holylovenia
commited on
Upload xquadr.py with huggingface_hub
Browse files
xquadr.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
23 |
+
from seacrowd.utils.constants import Tasks, Licenses, TASK_TO_SCHEMA, SCHEMA_TO_FEATURES
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@article{,@inproceedings{roy-etal-2020-lareqa,
|
27 |
+
title = "{LAR}e{QA}: Language-Agnostic Answer Retrieval from a Multilingual Pool",
|
28 |
+
author = "Roy, Uma and
|
29 |
+
Constant, Noah and
|
30 |
+
Al-Rfou, Rami and
|
31 |
+
Barua, Aditya and
|
32 |
+
Phillips, Aaron and
|
33 |
+
Yang, Yinfei",
|
34 |
+
editor = "Webber, Bonnie and
|
35 |
+
Cohn, Trevor and
|
36 |
+
He, Yulan and
|
37 |
+
Liu, Yang",
|
38 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
39 |
+
month = nov,
|
40 |
+
year = "2020",
|
41 |
+
address = "Online",
|
42 |
+
publisher = "Association for Computational Linguistics",
|
43 |
+
url = "https://aclanthology.org/2020.emnlp-main.477",
|
44 |
+
doi = "10.18653/v1/2020.emnlp-main.477",
|
45 |
+
pages = "5919--5930",
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DATASETNAME = "xquadr"
|
50 |
+
|
51 |
+
_DESCRIPTION = """\
|
52 |
+
XQuAD-R is a retrieval version of the XQuAD dataset (a cross-lingual extractive
|
53 |
+
QA dataset) that is a part of the LAReQA benchmark. Like XQuAD, XQUAD-R is an
|
54 |
+
11-way parallel dataset, where each question (out of around 1200) appears in 11
|
55 |
+
different languages and has 11 parallel correct answers across the languages. It
|
56 |
+
is designed so as to include parallel QA pairs across languages, allowing
|
57 |
+
questions to be matched with answers from different languages. The span-tagging
|
58 |
+
task in XQuAD is converted into a retrieval task by breaking up each contextual
|
59 |
+
paragraph into sentences, and treating each sentence as a possible target
|
60 |
+
answer. There are around 1000 candidate answers in each language.
|
61 |
+
"""
|
62 |
+
|
63 |
+
_HOMEPAGE = "https://github.com/google-research-datasets/lareqa"
|
64 |
+
|
65 |
+
_LANGUAGES = ["tha", "vie"]
|
66 |
+
|
67 |
+
_LICENSE = Licenses.CC_BY_SA_4_0.value
|
68 |
+
|
69 |
+
_LOCAL = False
|
70 |
+
|
71 |
+
_URLS = {
|
72 |
+
"tha": "https://github.com/google-research-datasets/lareqa/raw/master/xquad-r/th.json",
|
73 |
+
"vie": "https://github.com/google-research-datasets/lareqa/raw/master/xquad-r/vi.json",
|
74 |
+
}
|
75 |
+
|
76 |
+
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING_RETRIEVAL]
|
77 |
+
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # qa
|
78 |
+
|
79 |
+
_SOURCE_VERSION = "1.1.0" # inside the dataset
|
80 |
+
|
81 |
+
_SEACROWD_VERSION = "2024.06.20"
|
82 |
+
|
83 |
+
|
84 |
+
class XquadRDataset(datasets.GeneratorBasedBuilder):
|
85 |
+
"""A retrieval version of the XQuAD dataset (a cross-lingual extractive QA dataset)"""
|
86 |
+
|
87 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
88 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
89 |
+
|
90 |
+
BUILDER_CONFIGS = []
|
91 |
+
for subset in _LANGUAGES:
|
92 |
+
BUILDER_CONFIGS += [
|
93 |
+
SEACrowdConfig(
|
94 |
+
name=f"{_DATASETNAME}_{subset}_source",
|
95 |
+
version=SOURCE_VERSION,
|
96 |
+
description=f"{_DATASETNAME} {subset} source schema",
|
97 |
+
schema="source",
|
98 |
+
subset_id=subset,
|
99 |
+
),
|
100 |
+
SEACrowdConfig(
|
101 |
+
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}",
|
102 |
+
version=SEACROWD_VERSION,
|
103 |
+
description=f"{_DATASETNAME} {subset} SEACrowd schema",
|
104 |
+
schema=_SEACROWD_SCHEMA,
|
105 |
+
subset_id=subset,
|
106 |
+
),
|
107 |
+
]
|
108 |
+
|
