf.write(line)
if data_source == '1kg':
num_haps = 2 * (len(labels) - 9)
return col, num_haps, labels
def write_to_fasta(dict_genome, out_prefix, suffix, line_width = 60):
f_fasta = open(f'{out_prefix}{suffix}.fa', 'w')
for key in dict_genome.keys():
f_fasta.write(f'>{dict_genome[key][0]}\n')
for i in range(0, len(dict_genome[key][1]), line_width):
f_fasta.write(''.join(dict_genome[key][1][i: i + line_width]) + '\n')
f_fasta.close()
|
MIT License
|
atomlinter/linter-pylama
|
bin/deps/flake8/api/legacy.py
|
get_style_guide
|
python
|
def get_style_guide(**kwargs):
application = app.Application()
application.parse_preliminary_options_and_args([])
flake8.configure_logging(
application.prelim_opts.verbose, application.prelim_opts.output_file)
application.make_config_finder()
application.find_plugins()
application.register_plugin_options()
application.parse_configuration_and_cli([])
options = application.options
for key, value in kwargs.items():
try:
getattr(options, key)
setattr(options, key, value)
except AttributeError:
LOG.error('Could not update option "%s"', key)
application.make_formatter()
application.make_notifier()
application.make_guide()
application.make_file_checker_manager()
return StyleGuide(application)
|
r"""Provision a StyleGuide for use.
:param \*\*kwargs:
Keyword arguments that provide some options for the StyleGuide.
:returns:
An initialized StyleGuide
:rtype:
:class:`StyleGuide`
|
https://github.com/atomlinter/linter-pylama/blob/9157f7f84083007161814c93b537a712984f3c86/bin/deps/flake8/api/legacy.py#L19-L51
|
import logging
import os.path
import flake8
from flake8.formatting import base as formatter
from flake8.main import application as app
LOG = logging.getLogger(__name__)
__all__ = ('get_style_guide',)
|
MIT License
|
mgear-dev/mgear_core
|
scripts/mgear/core/anim_utils.py
|
keySel
|
python
|
def keySel():
pm.setKeyframe()
|
Key selected controls
|
https://github.com/mgear-dev/mgear_core/blob/bb450fda44ff79c57f5f73d5a58c97a6b5c5d848/scripts/mgear/core/anim_utils.py#L523-L526
|
import re
import traceback
from functools import partial
from maya import cmds
import pymel.core as pm
from pymel import versions
import mgear
from mgear.vendor.Qt import QtCore
from mgear.vendor.Qt import QtWidgets
from mgear.core import pyqt
from mgear.core import dag
from mgear.core import transform
from mgear.core import utils
from mgear.core import attribute
from mgear.core import vector
from mgear.core.attribute import reset_selected_channels_value
from mgear.core.pickWalk import get_all_tag_children
EXPR_LEFT_SIDE = re.compile("L(\d+)")
EXPR_RIGHT_SIDE = re.compile("R(\d+)")
CTRL_GRP_SUFFIX = "_controllers_grp"
PLOT_GRP_SUFFIX = "_PLOT_grp"
TAN_TOKEN = "_tan_ctl"
TAN0_TOKEN = "_tan0_ctl"
TAN1_TOKEN = "_tan1_ctl"
START_IK_TOKEN = "_ik0_ctl"
END_IK_TOKEN = "_ik1_ctl"
POS_IK_TOKEN = "_spinePosition_ctl"
NO_MIRROR_ATTRIBUTES = ["isRig", "uiHost", "_ctl"]
def isSideElement(name):
if "_L_" in name or "_R_" in name:
return True
nameParts = stripNamespace(name).split("|")[-1]
for part in nameParts.split("_"):
if EXPR_LEFT_SIDE.match(part) or EXPR_RIGHT_SIDE.match(part):
return True
else:
return False
def isSideNode(node):
if node.hasAttr("side_label"):
if node.side_label.get() in "LR":
return True
else:
return False
else:
return isSideElement(node.name())
def swapSideLabel(name):
for part in name.split("_"):
if EXPR_LEFT_SIDE.match(part):
return EXPR_LEFT_SIDE.sub(r"R\1", name)
if EXPR_RIGHT_SIDE.match(part):
return EXPR_RIGHT_SIDE.sub(r"L\1", name)
else:
if "_L_" in name:
return name.replace("_L_", "_R_")
elif "_R_" in name:
return name.replace("_R_", "_L_")
else:
return name
def swapSideLabelNode(node):
name = node.stripNamespace()
sw_name = swapSideLabel(name)
if name != sw_name:
return sw_name
if node.hasAttr("side_label"):
side = node.side_label.get()
if side in "LR":
c_side = node.attr("{}_custom_side_label".format(side)).get()
if side == "L":
cm_side = node.attr("R_custom_side_label").get()
elif side == "R":
cm_side = node.attr("L_custom_side_label").get()
return node.stripNamespace().replace(c_side, cm_side)
else:
return node.stripNamespace()
else:
return swapSideLabel(node.stripNamespace())
def getClosestNode(node, nodesToQuery):
distance = None
closestNode = None
node = pm.PyNode(node)
for index, nodeTQ in enumerate(nodesToQuery):
nodeTQ = pm.PyNode(nodeTQ)
tmpDist = vector.getDistance2(node, nodeTQ)
if index is 0:
distance = tmpDist
closestNode = nodeTQ
if distance > tmpDist:
distance = tmpDist
closestNode = nodeTQ
return closestNode.name()
def recordNodesMatrices(nodes, desiredTime):
nodeToMat_dict = {}
for fk in nodes:
fk = pm.PyNode(fk)
nodeToMat_dict[fk.name()] = fk.getAttr("worldMatrix", time=desiredTime)
return nodeToMat_dict
def getRootNode():
root = None
current = pm.ls(sl=True)
if not current:
raise RuntimeError("You need to select at least one rig node")
if pm.objExists("{}.is_rig".format(current[0])):
root = current[0]
else:
holder = current[0]
while pm.listRelatives(holder, parent=True) and not root:
if pm.objExists("{}.is_rig".format(holder)):
root = holder
else:
holder = pm.listRelatives(holder, parent=True)[0]
if not root:
raise RuntimeError("Couldn't find root node from your selection")
return root
def getControlers(model, gSuffix=CTRL_GRP_SUFFIX):
try:
ctl_set = pm.PyNode(model.name() + gSuffix)
members = ctl_set.members()
return members
except TypeError:
return None
def get_control_list(control, blend_attr, extension="_ctl"):
controls = None
controls_attribute = blend_attr.replace("_blend", extension)
try:
controls = cmds.getAttr("{}.{}".format(control, controls_attribute))
except ValueError:
if control == "world_ctl":
_msg = "New type attributes using world as host are not supported"
raise RuntimeError(_msg)
attr = "{}_{}_ctl".format(blend_attr.split("_")[0],
control.split(":")[-1].split("_")[1])
controls = cmds.getAttr("{}.{}".format(control, attr))
return controls
def get_ik_fk_controls(control, blend_attr, comp_ctl_list=None):
ik_fk_controls = {"fk_controls": [],
"ik_controls": []}
if comp_ctl_list:
ctl_list = cmds.getAttr("{}.{}".format(control, comp_ctl_list))
else:
ctl_list = get_control_list(control, blend_attr)
for ctl in ctl_list.split(","):
if len(ctl) == 0:
continue
if "_ik" in ctl.lower() or "_upv" in ctl:
ik_fk_controls["ik_controls"].append(ctl)
elif "_fk" in ctl.lower():
ik_fk_controls["fk_controls"].append(ctl)
return ik_fk_controls
def get_ik_fk_controls_by_role(uiHost, attr_ctl_cnx):
ik_controls = {"ik_control": None,
"pole_vector": None,
"ik_rot": None
}
fk_controls = []
uiHost = pm.PyNode(uiHost)
if uiHost.hasAttr(attr_ctl_cnx):
cnxs = uiHost.attr(attr_ctl_cnx).listConnections()
if cnxs:
for c in cnxs:
role = c.ctl_role.get()
if "fk" in role:
fk_controls.append(c.stripNamespace())
elif role == "upv":
ik_controls["pole_vector"] = c.stripNamespace()
elif role == "ik":
ik_controls["ik_control"] = c.stripNamespace()
elif role == "ikRot":
ik_controls["ik_rot"] = c.stripNamespace()
fk_controls = sorted(fk_controls)
return ik_controls, fk_controls
def get_host_from_node(control):
namespace = getNamespace(control).split("|")[-1]
host = cmds.getAttr("{}.uiHost".format(control))
return "{}:{}".format(namespace, host)
def getNamespace(modelName):
if not modelName:
return ""
if len(modelName.split(":")) >= 2:
nameSpace = ":".join(modelName.split(":")[:-1])
else:
nameSpace = ""
return nameSpace
def stripNamespace(nodeName):
return nodeName.split(":")[-1]
def getNode(nodeName):
try:
return pm.PyNode(nodeName)
except pm.MayaNodeError:
return None
def listAttrForMirror(node):
res = ["tx", "ty", "tz", "rx", "ry", "rz", "sx", "sy", "sz", "ro"]
res.extend(pm.listAttr(node, userDefined=True, shortNames=True))
res = list(filter(lambda x: not x.startswith("inv"), res))
res = list(filter(lambda x: node.attr(x).type()
not in ["message", "string"], res))
return res
def getInvertCheckButtonAttrName(str):
return "inv{0}".format(str.lower().capitalize())
def selAll(model):
controlers = getControlers(model)
pm.select(controlers)
def selGroup(model, groupSuffix):
controlers = getControlers(model, groupSuffix)
pm.select(controlers)
def select_all_child_controls(control, *args):
children = get_all_tag_children(control)
if not children:
return
cmds.select(children, add=True)
def quickSel(model, channel, mouse_button):
qs_attr = model.attr("quicksel%s" % channel)
if mouse_button == QtCore.Qt.LeftButton:
names = qs_attr.get().split(",")
if not names:
return
pm.select(clear=True)
for name in names:
ctl = dag.findChild(model, name)
if ctl:
ctl.select(add=True)
elif mouse_button == QtCore.Qt.MidButton:
names = [sel.name().split("|")[-1]
for sel in pm.ls(selection=True)
if sel.name().endswith("_ctl")]
qs_attr.set(",".join(names))
elif mouse_button == QtCore.Qt.RightButton:
names = qs_attr.get().split(",")
if not names:
return
else:
keyObj(model, names)
|
MIT License
|
lightly-ai/lightly
|
lightly/openapi_generated/swagger_client/models/configuration_set_request.py
|
ConfigurationSetRequest.configs
|
python
|
def configs(self, configs):
if self._configuration.client_side_validation and configs is None:
raise ValueError("Invalid value for `configs`, must not be `None`")
self._configs = configs
|
Sets the configs of this ConfigurationSetRequest.
:param configs: The configs of this ConfigurationSetRequest. # noqa: E501
:type: list[ConfigurationEntry]
|
https://github.com/lightly-ai/lightly/blob/00820e5a60522effb3685a8d792f15e99770ea50/lightly/openapi_generated/swagger_client/models/configuration_set_request.py#L92-L102
|
import pprint
import re
import six
from lightly.openapi_generated.swagger_client.configuration import Configuration
class ConfigurationSetRequest(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'name': 'str',
'configs': 'list[ConfigurationEntry]'
}
attribute_map = {
'name': 'name',
'configs': 'configs'
}
def __init__(self, name=None, configs=None, _configuration=None):
if _configuration is None:
_configuration = Configuration()
self._configuration = _configuration
self._name = None
self._configs = None
self.discriminator = None
self.name = name
self.configs = configs
@property
def name(self):
return self._name
@name.setter
def name(self, name):
if self._configuration.client_side_validation and name is None:
raise ValueError("Invalid value for `name`, must not be `None`")
self._name = name
@property
def configs(self):
return self._configs
@configs.setter
|
MIT License
|
open-eo/openeo-python-client
|
openeo/processes.py
|
ProcessBuilder.create_raster_cube
|
python
|
def create_raster_cube(self) -> 'ProcessBuilder':
return create_raster_cube()
|
Create an empty raster data cube
:return: An empty raster data cube with zero dimensions.
|
https://github.com/open-eo/openeo-python-client/blob/bde2d0f992bd52fc244c8bfeceac4e58d6b12c2d/openeo/processes.py#L879-L885
|
import builtins
from openeo.internal.processes.builder import ProcessBuilderBase, UNSET
class ProcessBuilder(ProcessBuilderBase):
def __add__(self, other) -> 'ProcessBuilder':
return self.add(other)
def __radd__(self, other) -> 'ProcessBuilder':
return add(other, self)
def __sub__(self, other) -> 'ProcessBuilder':
return self.subtract(other)
def __rsub__(self, other) -> 'ProcessBuilder':
return subtract(other, self)
def __mul__(self, other) -> 'ProcessBuilder':
return self.multiply(other)
def __rmul__(self, other) -> 'ProcessBuilder':
return multiply(other, self)
def __truediv__(self, other) -> 'ProcessBuilder':
return self.divide(other)
def __rtruediv__(self, other) -> 'ProcessBuilder':
return divide(other, self)
def __neg__(self) -> 'ProcessBuilder':
return self.multiply(-1)
def __pow__(self, other) -> 'ProcessBuilder':
return self.power(other)
def __getitem__(self, key) -> 'ProcessBuilder':
if isinstance(key, builtins.int):
return self.array_element(index=key)
else:
return self.array_element(label=key)
def __eq__(self, other) -> 'ProcessBuilder':
return eq(self, other)
def __ne__(self, other) -> 'ProcessBuilder':
return neq(self, other)
def absolute(self) -> 'ProcessBuilder':
return absolute(x=self)
def add(self, y) -> 'ProcessBuilder':
return add(x=self, y=y)
def add_dimension(self, name, label, type=UNSET) -> 'ProcessBuilder':
return add_dimension(data=self, name=name, label=label, type=type)
def aggregate_spatial(self, geometries, reducer, target_dimension=UNSET, context=UNSET) -> 'ProcessBuilder':
return aggregate_spatial(data=self, geometries=geometries, reducer=reducer, target_dimension=target_dimension, context=context)
def aggregate_spatial_binary(self, geometries, reducer, target_dimension=UNSET, context=UNSET) -> 'ProcessBuilder':
return aggregate_spatial_binary(data=self, geometries=geometries, reducer=reducer, target_dimension=target_dimension, context=context)
def aggregate_spatial_window(self, reducer, size, boundary=UNSET, align=UNSET, context=UNSET) -> 'ProcessBuilder':
return aggregate_spatial_window(data=self, reducer=reducer, size=size, boundary=boundary, align=align, context=context)
def aggregate_temporal(self, intervals, reducer, labels=UNSET, dimension=UNSET, context=UNSET) -> 'ProcessBuilder':
return aggregate_temporal(data=self, intervals=intervals, reducer=reducer, labels=labels, dimension=dimension, context=context)
def aggregate_temporal_period(self, period, reducer, dimension=UNSET, context=UNSET) -> 'ProcessBuilder':
return aggregate_temporal_period(data=self, period=period, reducer=reducer, dimension=dimension, context=context)
def all(self, ignore_nodata=UNSET) -> 'ProcessBuilder':
return all(data=self, ignore_nodata=ignore_nodata)
def and_(self, y) -> 'ProcessBuilder':
return and_(x=self, y=y)
def anomaly(self, normals, period) -> 'ProcessBuilder':
return anomaly(data=self, normals=normals, period=period)
def any(self, ignore_nodata=UNSET) -> 'ProcessBuilder':
return any(data=self, ignore_nodata=ignore_nodata)
def apply(self, process, context=UNSET) -> 'ProcessBuilder':
return apply(data=self, process=process, context=context)
def apply_dimension(self, process, dimension, target_dimension=UNSET, context=UNSET) -> 'ProcessBuilder':
return apply_dimension(data=self, process=process, dimension=dimension, target_dimension=target_dimension, context=context)
def apply_kernel(self, kernel, factor=UNSET, border=UNSET, replace_invalid=UNSET) -> 'ProcessBuilder':
return apply_kernel(data=self, kernel=kernel, factor=factor, border=border, replace_invalid=replace_invalid)
def apply_neighborhood(self, process, size, overlap=UNSET, context=UNSET) -> 'ProcessBuilder':
return apply_neighborhood(data=self, process=process, size=size, overlap=overlap, context=context)
def arccos(self) -> 'ProcessBuilder':
return arccos(x=self)
def arcosh(self) -> 'ProcessBuilder':
return arcosh(x=self)
def arcsin(self) -> 'ProcessBuilder':
return arcsin(x=self)
def arctan(self) -> 'ProcessBuilder':
return arctan(x=self)
def arctan2(self, x) -> 'ProcessBuilder':
return arctan2(y=self, x=x)
def ard_normalized_radar_backscatter(self, elevation_model=UNSET, contributing_area=UNSET, ellipsoid_incidence_angle=UNSET, noise_removal=UNSET) -> 'ProcessBuilder':
return ard_normalized_radar_backscatter(data=self, elevation_model=elevation_model, contributing_area=contributing_area, ellipsoid_incidence_angle=ellipsoid_incidence_angle, noise_removal=noise_removal)
def ard_surface_reflectance(self, atmospheric_correction_method, cloud_detection_method, elevation_model=UNSET, atmospheric_correction_options=UNSET, cloud_detection_options=UNSET) -> 'ProcessBuilder':
return ard_surface_reflectance(data=self, atmospheric_correction_method=atmospheric_correction_method, cloud_detection_method=cloud_detection_method, elevation_model=elevation_model, atmospheric_correction_options=atmospheric_correction_options, cloud_detection_options=cloud_detection_options)
def array_append(self, value) -> 'ProcessBuilder':
return array_append(data=self, value=value)
def array_apply(self, process, context=UNSET) -> 'ProcessBuilder':
return array_apply(data=self, process=process, context=context)
def array_concat(self, array2) -> 'ProcessBuilder':
return array_concat(array1=self, array2=array2)
def array_contains(self, value) -> 'ProcessBuilder':
return array_contains(data=self, value=value)
def array_create(self=UNSET, repeat=UNSET) -> 'ProcessBuilder':
return array_create(data=self, repeat=repeat)
def array_create_labeled(self, labels) -> 'ProcessBuilder':
return array_create_labeled(data=self, labels=labels)
def array_element(self, index=UNSET, label=UNSET, return_nodata=UNSET) -> 'ProcessBuilder':
return array_element(data=self, index=index, label=label, return_nodata=return_nodata)
def array_filter(self, condition, context=UNSET) -> 'ProcessBuilder':
return array_filter(data=self, condition=condition, context=context)
def array_find(self, value) -> 'ProcessBuilder':
return array_find(data=self, value=value)
def array_find_label(self, label) -> 'ProcessBuilder':
return array_find_label(data=self, label=label)
def array_interpolate_linear(self) -> 'ProcessBuilder':
return array_interpolate_linear(data=self)
def array_labels(self) -> 'ProcessBuilder':
return array_labels(data=self)
def array_modify(self, values, index, length=UNSET) -> 'ProcessBuilder':
return array_modify(data=self, values=values, index=index, length=length)
def arsinh(self) -> 'ProcessBuilder':
return arsinh(x=self)
def artanh(self) -> 'ProcessBuilder':
return artanh(x=self)
def atmospheric_correction(self, method, elevation_model=UNSET, options=UNSET) -> 'ProcessBuilder':
return atmospheric_correction(data=self, method=method, elevation_model=elevation_model, options=options)
def between(self, min, max, exclude_max=UNSET) -> 'ProcessBuilder':
return between(x=self, min=min, max=max, exclude_max=exclude_max)
def ceil(self) -> 'ProcessBuilder':
return ceil(x=self)
def climatological_normal(self, period, climatology_period=UNSET) -> 'ProcessBuilder':
return climatological_normal(data=self, period=period, climatology_period=climatology_period)
def clip(self, min, max) -> 'ProcessBuilder':
return clip(x=self, min=min, max=max)
def cloud_detection(self, method, options=UNSET) -> 'ProcessBuilder':
return cloud_detection(data=self, method=method, options=options)
def constant(self) -> 'ProcessBuilder':
return constant(x=self)
def cos(self) -> 'ProcessBuilder':
return cos(x=self)
def cosh(self) -> 'ProcessBuilder':
return cosh(x=self)
def count(self, condition=UNSET, context=UNSET) -> 'ProcessBuilder':
return count(data=self, condition=condition, context=context)
|
Apache License 2.0
|
aspose-words-cloud/aspose-words-cloud-python
|
asposewordscloud/models/report_build_options.py
|
ReportBuildOptions.__init__
|
python
|
def __init__(self):
self.discriminator = None
|
ReportBuildOptions - a model defined in Swagger
|
https://github.com/aspose-words-cloud/aspose-words-cloud-python/blob/abf8fccfed40aa2b09c6cdcaf3f2723e1f412d85/asposewordscloud/models/report_build_options.py#L59-L62
|
import pprint
import re
import datetime
import six
import json
class ReportBuildOptions(object):
"""
allowed enum values
"""
NONE = "None"
ALLOWMISSINGMEMBERS = "AllowMissingMembers"
REMOVEEMPTYPARAGRAPHS = "RemoveEmptyParagraphs"
INLINEERRORMESSAGES = "InlineErrorMessages"
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
}
attribute_map = {
}
|
MIT License
|
dialoguemd/fastapi-sqla
|
fastapi_sqla/__init__.py
|
paginate_query
|
python
|
def paginate_query(
query: DbQuery,
session: Session,
total_items: int,
offset: int,
limit: int,
scalars: bool = True,
) -> Page[T]:
raise NotImplementedError(f"no paginate_query registered for type {type(query)!r}")
|
Dispatch on registered functions based on `query` type
|
https://github.com/dialoguemd/fastapi-sqla/blob/2aa694edaf647eb5205f4500ef7dbe466d8a4106/fastapi_sqla/__init__.py#L230-L239
|
import asyncio
import math
import os
from contextlib import contextmanager
from functools import singledispatch
from typing import Callable, Generic, List, Optional, TypeVar, Union
import structlog
from fastapi import Depends, FastAPI, Query, Request
from fastapi.concurrency import contextmanager_in_threadpool
from fastapi.responses import PlainTextResponse
from pydantic import BaseModel, Field
from pydantic.generics import GenericModel
from sqlalchemy import engine_from_config
from sqlalchemy.ext.declarative import DeferredReflection
from sqlalchemy.orm import Query as LegacyQuery
from sqlalchemy.orm.session import Session as SqlaSession
from sqlalchemy.orm.session import sessionmaker
from sqlalchemy.sql import Select, func, select
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
try:
from . import asyncio_support
from .asyncio_support import AsyncSession
from .asyncio_support import open_session as open_async_session
except ImportError as err:
asyncio_support = False
asyncio_support_err = str(err)
__all__ = [
"AsyncSession",
"Base",
"Page",
"Paginate",
"Session",
"open_async_session",
"open_session",
"setup",
]
logger = structlog.get_logger(__name__)
_SESSION_KEY = "fastapi_sqla_session"
_Session = sessionmaker()
def setup(app: FastAPI):
app.add_event_handler("startup", startup)
app.middleware("http")(add_session_to_request)
async_sqlalchemy_url = os.getenv("async_sqlalchemy_url")
if async_sqlalchemy_url:
assert asyncio_support, asyncio_support_err
app.add_event_handler("startup", asyncio_support.startup)
app.middleware("http")(asyncio_support.add_session_to_request)
def startup():
engine = engine_from_config(os.environ, prefix="sqlalchemy_")
Base.metadata.bind = engine
Base.prepare(engine)
_Session.configure(bind=engine)
logger.info("startup", engine=engine)
class Base(declarative_base(cls=DeferredReflection)):
__abstract__ = True
class Session(SqlaSession):
def __new__(cls, request: Request) -> SqlaSession:
try:
return request.scope[_SESSION_KEY]
except KeyError:
raise Exception(
"No session found in request, please ensure you've setup fastapi_sqla."
