Datasets:

Modalities:
Text
ArXiv:
License:
File size: 12,516 Bytes
19eb806
9e43fb6
19eb806
11b444f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19eb806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b444f
 
 
 
 
 
 
 
19eb806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3ea59
 
 
 
 
 
 
 
 
 
2521712
9d3ea59
 
 
 
 
 
 
 
9e43fb6
 
0d57ba0
9d3ea59
 
19eb806
b3511a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19eb806
9d3ea59
19eb806
b3511a6
 
 
 
 
 
 
 
 
19eb806
9d3ea59
19eb806
b3511a6
19eb806
b3511a6
 
 
 
 
 
 
 
 
 
9d3ea59
b3511a6
 
 
 
 
 
 
 
 
 
 
 
9d3ea59
b3511a6
 
 
 
 
 
 
 
 
 
 
 
9d3ea59
b3511a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3ea59
b3511a6
 
 
 
 
 
 
 
 
 
 
 
 
19eb806
9823f70
 
19eb806
 
 
7bbdc7f
 
 
 
 
 
 
 
9e43fb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
---
license: other
dataset_info:
- config_name: 2WikiMultihopQA
  features:
  - name: _id
    dtype: string
  - name: type
    dtype: string
  - name: question
    dtype: string
  - name: context
    sequence:
    - name: title
      dtype: string
    - name: content
      sequence: string
  - name: supporting_facts
    sequence:
    - name: title
      dtype: string
    - name: sent_id
      dtype: int32
  - name: evidences
    sequence:
    - name: fact
      dtype: string
    - name: relation
      dtype: string
    - name: entity
      dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 662142981
    num_examples: 167454
  - name: dev
    num_bytes: 54346346
    num_examples: 12576
  - name: test
    num_bytes: 51639331
    num_examples: 12576
  download_size: 389826062
  dataset_size: 768128658
- config_name: MuSiQue
  features:
  - name: id
    dtype: string
  - name: paragraphs
    list:
    - name: idx
      dtype: int64
    - name: title
      dtype: string
    - name: paragraph_text
      dtype: string
    - name: is_supporting
      dtype: bool
  - name: question
    dtype: string
  - name: question_decomposition
    list:
    - name: id
      dtype: int64
    - name: question
      dtype: string
    - name: answer
      dtype: string
    - name: paragraph_support_idx
      dtype: int64
  - name: answer
    dtype: string
  - name: answer_aliases
    sequence: string
  - name: answerable
    dtype: bool
  - name: text_all
    dtype: string
  - name: text_all_support
    dtype: string
  splits:
  - name: validation
    num_bytes: 55971326
    num_examples: 2417
  download_size: 23776203
  dataset_size: 55971326
- config_name: NQ
  features:
  - name: id
    dtype: string
  - name: title
    dtype: string
  - name: document
    dtype: string
  - name: question
    dtype: string
  - name: long_answers
    sequence: string
  - name: short_answers
    sequence: string
  - name: retrieved_passages
    sequence: string
  splits:
  - name: validation
    num_bytes: 279214996
    num_examples: 4289
  download_size: 141438208
  dataset_size: 279214996
- config_name: hotpotqa
  features:
  - name: id
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: type
    dtype: string
  - name: level
    dtype: string
  - name: supporting_facts
    sequence:
    - name: title
      dtype: string
    - name: sent_id
      dtype: int32
  - name: context
    sequence:
    - name: title
      dtype: string
    - name: sentences
      sequence: string
  - name: rag
    sequence: string
  - name: retrieved_passages
    sequence: string
  splits:
  - name: validation
    num_bytes: 131225660
    num_examples: 7405
  download_size: 77113296
  dataset_size: 131225660
- config_name: triviaqa
  features:
  - name: question
    dtype: string
  - name: question_id
    dtype: string
  - name: question_source
    dtype: string
  - name: entity_pages
    sequence:
    - name: doc_source
      dtype: string
    - name: filename
      dtype: string
    - name: title
      dtype: string
    - name: wiki_context
      dtype: string
  - name: search_results
    sequence:
    - name: description
      dtype: string
    - name: filename
      dtype: string
    - name: rank
      dtype: int32
    - name: title
      dtype: string
    - name: url
      dtype: string
    - name: search_context
      dtype: string
  - name: answer
    struct:
    - name: aliases
      sequence: string
    - name: normalized_aliases
      sequence: string
    - name: matched_wiki_entity_name
      dtype: string
    - name: normalized_matched_wiki_entity_name
      dtype: string
    - name: normalized_value
      dtype: string
    - name: type
      dtype: string
    - name: value
      dtype: string
  - name: retrieved_passages
    sequence: string
  splits:
  - name: validation
    num_bytes: 474767227
    num_examples: 7993
  download_size: 262352984
  dataset_size: 474767227
- config_name: truthfulqa
  features:
  - name: question
    dtype: string
  - name: mc1_targets
    struct:
    - name: choices
      sequence: string
    - name: labels
      sequence: int32
  - name: mc2_targets
    struct:
    - name: choices
      sequence: string
    - name: labels
      sequence: int32
  - name: category
    dtype: string
  - name: source
    dtype: string
  - name: website_data
    dtype: string
  - name: retrieved_passages
    sequence: string
  splits:
  - name: validation
    num_bytes: 24476993
    num_examples: 817
  download_size: 10176147
  dataset_size: 24476993
configs:
- config_name: 2WikiMultihopQA
  data_files:
  - split: train
    path: 2WikiMultihopQA/train-*
  - split: dev
    path: 2WikiMultihopQA/dev-*
  - split: test
    path: 2WikiMultihopQA/test-*
- config_name: MuSiQue
  data_files:
  - split: validation
    path: MuSiQue/validation-*
- config_name: NQ
  data_files:
  - split: validation
    path: NQ/validation-*
- config_name: boolq
  data_files:
  - split: validation
    path: boolq/validation-*
- config_name: hotpotqa
  data_files:
  - split: validation
    path: hotpotqa/validation-*
- config_name: triviaqa
  data_files:
  - split: validation
    path: triviaqa/validation-*
- config_name: truthfulqa
  data_files:
  - split: validation
    path: truthfulqa/validation-*
---