109 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source"
|
110 |
+
|
111 |
+
def _info(self) -> datasets.DatasetInfo:
|
112 |
+
if self.config.schema == "source":
|
113 |
+
features = datasets.Features(
|
114 |
+
{
|
115 |
+
"paragraphs": datasets.Sequence(
|
116 |
+
{
|
117 |
+
"context": datasets.Value("string"),
|
118 |
+
"qas": datasets.Sequence(
|
119 |
+
{
|
120 |
+
"answers": datasets.Sequence(
|
121 |
+
{
|
122 |
+
"answer_start": datasets.Value("int32"),
|
123 |
+
"text": datasets.Value("string"),
|
124 |
+
}
|
125 |
+
),
|
126 |
+
"id": datasets.Value("string"),
|
127 |
+
"question": datasets.Value("string"),
|
128 |
+
}
|
129 |
+
),
|
130 |
+
"sentence_breaks": datasets.Sequence(
|
131 |
+
datasets.Sequence(datasets.Value("int32"))
|
132 |
+
),
|
133 |
+
"sentences": datasets.Sequence(datasets.Value("string")),
|
134 |
+
}
|
135 |
+
),
|
136 |
+
"title": datasets.Value("string"),
|
137 |
+
}
|
138 |
+
)
|
139 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
140 |
+
features = SCHEMA_TO_FEATURES[
|
141 |
+
TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]
|
142 |
+
] # qa_features
|
143 |
+
features["meta"] = {
|
144 |
+
"title": datasets.Value("string"),
|
145 |
+
"answers_start": datasets.Sequence(datasets.Value("int32")),
|
146 |
+
"answers_text": datasets.Sequence(datasets.Value("string")),
|
147 |
+
}
|
148 |
+
|
149 |
+
return datasets.DatasetInfo(
|
150 |
+
description=_DESCRIPTION,
|
151 |
+
features=features,
|
152 |
+
homepage=_HOMEPAGE,
|
153 |
+
license=_LICENSE,
|
154 |
+
citation=_CITATION,
|
155 |
+
)
|
156 |
+
|
157 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
158 |
+
"""Returns SplitGenerators."""
|
159 |
+
url = _URLS[self.config.subset_id]
|
160 |
+
data_path = Path(dl_manager.download(url))
|
161 |
+
|
162 |
+
return [
|
163 |
+
datasets.SplitGenerator(
|
164 |
+
name=datasets.Split.TRAIN,
|
165 |
+
gen_kwargs={
|
166 |
+
"data_path": data_path,
|
167 |
+
},
|
168 |
+
),
|
169 |
+
]
|
170 |
+
|
171 |
+
def _generate_examples(self, data_path: Path) -> Tuple[int, Dict]:
|
172 |
+
"""Yields examples as (key, example) tuples."""
|
173 |
+
with open(data_path, "r", encoding="utf-8") as file:
|
174 |
+
data = json.load(file)
|
175 |
+
|
176 |
+
key = 0
|
177 |
+
for example in data["data"]:
|
178 |
+
|
179 |
+
if self.config.schema == "source":
|
180 |
+
yield key, example
|
181 |
+
key += 1
|
182 |
+
|
183 |
+
elif self.config.schema == _SEACROWD_SCHEMA:
|
184 |
+
for paragraph in example["paragraphs"]:
|
185 |
+
# get sentence breaks (sentences' string stop index)
|
186 |
+
break_list = [breaks[1] for breaks in paragraph["sentence_breaks"]]
|
187 |
+
|
188 |
+
for qa in paragraph["qas"]:
|
189 |
+
# get answers' string start index
|
190 |
+
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
191 |
+
|
192 |
+
# retrieve answers' relevant sentence
|
193 |
+
answers = []
|
194 |
+
for start in answer_starts:
|
195 |
+
for i, end in enumerate(break_list):
|
196 |
+
if start < end:
|
197 |
+
answers.append(paragraph["sentences"][i])
|
198 |
+
break
|
199 |
+
|
200 |
+
yield key, {
|
201 |
+
"id": str(key),
|
202 |
+
"question_id": qa["id"],
|
203 |
+
# "document_id": None,
|
204 |
+
"question": qa["question"],
|
205 |
+
"type": "retrieval",
|
206 |
+
"choices": [], # escape multiple choice qa seacrowd test
|
207 |
+
"context": paragraph["context"],
|
208 |
+
"answer": answers,
|
209 |
+
"meta": {
|
210 |
+
"title": example["title"],
|
211 |
+
"answers_start": answer_starts,
|
212 |
+
"answers_text": [answer["text"] for answer in qa["answers"]],
|
213 |
+
},
|
214 |
+
}
|
215 |
+
key += 1
|