)
@contextmanager
def open_session() -> Session:
session = _Session()
logger.bind(db_session=session)
try:
yield session
except Exception:
logger.warning("context failed, rolling back", exc_info=True)
session.rollback()
raise
else:
try:
session.commit()
except Exception:
logger.exception("commit failed, rolling back")
session.rollback()
raise
finally:
session.close()
async def add_session_to_request(request: Request, call_next):
async with contextmanager_in_threadpool(open_session()) as session:
request.scope[_SESSION_KEY] = session
response = await call_next(request)
loop = asyncio.get_running_loop()
if response.status_code < 400:
try:
await loop.run_in_executor(None, session.commit)
except Exception:
logger.exception("commit failed, returning http error")
response = PlainTextResponse(
content="Internal Server Error", status_code=500
)
if response.status_code >= 400:
logger.warning("http error, rolling back", status_code=response.status_code)
await loop.run_in_executor(None, session.rollback)
return response
T = TypeVar("T")
class Item(GenericModel, Generic[T]):
data: T
class Collection(GenericModel, Generic[T]):
data: List[T]
class Meta(BaseModel):
offset: int = Field(..., description="Current page offset")
total_items: int = Field(..., description="Total number of items in the collection")
total_pages: int = Field(..., description="Total number of pages in the collection")
page_number: int = Field(..., description="Current page number. Starts at 1.")
class Page(Collection, Generic[T]):
meta: Meta
DbQuery = Union[LegacyQuery, Select]
QueryCountDependency = Callable[..., int]
PaginateSignature = Callable[[DbQuery, Optional[bool]], Page[T]]
def default_query_count(session: Session, query: DbQuery) -> int:
if isinstance(query, LegacyQuery):
result = query.count()
elif isinstance(query, Select):
result = session.execute(select(func.count()).select_from(query)).scalar()
else:
raise NotImplementedError(f"Query type {type(query)!r} is not supported")
return result
@singledispatch
|
MIT License
|
microsoft/hummingbird
|
hummingbird/ml/operator_converters/_tree_commons.py
|
get_parameters_for_tree_trav_sklearn
|
python
|
def get_parameters_for_tree_trav_sklearn(lefts, rights, features, thresholds, values, classes=None, extra_config={}):
features = [max(x, 0) for x in features]
values = np.array(values)
if len(values.shape) == 3:
values = values.reshape(values.shape[0], -1)
if values.shape[1] > 1 and classes is not None and len(classes) > 0:
values /= np.sum(values, axis=1, keepdims=True)
if constants.NUM_TREES in extra_config:
values /= extra_config[constants.NUM_TREES]
return get_parameters_for_tree_trav_common(lefts, rights, features, thresholds, values)
|
This function is used to generate tree parameters for sklearn trees.
Includes SklearnRandomForestClassifier/Regressor, and SklearnGradientBoostingClassifier.
Args:
left: The left nodes
right: The right nodes
features: The features used in the decision nodes
thresholds: The thresholds used in the decision nodes
values: The values stored in the leaf nodes
classes: The list of class labels. None if regression model
Returns:
An array containing the extracted parameters
|
https://github.com/microsoft/hummingbird/blob/1836ade9ca01506825e827734b82d9efcd54feae/hummingbird/ml/operator_converters/_tree_commons.py#L313-L338
|
import copy
import numpy as np
import torch
from ._tree_implementations import TreeImpl
from ._tree_implementations import GEMMDecisionTreeImpl, TreeTraversalDecisionTreeImpl, PerfectTreeTraversalDecisionTreeImpl
from . import constants
from hummingbird.ml.exceptions import MissingConverter
class Node:
def __init__(self, id=None):
self.id = id
self.left = None
self.right = None
self.feature = None
self.threshold = None
self.value = None
class TreeParameters:
def __init__(self, lefts, rights, features, thresholds, values):
self.lefts = lefts
self.rights = rights
self.features = features
self.thresholds = thresholds
self.values = values
class PostTransform:
def __call__(self, x):
return x
class ApplyBasePredictionPostTransform(PostTransform):
def __init__(self, base_prediction):
self.base_prediction = base_prediction
def __call__(self, x):
x += self.base_prediction
return x
class ApplySigmoidPostTransform(PostTransform):
def __init__(self):
self.one = torch.tensor(1.0)
def __call__(self, x):
output = torch.sigmoid(x)
return torch.cat([self.one - output, output], dim=1)
class ApplySigmoidBasePredictionPostTransform(PostTransform):
def __init__(self, base_prediction):
self.base_prediction = ApplyBasePredictionPostTransform(base_prediction)
def __call__(self, x):
return ApplySigmoidPostTransform()(self.base_prediction(x))
class ApplySoftmaxPostTransform(PostTransform):
def __call__(self, x):
return torch.softmax(x, dim=1)
class ApplySoftmaxBasePredictionPostTransform(PostTransform):
def __init__(self, base_prediction):
self.base_prediction = ApplyBasePredictionPostTransform(base_prediction)
def __call__(self, x):
return ApplySoftmaxPostTransform()(self.base_prediction(x))
class ApplyTweediePostTransform(PostTransform):
def __call__(self, x):
return torch.exp(x)
class ApplyTweedieBasePredictionPostTransform(PostTransform):
def __init__(self, base_prediction):
self.base_prediction = ApplyBasePredictionPostTransform(base_prediction)
def __call__(self, x):
return ApplyTweediePostTransform()(self.base_prediction(x))
def _find_max_depth(tree_parameters):
depth = 0
for tree in tree_parameters:
tree = copy.deepcopy(tree)
lefts = tree.lefts
rights = tree.rights
ids = [i for i in range(len(lefts))]
nodes = list(zip(ids, lefts, rights))
nodes_map = {0: Node(0)}
current_node = 0
for i, node in enumerate(nodes):
id, left, right = node
if left != -1:
l_node = Node(left)
nodes_map[left] = l_node
else:
lefts[i] = id
l_node = -1
if right != -1:
r_node = Node(right)
nodes_map[right] = r_node
else:
rights[i] = id
r_node = -1
nodes_map[current_node].left = l_node
nodes_map[current_node].right = r_node
current_node += 1
depth = max(depth, _find_depth(nodes_map[0], -1))
return depth
def _find_depth(node, current_depth):
if node.left == -1 and node.right == -1:
return current_depth + 1
elif node.left != -1 and node.right == -1:
return _find_depth(node.l, current_depth + 1)
elif node.right != -1 and node.left == -1:
return _find_depth(node.r, current_depth + 1)
elif node.right != -1 and node.left != -1:
return max(_find_depth(node.left, current_depth + 1), _find_depth(node.right, current_depth + 1))
def get_tree_implementation_by_config_or_depth(extra_config, max_depth, low=3, high=10):
if constants.TREE_IMPLEMENTATION not in extra_config:
if max_depth is not None and max_depth <= low:
return TreeImpl.gemm
elif max_depth is not None and max_depth <= high:
return TreeImpl.perf_tree_trav
else:
return TreeImpl.tree_trav
if extra_config[constants.TREE_IMPLEMENTATION] == TreeImpl.gemm.name:
return TreeImpl.gemm
elif extra_config[constants.TREE_IMPLEMENTATION] == TreeImpl.tree_trav.name:
return TreeImpl.tree_trav
elif extra_config[constants.TREE_IMPLEMENTATION] == TreeImpl.perf_tree_trav.name:
return TreeImpl.perf_tree_trav
else:
raise MissingConverter("Tree implementation {} not found".format(extra_config))
def get_tree_params_and_type(tree_infos, get_tree_parameters, extra_config):
tree_parameters = [get_tree_parameters(tree_info) for tree_info in tree_infos]
max_depth = max(1, _find_max_depth(tree_parameters))
tree_type = get_tree_implementation_by_config_or_depth(extra_config, max_depth)
return tree_parameters, max_depth, tree_type
def get_parameters_for_sklearn_common(tree_infos):
lefts = tree_infos.tree_.children_left
rights = tree_infos.tree_.children_right
features = tree_infos.tree_.feature
thresholds = tree_infos.tree_.threshold
values = tree_infos.tree_.value
return TreeParameters(lefts, rights, features, thresholds, values)
def get_parameters_for_tree_trav_common(lefts, rights, features, thresholds, values, extra_config={}):
if len(lefts) == 1:
lefts = [1, -1, -1]
rights = [2, -1, -1]
features = [0, 0, 0]
thresholds = [0, 0, 0]
n_classes = values.shape[1] if type(values) is np.ndarray else 1
values = np.array([np.zeros(n_classes), values[0], values[0]])
values.reshape(3, n_classes)
ids = [i for i in range(len(lefts))]
nodes = list(zip(ids, lefts, rights, features, thresholds, values))
nodes_map = {0: Node(0)}
current_node = 0
for i, node in enumerate(nodes):
id, left, right, feature, threshold, value = node
if left != -1:
l_node = Node(left)
nodes_map[left] = l_node
else:
lefts[i] = id
l_node = -1
feature = -1
if right != -1:
r_node = Node(right)
nodes_map[right] = r_node
else:
rights[i] = id
r_node = -1
feature = -1
nodes_map[current_node].left = l_node
nodes_map[current_node].right = r_node
nodes_map[current_node].feature = feature
nodes_map[current_node].threshold = threshold
nodes_map[current_node].value = value
current_node += 1
lefts = np.array(lefts)
rights = np.array(rights)
features = np.array(features)
thresholds = np.array(thresholds, dtype=np.float64)
values = np.array(values, dtype=np.float64)
return [nodes_map, ids, lefts, rights, features, thresholds, values]
|
MIT License
|
aspose-words-cloud/aspose-words-cloud-python
|
asposewordscloud/models/replace_text_parameters.py
|
ReplaceTextParameters.is_match_case
|
python
|
def is_match_case(self):
return self._is_match_case
|
Gets the is_match_case of this ReplaceTextParameters. # noqa: E501
Gets or sets a value indicating whether flag, true means the search is case-sensitive; false means the search is not case-sensitive. # noqa: E501
:return: The is_match_case of this ReplaceTextParameters. # noqa: E501
:rtype: bool
|
https://github.com/aspose-words-cloud/aspose-words-cloud-python/blob/abf8fccfed40aa2b09c6cdcaf3f2723e1f412d85/asposewordscloud/models/replace_text_parameters.py#L83-L91
|
import pprint
import re
import datetime
import six
import json
class ReplaceTextParameters(object):
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'is_match_case': 'bool',
'is_match_whole_word': 'bool',
'is_old_value_regex': 'bool',
'new_value': 'str',
'old_value': 'str'
}
attribute_map = {
'is_match_case': 'IsMatchCase',
'is_match_whole_word': 'IsMatchWholeWord',
'is_old_value_regex': 'IsOldValueRegex',
'new_value': 'NewValue',
'old_value': 'OldValue'
}
def __init__(self, is_match_case=None, is_match_whole_word=None, is_old_value_regex=None, new_value=None, old_value=None):
self._is_match_case = None
self._is_match_whole_word = None
self._is_old_value_regex = None
self._new_value = None
self._old_value = None
self.discriminator = None
if is_match_case is not None:
self.is_match_case = is_match_case
if is_match_whole_word is not None:
self.is_match_whole_word = is_match_whole_word
if is_old_value_regex is not None:
self.is_old_value_regex = is_old_value_regex
if new_value is not None:
self.new_value = new_value
if old_value is not None:
self.old_value = old_value
@property
|
MIT License
|
shannonai/fast-knn-nmt
|
thirdparty/fairseq/examples/pointer_generator/pointer_generator_src/transformer_pg.py
|
TransformerPointerGeneratorDecoder.forward
|
python
|
def forward(
self,
prev_output_tokens,
encoder_out: Optional[EncoderOut] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
features_only: bool = False,
alignment_layer: Optional[int] = 0,
alignment_heads: Optional[int] = 1,
src_lengths: Optional[Any] = None,
return_all_hiddens: bool = False,
):
x, extra = self.extract_features(
prev_output_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
alignment_layer=self.alignment_layer,
alignment_heads=self.alignment_heads,
)
if not features_only:
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
prev_output_embed = self.embed_tokens(prev_output_tokens)
prev_output_embed *= self.embed_scale
predictors = torch.cat((prev_output_embed, x), 2)
p_gens = self.project_p_gens(predictors)
p_gens = torch.sigmoid(p_gens)
x = self.output_layer(x, extra["attn"][0], encoder_out.src_tokens, p_gens)
return x, extra
|
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (EncoderOut, optional): output from the encoder, used
for encoder-side attention
incremental_state (dict, optional): dictionary used for storing
state during :ref:`Incremental decoding`
features_only (bool, optional): only return features without
applying output layer (default: False)
alignment_layer (int, optional): 0-based index of the layer to be
used for pointing (default: 0)
alignment_heads (int, optional): number of attention heads to be
used for pointing (default: 1)
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
|
https://github.com/shannonai/fast-knn-nmt/blob/27bbdd967befe06bfbfde11ab9cfa34b4aa46482/thirdparty/fairseq/examples/pointer_generator/pointer_generator_src/transformer_pg.py#L236-L288
|
import logging
from typing import Any, Dict, Optional
import torch
import torch.nn as nn
from fairseq import metrics, utils
from fairseq.models import register_model, register_model_architecture
from fairseq.models.fairseq_encoder import EncoderOut
from fairseq.models.transformer import (
DEFAULT_MAX_SOURCE_POSITIONS,
DEFAULT_MAX_TARGET_POSITIONS,
TransformerDecoder,
TransformerEncoder,
TransformerModel,
base_architecture,
)
from torch import Tensor
logger = logging.getLogger(__name__)
@register_model("transformer_pointer_generator")
class TransformerPointerGeneratorModel(TransformerModel):
@staticmethod
def add_args(parser):
TransformerModel.add_args(parser)
parser.add_argument('--alignment-heads', type=int, metavar='N',
help='number of attention heads to be used for '
'pointing')
parser.add_argument('--alignment-layer', type=int, metavar='I',
help='layer number to be used for pointing (0 '
'corresponding to the bottommost layer)')
parser.add_argument('--source-position-markers', type=int, metavar='N',
help='dictionary includes N additional items that '
'represent an OOV token at a particular input '
'position')
parser.add_argument('--force-generation', type=float, metavar='P',
default=None,
help='set the vocabulary distribution weight to P, '
'instead of predicting it from the input (1.0 '
'corresponding to generation, 0.0 to pointing)')
@classmethod
def build_model(cls, args, task):
base_architecture(args)
if args.encoder_layers_to_keep:
args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
if args.decoder_layers_to_keep:
args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
if getattr(args, "max_source_positions", None) is None:
args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
if getattr(args, "source_position_markers", None) is None:
args.source_position_markers = args.max_source_positions
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
if src_dict != tgt_dict:
raise ValueError("Pointer-generator requires a joined dictionary")
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary) - args.source_position_markers
padding_idx = dictionary.pad()
unk_idx = dictionary.unk()
logger.info(
"dictionary indices from {0} to {1} will be mapped to {2}".format(
num_embeddings, len(dictionary) - 1, unk_idx
)
)
emb = Embedding(num_embeddings, embed_dim, padding_idx, unk_idx)
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
if args.share_all_embeddings:
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
)
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise ValueError(
"--share-all-embeddings not compatible with --decoder-embed-path"
)
encoder_embed_tokens = build_embedding(
src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = encoder_embed_tokens
args.share_decoder_input_output_embed = True
else:
encoder_embed_tokens = build_embedding(
src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = build_embedding(
tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
)
encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens)
decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)
return cls(args, encoder, decoder)
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
return TransformerPointerGeneratorEncoder(args, src_dict, embed_tokens)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
return TransformerPointerGeneratorDecoder(args, tgt_dict, embed_tokens)
class TransformerPointerGeneratorEncoder(TransformerEncoder):
def forward(self, src_tokens, src_lengths, **kwargs):
encoder_out = super().forward(src_tokens, src_lengths, **kwargs)
return EncoderOut(
encoder_out=encoder_out.encoder_out,
encoder_padding_mask=encoder_out.encoder_padding_mask,
encoder_embedding=encoder_out.encoder_embedding,
encoder_states=encoder_out.encoder_states,
src_tokens=src_tokens,
src_lengths=None,
)
class TransformerPointerGeneratorDecoder(TransformerDecoder):
def __init__(self, args, dictionary, embed_tokens):
super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False)
self.alignment_heads = args.alignment_heads
self.alignment_layer = args.alignment_layer
input_embed_dim = embed_tokens.embedding_dim
p_gen_input_size = input_embed_dim + self.output_embed_dim
self.project_p_gens = nn.Linear(p_gen_input_size, 1)
nn.init.zeros_(self.project_p_gens.bias)
self.num_types = len(dictionary)
self.num_oov_types = args.source_position_markers
self.num_embeddings = self.num_types - self.num_oov_types
self.force_p_gen = args.force_generation
|
Apache License 2.0
|
graviti-ai/tensorbay-python-sdk
|
tensorbay/cli/cli.py
|
dataset
|
python
|
def dataset(obj: ContextInfo, tbrn: str, is_delete: bool, yes: bool) -> None:
from tensorbay.cli.dataset import _implement_dataset
_implement_dataset(obj, tbrn, is_delete, yes)
|
List, create or delete datasets.\f
Arguments:
obj: A :class:`.utility.ContextInfo` instance containing the command context.
tbrn: The tbrn of the dataset, like "tb:KITTI".
is_delete: Whether to delete the TensorBay dataset.
yes: Confirm to delete the dataset completely.
|
https://github.com/graviti-ai/tensorbay-python-sdk/blob/db60d259869d6a528ee1ad84103d2b9bab1bd72e/tensorbay/cli/cli.py#L152-L164
|
from functools import partial
from typing import Iterable, Optional, Tuple
import click
from tensorbay import __version__
from tensorbay.cli.custom import CustomCommand, DeprecatedOptionsCommand
from tensorbay.cli.utility import ContextInfo
@click.group(context_settings={"help_option_names": ("-h", "--help")})
@click.version_option(__version__)
@click.option(
"-k",
"--key",
"access_key",
type=str,
default="",
help="The AccessKey to TensorBay (replace the AccessKey in config file).",
)
@click.option("-u", "--url", type=str, default="", help="The login url.", hidden=True)
@click.option(
"-p",
"--profile",
"profile_name",
type=str,
default="default",
help="Choose a profile from the config file to login.",
)
@click.option("-d", "--debug", is_flag=True, help="Debug mode.")