# ContextualBench - A comprehensive toolkit to evaluate LM on different Contextual datasets

Evaluation Code: [SalesforceAIResearch/SFR-RAG](https://github.com/SalesforceAIResearch/SFR-RAG)

## Description

ContextualBench is a powerful evaluation framework designed to assess the performance of Large Language Models (LLMs) on contextual datasets. It provides a flexible pipeline for evaluating various LLM families across different tasks, with a focus on handling large context inputs.

> Users need to make their own assessment regarding any obligations or responsibilities under the corresponding licenses or terms and conditions pertaining to the original datasets and data.


## Features

* Dynamic Retrieval Support: Efficiently handles large context inputs, allowing for comprehensive evaluation of LLMs' contextual understanding capabilities.
* Extensive Evaluation Dataset: Supports 7 contextual tasks, including: Question Answering (QA), Multi-Hop Question Answering, Classification tasks
* Multi-LLM Family Support: Compatible with a wide range of LLM families, including: Hugging Face models, Gemma, Mistral, OpenAI, Cohere.

## Component Datasets of ContextualBench

> Users need to make their own assessment regarding any obligations or responsibilities under the corresponding licenses or terms and conditions pertaining to the original datasets and data.

### 2WikiHotpotQA

This dataset is a multihop question answering task, as proposed in "Constructing A Multi-hop QA Dataset for Comprehensive Evaluation of Reasoning Steps" by Ho. et. al 
The folder contains evaluation script and path to dataset on the validation split on around 12k samples. 
```
@inproceedings{xanh2020_2wikimultihop,
    title = "Constructing A Multi-hop {QA} Dataset for Comprehensive Evaluation of Reasoning Steps",
    author = "Ho, Xanh  and
      Duong Nguyen, Anh-Khoa  and
      Sugawara, Saku  and
      Aizawa, Akiko",
    booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
    month = dec,
    year = "2020",
    address = "Barcelona, Spain (Online)",
    publisher = "International Committee on Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.coling-main.580",
    pages = "6609--6625",
}
```

