remove metadata
Browse files- cloudops_tsf.py +1 -45
cloudops_tsf.py
CHANGED
@@ -140,7 +140,6 @@ class CloudOpsTSFConfig(datasets.BuilderConfig):
|
|
140 |
# load_dataset kwargs
|
141 |
train_test: bool = field(default=True, init=False)
|
142 |
pretrain: bool = field(default=False, init=False)
|
143 |
-
_include_metadata: tuple[str, ...] = field(default_factory=tuple, init=False)
|
144 |
|
145 |
# builder kwargs
|
146 |
prediction_length: int = field(default=None)
|
@@ -158,25 +157,6 @@ class CloudOpsTSFConfig(datasets.BuilderConfig):
|
|
158 |
feat_static_real_dim: int = field(default=0)
|
159 |
past_feat_dynamic_real_dim: int = field(default=0)
|
160 |
|
161 |
-
METADATA = [
|
162 |
-
"freq",
|
163 |
-
"prediction_length",
|
164 |
-
"stride",
|
165 |
-
"rolling_evaluations",
|
166 |
-
]
|
167 |
-
|
168 |
-
@property
|
169 |
-
def include_metadata(self) -> tuple[str, ...]:
|
170 |
-
return self._include_metadata
|
171 |
-
|
172 |
-
@include_metadata.setter
|
173 |
-
def include_metadata(self, value: tuple[str, ...]):
|
174 |
-
assert all([v in self.METADATA for v in value]), (
|
175 |
-
f"Metadata: {value} is not supported, each item should be one of"
|
176 |
-
f" {self.METADATA}"
|
177 |
-
)
|
178 |
-
self._include_metadata = value
|
179 |
-
|
180 |
@cached_property
|
181 |
def feat_static_cat_cardinalities(self) -> Optional[list[int]]:
|
182 |
if FieldName.FEAT_STATIC_CAT not in self.optional_fields:
|
@@ -251,14 +231,6 @@ class CloudOpsTSF(datasets.ArrowBasedBuilder):
|
|
251 |
|
252 |
features[ts_field] = sequence_feature(dtype, univar)
|
253 |
|
254 |
-
for metadata in self.config.include_metadata:
|
255 |
-
if metadata == "freq":
|
256 |
-
features[metadata] = datasets.Value("string")
|
257 |
-
elif metadata in ("prediction_length", "stride", "rolling_evaluations"):
|
258 |
-
features[metadata] = datasets.Value("int32")
|
259 |
-
else:
|
260 |
-
raise ValueError(f"Invalid metadata: {metadata}")
|
261 |
-
|
262 |
features = datasets.Features(features)
|
263 |
|
264 |
return datasets.DatasetInfo(
|
@@ -295,23 +267,7 @@ class CloudOpsTSF(datasets.ArrowBasedBuilder):
|
|
295 |
for batch in table.to_batches():
|
296 |
columns = batch.columns
|
297 |
schema = batch.schema
|
298 |
-
|
299 |
-
freq = pa.array([self.config.freq] * len(batch))
|
300 |
-
prediction_length = pa.array(
|
301 |
-
[self.config.prediction_length] * len(batch)
|
302 |
-
)
|
303 |
-
rolling_evaluations = pa.array(
|
304 |
-
[self.config.rolling_evaluations] * len(batch)
|
305 |
-
)
|
306 |
-
stride = pa.array([self.config.stride] * len(batch))
|
307 |
-
columns += [freq, prediction_length, rolling_evaluations, stride]
|
308 |
-
for pa_field in [
|
309 |
-
pa.field("freq", pa.string()),
|
310 |
-
pa.field("prediction_length", pa.int32()),
|
311 |
-
pa.field("rolling_evaluations", pa.int32()),
|
312 |
-
pa.field("stride", pa.int32()),
|
313 |
-
]:
|
314 |
-
schema = schema.append(pa_field)
|
315 |
yield batch[FieldName.ITEM_ID].to_pylist(), pa.Table.from_arrays(
|
316 |
columns, schema=schema
|
317 |
)
|
|
|
140 |
# load_dataset kwargs
|
141 |
train_test: bool = field(default=True, init=False)
|
142 |
pretrain: bool = field(default=False, init=False)
|
|
|
143 |
|
144 |
# builder kwargs
|
145 |
prediction_length: int = field(default=None)
|
|
|
157 |
feat_static_real_dim: int = field(default=0)
|
158 |
past_feat_dynamic_real_dim: int = field(default=0)
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
@cached_property
|
161 |
def feat_static_cat_cardinalities(self) -> Optional[list[int]]:
|
162 |
if FieldName.FEAT_STATIC_CAT not in self.optional_fields:
|
|
|
231 |
|
232 |
features[ts_field] = sequence_feature(dtype, univar)
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
features = datasets.Features(features)
|
235 |
|
236 |
return datasets.DatasetInfo(
|
|
|
267 |
for batch in table.to_batches():
|
268 |
columns = batch.columns
|
269 |
schema = batch.schema
|
270 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
yield batch[FieldName.ITEM_ID].to_pylist(), pa.Table.from_arrays(
|
272 |
columns, schema=schema
|
273 |
)
|