@click.pass_context
def cli(ctx: click.Context, access_key: str, url: str, profile_name: str, debug: bool) -> None:
from tensorbay.cli.utility import _implement_cli
_implement_cli(ctx, access_key, url, profile_name, debug)
command = partial(cli.command, cls=CustomCommand)
@command(
synopsis=(
"$ gas ls # List all the datasets.",
"$ gas ls tb:<dataset_name> # List segments of a dataset.",
"$ gas ls tb:<dataset_name>:<segment_name> # List files of a segment.",
)
)
@click.argument("tbrn", type=str, default="")
@click.option(
"-a", "--all", "list_all_files", is_flag=True, help="List all files under the segment."
)
@click.option("-l", "show_total_num", is_flag=True, help="Show the total number of resources")
@click.pass_obj
def ls(
obj: ContextInfo, tbrn: str, list_all_files: bool, show_total_num: bool
) -> None:
from tensorbay.cli.ls import _implement_ls
_implement_ls(obj, tbrn, list_all_files, show_total_num)
@command(
synopsis=(
"$ gas config [key] # Show the config.",
"$ gas config <key> <value> # Set the config.",
"$ gas config -u [key] # Unset the config.",
)
)
@click.argument("key", type=str, default="")
@click.argument("value", type=str, default="")
@click.option("-u", "--unset", is_flag=True, help="Unset the config option")
@click.pass_obj
def config(obj: ContextInfo, key: str, value: str, unset: bool) -> None:
from tensorbay.cli.config import _implement_config
_implement_config(obj, key, value, unset)
@command(
synopsis=(
"$ gas dataset # List all the datasets.",
"$ gas dataset tb:<dataset_name> # Create a dataset.",
"$ gas dataset -d [-y] tb:<dataset_name> # Delete a dataset.",
)
)
@click.argument("tbrn", type=str, default="")
@click.option("-d", "--delete", "is_delete", is_flag=True, help="Delete TensorBay dataset")
@click.option("-y", "--yes", is_flag=True, help="Confirm to delete the dataset completely.")
@click.pass_obj
|
MIT License
|
xuru/pyvisdk
|
pyvisdk/do/storage_drs_vm_config_spec.py
|
StorageDrsVmConfigSpec
|
python
|
def StorageDrsVmConfigSpec(vim, *args, **kwargs):
obj = vim.client.factory.create('ns0:StorageDrsVmConfigSpec')
if (len(args) + len(kwargs)) < 1:
raise IndexError('Expected at least 2 arguments got: %d' % len(args))
required = [ 'operation' ]
optional = [ 'info', 'removeKey', 'dynamicProperty', 'dynamicType' ]
for name, arg in zip(required+optional, args):
setattr(obj, name, arg)
for name, value in kwargs.items():
if name in required + optional:
setattr(obj, name, value)
else:
raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional)))
return obj
|
Updates the per-virtual-machine storage DRS configuration.NOTE: This data
object type and all of its methods are experimental and subject to change in
future releases.
|
https://github.com/xuru/pyvisdk/blob/de24eb4426eb76233dc2e57640d3274ffd304eb3/pyvisdk/do/storage_drs_vm_config_spec.py#L11-L34
|
import logging
from pyvisdk.exceptions import InvalidArgumentError
log = logging.getLogger(__name__)
|
MIT License
|
cupy/cupy
|
cupyx/scipy/ndimage/filters.py
|
gaussian_gradient_magnitude
|
python
|
def gaussian_gradient_magnitude(input, sigma, output=None, mode="reflect",
cval=0.0, **kwargs):
def derivative(input, axis, output, mode, cval):
order = [0] * input.ndim
order[axis] = 1
return gaussian_filter(input, sigma, order, output, mode, cval,
**kwargs)
return generic_gradient_magnitude(input, derivative, output, mode, cval)
|
Multi-dimensional gradient magnitude using Gaussian derivatives.
Args:
input (cupy.ndarray): The input array.
sigma (scalar or sequence of scalar): Standard deviations for each axis
of Gaussian kernel. A single value applies to all axes.
output (cupy.ndarray, dtype or None): The array in which to place the
output. Default is is same dtype as the input.
mode (str): The array borders are handled according to the given mode
(``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``,
``'wrap'``). Default is ``'reflect'``.
cval (scalar): Value to fill past edges of input if mode is
``'constant'``. Default is ``0.0``.
kwargs (dict, optional):
dict of extra keyword arguments to pass ``gaussian_filter()``.
Returns:
cupy.ndarray: The result of the filtering.
.. seealso:: :func:`scipy.ndimage.gaussian_gradient_magnitude`
.. note::
When the output data type is integral (or when no output is provided
and input is integral) the results may not perfectly match the results
from SciPy due to floating-point rounding of intermediate results.
|
https://github.com/cupy/cupy/blob/a466b03ef0afd7c1ce1615e3f48da64ae38c1320/cupyx/scipy/ndimage/filters.py#L654-L687
|
import numpy
import cupy
from cupy._core import internal
from cupyx.scipy.ndimage import _util
from cupyx.scipy.ndimage import _filters_core
from cupyx.scipy.ndimage import _filters_generic
def correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0):
return _correlate_or_convolve(input, weights, output, mode, cval, origin)
def convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0):
return _correlate_or_convolve(input, weights, output, mode, cval, origin,
True)
def correlate1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0,
origin=0):
weights, origins = _filters_core._convert_1d_args(input.ndim, weights,
origin, axis)
return _correlate_or_convolve(input, weights, output, mode, cval, origins)
def convolve1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0,
origin=0):
weights, origins = _filters_core._convert_1d_args(input.ndim, weights,
origin, axis)
return _correlate_or_convolve(input, weights, output, mode, cval, origins,
True)
def _correlate_or_convolve(input, weights, output, mode, cval, origin,
convolution=False):
origins, int_type = _filters_core._check_nd_args(input, weights,
mode, origin)
if weights.size == 0:
return cupy.zeros_like(input)
_util._check_cval(mode, cval, _util._is_integer_output(output, input))
if convolution:
weights = weights[tuple([slice(None, None, -1)] * weights.ndim)]
origins = list(origins)
for i, wsize in enumerate(weights.shape):
origins[i] = -origins[i]
if wsize % 2 == 0:
origins[i] -= 1
origins = tuple(origins)
elif weights.dtype.kind == "c":
weights = weights.conj()
weights_dtype = _util._get_weights_dtype(input, weights)
offsets = _filters_core._origins_to_offsets(origins, weights.shape)
kernel = _get_correlate_kernel(mode, weights.shape, int_type,
offsets, cval)
output = _filters_core._call_kernel(kernel, input, weights, output,
weights_dtype=weights_dtype)
return output
@cupy._util.memoize(for_each_device=True)
def _get_correlate_kernel(mode, w_shape, int_type, offsets, cval):
return _filters_core._generate_nd_kernel(
'correlate',
'W sum = (W)0;',
'sum += cast<W>({value}) * wval;',
'y = cast<Y>(sum);',
mode, w_shape, int_type, offsets, cval, ctype='W')
def _run_1d_correlates(input, params, get_weights, output, mode, cval,
origin=0):
wghts = {}
for param in params:
if param not in wghts:
wghts[param] = get_weights(param)
wghts = [wghts[param] for param in params]
return _filters_core._run_1d_filters(
[None if w is None else correlate1d for w in wghts],
input, wghts, output, mode, cval, origin)
def uniform_filter1d(input, size, axis=-1, output=None, mode="reflect",
cval=0.0, origin=0):
return correlate1d(input, cupy.ones(size) / size, axis, output, mode, cval,
origin)
def uniform_filter(input, size=3, output=None, mode="reflect", cval=0.0,
origin=0):
sizes = _util._fix_sequence_arg(size, input.ndim, 'size', int)
def get(size):
return None if size <= 1 else cupy.ones(size) / size
return _run_1d_correlates(input, sizes, get, output, mode, cval, origin)
def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None,
mode="reflect", cval=0.0, truncate=4.0):
radius = int(float(truncate) * float(sigma) + 0.5)
weights = _gaussian_kernel1d(sigma, int(order), radius)
return correlate1d(input, weights, axis, output, mode, cval)
def gaussian_filter(input, sigma, order=0, output=None, mode="reflect",
cval=0.0, truncate=4.0):
sigmas = _util._fix_sequence_arg(sigma, input.ndim, 'sigma', float)
orders = _util._fix_sequence_arg(order, input.ndim, 'order', int)
truncate = float(truncate)
def get(param):
sigma, order = param
radius = int(truncate * float(sigma) + 0.5)
if radius <= 0:
return None
return _gaussian_kernel1d(sigma, order, radius)
return _run_1d_correlates(input, list(zip(sigmas, orders)), get, output,
mode, cval, 0)
def _gaussian_kernel1d(sigma, order, radius):
if order < 0:
raise ValueError('order must be non-negative')
sigma2 = sigma * sigma
x = numpy.arange(-radius, radius+1)
phi_x = numpy.exp(-0.5 / sigma2 * x ** 2)
phi_x /= phi_x.sum()
if order == 0:
return cupy.asarray(phi_x)
exponent_range = numpy.arange(order + 1)
q = numpy.zeros(order + 1)
q[0] = 1
D = numpy.diag(exponent_range[1:], 1)
P = numpy.diag(numpy.ones(order)/-sigma2, -1)
Q_deriv = D + P
for _ in range(order):
q = Q_deriv.dot(q)
q = (x[:, None] ** exponent_range).dot(q)
return cupy.asarray((q * phi_x)[::-1])
def prewitt(input, axis=-1, output=None, mode="reflect", cval=0.0):
return _prewitt_or_sobel(input, axis, output, mode, cval, cupy.ones(3))
def sobel(input, axis=-1, output=None, mode="reflect", cval=0.0):
return _prewitt_or_sobel(input, axis, output, mode, cval,
cupy.array([1, 2, 1]))
def _prewitt_or_sobel(input, axis, output, mode, cval, weights):
axis = internal._normalize_axis_index(axis, input.ndim)
def get(is_diff):
return cupy.array([-1, 0, 1]) if is_diff else weights
return _run_1d_correlates(input, [a == axis for a in range(input.ndim)],
get, output, mode, cval)
def generic_laplace(input, derivative2, output=None, mode="reflect",
cval=0.0, extra_arguments=(), extra_keywords=None):
if extra_keywords is None:
extra_keywords = {}
ndim = input.ndim
modes = _util._fix_sequence_arg(mode, ndim, 'mode',
_util._check_mode)
output = _util._get_output(output, input)
if ndim == 0:
output[...] = input
return output
derivative2(input, 0, output, modes[0], cval,
*extra_arguments, **extra_keywords)
if ndim > 1:
tmp = _util._get_output(output.dtype, input)
for i in range(1, ndim):
derivative2(input, i, tmp, modes[i], cval,
*extra_arguments, **extra_keywords)
output += tmp
return output
def laplace(input, output=None, mode="reflect", cval=0.0):
weights = cupy.array([1, -2, 1], dtype=cupy.float64)
def derivative2(input, axis, output, mode, cval):
return correlate1d(input, weights, axis, output, mode, cval)
return generic_laplace(input, derivative2, output, mode, cval)
def gaussian_laplace(input, sigma, output=None, mode="reflect",
cval=0.0, **kwargs):
def derivative2(input, axis, output, mode, cval):
order = [0] * input.ndim
order[axis] = 2
return gaussian_filter(input, sigma, order, output, mode, cval,
**kwargs)
return generic_laplace(input, derivative2, output, mode, cval)
def generic_gradient_magnitude(input, derivative, output=None,
mode="reflect", cval=0.0,
extra_arguments=(), extra_keywords=None):
if extra_keywords is None:
extra_keywords = {}
ndim = input.ndim
modes = _util._fix_sequence_arg(mode, ndim, 'mode',
_util._check_mode)
output = _util._get_output(output, input)
if ndim == 0:
output[...] = input
return output
derivative(input, 0, output, modes[0], cval,
*extra_arguments, **extra_keywords)
output *= output
if ndim > 1:
tmp = _util._get_output(output.dtype, input)
for i in range(1, ndim):
derivative(input, i, tmp, modes[i], cval,
*extra_arguments, **extra_keywords)
tmp *= tmp
output += tmp
return cupy.sqrt(output, output, casting='unsafe')
|
MIT License
|
googlecloudplatform/python-docs-samples
|
composer/tools/composer_db_transfer.py
|
DatabaseUtils.blob
|
python
|
def blob(column: str) -> str:
big_enough_length_to_hold_hex_representation_of_blob = 150000
return (
f'CASE WHEN {column} IS NULL THEN "{DatabaseUtils.null_string}" '
fr'ELSE CONCAT("\\\x", CAST(HEX({column}) '
f"as char({big_enough_length_to_hold_hex_representation_of_blob}))) "
"END"
)
|
Returns SQL expression processing blob column for export.
|
https://github.com/googlecloudplatform/python-docs-samples/blob/35873ab69eaf0f2a6dd4a7007a12917265e2b848/composer/tools/composer_db_transfer.py#L181-L189
|
import argparse
import json
import logging
import os
import re
import subprocess
import time
import typing
import uuid
SCRIPT_VERSION = "1.2"
USAGE = r"""This script handles database transfer for Cloud Composer
(Airflow 1.10.14/15 -> Airflow 2.0.1+).
EXPORT
python3 composer_db_transfer.py export \
--project [PROJECT NAME] \
--environment [ENVIRONMENT NAME] \
--location [REGION] \
--fernet-key-file [PATH TO FERNET KEY FILE - TO BE CREATED]
CSV files with exported database are stored as
/export/tables/[TABLE NAME].csv in the environment's bucket.
dags, plugins and data directories are stored in
/export/dirs in the environment's bucket.
File with a fernet key is going to be created on the machine executing the
script.
Copying the files between the environments
Exported files can be copied to the target environment, e.g. with:
gsutil -m cp -r \
gs://[SOURCE ENV BUCKET NAME]/export \
gs://[TARGET ENV BUCKET NAME]/import
IMPORT
python3 composer_db_transfer.py import \
--project [PROJECT NAME] \
--environment [ENVIRONMENT NAME] \
--location [REGION] \
--fernet-key-file [PATH TO FERNET KEY FILE FROM SOURCE ENVIRONMENT]
CSV files that should be imported are expected to be stored as
/import/tables/[TABLE NAME].csv in the environment's bucket.
dags, plugins and data directories that should be imported are expected to be
stored in /import/dirs in the environment's bucket.
`fernet-key-file` parameter specifies path to the fernet key file of the
source environment on the machine executing the script. It is created during
export phase.
Additional --use-private-gke-endpoint option can be used to access
environment's GKE cluster through internal endpoint. It might be useful for
private IP environments.
TROUBLESHOOTING
Check "Troubleshooting" section of the script manual for troubleshooting
guidance.
Temporary kubeconfig file is created in the current directory.
"""
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
logger = logging.getLogger(__name__)
class Command:
class CommandExecutionError(Exception):
pass
@staticmethod
def run_shell_command(
command: typing.List[str],
use_shell: bool = False,
retry_number: int = 3,
delay: float = 4.0,
command_input: str = None,
log_command: bool = True,
log_error: bool = True,
) -> str:
for i in range(retry_number + 1):
try:
return Command._run_shell_command(
command,
use_shell,
command_input=command_input,
log_command=log_command,
)
except Command.CommandExecutionError as e:
if log_error:
logger.error(e)
if i == retry_number:
raise
time.sleep(delay)
if log_command:
logger.info("Retrying...")
