Datasets:

ArXiv:
License:
File size: 5,518 Bytes
31bb229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """
@inproceedings{ohman2020xed,
  title={{XED}: A Multilingual Dataset for Sentiment Analysis and Emotion Detection},
  author={{\"O}hman, Emily and P{`a}mies, Marc and Kajava, Kaisla and Tiedemann, J{\"o}rg},
  booktitle={The 28th International Conference on Computational Linguistics (COLING 2020)},
  year={2020}
}
"""
_DATASETNAME = "xed"

_DESCRIPTION = """\
This is the XED dataset. The dataset consists of emotion annotated movie subtitles
from OPUS. We use Plutchik's 8 core emotions to annotate. The data is multilabel.
The original annotations have been sourced for mainly English and Finnish, with the
rest created using annotation projection to aligned subtitles in 41 additional languages,
with 31 languages included in the final dataset (more than 950 lines of annotated subtitle
lines). The dataset is an ongoing project with forthcoming additions such as machine translated datasets.
"""

_HOMEPAGE = "https://github.com/Helsinki-NLP/XED"

_LANGUAGES = ["ind", "vie"]

# This License is from the bottom of homepage's README not Unknown (as from Issues)
_LICENSE = Licenses.CC_BY_4_0.value

_LOCAL = False

_URLS = {"ind": "https://raw.githubusercontent.com/Helsinki-NLP/XED/master/Projections/id-projections.tsv", "vie": "https://raw.githubusercontent.com/Helsinki-NLP/XED/master/Projections/vi-projections.tsv"}

# Because of the multi-label attribute, I choose ASPECT_BASED_SENTIMENT_ANALYSIS than SENTIMENT_ANALYSIS
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class XEDDataset(datasets.GeneratorBasedBuilder):
    """
    This is the XED dataset. The dataset consists of emotion annotated movie subtitles
    from OPUS. We use Plutchik's 8 core emotions to annotate. The data is multilabel.
    The original annotations have been sourced for mainly English and Finnish, with the
    rest created using annotation projection to aligned subtitles in 41 additional languages,
    with 31 languages included in the final dataset (more than 950 lines of annotated subtitle
    lines). The dataset is an ongoing project with forthcoming additions such as machine translated datasets.
    """

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{LANG}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME} {LANG} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}_{LANG}",
        )
        for LANG in _LANGUAGES
    ] + [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{LANG}_seacrowd_text_multi",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME} {LANG} SEACrowd schema",
            schema="seacrowd_text_multi",
            subset_id=f"{_DATASETNAME}_{LANG}",
        )
        for LANG in _LANGUAGES
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_ind_source"
    _LABELS = ["Anger", "Anticipation", "Disgust", "Fear", "Joy", "Sadness", "Surprise", "Trust"]

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features({"Sentence": datasets.Value("string"), "Emotions": datasets.Sequence(feature=datasets.ClassLabel(names=self._LABELS))})

        elif self.config.schema == "seacrowd_text_multi":
            features = schemas.text_multi_features(self._LABELS)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        language = self.config.name.split("_")[1]

        if language in _LANGUAGES:
            data_path = Path(dl_manager.download_and_extract(_URLS[language]))
        else:
            data_path = [Path(dl_manager.download_and_extract(_URLS[language])) for language in _LANGUAGES]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_path,
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        emotions_mapping = {1: "Anger", 2: "Anticipation", 3: "Disgust", 4: "Fear", 5: "Joy", 6: "Sadness", 7: "Surprise", 8: "Trust"}

        df = pd.read_csv(filepath, sep="\t", names=["Sentence", "Emotions"], index_col=None)
        df["Emotions"] = df["Emotions"].apply(lambda x: list(map(int, x.split(", "))))
        df["Emotions"] = df["Emotions"].apply(lambda x: [emotions_mapping[emotion] for emotion in x])

        for index, row in df.iterrows():

            if self.config.schema == "source":
                example = row.to_dict()

            elif self.config.schema == "seacrowd_text_multi":

                example = {
                    "id": str(index),
                    "text": str(row["Sentence"]),
                    "labels": row["Emotions"],
                }

            yield index, example