|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{10.1145/3404835.3463257, |
|
author = {Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc}, |
|
title = {WIT: Wikipedia-Based Image Text Dataset for Multimodal Multilingual Machine Learning}, |
|
year = {2021}, |
|
isbn = {9781450380379}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/3404835.3463257}, |
|
doi = {10.1145/3404835.3463257}, |
|
booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval}, |
|
pages = {2443–2449}, |
|
numpages = {7}, |
|
keywords = {dataset, multimodal, machine learning, wikipedia, multilingual, image-text retrieval, neural networks}, |
|
location = {Virtual Event, Canada}, |
|
series = {SIGIR '21} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "wit" |
|
|
|
_DESCRIPTION = """\ |
|
Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset. |
|
WIT is composed of a curated set of 37.6 million entity rich image-text examples with |
|
11.5 million unique images across 108 Wikipedia languages. There are more than 12k |
|
examples in each of 108 languages, with 53 languages having 100k image-text pairs. |
|
Nine languages are spoken in the Southeast Asian region. |
|
Since the dataset contains multiple references, following Section 3.2 of the dataset's |
|
paper, the `seacrowd_imtext` subsets specify which reference is used for each data |
|
instance's texts via context in metadata. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/google-research-datasets/wit" |
|
|
|
_LANGUAGES = {"ceb": "ceb", "fil": "fil", "ind": "id", "jav": "jv", "zlm": "zlm", "mya": "my", "tha": "th", "vie": "vi", "war": "war"} |
|
|
|
_LANGUAGE_CODES = list(_LANGUAGES.values()) |
|
|
|
_LICENSE = Licenses.CC_BY_SA_3_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"train_0": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00000-of-00010.tsv.gz", |
|
"train_1": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00001-of-00010.tsv.gz", |
|
"train_2": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00002-of-00010.tsv.gz", |
|
"train_3": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00003-of-00010.tsv.gz", |
|
"train_4": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00004-of-00010.tsv.gz", |
|
"train_5": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00005-of-00010.tsv.gz", |
|
"train_6": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00006-of-00010.tsv.gz", |
|
"train_7": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00007-of-00010.tsv.gz", |
|
"train_8": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00008-of-00010.tsv.gz", |
|
"train_9": "https://storage.googleapis.com/gresearch/wit/wit_v1.train.all-00009-of-00010.tsv.gz", |
|
"test_0": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00000-of-00005.tsv.gz", |
|
"test_1": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00001-of-00005.tsv.gz", |
|
"test_2": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00002-of-00005.tsv.gz", |
|
"test_3": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00003-of-00005.tsv.gz", |
|
"test_4": "https://storage.googleapis.com/gresearch/wit/wit_v1.test.all-00004-of-00005.tsv.gz", |
|
"val_0": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00000-of-00005.tsv.gz", |
|
"val_1": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00001-of-00005.tsv.gz", |
|
"val_2": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00002-of-00005.tsv.gz", |
|
"val_3": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00003-of-00005.tsv.gz", |
|
"val_4": "https://storage.googleapis.com/gresearch/wit/wit_v1.val.all-00004-of-00005.tsv.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class WITDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
WIT is an image-text dataset from https://huggingface.co/datasets/google/wit. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = ( |
|
[ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema for all 9 languages", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
) |
|
] |
|
+ [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_imtext", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema for all 9 languages", |
|
schema="seacrowd_imtext", |
|
subset_id=f"{_DATASETNAME}", |
|
) |
|
] |
|
+ [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME}_{lang} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{lang}", |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
+ [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang}_seacrowd_imtext", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME}_{lang} SEACrowd schema", |
|
schema="seacrowd_imtext", |
|
subset_id=f"{_DATASETNAME}_{lang}", |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
) |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"language": datasets.Value("string"), |
|
"page_url": datasets.Value("string"), |
|
"image_url": datasets.Value("string"), |
|
"page_title": datasets.Value("string"), |
|
"section_title": datasets.Value("string"), |
|
"hierarchical_section_title": datasets.Value("string"), |
|
"caption_reference_description": datasets.Value("string"), |
|
"caption_attribution_description": datasets.Value("string"), |
|
"caption_alt_text_description": datasets.Value("string"), |
|
"mime_type": datasets.Value("string"), |
|
"original_height": datasets.Value("int32"), |
|
"original_width": datasets.Value("int32"), |
|
"is_main_image": datasets.Value("bool"), |
|
"attribution_passes_lang_id": datasets.Value("bool"), |
|
"page_changed_recently": datasets.Value("bool"), |
|
"context_page_description": datasets.Value("string"), |
|
"context_section_description": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_imtext": |
|
features = schemas.image_text_features() |
|
else: |
|
raise ValueError(f"Invalid schema: '{self.config.schema}'") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Returns SplitGenerators. |
|
""" |
|
|
|
train_paths = dl_manager.download_and_extract([v for k, v in _URLS.items() if "train" in k]) |
|
test_paths = dl_manager.download_and_extract([v for k, v in _URLS.items() if "test" in k]) |
|
val_paths = dl_manager.download_and_extract([v for k, v in _URLS.items() if "val" in k]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": train_paths, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": test_paths, |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": val_paths, |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths: Path, split: str) -> Tuple[int, Dict]: |
|
""" |
|
Yields examples as (key, example) tuples. |
|
""" |
|
subset_id = self.config.subset_id.split("_") |
|
if len(subset_id) > 1: |
|
language_list = subset_id[1] |
|
if language_list in _LANGUAGES: |
|
language_list = [_LANGUAGES[language_list]] |
|
else: |
|
language_list = _LANGUAGE_CODES |
|
|
|
idx = 0 |
|
for file in filepaths: |
|
with open( |
|
file, |
|
"r", |
|
encoding="utf-8", |
|
newline="", |
|
) as f: |
|
data = csv.DictReader( |
|
f, |
|
delimiter="\t", |
|
quoting=csv.QUOTE_ALL, |
|
) |
|
if self.config.schema == "seacrowd_imtext": |
|
for d in data: |
|
if d["language"] in language_list: |
|
text = None |
|
context = None |
|
if d["caption_reference_description"] != "": |
|
text = d["caption_reference_description"] |
|
context = "caption_reference_description" |
|
elif d["caption_attribution_description"] != "": |
|
text = d["caption_attribution_description"] |
|
context = "caption_attribution_description" |
|
else: |
|
text = d["caption_alt_text_description"] |
|
context = "caption_alt_text_description" |
|
x = { |
|
"id": idx, |
|
"image_paths": [d["image_url"]], |
|
"texts": text, |
|
"metadata": { |
|
"context": context, |
|
"labels": None, |
|
}, |
|
} |
|
yield idx, x |
|
idx += 1 |
|
|
|
elif self.config.schema == "source": |
|
for d in data: |
|
if d["language"] in language_list: |
|
x = {k: v if v != "" and k in self.info.features else None for k, v in d.items()} |
|
yield idx, x |
|
idx += 1 |
|
else: |
|
raise ValueError(f"Invalid schema: '{self.config.schema}'") |
|
|