@staticmethod
def _run_shell_command(
command: typing.List[str],
use_shell: bool = False,
command_input: str = None,
log_command: bool = True,
) -> str:
p = subprocess.Popen(
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=use_shell
)
if log_command:
logger.info("Executing shell command: %s", command)
(res, _) = p.communicate(input=command_input)
if p.returncode:
logged_command = f' "{command}"' if log_command else ""
error_message = (
f"Failed to run shell command{logged_command}, " f"details: {res}"
)
raise Command.CommandExecutionError(error_message)
return str(res.decode().strip("\n"))
class DatabaseUtils:
null_string = "a8fc0a-b77fe61-a9cf0b-9a0abf"
@staticmethod
def nullable(column: str) -> str:
return (
f'CASE WHEN {column} IS NULL THEN "{DatabaseUtils.null_string}" '
f"ELSE {column} END"
)
@staticmethod
|
Apache License 2.0
|
cober2019/network-automation
|
Restconf/ClassMaps.py
|
is_discard_class
|
python
|
def is_discard_class(outter_key, inner_key) -> None:
values = {}
if outter_key == "discard-class":
values['discard_class'] = ', '.join(is_instance(inner_key.get('discard-class', {})))
return values
|
Prints discard class
|
https://github.com/cober2019/network-automation/blob/796b7760ca1f1e496a841c613eaff05ddba71b16/Restconf/ClassMaps.py#L97-L104
|
import requests
import warnings
import json
warnings.filterwarnings('ignore', message='Unverified HTTPS request')
headers = {"Content-Type": 'application/yang-data+json', 'Accept': 'application/yang-data+json'}
def is_instance(list_or_dict) -> list:
if isinstance(list_or_dict, list):
make_list = list_or_dict
else:
make_list = [list_or_dict]
return make_list
def is_mpls(outter_key, inner_key) -> None:
values = {}
if outter_key == "mpls":
values['mpls'] = is_instance(inner_key.get('experimental', {}).get('topmost', {}))
return values
def is_vlan(outter_key, inner_key) -> None:
values = {}
if outter_key == "vlan":
if inner_key.get('inner') is not None:
values['inner'] = ', '.join(is_instance(inner_key.get('inner', {})))
elif inner_key.get('value') is not None:
values['value'] = ', '.join(is_instance(inner_key.get('value', {})))
return values
def is_protocol(outter_key, inner_key) -> None:
values = {}
if outter_key == "protocol":
if len(inner_key.get('protocols-list')) == 1:
values['protocols'] = inner_key.get('protocols-list').get('protocols')
else:
values['protocols'] = ', '.join([i.get('protocols') for i in inner_key.get('protocols-list')])
return values
def is_access_group(outter_key, inner_key) -> None:
values = {}
if outter_key == "access-group":
if inner_key.get('index') is not None:
values['index'] = ', '.join(is_instance(inner_key.get('index', {})))
elif inner_key.get('name') is not None:
values['name'] = ', '.join(is_instance(inner_key.get('name', {})))
return values
def is_security_group(outter_key, inner_key) -> None:
values = {}
if outter_key == "security-group":
if inner_key.get('source') is not None:
values['secgroup_src'] = inner_key.get('source', {}).get('tag', {})
elif inner_key.get('destination') is not None:
values['secgroup_dest'] = inner_key.get('destination', {}).get('tag', {})
return values
def is_atm(outter_key, inner_key) -> None:
values = {}
if outter_key == "atm":
if inner_key.get('clp') is not None:
values['clp'] = ', '.join(is_instance(inner_key.get('clp', {})))
elif inner_key.get('atm-vci ') is not None:
values['atm-vci'] = ', '.join(is_instance(inner_key.get('atm-vci ', {})))
return values
|
MIT License
|
berendkleinhaneveld/registrationshop
|
ui/transformations/ParameterModel.py
|
ParameterModel.rowCount
|
python
|
def rowCount(self, index):
if index.isValid():
return 0
return len(self.parameters)
|
:type parent: QModelIndex
:rtype: int
|
https://github.com/berendkleinhaneveld/registrationshop/blob/0d6f3ee5324865cdcb419369139f37c39dfe9a1c/ui/transformations/ParameterModel.py#L88-L96
|
from PySide.QtCore import QAbstractItemModel
from PySide.QtCore import QModelIndex
from PySide.QtCore import Qt
from PySide.QtCore import Slot
from core.elastix import Parameter
from core.elastix import ParameterList
class ParameterModel(QAbstractItemModel):
def __init__(self):
super(ParameterModel, self).__init__()
self.parameters = []
self.headers = ["Parameter", "Value"]
def setParameters(self, parameters):
self.parameters = parameters
self.layoutChanged.emit()
def addParameter(self):
standardParameter = Parameter("ParameterName", "Value")
self.parameters.append(standardParameter)
self.insertRows(len(self.parameters), 1, QModelIndex())
def removeParameterAtIndex(self, index):
del self.parameters[index]
self.removeRow(index, QModelIndex())
@Slot(ParameterList)
def setTransformation(self, transformation):
self.setParameters(transformation.parameters)
def index(self, row, column, parent):
if not self.hasIndex(row, column, parent):
return self.invalidIndex()
if column == 0:
return self.createIndex(row, column, str(self.parameters[row].key()))
if column == 1:
return self.createIndex(row, column, str(self.parameters[row].value()))
return None
def parent(self, index):
return self.invalidIndex()
|
MIT License
|
cc1-cloud/cc1
|
src/wi/forms/storage_image.py
|
AddDiskForm.clean_filesystem
|
python
|
def clean_filesystem(self):
return int(self.cleaned_data['filesystem'])
|
Cast 'filesystem' to int.
|
https://github.com/cc1-cloud/cc1/blob/8113673fa13b6fe195cea99dedab9616aeca3ae8/src/wi/forms/storage_image.py#L79-L83
|
from django import forms
from django.utils.translation import ugettext_lazy as _
from wi.utils import parsing
from wi.utils.forms import attrs_dict, BetterForm
from wi.utils.states import image_platforms_reversed
from wi.utils.widgets import SelectWithDisabled
class EditDiskForm(forms.Form):
name = forms.CharField(widget=forms.TextInput(attrs=dict(attrs_dict, maxlength=45)),
label=_('Disk name'))
description = forms.CharField(required=False,
widget=forms.Textarea(attrs=dict(attrs_dict, maxlength=512, rows=3, cols=20)),
label=_('Disk description'))
def __init__(self, *args, **kwargs):
rest_data = kwargs.pop('rest_data')
super(EditDiskForm, self).__init__(*args, **kwargs)
self.fields['disk_controller'] = forms.ChoiceField(choices=parsing.parse_generic_enabled(rest_data, 'disk_controllers'),
widget=SelectWithDisabled(attrs=dict()),
label=_("Bus"))
self.fields['disk_controller'].widget.attrs['class'] = 'medium'
def clean_disk_controller(self):
return int(self.cleaned_data['disk_controller'])
class AddDiskForm(EditDiskForm):
size = forms.IntegerField(max_value=2000000,
min_value=2,
label=_('Disk size [MB]'))
def __init__(self, *args, **kwargs):
super(AddDiskForm, self).__init__(*args, **kwargs)
rest_data = kwargs.pop('rest_data')
self.fields['filesystem'] = forms.ChoiceField(choices=parsing.parse_generic(rest_data, 'supported_filesystems'),
widget=SelectWithDisabled(attrs=dict()),
label=_('File system'))
self.fields['filesystem'].widget.attrs['class'] = 'medium'
|
Apache License 2.0
|
aklajnert/pytest-subprocess
|
pytest_subprocess/core.py
|
FakeProcess.context
|
python
|
def context(cls) -> "FakeProcess":
return cls()
|
Return a new FakeProcess instance to use it as a context manager.
|
https://github.com/aklajnert/pytest-subprocess/blob/b820ca5a9cf856dc671ca7e758d648b5a224aee9/pytest_subprocess/core.py#L578-L580
|
import asyncio
import io
import os
import signal
import subprocess
import sys
import time
from collections import defaultdict
from collections import deque
from copy import deepcopy
from typing import Any as AnyType
from typing import Awaitable
from typing import Callable
from typing import DefaultDict
from typing import Deque
from typing import Dict
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Type
from typing import Union
from . import asyncio_subprocess
from .utils import Any
from .utils import Command
from .utils import Thread
OPTIONAL_TEXT = Union[str, bytes, None]
OPTIONAL_TEXT_OR_ITERABLE = Union[
str, bytes, None, Sequence[Union[str, bytes]],
]
BUFFER = Union[None, io.BytesIO, io.StringIO]
ARGUMENT = Union[str, Any]
COMMAND = Union[Sequence[ARGUMENT], str, Command]
class PluginInternalError(Exception):
class FakePopen:
stdout: BUFFER = None
stderr: BUFFER = None
returncode: Optional[int] = None
text_mode: bool = False
pid: int = 0
def __init__(
self,
command: Union[
Union[bytes, str],
Sequence[Union[str, bytes, "os.PathLike[str]", "os.PathLike[bytes]"]],
],
stdout: OPTIONAL_TEXT_OR_ITERABLE = None,
stderr: OPTIONAL_TEXT_OR_ITERABLE = None,
returncode: int = 0,
wait: Optional[float] = None,
callback: Optional[Callable] = None,
callback_kwargs: Optional[Dict[str, AnyType]] = None,
signal_callback: Optional[Callable] = None,
stdin_callable: Optional[Callable] = None,
**_: Dict[str, AnyType]
) -> None:
self.args = command
self.__stdout: OPTIONAL_TEXT_OR_ITERABLE = stdout
self.__stderr: OPTIONAL_TEXT_OR_ITERABLE = stderr
self.__returncode: Optional[int] = returncode
self.__wait: Optional[float] = wait
self.__thread: Optional[Thread] = None
self.__callback: Optional[Optional[Callable]] = callback
self.__callback_kwargs: Optional[Dict[str, AnyType]] = callback_kwargs
self.__signal_callback: Optional[Callable] = signal_callback
self.__stdin_callable: Optional[Optional[Callable]] = stdin_callable
self._signals: List[int] = []
def __enter__(self) -> "FakePopen":
return self
def __exit__(self, *args: List, **kwargs: Dict) -> None:
if self.__thread and self.__thread.exception:
raise self.__thread.exception
def communicate(
self, input: OPTIONAL_TEXT = None, timeout: Optional[float] = None
) -> Tuple[AnyType, AnyType]:
if input and self.__stdin_callable:
callable_output = self.__stdin_callable(input)
if isinstance(callable_output, dict):
self.stdout = self._extend_stream_from_dict(
callable_output, "stdout", self.stdout
)
self.stderr = self._extend_stream_from_dict(
callable_output, "stderr", self.stderr
)
if self.__thread is not None:
self.__thread.join(timeout)
return (
self.stdout.getvalue() if self.stdout else None,
self.stderr.getvalue() if self.stderr else None,
)
def _extend_stream_from_dict(
self, dictionary: Dict[str, AnyType], key: str, stream: BUFFER
) -> BUFFER:
data = dictionary.get(key)
if data:
return self._prepare_buffer(input=data, io_base=stream)
return None
def poll(self) -> Optional[int]:
return self.returncode
def wait(self, timeout: Optional[float] = None) -> int:
if timeout and self.__wait and timeout < self.__wait:
self.__wait -= timeout
raise subprocess.TimeoutExpired(self.args, timeout)
if self.__thread is not None:
self.__thread.join()
if self.returncode is None and self.__returncode is not None:
self.returncode = self.__returncode
if self.__thread.exception:
raise self.__thread.exception
if self.returncode is None:
raise PluginInternalError
return self.returncode
def send_signal(self, sig: int) -> None:
self._signals.append(sig)
if self.__signal_callback:
self.__signal_callback(self, sig)
def terminate(self) -> None:
self.send_signal(signal.SIGTERM)
def kill(self) -> None:
if sys.platform == "win32":
self.terminate()
else:
self.send_signal(signal.SIGKILL)
def configure(self, **kwargs: Optional[Dict]) -> None:
self.__universal_newlines = kwargs.get("universal_newlines", None)
text = kwargs.get("text", None)
encoding = kwargs.get("encoding", None)
errors = kwargs.get("errors", None)
if text and sys.version_info < (3, 7):
raise TypeError("__init__() got an unexpected keyword argument 'text'")
self.text_mode = bool(text or self.__universal_newlines or encoding or errors)
if (
text is not None
and self.__universal_newlines is not None
and bool(self.__universal_newlines) != bool(text)
):
raise subprocess.SubprocessError(
"Cannot disambiguate when both text "
"and universal_newlines are supplied but "
"different. Pass one or the other."
)
if kwargs.get("stdout") == subprocess.PIPE:
self.stdout = self._prepare_buffer(self.__stdout)
stderr = kwargs.get("stderr")
if stderr == subprocess.STDOUT and self.__stderr:
self.stdout = self._prepare_buffer(self.__stderr, self.stdout)
elif stderr == subprocess.PIPE:
self.stderr = self._prepare_buffer(self.__stderr)
def _prepare_buffer(
self, input: OPTIONAL_TEXT_OR_ITERABLE, io_base: BUFFER = None,
) -> Union[io.BytesIO, io.StringIO]:
linesep = self._convert(os.linesep)
if isinstance(input, (list, tuple)):
input = linesep.join(map(self._convert, input))
if input:
input += linesep
if isinstance(input, str) and not self.text_mode:
input = input.encode()
if isinstance(input, bytes) and self.text_mode:
input = input.decode()
if input and self.__universal_newlines and isinstance(input, str):
input = input.replace("\r\n", "\n")
if io_base is not None:
input = io_base.getvalue() + (input)
io_base = io.StringIO() if self.text_mode else io.BytesIO()
if input is None:
return io_base
io_base.write(input)
return io_base
def _convert(self, input: Union[str, bytes]) -> Union[str, bytes]:
if isinstance(input, bytes) and self.text_mode:
return input.decode()
if isinstance(input, str) and not self.text_mode:
return input.encode()
return input
def _wait(self, wait_period: float) -> None:
time.sleep(wait_period)
if self.returncode is None:
self._finish_process()
def run_thread(self) -> None:
if self.__wait is None and self.__callback is None:
self._finish_process()
else:
if self.__callback:
self.__thread = Thread(
target=self.__callback,
args=(self,),
kwargs=self.__callback_kwargs or {},
)
else:
self.__thread = Thread(target=self._wait, args=(self.__wait,))
self.__thread.start()
def _finish_process(self) -> None:
self.returncode = self.__returncode
if self.stdout:
self.stdout.seek(0)
if self.stderr:
self.stderr.seek(0)
def received_signals(self) -> Tuple[int, ...]:
return tuple(self._signals)
class AsyncFakePopen(FakePopen):
async def communicate(
self, input: OPTIONAL_TEXT = None, timeout: Optional[float] = None
) -> Tuple[AnyType, AnyType]:
return super().communicate(input, timeout)
async def wait(self, timeout: Optional[float] = None) -> int:
return super().wait(timeout)
class ProcessNotRegisteredError(Exception):
class ProcessDispatcher:
process_list: List["FakeProcess"] = []
built_in_popen: Optional[Callable] = None
built_in_async_subprocess: Optional[AnyType] = None
_allow_unregistered: bool = False
_cache: Dict["FakeProcess", Dict["FakeProcess", AnyType]] = dict()
_keep_last_process: bool = False
_pid: int = 0
@classmethod
def register(cls, process: "FakeProcess") -> None:
if not cls.process_list:
cls.built_in_popen = subprocess.Popen
subprocess.Popen = cls.dispatch
cls.built_in_async_subprocess = asyncio.subprocess
asyncio.create_subprocess_shell = cls.async_shell
asyncio.create_subprocess_exec = cls.async_shell
asyncio.subprocess = asyncio_subprocess
cls._cache[process] = {
proc: deepcopy(proc.definitions) for proc in cls.process_list
}
cls.process_list.append(process)
@classmethod
def deregister(cls, process: "FakeProcess") -> None:
cls.process_list.remove(process)
cache = cls._cache.pop(process)
for proc, processes in cache.items():
proc.definitions = processes
if not cls.process_list:
subprocess.Popen = cls.built_in_popen
cls.built_in_popen = None
if cls.built_in_async_subprocess is None:
raise PluginInternalError
asyncio.subprocess = cls.built_in_async_subprocess
asyncio.create_subprocess_shell = (
cls.built_in_async_subprocess.create_subprocess_shell
)
asyncio.create_subprocess_exec = (
cls.built_in_async_subprocess.create_subprocess_exec
)
cls.built_in_async_subprocess = None
@classmethod
def dispatch(
cls, command: COMMAND, **kwargs: Optional[Dict]
) -> Union[FakePopen, subprocess.Popen]:
process = cls.__dispatch(command)
if process is None:
if cls.built_in_popen is None:
raise PluginInternalError
popen: subprocess.Popen = cls.built_in_popen(command, **kwargs)
return popen
result = cls._prepare_instance(FakePopen, command, kwargs, process)
if not isinstance(result, FakePopen):
raise PluginInternalError
result.run_thread()
return result
@classmethod
async def async_shell(
cls, command: COMMAND, **kwargs: Optional[Dict]
) -> Union[AsyncFakePopen, asyncio.subprocess.Process]:
process = cls.__dispatch(command)
if process is None:
if cls.built_in_async_subprocess is None:
raise PluginInternalError
async_shell: Awaitable[
asyncio.subprocess.Process
] = cls.built_in_async_subprocess.create_subprocess_shell(command, **kwargs)
return await async_shell
if not isinstance(command, str):
raise ValueError("cmd must be a string")
if sys.platform == "win32" and isinstance(
asyncio.get_event_loop_policy().get_event_loop(), asyncio.SelectorEventLoop
):
raise NotImplementedError(
"The SelectorEventLoop doesn't support subprocess"
)
result = cls._prepare_instance(AsyncFakePopen, command, kwargs, process)
if not isinstance(result, AsyncFakePopen):
raise PluginInternalError
result.run_thread()
return result
@classmethod
def _prepare_instance(
cls,
klass: Union[Type[FakePopen], Type[AsyncFakePopen]],
command: COMMAND,
kwargs: dict,
process: dict,
) -> Union[FakePopen, AsyncFakePopen]:
fake_popen_kwargs = process.copy()
fake_popen_kwargs["command"] = command
result = klass(**fake_popen_kwargs)
result.pid = cls._pid
result.configure(**kwargs)
return result
@classmethod
def __dispatch(cls, command: COMMAND) -> Optional[dict]:
command_instance, processes, process_instance = cls._get_process(command)
if process_instance:
process_instance.calls.append(command)
if not processes:
if not cls.process_list[-1]._allow_unregistered:
raise ProcessNotRegisteredError(
"The process '%s' was not registered."
% (
command
if isinstance(command, str)
else " ".join(str(item) for item in command),
)
)
else:
return None
process = processes.popleft()
if not processes and process_instance is not None:
if cls.process_list[-1]._keep_last_process:
processes.append(process)
elif command_instance:
del process_instance.definitions[command_instance]
cls._pid += 1
if isinstance(process, bool):
return None
return process
@classmethod
def _get_process(
cls, command: COMMAND
) -> Tuple[
Optional[Command], Optional[Deque[Union[dict, bool]]], Optional["FakeProcess"]
]:
for proc in reversed(cls.process_list):
command_instance, processes = next(
(
(key, value)
for key, value in proc.definitions.items()
if key == command
),
(None, None),
)
process_instance = proc
if processes and isinstance(processes, deque):
return command_instance, processes, process_instance
return None, None, None
class IncorrectProcessDefinition(Exception):
class FakeProcess:
any: Type[Any] = Any
def __init__(self) -> None:
self.definitions: DefaultDict[Command, Deque[Union[Dict, bool]]] = defaultdict(
deque
)
self.calls: Deque[COMMAND] = deque()
self._allow_unregistered: bool = False
self._keep_last_process: bool = False
def register_subprocess(
self,
command: COMMAND,
stdout: OPTIONAL_TEXT_OR_ITERABLE = None,
stderr: OPTIONAL_TEXT_OR_ITERABLE = None,
returncode: int = 0,
wait: Optional[float] = None,
callback: Optional[Callable] = None,
callback_kwargs: Optional[Dict[str, AnyType]] = None,
signal_callback: Optional[Callable] = None,
occurrences: int = 1,
stdin_callable: Optional[Callable] = None,
) -> None:
if wait is not None and callback is not None:
raise IncorrectProcessDefinition(
"The 'callback' and 'wait' arguments cannot be used "
"together. Add sleep() to your callback instead."
)
if not isinstance(command, Command):
command = Command(command)
self.definitions[command].extend(
[
{
"command": command,
"stdout": stdout,
"stderr": stderr,
"returncode": returncode,
"wait": wait,
"callback": callback,
"callback_kwargs": callback_kwargs,
"signal_callback": signal_callback,
"stdin_callable": stdin_callable,
}
]
* occurrences
)
def pass_command(self, command: COMMAND, occurrences: int = 1,) -> None:
if not isinstance(command, Command):
command = Command(command)
self.definitions[command].extend([True] * occurrences)
def __enter__(self) -> "FakeProcess":
ProcessDispatcher.register(self)
return self
def __exit__(self, *args: List, **kwargs: Dict) -> None:
ProcessDispatcher.deregister(self)
def allow_unregistered(self, allow: bool) -> None:
self._allow_unregistered = allow
def call_count(self, command: COMMAND) -> int:
if not isinstance(command, Command):
command_instance = Command(command)
return len(tuple(filter(lambda elem: elem == command_instance, self.calls)))
def keep_last_process(self, keep: bool) -> None:
self._keep_last_process = keep
@classmethod
|
MIT License
|
sphinx-toolbox/sphinx-toolbox
|
sphinx_toolbox/formatting.py
|
depart_iabbr_node
|
python
|
def depart_iabbr_node(translator: HTMLTranslator, node: ItalicAbbreviationNode):
translator.body.append("</i></abbr>")
|
Depart an :class:`~.ItalicAbbreviationNode`.