### HotpotQA

HotpotQA is a Wikipedia-based question-answer pairs with the questions require finding and reasoning over multiple supporting documents to answer. We evaluate on 7405 datapoints, on the distractor setting. This dataset was proposed in the below paper 
```
@inproceedings{yang2018hotpotqa,
  title={{HotpotQA}: A Dataset for Diverse, Explainable Multi-hop Question Answering},
  author={Yang, Zhilin and Qi, Peng and Zhang, Saizheng and Bengio, Yoshua and Cohen, William W. and Salakhutdinov, Ruslan and Manning, Christopher D.},
  booktitle={Conference on Empirical Methods in Natural Language Processing ({EMNLP})},
  year={2018}
}
```

### MuSiQue

This dataset is a multihop question answering task, that requires 2-4 hop in every questions, making it slightly harder task when compared to other multihop tasks.This dataset was proposed in the below paper 

```
@article{trivedi2021musique,
  title={{M}u{S}i{Q}ue: Multihop Questions via Single-hop Question Composition},
  author={Trivedi, Harsh and Balasubramanian, Niranjan and Khot, Tushar and Sabharwal, Ashish},
  journal={Transactions of the Association for Computational Linguistics},
  year={2022}
  publisher={MIT Press}
}
```

### NaturalQuestions

The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question

```
@article{47761,
title	= {Natural Questions: a Benchmark for Question Answering Research},
author	= {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le and Slav Petrov},
year	= {2019},
journal	= {Transactions of the Association of Computational Linguistics}
}
```

### PopQA
PopQA is a large-scale open-domain question answering (QA) dataset, the long-tail subset, consisting of 1,399 rare entity queries whose monthly Wikipedia page views are less than 100

Make sure to cite the work
```
@article{ mallen2023llm_memorization ,
  title={When Not to Trust Language Models: Investigating Effectiveness and Limitations of Parametric and Non-Parametric Memories },
  author={ Mallen, Alex and Asai,Akari and  Zhong, Victor and Das, Rajarshi and Hajishirzi, Hannaneh and Khashabi, Daniel},
  journal={ arXiv preprint },
  year={ 2022 }
}
```

### TriviaQA

TriviaqQA is a reading comprehension dataset containing question-answer pairs authored by trivia enthusiasts and independently gathered evidence documents, six per question on average, that provide high quality distant supervision for answering the questions.
```
@article{2017arXivtriviaqa,
       author = {{Joshi}, Mandar and {Choi}, Eunsol and {Weld},
                 Daniel and {Zettlemoyer}, Luke},
        title = "{triviaqa: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension}",
      journal = {arXiv e-prints},
         year = 2017,
          eid = {arXiv:1705.03551},
        pages = {arXiv:1705.03551},
archivePrefix = {arXiv},
       eprint = {1705.03551},
}
```

### TruthfulQA

TruthfulQA is a benchmark to measure whether a language model is truthful in generating answers to questions. The benchmark comprises 817 questions that span 38 categories, including health, law, finance and politics. Questions are crafted so that some humans would answer falsely due to a false belief or misconception. To perform well, models must avoid generating false answers learned from imitating human texts.

```
@misc{lin2021truthfulqa,
    title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
    author={Stephanie Lin and Jacob Hilton and Owain Evans},
    year={2021},
    eprint={2109.07958},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

## Ethical Considerations
This release is for research purposes only in support of an academic paper. Our models, datasets, and code are not specifically designed or evaluated for all downstream purposes. We strongly recommend users evaluate and address potential concerns related to accuracy, safety, and fairness before deploying this model. We encourage users to consider the common limitations of AI, comply with applicable laws, and leverage best practices when selecting use cases, particularly for high-risk scenarios where errors or misuse could significantly impact people’s lives, rights, or safety. For further guidance on use cases, refer to our AUP and AI AUP. 

## Citation


```
@article{nguyen2024sfrrag,
  title={SFR-RAG: Towards Contextually Faithful LLMs},
  author={Nguyen, Xuan-Phi and Pandit, Shrey and Purushwalkam, Senthil and Xu, Austin and Chen, Hailin and Ming, Yifei and Ke, Zixuan and Savarese, Silvio and Xong, Caiming and Joty, Shafiq},
  year={2024}
}

```