:param translator:
:param node: The node being visited.
|
https://github.com/sphinx-toolbox/sphinx-toolbox/blob/cee88c6bceac20a9ae0e381ada2fb2453ca3fc0b/sphinx_toolbox/formatting.py#L168-L176
|
from typing import List, Tuple
from docutils import nodes
from docutils.nodes import Node, system_message
from docutils.parsers.rst import roles
from sphinx.application import Sphinx
from sphinx.roles import Abbreviation
from sphinx.util.docutils import SphinxRole
from sphinx.writers.html import HTMLTranslator
from sphinx.writers.latex import LaTeXTranslator
from sphinx_toolbox.utils import SphinxExtMetadata, metadata_add_version
__all__ = [
"ItalicAbbreviationNode",
"ItalicAbbreviation",
"visit_iabbr_node",
"depart_iabbr_node",
"latex_visit_iabbr_node",
"latex_depart_iabbr_node",
"setup"
]
class ItalicAbbreviationNode(nodes.abbreviation):
class ItalicAbbreviation(Abbreviation):
def run(self) -> Tuple[List[Node], List[system_message]]:
options = self.options.copy()
matched = self.abbr_re.search(self.text)
if matched:
text = self.text[:matched.start()].strip()
options["explanation"] = matched.group(1)
else:
text = self.text
return [ItalicAbbreviationNode(self.rawtext, text, **options)], []
class BoldTitle(SphinxRole):
def run(self) -> Tuple[List[nodes.Node], List[nodes.system_message]]:
assert self.text is not None
node_list: List[nodes.Node] = [
nodes.raw('', r"\vspace{10px}", format="latex"),
nodes.strong(f"**{self.text}**", self.text),
]
return node_list, []
def visit_iabbr_node(translator: HTMLTranslator, node: ItalicAbbreviationNode):
translator.body.append('<i class="abbreviation">')
attrs = {}
if node.hasattr("explanation"):
attrs["title"] = node["explanation"]
translator.body.append(translator.starttag(node, "abbr", '', **attrs))
|
MIT License
|
miguelgrinberg/alchemical
|
examples/flaskr/flaskr/blog.py
|
get_post
|
python
|
def get_post(id, check_author=True):
post = db.session.get(Post, id)
if post is None:
abort(404, f"Post id {id} doesn't exist.")
if check_author and post.author != current_user:
abort(403)
return post
|
Get a post and its author by id.
Checks that the id exists and optionally that the current user is
the author.
:param id: id of post to get
:param check_author: require the current user to be the author
:return: the post with author information
:raise 404: if a post with the given id doesn't exist
:raise 403: if the current user isn't the author
|
https://github.com/miguelgrinberg/alchemical/blob/9ade0914da50c9dafbb6595ac271b248af93d660/examples/flaskr/flaskr/blog.py#L24-L42
|
from flask import Blueprint
from flask import flash
from flask import redirect
from flask import render_template
from flask import request
from flask import url_for
from werkzeug.exceptions import abort
from flask_login import current_user
from flask_login import login_required
from flaskr import db
from flaskr.models import Post
bp = Blueprint("blog", __name__)
@bp.route("/")
def index():
posts = db.session.scalars(Post.select()).all()
return render_template("blog/index.html", posts=posts)
|
MIT License
|
azure/autorest.python
|
test/vanilla/legacy/Expected/AcceptanceTests/BodyString/bodystring/operations/_string_operations.py
|
StringOperations.put_whitespace
|
python
|
def put_whitespace(
self, **kwargs
):
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
content_type = kwargs.pop("content_type", "application/json")
request = build_put_whitespace_request(
content_type=content_type,
template_url=self.put_whitespace.metadata["url"],
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response)
raise HttpResponseError(response=response, model=error)
if cls:
return cls(pipeline_response, None, {})
|
Set String value with leading and trailing whitespace
':code:`<tab>`:code:`<space>`:code:`<space>`Now is the time for all good men to come to the aid
of their country:code:`<tab>`:code:`<space>`:code:`<space>`'.
:keyword callable cls: A custom type or function that will be passed the direct response
:return: None, or the result of cls(response)
:rtype: None
:raises: ~azure.core.exceptions.HttpResponseError
|
https://github.com/azure/autorest.python/blob/90d60a965788e3b4c0809e6686bdc3525acac89c/test/vanilla/legacy/Expected/AcceptanceTests/BodyString/bodystring/operations/_string_operations.py#L629-L664
|
import functools
from typing import TYPE_CHECKING
import warnings
from azure.core.exceptions import (
ClientAuthenticationError,
HttpResponseError,
ResourceExistsError,
ResourceNotFoundError,
map_error,
)
from azure.core.pipeline import PipelineResponse
from azure.core.pipeline.transport import HttpResponse
from azure.core.rest import HttpRequest
from azure.core.tracing.decorator import distributed_trace
from msrest import Serializer
from .. import models as _models
from .._vendor import _convert_request
if TYPE_CHECKING:
from typing import Any, Callable, Dict, Generic, Optional, TypeVar
T = TypeVar("T")
ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
_SERIALIZER = Serializer()
def build_get_null_request(
**kwargs
):
accept = "application/json"
url = kwargs.pop("template_url", '/string/null')
header_parameters = kwargs.pop("headers", {})
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
headers=header_parameters,
**kwargs
)
def build_put_null_request(
**kwargs
):
content_type = kwargs.pop('content_type', None)
accept = "application/json"
url = kwargs.pop("template_url", '/string/null')
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="PUT",
url=url,
headers=header_parameters,
**kwargs
)
def build_get_empty_request(
**kwargs
):
accept = "application/json"
url = kwargs.pop("template_url", '/string/empty')
header_parameters = kwargs.pop("headers", {})
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
headers=header_parameters,
**kwargs
)
def build_put_empty_request(
**kwargs
):
content_type = kwargs.pop('content_type', None)
json = ""
accept = "application/json"
url = kwargs.pop("template_url", '/string/empty')
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="PUT",
url=url,
headers=header_parameters,
json=json,
**kwargs
)
def build_get_mbcs_request(
**kwargs
):
accept = "application/json"
url = kwargs.pop("template_url", '/string/mbcs')
header_parameters = kwargs.pop("headers", {})
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
headers=header_parameters,
**kwargs
)
def build_put_mbcs_request(
**kwargs
):
content_type = kwargs.pop('content_type', None)
json = "啊齄丂狛狜隣郎隣兀﨩ˊ〞〡¦℡㈱‐ー﹡﹢﹫、〓ⅰⅹ⒈€㈠㈩ⅠⅫ! ̄ぁんァヶΑ︴АЯаяāɡㄅㄩ─╋︵﹄︻︱︳︴ⅰⅹɑɡ〇〾⿻⺁䜣€"
accept = "application/json"
url = kwargs.pop("template_url", '/string/mbcs')
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="PUT",
url=url,
headers=header_parameters,
json=json,
**kwargs
)
def build_get_whitespace_request(
**kwargs
):
accept = "application/json"
url = kwargs.pop("template_url", '/string/whitespace')
header_parameters = kwargs.pop("headers", {})
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
headers=header_parameters,
**kwargs
)
def build_put_whitespace_request(
**kwargs
):
content_type = kwargs.pop('content_type', None)
json = " Now is the time for all good men to come to the aid of their country "
accept = "application/json"
url = kwargs.pop("template_url", '/string/whitespace')
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="PUT",
url=url,
headers=header_parameters,
json=json,
**kwargs
)
def build_get_not_provided_request(
**kwargs
):
accept = "application/json"
url = kwargs.pop("template_url", '/string/notProvided')
header_parameters = kwargs.pop("headers", {})
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
headers=header_parameters,
**kwargs
)
def build_get_base64_encoded_request(
**kwargs
):
accept = "application/json"
url = kwargs.pop("template_url", '/string/base64Encoding')
header_parameters = kwargs.pop("headers", {})
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
headers=header_parameters,
**kwargs
)
def build_get_base64_url_encoded_request(
**kwargs
):
accept = "application/json"
url = kwargs.pop("template_url", '/string/base64UrlEncoding')
header_parameters = kwargs.pop("headers", {})
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
headers=header_parameters,
**kwargs
)
def build_put_base64_url_encoded_request(
**kwargs
):
content_type = kwargs.pop('content_type', None)
accept = "application/json"
url = kwargs.pop("template_url", '/string/base64UrlEncoding')
header_parameters = kwargs.pop("headers", {})
if content_type is not None:
header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="PUT",
url=url,
headers=header_parameters,
**kwargs
)
def build_get_null_base64_url_encoded_request(
**kwargs
):
accept = "application/json"
url = kwargs.pop("template_url", '/string/nullBase64UrlEncoding')
header_parameters = kwargs.pop("headers", {})
header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
return HttpRequest(
method="GET",
url=url,
headers=header_parameters,
**kwargs
)
class StringOperations(object):
models = _models
def __init__(self, client, config, serializer, deserializer):
self._client = client
self._serialize = serializer
self._deserialize = deserializer
self._config = config
@distributed_trace
def get_null(
self, **kwargs
):
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
request = build_get_null_request(
template_url=self.get_null.metadata["url"],
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response)
raise HttpResponseError(response=response, model=error)
deserialized = self._deserialize("str", pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized
get_null.metadata = {"url": "/string/null"}
@distributed_trace
def put_null(
self,
string_body=None,
**kwargs
):
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
content_type = kwargs.pop("content_type", "application/json")
if string_body is not None:
json = self._serialize.body(string_body, "str")
else:
json = None
request = build_put_null_request(
content_type=content_type,
json=json,
template_url=self.put_null.metadata["url"],
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response)
raise HttpResponseError(response=response, model=error)
if cls:
return cls(pipeline_response, None, {})
put_null.metadata = {"url": "/string/null"}
@distributed_trace
def get_empty(
self, **kwargs
):
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
request = build_get_empty_request(
template_url=self.get_empty.metadata["url"],
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response)
raise HttpResponseError(response=response, model=error)
deserialized = self._deserialize("str", pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized
get_empty.metadata = {"url": "/string/empty"}
@distributed_trace
def put_empty(
self, **kwargs
):
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
content_type = kwargs.pop("content_type", "application/json")
request = build_put_empty_request(
content_type=content_type,
template_url=self.put_empty.metadata["url"],
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response)
raise HttpResponseError(response=response, model=error)
if cls:
return cls(pipeline_response, None, {})
put_empty.metadata = {"url": "/string/empty"}
@distributed_trace
def get_mbcs(
self, **kwargs
):
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
request = build_get_mbcs_request(
template_url=self.get_mbcs.metadata["url"],
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response)
raise HttpResponseError(response=response, model=error)
deserialized = self._deserialize("str", pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized
get_mbcs.metadata = {"url": "/string/mbcs"}
@distributed_trace
def put_mbcs(
self, **kwargs
):
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
content_type = kwargs.pop("content_type", "application/json")
request = build_put_mbcs_request(
content_type=content_type,
template_url=self.put_mbcs.metadata["url"],
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response)
raise HttpResponseError(response=response, model=error)
if cls:
return cls(pipeline_response, None, {})
put_mbcs.metadata = {"url": "/string/mbcs"}
@distributed_trace
def get_whitespace(
self, **kwargs
):
cls = kwargs.pop("cls", None)
error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError}
error_map.update(kwargs.pop("error_map", {}))
request = build_get_whitespace_request(
template_url=self.get_whitespace.metadata["url"],
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response)
raise HttpResponseError(response=response, model=error)
deserialized = self._deserialize("str", pipeline_response)
if cls:
return cls(pipeline_response, deserialized, {})
return deserialized
get_whitespace.metadata = {"url": "/string/whitespace"}
@distributed_trace
|
MIT License
|
dropbox/securitybot
|
securitybot/auth/auth.py
|
Auth.can_auth
|
python
|
def can_auth(self):
pass
|
Returns:
(bool) Whether 2FA is available.
|
https://github.com/dropbox/securitybot/blob/8cc4846602011db396df621d2e84e5808a6f3441/securitybot/auth/auth.py#L29-L35
|
__author__ = 'Alex Bertsch'
__email__ = '[email protected]'
from securitybot.util import enum
from datetime import timedelta
from abc import ABCMeta, abstractmethod
AUTH_STATES = enum('NONE',
'PENDING',
'AUTHORIZED',
'DENIED',
)
AUTH_TIME = timedelta(hours=2)
class Auth(object):
__metaclass__ = ABCMeta
@abstractmethod
|
Apache License 2.0
|
burnysc2/python-sc2
|
sc2/bot_ai.py
|
BotAI.expansion_locations_dict
|
python
|
def expansion_locations_dict(self) -> Dict[Point2, Units]:
assert (
self._expansion_positions_list
), f"self._find_expansion_locations() has not been run yet, so accessing the list of expansion locations is pointless."
expansion_locations: Dict[Point2, Units] = {pos: Units([], self) for pos in self._expansion_positions_list}
for resource in self.resources:
exp_position: Point2 = self._resource_location_to_expansion_position_dict.get(resource.position, None)
if exp_position:
assert exp_position in expansion_locations
expansion_locations[exp_position].append(resource)
return expansion_locations
|
Returns dict with the correct expansion position Point2 object as key,
resources as Units (mineral fields and vespene geysers) as value.
Caution: This function is slow. If you only need the expansion locations, use the property above.
|
https://github.com/burnysc2/python-sc2/blob/a0b90b4447f23fc352a9bd931ae95ee5f4911032/sc2/bot_ai.py#L271-L288
|
from __future__ import annotations
import itertools
import math
import random
import time
import warnings
from collections import Counter
from contextlib import suppress
from typing import TYPE_CHECKING, Dict, List, Optional, Set, Tuple, Union
from loguru import logger
from s2clientprotocol import sc2api_pb2 as sc_pb
from sc2.cache import property_cache_once_per_frame, property_cache_once_per_frame_no_copy
from sc2.constants import (
ALL_GAS,
EQUIVALENTS_FOR_TECH_PROGRESS,
IS_PLACEHOLDER,
PROTOSS_TECH_REQUIREMENT,
TERRAN_STRUCTURES_REQUIRE_SCV,
TERRAN_TECH_REQUIREMENT,
ZERG_TECH_REQUIREMENT,
FakeEffectID,
abilityid_to_unittypeid,
geyser_ids,
mineral_ids,
)
from sc2.data import ActionResult, Alert, Race, Result, Target, race_townhalls
from sc2.dicts.unit_research_abilities import RESEARCH_INFO
from sc2.dicts.unit_train_build_abilities import TRAIN_INFO
from sc2.dicts.unit_trained_from import UNIT_TRAINED_FROM
from sc2.dicts.upgrade_researched_from import UPGRADE_RESEARCHED_FROM
from sc2.distances import DistanceCalculation
from sc2.game_data import AbilityData, Cost, GameData
from sc2.game_state import Blip, EffectData, GameState
from sc2.ids.ability_id import AbilityId
from sc2.ids.unit_typeid import UnitTypeId
from sc2.ids.upgrade_id import UpgradeId
from sc2.pixel_map import PixelMap
from sc2.position import Point2
from sc2.unit import Unit
from sc2.unit_command import UnitCommand
from sc2.units import Units
if TYPE_CHECKING:
from sc2.client import Client
from sc2.game_info import GameInfo, Ramp
class BotAI(DistanceCalculation):
EXPANSION_GAP_THRESHOLD = 15
def _initialize_variables(self):
DistanceCalculation.__init__(self)
if not hasattr(self, "opponent_id"):
self.opponent_id: str = None
if not hasattr(self, "distance_calculation_method"):
self.distance_calculation_method: int = 2
if not hasattr(self, "unit_command_uses_self_do"):
self.unit_command_uses_self_do: bool = False
self.realtime: bool = False
self.base_build: int = -1
self.all_units: Units = Units([], self)
self.units: Units = Units([], self)
self.workers: Units = Units([], self)
self.larva: Units = Units([], self)
self.structures: Units = Units([], self)
self.townhalls: Units = Units([], self)
self.gas_buildings: Units = Units([], self)
self.all_own_units: Units = Units([], self)
self.enemy_units: Units = Units([], self)
self.enemy_structures: Units = Units([], self)
self.all_enemy_units: Units = Units([], self)
self.resources: Units = Units([], self)
self.destructables: Units = Units([], self)
self.watchtowers: Units = Units([], self)
self.mineral_field: Units = Units([], self)
self.vespene_geyser: Units = Units([], self)
self.placeholders: Units = Units([], self)
self.techlab_tags: Set[int] = set()
self.reactor_tags: Set[int] = set()
self.minerals: int = 50
self.vespene: int = 0
self.supply_army: float = 0
self.supply_workers: float = 12
self.supply_cap: float = 15
self.supply_used: float = 12
self.supply_left: float = 3
self.idle_worker_count: int = 0
self.army_count: int = 0
self.warp_gate_count: int = 0
self.actions: List[UnitCommand] = []
self.blips: Set[Blip] = set()
self.race: Race = None
self.enemy_race: Race = None
self._units_created: Counter = Counter()
self._unit_tags_seen_this_game: Set[int] = set()
self._units_previous_map: Dict[int, Unit] = {}
self._structures_previous_map: Dict[int, Unit] = {}
self._enemy_units_previous_map: Dict[int, Unit] = {}
self._enemy_structures_previous_map: Dict[int, Unit] = {}
self._all_units_previous_map: Dict[int, Unit] = {}
self._previous_upgrades: Set[UpgradeId] = set()
self._expansion_positions_list: List[Point2] = []
self._resource_location_to_expansion_position_dict: Dict[Point2, Point2] = {}
self._time_before_step: float = None
self._time_after_step: float = None
self._min_step_time: float = math.inf
self._max_step_time: float = 0
self._last_step_step_time: float = 0
self._total_time_in_on_step: float = 0
self._total_steps_iterations: int = 0
self.unit_tags_received_action: Set[int] = set()
@property
def time(self) -> float:
return self.state.game_loop / 22.4
@property
def time_formatted(self) -> str:
t = self.time
return f"{int(t // 60):02}:{int(t % 60):02}"
@property
def step_time(self) -> Tuple[float, float, float, float]:
avg_step_duration = (
(self._total_time_in_on_step / self._total_steps_iterations) if self._total_steps_iterations else 0
)
return (
self._min_step_time * 1000,
avg_step_duration * 1000,
self._max_step_time * 1000,
self._last_step_step_time * 1000,
)
@property
def game_info(self) -> GameInfo:
return self._game_info
@property
def game_data(self) -> GameData:
return self._game_data
@property
def client(self) -> Client:
return self._client
@property
def larva_count(self):
warnings.warn(
"self.larva_count will be removed soon, please use len(self.larva) or self.larva.amount instead",
DeprecationWarning,
stacklevel=2,
)
return len(self.larva)
def alert(self, alert_code: Alert) -> bool:
assert isinstance(alert_code, Alert), f"alert_code {alert_code} is no Alert"
return alert_code.value in self.state.alerts
@property
def start_location(self) -> Point2:
return self._game_info.player_start_location
@property
def enemy_start_locations(self) -> List[Point2]:
return self._game_info.start_locations
@property
def main_base_ramp(self) -> Ramp:
if hasattr(self, "cached_main_base_ramp"):
return self.cached_main_base_ramp
try:
self.cached_main_base_ramp = min(
(ramp for ramp in self.game_info.map_ramps if len(ramp.upper) in {2, 5}),
key=lambda r: self.start_location.distance_to(r.top_center),
)
except ValueError:
self.cached_main_base_ramp = min(
(ramp for ramp in self.game_info.map_ramps if len(ramp.upper) in {4, 9}),
key=lambda r: self.start_location.distance_to(r.top_center),
)
return self.cached_main_base_ramp
@property_cache_once_per_frame
def expansion_locations_list(self) -> List[Point2]:
assert (
self._expansion_positions_list
), f"self._find_expansion_locations() has not been run yet, so accessing the list of expansion locations is pointless."
return self._expansion_positions_list
@property_cache_once_per_frame
|
MIT License
|
kuri65536/python-for-android
|
python-modules/twisted/twisted/trial/itrial.py
|
IReporter.addExpectedFailure
|
python
|
def addExpectedFailure(test, failure, todo):
|
Record that the given test failed, and was expected to do so.
@type test: L{pyunit.TestCase}
@param test: The test which this is about.
@type error: L{failure.Failure}
@param error: The error which this test failed with.
@type todo: L{unittest.Todo}
@param todo: The reason for the test's TODO status.
|
https://github.com/kuri65536/python-for-android/blob/26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891/python-modules/twisted/twisted/trial/itrial.py#L170-L180
|
import zope.interface as zi
from zope.interface import Attribute
class ITestCase(zi.Interface):
failureException = zi.Attribute(
"The exception class that is raised by failed assertions")
def __call__(result):
def countTestCases():
def id():
def run(result):
def shortDescription():
class IReporter(zi.Interface):
stream = zi.Attribute(
"Deprecated in Twisted 8.0. "
"The io-stream that this reporter will write to")
tbformat = zi.Attribute("Either 'default', 'brief', or 'verbose'")
args = zi.Attribute(
"Additional string argument passed from the command line")
shouldStop = zi.Attribute(
"""
A boolean indicating that this reporter would like the test run to stop.
""")
separator = Attribute(
"Deprecated in Twisted 8.0. "
"A value which will occasionally be passed to the L{write} method.")
testsRun = Attribute(
"""
The number of tests that seem to have been run according to this
reporter.
""")
def startTest(method):
def stopTest(method):
def startSuite(name):
def endSuite(name):
def cleanupErrors(errs):
def upDownError(userMeth, warn=True, printStatus=True):
def addSuccess(test):
def addError(test, error):
def addFailure(test, failure):
|
Apache License 2.0
|
eifinger/homeassistant-config
|
custom_components/dwd_weather/weather.py
|
DWDWeather.device_state_attributes
|
python
|
def device_state_attributes(self):
return self._connector.infos
|
Return data validity infos.
|
https://github.com/eifinger/homeassistant-config/blob/fb26cb795ea407710e30fb679d2ca51cfad8cecf/custom_components/dwd_weather/weather.py#L111-L113
|
import logging
from homeassistant.components.weather import WeatherEntity
from homeassistant.const import TEMP_CELSIUS
from homeassistant.helpers.typing import ConfigType, HomeAssistantType
from .const import (
ATTRIBUTION,
DEFAULT_NAME,
DOMAIN,
DWDWEATHER_COORDINATOR,
DWDWEATHER_DATA,
DWDWEATHER_NAME,
)
_LOGGER = logging.getLogger(__name__)
async def async_setup_entry(
hass: HomeAssistantType, entry: ConfigType, async_add_entities
) -> None:
hass_data = hass.data[DOMAIN][entry.entry_id]
async_add_entities([DWDWeather(entry.data, hass_data)], False)
class DWDWeather(WeatherEntity):
def __init__(self, entry_data, hass_data):
self._connector = hass_data[DWDWEATHER_DATA]
self._coordinator = hass_data[DWDWEATHER_COORDINATOR]
self._name = f"{DEFAULT_NAME} {hass_data[DWDWEATHER_NAME]}"
self._unique_id = f"{hass_data[DWDWEATHER_NAME]}"
async def async_added_to_hass(self):
self.async_on_remove(
self._coordinator.async_add_listener(self.async_write_ha_state)
)
@property
def should_poll(self):
return False
@property
def unique_id(self):
return self._unique_id
@property
def name(self):
self._name
@property
def condition(self):
return self._connector.get_condition()
@property
def temperature(self):
return self._connector.get_temperature()
@property
def temperature_unit(self):
return TEMP_CELSIUS
@property
def pressure(self):
return self._connector.get_pressure()
@property
def wind_speed(self):
return self._connector.get_wind_speed()
@property
def wind_bearing(self):
return self._connector.get_wind_direction()
@property
def visibility(self):
return self._connector.get_visibility()
@property
def humidity(self):
return self._connector.get_humidity()
@property
def attribution(self):
return ATTRIBUTION
@property
def forecast(self):
return self._connector.forecast
@property
|
MIT License
|
oversurge/ps1-brender-reverse
|
ps1_argonaut/files/WADFile.py
|
WADFile.export_experimental_models
|
python
|
def export_experimental_models(self, folder_path: Path, wad_filename: str):
n_models = self.n_models
n_animations = self.n_animations
def guess_compatible_animation(position: int, n_vertices_groups: int):
position = int((position / n_models) * n_animations)
a = int(position)
b = int(math.ceil(position))
while a > -1 or b < n_animations:
if a > -1:
if self.animations[a].n_vertices_groups == n_vertices_groups:
return a
a -= 1
if b < n_animations:
if self.animations[b].n_vertices_groups == n_vertices_groups:
return b
b += 1
return None
if not folder_path.exists():
folder_path.mkdir()
elif folder_path.is_file():
raise FileExistsError
self._prepare_obj_export(folder_path, wad_filename)
for i, model_3d in enumerate(self.dpsx.models_3d):
obj_filename = f"{wad_filename}_{i}"
with (folder_path / (obj_filename + '.OBJ')).open('w', encoding='ASCII') as obj_file:
if model_3d.n_vertices_groups == 1:
model_3d.to_single_obj(obj_file, obj_filename, self.textures, wad_filename)
else:
animation_id = guess_compatible_animation(i, self.models_3d[i].n_vertices_groups)
if animation_id is None:
model_3d.to_single_obj(obj_file, obj_filename, self.textures, wad_filename)
else:
model_3d.animate(self.animations[animation_id]).to_single_obj(obj_file, obj_filename,
self.textures, wad_filename)
|
Tries to find one compatible animation for each model in the WAD, animates it to make it clean
(see doc about 3D models) and exports them into Wavefront OBJ files at the given location.
|
https://github.com/oversurge/ps1-brender-reverse/blob/9e0f4bed801d94eef5542be9b202505a92aead06/ps1_argonaut/files/WADFile.py#L148-L187
|
import math
from io import BytesIO, SEEK_CUR, StringIO, BufferedIOBase
from pathlib import Path
from typing import Dict, Union, Optional, List
from ps1_argonaut.BaseDataClasses import BaseWADSection
from ps1_argonaut.configuration import Configuration, wavefront_header, G
from ps1_argonaut.errors_warnings import SectionNameError
from ps1_argonaut.files.DATFile import DATFile
from ps1_argonaut.wad_sections.DPSX.ChunkClasses import ChunkHolder
from ps1_argonaut.wad_sections.DPSX.DPSXSection import DPSXSection
from ps1_argonaut.wad_sections.DPSX.Model3DData import Model3DData
from ps1_argonaut.wad_sections.ENDSection import ENDSection
from ps1_argonaut.wad_sections.PORTSection import PORTSection
from ps1_argonaut.wad_sections.SPSX.SPSXSection import SPSXSection
from ps1_argonaut.wad_sections.SPSX.Sounds import DialoguesBGMsSoundFlags
from ps1_argonaut.wad_sections.TPSX.TPSXSection import TPSXSection
class WADFile(Dict[bytes, BaseWADSection], DATFile):
suffix = 'WAD'
sections_conf: Dict[bytes, BaseWADSection] = {
TPSXSection.codename_bytes: TPSXSection, SPSXSection.codename_bytes: SPSXSection,
DPSXSection.codename_bytes: DPSXSection, PORTSection.codename_bytes: PORTSection,
ENDSection.codename_bytes: ENDSection}
def __init__(self, stem: str, sections: Dict[bytes, BaseWADSection] = None, data: bytes = None):
dict.__init__(self, sections if sections is not None else {})
DATFile.__init__(self, stem, data=data)
def __str__(self):
titles = ' ({})'.format(', '.join(title.strip(' ') for title in self.titles)) if self.titles else ''
res = f"Game level{titles}"
if self:
res += '\n'
if self.tpsx:
res += f" {self.n_textures:>4} texture(s)"
if isinstance(self.spsx, SPSXSection):
res += f" {self.n_sounds:>4} audio file(s)"
if self.dpsx:
res += f" {self.n_models:>4} model(s) {self.n_animations:>4} animation(s)" f" {self.n_filled_chunks:>4} chunk(s)"
return res
@property
def tpsx(self) -> Optional[TPSXSection]:
return self[TPSXSection.codename_bytes] if TPSXSection.codename_bytes in self else None
@property
def spsx(self) -> Optional[SPSXSection]:
return self[SPSXSection.codename_bytes] if SPSXSection.codename_bytes in self else None
@property
def dpsx(self) -> Optional[DPSXSection]:
return self[DPSXSection.codename_bytes] if DPSXSection.codename_bytes in self else None
@property
def port(self) -> Optional[PORTSection]:
return self[PORTSection.codename_bytes] if PORTSection.codename_bytes in self else None
@property
def end(self) -> Optional[ENDSection]:
return self[ENDSection.codename_bytes] if ENDSection.codename_bytes in self else None
@property
def titles(self) -> List[str]:
return () if self.tpsx is None else self.tpsx.titles
@property
def textures(self):
return None if (self.tpsx is None) else self.tpsx.texture_file.textures
@property
def n_textures(self):
return 0 if self.tpsx is None else len(self.tpsx.texture_file.textures)
@property
def common_sound_effects(self):
return None if (self.spsx is None) else self.spsx.common_sfx
@property
def ambient_tracks(self):
return None if (self.spsx is None) else self.spsx.ambient_tracks
@property
def flattened_level_sfx(self):
return None if (self.end is None) else self.spsx.level_sfx_groups.sounds
@property
def level_sfx(self):
return None if (self.end is None) else self.spsx.level_sfx_groups
@property
def dialogues_bgms(self):
return None if (self.end is None) else self.spsx.dialogues_bgms
@property
def n_sounds(self):
return 0 if (self.spsx is None or not isinstance(self.spsx, SPSXSection)) else self.spsx.n_sounds
@property
def models_3d(self):
return None if self.dpsx is None else self.dpsx.models_3d
@property
def n_models(self):
return 0 if self.dpsx is None else len(self.dpsx.models_3d)
@property
def animations(self):
return None if self.dpsx is None else self.dpsx.animations
@property
def n_animations(self):
return 0 if self.dpsx is None else len(self.dpsx.animations)
@property
def scripts(self):
return None if self.dpsx is None else self.dpsx.scripts
@property
def n_scripts(self):
return 0 if self.dpsx is None else len(self.dpsx.scripts)
@property
def chunks_matrix(self):
return None if (self.dpsx is None) else self.dpsx.level_file.chunks_matrix
@property
def n_filled_chunks(self):
return 0 if self.dpsx is None else self.dpsx.level_file.chunks_matrix.n_filled_chunks
def _prepare_obj_export(self, folder_path: Path, wad_filename: str):
with (folder_path / (wad_filename + '.MTL')).open('w', encoding='ASCII') as mtl_file:
mtl_file.write(wavefront_header + f"newmtl mtl1\nmap_Kd {wad_filename}.PNG")
self.tpsx.texture_file.to_colorized_texture().save(folder_path / (wad_filename + '.PNG'))
|
MIT License
|
cos-archives/modular-odm
|
modularodm/ext/concurrency.py
|
with_proxies
|
python
|
def with_proxies(proxy_map, get_key):
def wrapper(cls):
for label, ProxiedClass in six.iteritems(proxy_map):
proxy = proxy_factory(cls, label, ProxiedClass, get_key)
setattr(cls, label, proxy)
return cls
return wrapper
|
Class decorator factory; adds proxy class variables to target class.
:param dict proxy_map: Mapping between class variable labels and proxied
classes
:param function get_key: Extension-specific key function; may return e.g.
the current Flask request
|
https://github.com/cos-archives/modular-odm/blob/8a34891892b8af69b21fdc46701c91763a5c1cf9/modularodm/ext/concurrency.py#L48-L62
|
import weakref
import collections
import six
from werkzeug.local import LocalProxy
from modularodm.cache import Cache
from modularodm.writequeue import WriteQueue
proxies = collections.defaultdict(
lambda: collections.defaultdict(weakref.WeakKeyDictionary)
)
proxied_members = {
'_cache': Cache,
'_object_cache': Cache,
'queue': WriteQueue,
}
def proxy_factory(BaseSchema, label, ProxiedClass, get_key):
def local():
key = get_key()
try:
return proxies[BaseSchema][label][key]
except KeyError:
proxies[BaseSchema][label][key] = ProxiedClass()
return proxies[BaseSchema][label][key]
return LocalProxy(local)
|
Apache License 2.0
|
nervanasystems/ngraph-python
|
ngraph/op_graph/tensorboard/summary.py
|
scalar
|
python
|
def scalar(name, scalar):
name = _clean_tag(name)
if not isinstance(scalar, float):
scalar = float(scalar)
return Summary(value=[Summary.Value(tag=name, simple_value=scalar)])
|
Outputs a `Summary` protocol buffer containing a single scalar value.
The generated Summary has a Tensor.proto containing the input Tensor.
Args:
name: A name for the generated node. Will also serve as the series name in
TensorBoard.
scalar: A real numeric Tensor containing a single value.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
Returns:
A scalar `Tensor` of type `string`. Which contains a `Summary` protobuf.
Raises:
ValueError: If tensor has the wrong shape or type.
|
https://github.com/nervanasystems/ngraph-python/blob/ac032c83c7152b615a9ad129d54d350f9d6a2986/ngraph/op_graph/tensorboard/summary.py#L69-L87
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import re as _re
import bisect
from six import StringIO
from six.moves import range
from PIL import Image
import wave
import numpy as np
from tensorflow.core.framework.summary_pb2 import Summary, HistogramProto
logger = logging.getLogger(__name__)
_INVALID_TAG_CHARACTERS = _re.compile(r'[^-/\w\.]')
def _clean_tag(name):
if name is not None:
new_name = _INVALID_TAG_CHARACTERS.sub('_', name)
new_name = new_name.lstrip('/')
if new_name != name:
logger.debug('Summary name {} is illegal; using {} instead.'.format(name, new_name))
name = new_name
return name
|
Apache License 2.0
|
dhermes/project-euler
|
python/functions.py
|
recurrence_next
|
python
|
def recurrence_next(relation, values):
if len(relation) != len(values):
raise ValueError("Poorly specified recurrence")
recurrence_order = len(relation)
next_val = sum(relation[i] * values[i] for i in range(recurrence_order))
return values[1:] + [next_val]
|
Gets next term in a recurrence based on relation.
Assumes recurrence of length k satisfies
f(n+k) = relation[0]*f(n) + relation[1]*f(n+1) + ...
Values are also expected to be ordered [f(n),f(n+1),...]
|
https://github.com/dhermes/project-euler/blob/2aabf89b28f033a3e59b7411a9c9c261117818cf/python/functions.py#L55-L67
|
import operator
import sys
from fractions import gcd
from math import factorial
from math import log
from math import sqrt
from path import DATA_PATH
def lcm(n, m):
return n * m / (gcd(n, m))
def choose(n, k):
return factorial(n) / (factorial(k) * factorial(n - k))
def get_data(problem_number):
filename = 'no%s.txt' % str(problem_number).zfill(3)
absolute_path = '%s/%s' % (DATA_PATH, filename)
with open(absolute_path) as fh:
result = fh.read()
return result
def robust_divide(n, quotient, include_count=False):
if quotient in (-1, 1):
raise ValueError("Please don't use %s as a quotient." % quotient)
result = n
count = 0
while result % quotient == 0:
count += 1
result = result / quotient
if include_count:
return result, count
else:
return result
|
Apache License 2.0
|
fish-quant/big-fish
|
bigfish/detection/spot_modeling.py
|
_build_reference_spot_2d
|
python
|
def _build_reference_spot_2d(image, spots, radius, alpha):
radius_yx = np.ceil(radius[-1]).astype(np.int64)
yx_shape = radius_yx * 2 + 1
indices = [i for i in range(spots.shape[0])]
np.random.shuffle(indices)
indices = indices[:min(2000, spots.shape[0])]
candidate_spots = spots[indices, :]
l_reference_spot = []
for i_spot in range(candidate_spots.shape[0]):
spot_y, spot_x = candidate_spots[i_spot, :]
image_spot, _ = _get_spot_surface(image, spot_y, spot_x, radius_yx)
if image_spot.shape == (yx_shape, yx_shape):
l_reference_spot.append(image_spot)
if len(l_reference_spot) <= 30:
warnings.warn("Problem occurs during the computation of a reference "
"spot. Not enough (uncropped) spots have been detected.",
UserWarning)
if len(l_reference_spot) == 0:
reference_spot = np.zeros((yx_shape, yx_shape), dtype=image.dtype)
return reference_spot
l_reference_spot = np.stack(l_reference_spot, axis=0)
alpha_ = alpha * 100
reference_spot = np.percentile(l_reference_spot, alpha_, axis=0)
reference_spot = reference_spot.astype(image.dtype)
return reference_spot
|
Build a median or mean spot in 2 dimensions as reference.
Reference spot is computed from a sample of uncropped detected spots. If
such sample is not possible, an empty frame is returned.
Parameters
----------
image : np.ndarray
Image with shape (y, x).
spots : np.ndarray, np.int64
Coordinate of the spots with shape (nb_spots, 2) for 2-d images.
radius : Tuple[float]
Radius in pixels of the detected spots, one element per dimension.
alpha : int or float
Intensity score of the reference spot, between 0 and 1. If 0, reference
spot approximates the spot with the lowest intensity. If 1, reference
spot approximates the brightest spot.
Returns
-------
reference_spot : np.ndarray
Reference spot in 2-d.
|
https://github.com/fish-quant/big-fish/blob/5512b6e3274872793ef4365a6dc423c72add91f9/bigfish/detection/spot_modeling.py#L211-L275
|
import warnings
import numpy as np
import bigfish.stack as stack
from scipy.special import erf
from scipy.optimize import curve_fit
def build_reference_spot(image, spots, voxel_size_z=None, voxel_size_yx=100,
psf_z=None, psf_yx=200, alpha=0.5):
stack.check_array(image,
ndim=[2, 3],
dtype=[np.uint8, np.uint16, np.float32, np.float64])
stack.check_array(spots, ndim=2, dtype=np.int64)
stack.check_parameter(voxel_size_z=(int, float, type(None)),
voxel_size_yx=(int, float),
psf_z=(int, float, type(None)),
psf_yx=(int, float),
alpha=(int, float))
if alpha < 0 or alpha > 1:
raise ValueError("'alpha' should be a value between 0 and 1, not {0}"
.format(alpha))
ndim = image.ndim
if ndim == 3 and voxel_size_z is None:
raise ValueError("Provided image has {0} dimensions but "
"'voxel_size_z' parameter is missing.".format(ndim))
if ndim == 3 and psf_z is None:
raise ValueError("Provided image has {0} dimensions but "
"'psf_z' parameter is missing.".format(ndim))
if ndim != spots.shape[1]:
raise ValueError("Provided image has {0} dimensions but spots are "
"detected in {1} dimensions."
.format(ndim, spots.shape[1]))
if ndim == 2:
voxel_size_z, psf_z = None, None
radius = stack.get_radius(voxel_size_z, voxel_size_yx, psf_z, psf_yx)
if image.ndim == 3:
reference_spot = _build_reference_spot_3d(image, spots, radius, alpha)
else:
reference_spot = _build_reference_spot_2d(image, spots, radius, alpha)
return reference_spot
def _build_reference_spot_3d(image, spots, radius, alpha):
radius_z = np.ceil(radius[0]).astype(np.int64)
z_shape = radius_z * 2 + 1
radius_yx = np.ceil(radius[-1]).astype(np.int64)
yx_shape = radius_yx * 2 + 1
indices = [i for i in range(spots.shape[0])]
np.random.shuffle(indices)
indices = indices[:min(2000, spots.shape[0])]
candidate_spots = spots[indices, :]
l_reference_spot = []
for i_spot in range(candidate_spots.shape[0]):
spot_z, spot_y, spot_x = candidate_spots[i_spot, :]
image_spot, _, = _get_spot_volume(image, spot_z, spot_y, spot_x,
radius_z, radius_yx)
if image_spot.shape == (z_shape, yx_shape, yx_shape):
l_reference_spot.append(image_spot)
if len(l_reference_spot) <= 30:
warnings.warn("Problem occurs during the computation of a reference "
"spot. Not enough (uncropped) spots have been detected.",
UserWarning)
if len(l_reference_spot) == 0:
reference_spot = np.zeros((z_shape, yx_shape, yx_shape),
dtype=image.dtype)
return reference_spot
l_reference_spot = np.stack(l_reference_spot, axis=0)
alpha_ = alpha * 100
reference_spot = np.percentile(l_reference_spot, alpha_, axis=0)
reference_spot = reference_spot.astype(image.dtype)
return reference_spot
def _get_spot_volume(image, spot_z, spot_y, spot_x, radius_z, radius_yx):
z_spot_min = max(0, int(spot_z - radius_z))
z_spot_max = min(image.shape[0], int(spot_z + radius_z))
y_spot_min = max(0, int(spot_y - radius_yx))
y_spot_max = min(image.shape[1], int(spot_y + radius_yx))
x_spot_min = max(0, int(spot_x - radius_yx))
x_spot_max = min(image.shape[2], int(spot_x + radius_yx))
image_spot = image[z_spot_min:z_spot_max + 1,
y_spot_min:y_spot_max + 1,
x_spot_min:x_spot_max + 1]
return image_spot, (z_spot_min, y_spot_min, x_spot_min)
|
BSD 3-Clause New or Revised License
|
nuagenetworks/vspk-python
|
vspk/v5_0/nunetconfprofile.py
|
NUNetconfProfile.port
|
python
|
def port(self, value):
self._port = value
|
Set port value.
Notes:
Netconf session port
|
https://github.com/nuagenetworks/vspk-python/blob/375cce10ae144ad6017104e57fcd3630898cc2a6/vspk/v5_0/nunetconfprofile.py#L244-L252
|
from .fetchers import NUMetadatasFetcher
from .fetchers import NUGlobalMetadatasFetcher
from bambou import NURESTObject
class NUNetconfProfile(NURESTObject):
__rest_name__ = "netconfprofile"
__resource_name__ = "netconfprofiles"
CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL"
CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE"
def __init__(self, **kwargs):
super(NUNetconfProfile, self).__init__()
self._name = None
self._password = None
self._last_updated_by = None
self._description = None
self._entity_scope = None
self._port = None
self._user_name = None
self._assoc_entity_type = None
self._external_id = None
self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=True, is_unique=False)
self.expose_attribute(local_name="password", remote_name="password", attribute_type=str, is_required=True, is_unique=False)
self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="description", remote_name="description", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL'])
self.expose_attribute(local_name="port", remote_name="port", attribute_type=int, is_required=False, is_unique=False)
self.expose_attribute(local_name="user_name", remote_name="userName", attribute_type=str, is_required=True, is_unique=False)
self.expose_attribute(local_name="assoc_entity_type", remote_name="assocEntityType", attribute_type=str, is_required=False, is_unique=False)
self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True)
self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child")
self._compute_args(**kwargs)
@property
def name(self):
return self._name
@name.setter
def name(self, value):
self._name = value
@property
def password(self):
return self._password
@password.setter
def password(self, value):
self._password = value
@property
def last_updated_by(self):
return self._last_updated_by
@last_updated_by.setter
def last_updated_by(self, value):
self._last_updated_by = value
@property
def description(self):
return self._description
@description.setter
def description(self, value):
self._description = value
@property
def entity_scope(self):
return self._entity_scope
@entity_scope.setter
def entity_scope(self, value):
self._entity_scope = value
@property
def port(self):
return self._port
@port.setter
|
BSD 3-Clause New or Revised License
|
sjml/simulatorgenerator
|
lib/twitter.py
|
Status.__init__
|
python
|
def __init__(self, **kwargs):
param_defaults = {
'coordinates': None,
'contributors': None,
'created_at': None,
'current_user_retweet': None,
'favorited': None,
'favorite_count': None,
'geo': None,
'id': None,
'in_reply_to_screen_name': None,
'in_reply_to_user_id': None,
'in_reply_to_status_id': None,
'lang': None,
'location': None,
'now': None,
'place': None,
'possibly_sensitive': None,
'retweeted': None,
'retweeted_status': None,
'retweet_count': None,
'scopes': None,
'source': None,
'text': None,
'truncated': None,
'urls': None,
'user': None,
'user_mentions': None,
'hashtags': None,
'media': None,
'withheld_copyright': None,
'withheld_in_countries': None,
'withheld_scope': None}
for (param, default) in param_defaults.iteritems():
setattr(self, param, kwargs.get(param, default))
|
An object to hold a Twitter status message.
This class is normally instantiated by the twitter.Api class and
returned in a sequence.
Note: Dates are posted in the form "Sat Jan 27 04:17:38 +0000 2007"
Args:
created_at:
The time this status message was posted. [Optional]
favorited:
Whether this is a favorite of the authenticated user. [Optional]
favorite_count:
Number of times this status message has been favorited. [Optional]
id:
The unique id of this status message. [Optional]
text:
The text of this status message. [Optional]
location:
the geolocation string associated with this message. [Optional]
relative_created_at:
A human readable string representing the posting time. [Optional]
user:
A twitter.User instance representing the person posting the
message. [Optional]
now:
The current time, if the client chooses to set it.
Defaults to the wall clock time. [Optional]
urls:
user_mentions:
hashtags:
geo:
place:
coordinates:
contributors:
retweeted:
retweeted_status:
current_user_retweet:
retweet_count:
possibly_sensitive:
scopes:
withheld_copyright:
withheld_in_countries:
withheld_scope:
|
https://github.com/sjml/simulatorgenerator/blob/f9f2127fc63c18facd0625361514ebc217b47bff/lib/twitter.py#L118-L198
|
__author__ = '[email protected]'
__version__ = '1.1'
import base64
import os
import rfc822
import sys
import tempfile
import textwrap
import time
import urllib
import urllib2
import urlparse
import gzip
import StringIO
import re
import requests
from requests_oauthlib import OAuth1
from calendar import timegm
from datetime import datetime
try:
import json as simplejson
except ImportError:
try:
import simplejson
except ImportError:
try:
from django.utils import simplejson
except ImportError:
raise ImportError, "Unable to load a json library"
try:
from urlparse import parse_qsl, parse_qs
except ImportError:
from cgi import parse_qsl, parse_qs
try:
from hashlib import md5
except ImportError:
from md5 import md5
CHARACTER_LIMIT = 140
DEFAULT_CACHE = object()
REQUEST_TOKEN_URL = 'https://api.twitter.com/oauth/request_token'
ACCESS_TOKEN_URL = 'https://api.twitter.com/oauth/access_token'
AUTHORIZATION_URL = 'https://api.twitter.com/oauth/authorize'
SIGNIN_URL = 'https://api.twitter.com/oauth/authenticate'
class TwitterError(Exception):
@property
def message(self):
return self.args[0]
class Status(object):
|
MIT License
|
martinomensio/spacy-universal-sentence-encoder
|
spacy_universal_sentence_encoder/__init__.py
|
create_from
|
python
|
def create_from(nlp, use_model_code):
if use_model_code not in util.configs:
raise ValueError(f'Model "{use_model_code}" not available')
config = util.configs[use_model_code]
return language.create_nlp(config, nlp)
|
From an existing `nlp` object, adds the vectors from the specific `use_model_code` by adding pipeline stages
|
https://github.com/martinomensio/spacy-universal-sentence-encoder/blob/bbc6efe924b8abc71bd4c347878822fed0bd03f7/spacy_universal_sentence_encoder/__init__.py#L21-L26
|
from __future__ import unicode_literals
from spacy.util import load_model_from_init_py
from spacy.tokens import Doc
import warnings
from . import util
from .util import create_lang as load_model
__version__ = util.pkg_meta["version"]
from . import language
warnings.filterwarnings('ignore', message=r"\[W007\]", category=UserWarning)
def load(**overrides):
return load_model_from_init_py(__file__, **overrides)
|
MIT License
|
bobotig/ebook-reader-dict
|
wikidict/utils.py
|
format_description
|
python
|
def format_description(locale: str, output_dir: Path) -> str:
words_count = (output_dir / "words.count").read_text().strip()
thousands_sep = thousands_separator[locale]
words_count = f"{int(words_count):,}".replace(",", thousands_sep)
dump_date = (output_dir / "words.snapshot").read_text().strip()
dump_date = f"{dump_date[:4]}-{dump_date[4:6]}-{dump_date[6:8]}"
url_dictfile = DOWNLOAD_URL_DICTFILE.format(locale)
url_kobo = DOWNLOAD_URL_KOBO.format(locale)
url_stardict = DOWNLOAD_URL_STARDICT.format(locale)
creation_date = NOW.isoformat()
return release_description[locale].format(**locals())
|
Generate the release description.
|
https://github.com/bobotig/ebook-reader-dict/blob/1f3c27b12c36091641ae47bdd3bf2f9f72153368/wikidict/utils.py#L115-L135
|
import re
from contextlib import suppress
from datetime import datetime
from functools import partial
from pathlib import Path
from typing import List, Match, Tuple, Union
from warnings import warn
from cachetools import cached
from cachetools.keys import hashkey
import regex
import requests
import wikitextparser
from .constants import (
DOWNLOAD_URL_DICTFILE,
DOWNLOAD_URL_KOBO,
DOWNLOAD_URL_STARDICT,
IMG_CSS,
)
from .lang import (
last_template_handler,
pattern_file,
release_description,
templates_ignored,
templates_italic,
templates_multi,
templates_other,
thousands_separator,
)
from .user_functions import *
from .hiero_utils import render_hiero
NOW = datetime.utcnow()
MAGIC_WORDS = {
"CURRENTYEAR": str(NOW.year),
"CURRENTMONTH": NOW.strftime("%m"),
"CURRENTMONTH1": str(NOW.month),
"CURRENTDAY": str(NOW.day),
"CURRENTDAY2": NOW.strftime("%d"),
"CURRENTDOW": NOW.strftime("%w"),
"CURRENTTIME": NOW.strftime("%H:%M"),
"CURRENTHOUR": NOW.strftime("%H"),
"CURRENTWEEK": NOW.strftime("%V"),
"CURRENTTIMESTAMP": NOW.strftime("%Y%m%d%H%M%S"),
}
def convert_gender(gender: str) -> str:
return f" <i>{gender}.</i>" if gender else ""
def convert_pronunciation(pronunciations: List[str]) -> str:
if not pronunciations:
return ""
return " " + ", ".join(f"\\{p}\\" for p in pronunciations)
def get_word_of_the_day(locale: str) -> str:
months = {
"en": [
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
],
}
word_of_the_day = {
"ca": ("", ""),
"es": (
f"Plantilla:palabra_de_la_semana/{NOW.strftime('%-V')}",
r" palabra= ([^\|]+)",
),
"en": (
f"Wiktionary:Word_of_the_day/{NOW.strftime('%Y')}/{months['en'][int(NOW.strftime('%-m')) - 1]}_{NOW.strftime('%d')}",
r"{{WOTD\|([^\|]+)\|",
),
"fr": (
f"Mod%C3%A8le:Entr%C3%A9e_du_jour/{NOW.strftime('%Y/%m/%d')}",
r"<span style=\"font-size:120%;\">'''\[\[([^\]]+)\]\]'''</span>",
),
"pt": ("", ""),
"sv": (
"Mall:högkvalitativt",
r"<big>\[\[([^\]]+)\]\]</big>",
),
}
special_word, pattern = word_of_the_day[locale]
url = f"https://{locale}.wiktionary.org/wiki/{special_word}?action=raw"
with requests.get(url) as req:
matches = re.findall(pattern, req.text)
return str(matches[0].strip()) if matches else ""
|
MIT License
|
angr/angr
|
angr/state_plugins/heap/heap_base.py
|
SimHeapBase._conc_alloc_size
|
python
|
def _conc_alloc_size(self, sim_size):
if self.state.solver.symbolic(sim_size):
size = self.state.solver.max_int(sim_size)
if size > self.state.libc.max_variable_size:
l.warning("Allocation request of %d bytes exceeded maximum of %d bytes; allocating %d bytes",
size, self.state.libc.max_variable_size, self.state.libc.max_variable_size)
size = self.state.libc.max_variable_size
else:
size = self.state.solver.eval(sim_size)
return size
|
Concretizes a size argument, if necessary, to something that makes sense when allocating space. Here we just
maximize its potential size up to the maximum variable size specified in the libc plugin.
TODO:
Further consideration of the tradeoffs of this approach is probably warranted. SimHeapPTMalloc especially makes
a lot of different concretization strategy assumptions, but this function handles one of the more important
problems that any heap implementation will face: how to decide the amount of space to allocate upon request for
a symbolic size. Either we do as we do here and silently constrain the amount returned to a default max value,
or we could add a path constraint to the state to prevent exploration of any paths that would have legitimately
occurred given a larger allocation size.
The first approach (the silent maximum) has its benefit in that the explored state space will not be
constrained. Sometimes this could work out, as when an allocation is returned that is smaller than requested but
which the program doesn't end up making full use of anyways. Alternatively, this lack of fidelity could cause
the program to overwrite other allocations made, since it should be able to assume the allocation is as large as
it requested it be.
The second approach (the path constraint) has its benefit in that no paths will be explored that *could* fail
when an allocation is made too small. On the other hand, as stated above, some of these paths might not have
failed anyways, and doing this causes us to lose the opportunity to explore those paths.
Perhaps these behaviors could be parameterized in the future?
|
https://github.com/angr/angr/blob/94de0f468df0c0d27428301dae93d94f935ade9b/angr/state_plugins/heap/heap_base.py#L40-L73
|
from ..plugin import SimStatePlugin
from ...errors import SimMemoryError
from .. import sim_options as opts
import logging
l = logging.getLogger("angr.state_plugins.heap.heap_base")
DEFAULT_HEAP_LOCATION = 0xc0000000
DEFAULT_HEAP_SIZE = 64 * 4096
class SimHeapBase(SimStatePlugin):
def __init__(self, heap_base=None, heap_size=None):
super().__init__()
self.heap_base = heap_base if heap_base is not None else DEFAULT_HEAP_LOCATION
self.heap_size = heap_size if heap_size is not None else DEFAULT_HEAP_SIZE
self.mmap_base = self.heap_base + self.heap_size * 2
def copy(self, memo):
o = super().copy(memo)
o.heap_base = self.heap_base
o.heap_size = self.heap_size
o.mmap_base = self.mmap_base
return o
|
BSD 2-Clause Simplified License
|
qutech-delft/quantuminspire
|
src/quantuminspire/qiskit/circuit_parser.py
|
CircuitToString.parse
|
python
|
def parse(self, stream: StringIO, instruction: QasmQobjInstruction) -> None:
if instruction.name == 'bfunc':
self.bfunc_instructions.append(instruction)
elif hasattr(instruction, 'conditional'):
self._parse_bin_ctrl_gate(stream, instruction)
else:
gate_name = f'_{instruction.name.lower()}'
gate_function = getattr(self, gate_name, getattr(self, "_gate_not_supported"))
gate_function(stream, instruction)
|
Parses a gate.
For each type of gate a separate (private) parsing method is defined and called.
The resulting cQASM code is written to the stream. When the gate is a binary controlled
gate, Qiskit uses two instructions to handle it. The first instruction is a so-called bfunc with the
conditional information (mask, value to check etc.) which is stored for later use.
The next instruction is the actual gate which must be executed conditionally. The parsing is
forwarded to method _parse_bin_ctrl_gate which reads the earlier stored bfunc.
When a gate is not supported _gate_not_supported is called which raises an exception.
:param stream: The string-io stream to where the resulting cQASM is written.
:param instruction: The Qiskit instruction to translate to cQASM.
|
https://github.com/qutech-delft/quantuminspire/blob/ebff819ae2938459c32bf86355fc567a2195925b/src/quantuminspire/qiskit/circuit_parser.py#L682-L703
|
import copy
from io import StringIO
from typing import Optional, Tuple, List
import numpy as np
from qiskit.qobj import QasmQobjInstruction
from quantuminspire.exceptions import ApiError
class CircuitToString:
def __init__(self, full_state_projection: bool = True) -> None:
self.bfunc_instructions: List[QasmQobjInstruction] = []
self.full_state_projection = full_state_projection
@staticmethod
def _gate_not_supported(_stream: StringIO, instruction: QasmQobjInstruction, _binary_control: Optional[str] = None) -> None:
if hasattr(instruction, 'conditional'):
raise ApiError(f'Conditional gate c-{instruction.name.lower()} not supported')
raise ApiError(f'Gate {instruction.name.lower()} not supported')
@staticmethod
def _cz(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('CZ q[{0}], q[{1}]\n'.format(*instruction.qubits))
@staticmethod
def _c_cz(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-CZ {0}q[{1}], q[{2}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _cx(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('CNOT q[{0}], q[{1}]\n'.format(*instruction.qubits))
@staticmethod
def _c_cx(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-CNOT {0}q[{1}], q[{2}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _ccx(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('Toffoli q[{0}], q[{1}], q[{2}]\n'.format(*instruction.qubits))
@staticmethod
def _c_ccx(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-Toffoli {0}q[{1}], q[{2}], q[{3}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _h(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('H q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def _c_h(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-H {0}q[{1}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _id(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('I q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def _c_id(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-I {0}q[{1}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _s(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('S q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def _c_s(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-S {0}q[{1}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _sdg(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('Sdag q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def _c_sdg(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-Sdag {0}q[{1}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _swap(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('SWAP q[{0}], q[{1}]\n'.format(*instruction.qubits))
@staticmethod
def _c_swap(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-SWAP {0}q[{1}], q[{2}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _t(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('T q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def _c_t(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-T {0}q[{1}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _tdg(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('Tdag q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def _c_tdg(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-Tdag {0}q[{1}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _x(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('X q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def _c_x(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-X {0}q[{1}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _y(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('Y q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def _c_y(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-Y {0}q[{1}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _z(stream: StringIO, instruction: QasmQobjInstruction) -> None:
stream.write('Z q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def _c_z(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
stream.write('C-Z {0}q[{1}]\n'.format(binary_control, *instruction.qubits))
@staticmethod
def _r(stream: StringIO, instruction: QasmQobjInstruction, axis: str) -> None:
angle_q0 = float(instruction.params[0])
stream.write('R{0} q[{1}], {2:.6f}\n'.format(axis, *instruction.qubits, angle_q0))
@staticmethod
def _c_r(stream: StringIO, instruction: QasmQobjInstruction, axis: str, binary_control: str) -> None:
angle_q0 = float(instruction.params[0])
stream.write('C-R{0} {1}q[{2}], {3:.6f}\n'.format(axis, binary_control, *instruction.qubits, angle_q0))
@staticmethod
def _rx(stream: StringIO, instruction: QasmQobjInstruction) -> None:
CircuitToString._r(stream, instruction, 'x')
@staticmethod
def _c_rx(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
CircuitToString._c_r(stream, instruction, 'x', binary_control)
@staticmethod
def _ry(stream: StringIO, instruction: QasmQobjInstruction) -> None:
CircuitToString._r(stream, instruction, 'y')
@staticmethod
def _c_ry(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
CircuitToString._c_r(stream, instruction, 'y', binary_control)
@staticmethod
def _rz(stream: StringIO, instruction: QasmQobjInstruction) -> None:
CircuitToString._r(stream, instruction, 'z')
@staticmethod
def _c_rz(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
CircuitToString._c_r(stream, instruction, 'z', binary_control)
@staticmethod
def _u(stream: StringIO, instruction: QasmQobjInstruction) -> None:
CircuitToString._u3(stream, instruction)
@staticmethod
def _c_u(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
CircuitToString._c_u3(stream, instruction, binary_control)
@staticmethod
def _u1(stream: StringIO, instruction: QasmQobjInstruction) -> None:
temp_instruction = copy.deepcopy(instruction)
temp_instruction.params[0:0] = (0, 0)
CircuitToString._u3(stream, temp_instruction)
@staticmethod
def _c_u1(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
temp_instruction = copy.deepcopy(instruction)
temp_instruction.params[0:0] = (0, 0)
CircuitToString._c_u3(stream, temp_instruction, binary_control)
@staticmethod
def _u2(stream: StringIO, instruction: QasmQobjInstruction) -> None:
temp_instruction = copy.deepcopy(instruction)
temp_instruction.params.insert(0, np.pi/2)
CircuitToString._u3(stream, temp_instruction)
@staticmethod
def _c_u2(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
temp_instruction = copy.deepcopy(instruction)
temp_instruction.params.insert(0, np.pi/2)
CircuitToString._c_u3(stream, temp_instruction, binary_control)
@staticmethod
def _u3(stream: StringIO, instruction: QasmQobjInstruction) -> None:
gates = ['Rz', 'Ry', 'Rz']
angles = list(float(instruction.params[i]) for i in [2, 0, 1])
index_q0 = [instruction.qubits[0]] * 3
for triplet in zip(gates, index_q0, angles):
if triplet[2] != 0:
stream.write('{0} q[{1}], {2:.6f}\n'.format(*triplet))
@staticmethod
def _c_u3(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
gates = ['C-Rz', 'C-Ry', 'C-Rz']
binary_controls = [binary_control] * 3
angles = list(float(instruction.params[i]) for i in [2, 0, 1])
index_q0 = [instruction.qubits[0]] * 3
for quadruplets in zip(gates, binary_controls, index_q0, angles):
if quadruplets[3] != 0:
stream.write('{0} {1}q[{2}], {3:.6f}\n'.format(*quadruplets))
@staticmethod
def _barrier(stream: StringIO, instruction: QasmQobjInstruction) -> None:
@staticmethod
def _c_barrier(stream: StringIO, instruction: QasmQobjInstruction, binary_control: str) -> None:
def _measure(self, stream: StringIO, instruction: QasmQobjInstruction) -> None:
if not self.full_state_projection:
stream.write('measure q[{0}]\n'.format(*instruction.qubits))
@staticmethod
def get_mask_data(mask: int) -> Tuple[int, int]:
if mask == 0:
return -1, 0
mask_length = 0
bit_value = 1
bit_nr = 0
while not mask & bit_value:
bit_value <<= 1
bit_nr += 1
lowest_mask_bit = bit_nr
while mask & bit_value:
mask_length += 1
bit_value <<= 1
return lowest_mask_bit, mask_length
def _parse_bin_ctrl_gate(self, stream: StringIO, instruction: QasmQobjInstruction) -> None:
conditional_reg_idx = instruction.conditional
conditional = next((x for x in self.bfunc_instructions if x.register == conditional_reg_idx), None)
if conditional is None:
raise ApiError(f'Conditional not found: reg_idx = {conditional_reg_idx}')
self.bfunc_instructions.remove(conditional)
conditional_type = conditional.relation
if conditional_type != '==':
raise ApiError(f'Conditional statement with relation {conditional_type} not supported')
mask = int(conditional.mask, 16)
if mask == 0:
raise ApiError(f'Conditional statement {instruction.name.lower()} without a mask')
lowest_mask_bit, mask_length = self.get_mask_data(mask)
val = int(conditional.val, 16)
masked_val = mask & val
negate_zeroes_line = ''
if masked_val != mask:
negate_zeroes_line = 'not b[' + ','.join(
str(i) for i in range(lowest_mask_bit, lowest_mask_bit + mask_length)
if not (masked_val & (1 << i))) + ']\n'
if mask_length == 1:
binary_control = f'b[{lowest_mask_bit}], '
else:
binary_control = f'b[{lowest_mask_bit}:{lowest_mask_bit + mask_length - 1}], '
with StringIO() as gate_stream:
gate_name = f'_c_{instruction.name.lower()}'
gate_function = getattr(self, gate_name, getattr(self, "_gate_not_supported"))
gate_function(gate_stream, instruction, binary_control)
line = gate_stream.getvalue()
if len(line) != 0:
stream.write(negate_zeroes_line)
stream.write(line)
stream.write(negate_zeroes_line)
|
Apache License 2.0
|
jackgoffinet/autoencoded-vocal-analysis
|
ava/plotting/mmd_plots.py
|
estimate_median_sigma
|
python
|
def estimate_median_sigma(latent, n=10000, seed=42):
np.random.seed(seed)
arr = np.zeros(n)
for i in range(n):
i1, i2 = np.random.randint(len(latent)), np.random.randint(len(latent))
arr[i] = np.sum(np.power(latent[i1]-latent[i2],2))
np.random.seed(None)
return np.sqrt(np.median(arr) + EPSILON)
|
Estimate the median pairwise distance for use as a kernel bandwidth.
Parameters
----------
latent : numpy.ndarray
Latent means.
n : int, optional
Number of random pairs to draw. Defaults to `10000`.
seed : {None, int}
Random seed. Defaults to ``42``.
Returns
-------
sigma : float
Median pairwise Euclidean distance between sampled latent means.
|
https://github.com/jackgoffinet/autoencoded-vocal-analysis/blob/f10257a834efa9bc2bb9cb0e7e350e7a7798c6e7/ava/plotting/mmd_plots.py#L448-L472
|
__date__ = "August 2019 - July 2020"
from itertools import repeat
from joblib import Parallel, delayed
from matplotlib.collections import PolyCollection
from matplotlib.colors import cnames
from matplotlib.colors import to_rgba
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import numpy as np
import os
from scipy.cluster.hierarchy import linkage, leaves_list
from scipy.spatial.distance import squareform
from sklearn.manifold import TSNE, MDS
EPSILON = 1e-8
NEAR_WHITE_COLORS = ['silver', 'whitesmoke', 'floralwhite', 'aliceblue', 'lightgoldenrodyellow', 'lightgray', 'w', 'seashell', 'ivory', 'lemonchiffon','ghostwhite', 'white', 'beige', 'honeydew', 'azure', 'lavender', 'snow', 'linen', 'antiquewhite', 'papayawhip', 'oldlace', 'cornsilk', 'lightyellow', 'mintcream', 'lightcyan', 'lavenderblush', 'blanchedalmond', 'lightcoral']
COLOR_LIST = []
for name, hex in cnames.items():
if name not in NEAR_WHITE_COLORS:
COLOR_LIST.append(name)
COLOR_LIST = np.array(COLOR_LIST)
np.random.seed(42)
np.random.shuffle(COLOR_LIST)
np.random.seed(None)
def mmd_matrix_plot_DC(dc, condition_from_fn, mmd2_fn, condition_fn, parallel=False, load_data=False, cluster=True, alg='quadratic', max_n=None, sigma=None, cmap='Greys', colorbar=True, cax=None, ticks=[0.0,0.3], filename='mmd_matrix.pdf', ax=None, save_and_close=True):
assert mmd2_fn is not None
loaded = False
if load_data:
try:
mmd2 = np.load(mmd2_fn)
loaded = True
except:
print("Unable to load data!")
if not loaded:
mmd2, _ = _calculate_mmd2(dc, condition_from_fn, mmd2_fn=mmd2_fn, condition_fn=condition_fn, parallel=parallel, alg=alg, max_n=max_n, sigma=sigma)
filename = os.path.join(dc.plots_dir, filename)
mmd_matrix_plot(mmd2, ax=ax, save_and_close=save_and_close, cluster=cluster, cmap=cmap, filename=filename, colorbar=colorbar, cax=cax, ticks=ticks)
def mmd_matrix_plot(mmd2, cluster=True, cmap='viridis', ax=None, colorbar=True, cax=None, ticks=[0.0,0.3], filename='mmd_matrix.pdf', save_and_close=True):
mmd = _mmd2_to_mmd(mmd2)
if cluster:
mmd = _cluster_matrix(mmd)
if ax is None:
ax = plt.gca()
im = ax.imshow(mmd, cmap=cmap)
ax.axis('off')
if colorbar:
fig = plt.gcf()
cbar = fig.colorbar(im, cax=cax, fraction=0.046, orientation="horizontal", ticks=ticks)
cbar.solids.set_edgecolor("face")
cbar.solids.set_rasterized(True)
labels = ["{0:.1f}".format(round(tick,1)) for tick in ticks]
cbar.ax.set_xticklabels(labels)
if save_and_close:
plt.savefig(filename)
plt.close('all')
def mmd_tsne_plot_DC(dc, mmd2_fn=None, condition_fn=None, mmd2=None, conditions=None, perplexity=30.0, s=4.0, alpha=0.8, label_func=None, ax=None, save_and_close=True, filename='mmd_tsne.pdf', load_data=False):
if load_data:
assert mmd2_fn is not None and condition_fn is not None
try:
mmd2 = np.load(mmd2_fn)
conditions = np.load(condition_fn)
except:
print("Unable to load data!")
return
else:
assert mmd2 is not None and conditions is not None
mmd2 = np.clip(mmd2, 0, None)
all_conditions = list(np.unique(conditions))
colors = [COLOR_LIST[i%len(COLOR_LIST)] for i in conditions]
all_colors = [COLOR_LIST[i%len(COLOR_LIST)] for i in all_conditions]
transform = TSNE(n_components=2, random_state=42, metric='precomputed', method='exact', perplexity=perplexity)
embed = transform.fit_transform(mmd2)
if ax is None:
ax = plt.gca()
poly_colors = []
poly_vals = []
for i in range(len(conditions)-1):
for j in range(i+1, len(conditions)):
if conditions[i] == conditions[j]:
color = to_rgba(colors[i], alpha=0.7)
ax.plot([embed[i,0],embed[j,0]], [embed[i,1],embed[j,1]], c=color, lw=0.5)
for k in range(j+1, len(conditions)):
if conditions[k] == conditions[j]:
arr = np.stack([embed[i], embed[j], embed[k]])
poly_colors.append(to_rgba(colors[i], alpha=0.2))
poly_vals.append(arr)
pc = PolyCollection(poly_vals, color=poly_colors)
ax.add_collection(pc)
ax.scatter(embed[:,0], embed[:,1], color=colors, s=s, alpha=alpha)
if label_func is not None:
for i in range(len(embed)):
ax.annotate(label_func(conditions[i]), embed[i])
plt.axis('off')
if save_and_close:
plt.savefig(os.path.join(dc.plots_dir, filename))
plt.close('all')
def _estimate_mmd2(latent, i1, i2, sigma=None, max_n=None, seed=None):
if sigma is None:
sigma = estimate_median_sigma(latent)
A = -0.5 / (sigma**2)
n1, n2 = len(i1), len(i2)
if max_n is not None:
np.random.seed(seed)
n1, n2 = min(max_n,n1), min(max_n,n2)
if n1 < len(i1):
np.random.shuffle(i1)
i1 = i1[:n1]
if n2 < len(i2):
np.random.shuffle(i2)
i2 = i2[:n2]
np.random.seed(None)
term_1 = 0.0
for i in range(n1-1):
for j in range(i+1,n1):
dist = np.sum(np.power(latent[i1[i]] - latent[i1[j]], 2))
term_1 += np.exp(A * dist)
term_1 *= 2/(n1*(n1-1))
term_2 = 0.0
for i in range(n2-1):
for j in range(i+1,n2):
dist = np.sum(np.power(latent[i2[i]] - latent[i2[j]], 2))
term_2 += np.exp(A * dist)
term_2 *= 2/(n2*(n2-1))
term_3 = 0.0
for i in range(n1):
for j in range(n2):
dist = np.sum(np.power(latent[i1[i]] - latent[i2[j]], 2))
term_3 += np.exp(A * dist)
term_3 *= 2/(n1*n2)
return term_1 + term_2 - term_3
def _estimate_mmd2_linear_time(latent, i1, i2, sigma=None):
if sigma is None:
sigma = estimate_median_sigma(latent)
A = -0.5 / (sigma**2)
n = min(len(i1), len(i2))
m = n // 2
assert m > 0
k = lambda x,y: np.exp(A * np.sum(np.power(x-y,2)))
h = lambda x1,y1,x2,y2: k(x1,x2)+k(y1,y2)-k(x1,y2)-k(x2,y1)
term = 0.0
for i in range(m):
term += h(latent[i1[2*i]], latent[i2[2*i]], latent[i1[2*i+1]], latent[i2[2*i+1]])
return term / m
def _cluster_matrix(matrix, index=None):
if index is None:
index = len(matrix) // 2
flat_dist1 = squareform(matrix[:index,:index])
Z1 = linkage(flat_dist1, optimal_ordering=True)
leaves1 = leaves_list(Z1)
flat_dist2 = squareform(matrix[index:,index:])
Z2 = linkage(flat_dist2, optimal_ordering=True)
leaves2 = leaves_list(Z2) + index
leaves = np.concatenate([leaves1, leaves2])
new_matrix = np.zeros_like(matrix)
for i in range(len(matrix)-1):
for j in range(i,len(matrix)):
temp = matrix[leaves[i],leaves[j]]
new_matrix[i,j] = temp
new_matrix[j,i] = temp
return new_matrix
def _calculate_mmd2(dc, condition_from_fn, mmd2_fn=None, condition_fn=None, parallel=False, alg='quadratic', max_n=None, sigma=None, verbose=True):
assert alg in ['linear', 'quadratic']
assert mmd2_fn is not None
if verbose:
print("Estimating an MMD matrix...")
print("\talg:", alg)
print("\tparallel:", parallel)
print("\tmax_n:", max_n)
latent = dc.request('latent_means')
audio_fns = dc.request('audio_filenames')
condition = np.array([condition_from_fn(str(i)) for i in audio_fns], dtype='int')
all_conditions = np.unique(condition)
n = len(all_conditions)
result = np.zeros((n,n))
if sigma is None:
sigma = estimate_median_sigma(latent)
if verbose:
print("\tconditions found:", n)
print("\tsigma:", sigma)
if parallel:
i_vals, j_vals = [], []
for i in range(n-1):
for j in range(i+1,n):
i_vals.append(i)
j_vals.append(j)
gen = zip(i_vals, j_vals, repeat(condition), repeat(all_conditions), repeat(alg), repeat(latent), repeat(sigma), repeat(max_n))
n_jobs = os.cpu_count()
temp_results = Parallel(n_jobs=n_jobs)(delayed(_mmd2_helper)(*args) for args in gen)
for i, j, mmd2 in temp_results:
result[i,j] = mmd2
result[j,i] = mmd2
else:
for i in range(n-1):
for j in range(i+1, n):
i1 = np.argwhere(condition == all_conditions[i]).flatten()
i2 = np.argwhere(condition == all_conditions[j]).flatten()
if alg == 'linear':
temp = _estimate_mmd2_linear_time(latent, i1, i2, sigma=sigma)
elif alg == 'quadratic':
temp = _estimate_mmd2(latent, i1, i2, sigma=sigma, max_n=max_n)
else:
raise NotImplementedError
result[i,j] = temp
result[j,i] = temp
if mmd2_fn is not None:
if verbose:
print("\tSaving MMD^2 to:", mmd2_fn)
np.save(mmd2_fn, result)
if condition_fn is not None:
if verbose:
print("\tSaving conditions to:", condition_fn)
np.save(condition_fn, all_conditions)
if verbose:
print("\tDone.")
return result, all_conditions
def _mmd2_helper(i, j, condition, all_conditions, alg, latent, sigma, max_n):
i1 = np.argwhere(condition == all_conditions[i]).flatten()
i2 = np.argwhere(condition == all_conditions[j]).flatten()
if alg == 'linear':
mmd2 = _estimate_mmd2_linear_time(latent, i1, i2, sigma=sigma)
else:
mmd2 = _estimate_mmd2(latent, i1, i2, sigma=sigma, max_n=max_n)
print(i, j, mmd2, flush=True)
return i, j, mmd2
|
MIT License
|
makgyver/rectorch
|
rectorch/nets.py
|
CDAE_net.init_weights
|
python
|
def init_weights(self):
xavier_init(self.enc_layer.weight)
normal_init(self.enc_layer.bias)
xavier_init(self.dec_layer.weight)
normal_init(self.dec_layer.bias)
|
r"""Initialize the weights of the network.
Weights are initialized with the :py:func:`torch.nn.init.xavier_uniform_` initializer,
while biases are initalized with the :py:func:`torch.nn.init.normal_` initializer.
|
https://github.com/makgyver/rectorch/blob/f4292d6baf381a8a356260ad87b616fcf38dbf51/rectorch/nets.py#L163-L172
|
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import normal_ as normal_init
from torch.nn.init import xavier_uniform_ as xavier_init
__all__ = ['AE_net', 'MultiDAE_net', 'VAE_net', 'MultiVAE_net', 'CMultiVAE_net', 'CFGAN_G_net', 'CFGAN_D_net', 'SVAE_net']
logger = logging.getLogger(__name__)
class AE_net(nn.Module):
def __init__(self, dec_dims, enc_dims=None):
super(AE_net, self).__init__()
if enc_dims:
self.enc_dims = enc_dims
else:
self.enc_dims = dec_dims[::-1]
self.dec_dims = dec_dims
def encode(self, x):
raise NotImplementedError()
def decode(self, z):
raise NotImplementedError()
def forward(self, x):
z = self.encode(x)
return self.decode(z)
def init_weights(self):
raise NotImplementedError()
class CDAE_net(AE_net):
def __init__(self, n_items, n_users, latent_size=50, dropout=0.5):
super(CDAE_net, self).__init__([latent_size, n_items], [n_items+n_users, latent_size])
self.dropout = nn.Dropout(dropout)
self.n_items = n_items
self.enc_layer = nn.Linear(self.enc_dims[0], self.enc_dims[1])
self.dec_layer = nn.Linear(self.dec_dims[0], self.dec_dims[1])
self.init_weights()
def encode(self, x):
if self.training:
x[:self.n_items] *= 1. / (1.-self.dropout.p)
x[:self.n_items] = self.dropout(x[:self.n_items])
x = torch.sigmoid(self.enc_layer(x))
return x
def decode(self, z):
return torch.sigmoid(self.dec_layer(z))
|
MIT License
|
windelbouwman/ppci
|
ppci/binutils/dbg/cli.py
|
DebugCli.do_stepi
|
python
|
def do_stepi(self, _):
self.debugger.step()
|
Single instruction step the debugger
|
https://github.com/windelbouwman/ppci/blob/915c069e0667042c085ec42c78e9e3c9a5295324/ppci/binutils/dbg/cli.py#L166-L168
|
import cmd
import binascii
from threading import Lock
from ... import __version__ as ppci_version
from ...common import str2int, CompilerError
from .debug_driver import DebugState
import logging
import os
import sys
if os.name == "nt":
from colorama import init
def pos(stdout, y, x):
stdout.write("\x1b[%d;%dH" % (y, x))
def savepos(stdout):
stdout.write("\x1b[s")
def restorepos(stdout):
stdout.write("\x1b[u")
CMDLINE = 12
screenlock = Lock()
def clearscreen(stdout):
stdout.write("\033[2J\033[1;1H")
def cleartocursor(stdout):
stdout.write("\033[1J")
def clearaftercursor(stdout):
stdout.write("\033[J")
def print_file_line(stdout, filename, lineno):
lines = open(filename).read().splitlines()
s = "\033[37m\033[1mFile:{}\n".format(filename)
stdout.write(s)
s = "Line: [{} of {}]\n".format(lineno, len(lines))
stdout.write(s)
s = "\033[0m\n"
stdout.write(s)
s = "\033[0m\n"
stdout.write(s)
for i in range(lineno - 3, lineno + 3):
if i < 1:
stdout.write("\n")
elif i > len(lines):
stdout.write("\n")
elif i == lineno:
s = "\033[33m\033[1m{}\033[32m->{}\033[0m\033[39m\n".format(
str(i).rjust(4), lines[i - 1]
)
stdout.write(s)
else:
s = "\033[33m\033[1m{}\033[0m\033[39m {}\n".format(
str(i).rjust(4), lines[i - 1]
)
stdout.write(s)
class Proxy(object):
logger = logging.getLogger("dbg")
def __init__(self, debugger):
self.buffer = []
self.debugger = debugger
self.stdout = sys.stdout
def write(self, data):
if len(data) > 0:
if data[-1] != "\n":
self.buffer.append(data)
else:
if len(self.buffer):
self.flush()
with screenlock:
self.stdout.write(data)
self.logger.debug(
"stdout writing: %s, [%s]",
data,
data.encode("utf-8").hex(),
)
def flush(self):
text = "".join(self.buffer)
self.buffer = []
with screenlock:
self.logger.debug(
"stdout flushing: %s, [%s] ", text, text.encode("utf-8").hex()
)
self.stdout.write(text)
self.stdout.flush()
class DebugCli(cmd.Cmd):
prompt = "DBG>"
intro = "ppci interactive debugger"
def __init__(self, debugger, showsource=False):
self.Proxy = Proxy(debugger)
self.stdout_ori = sys.stdout
sys.stdout = self.Proxy
super().__init__(stdout=self.Proxy)
self.debugger = debugger
self.use_rawinput = False
self.showsource = showsource
if self.showsource is True:
if os.name == "nt":
init()
clearscreen(sys.stdout)
pos(sys.stdout, 1, 1)
if self.debugger.is_running:
print("\033[37m\033[1mTarget State: RUNNING")
else:
print("\033[37m\033[1mTarget State: STOPPED")
pos(sys.stdout, CMDLINE, 1)
self.debugger.events.on_stop += self.updatesourceview
self.debugger.events.on_start += self.updatestatus
def do_quit(self, _):
sys.stdout = self.stdout_ori
raise SystemExit
return True
do_q = do_quit
def do_info(self, _):
print("Architecture: ", self.debugger.arch)
print("Debugger: ", self.debugger)
print("Debug driver: ", self.debugger.driver)
print("ppci version: ", ppci_version)
text_status = {
DebugState.STOPPED: "Stopped",
DebugState.RUNNING: "Running",
}
print("Status: ", text_status[self.debugger.status])
def do_run(self, _):
self.debugger.run()
def do_step(self, _):
self.debugger.step()
do_s = do_step
|
BSD 2-Clause Simplified License
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.