holylovenia
commited on
Upload wikihow_gosc.py with huggingface_hub
Browse files- wikihow_gosc.py +151 -0
wikihow_gosc.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
23 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
24 |
+
|
25 |
+
_CITATION = """
|
26 |
+
@inproceedings{lyu-etal-2021-goal,
|
27 |
+
title = "Goal-Oriented Script Construction",
|
28 |
+
author = "Lyu, Qing and
|
29 |
+
Zhang, Li and
|
30 |
+
Callison-Burch, Chris",
|
31 |
+
editor = "Belz, Anya and
|
32 |
+
Fan, Angela and
|
33 |
+
Reiter, Ehud and
|
34 |
+
Sripada, Yaji",
|
35 |
+
booktitle = "Proceedings of the 14th International Conference on Natural Language Generation",
|
36 |
+
month = aug,
|
37 |
+
year = "2021",
|
38 |
+
publisher = "Association for Computational Linguistics",
|
39 |
+
url = "https://aclanthology.org/2021.inlg-1.19",
|
40 |
+
doi = "10.18653/v1/2021.inlg-1.19",
|
41 |
+
pages = "184--200",
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
_LOCAL = False
|
45 |
+
_LANGUAGES = {"ind": "id", "tha": "th", "vie": "vn"}
|
46 |
+
_DATASETNAME = "wikihow_gosc"
|
47 |
+
_DESCRIPTION = """
|
48 |
+
This dataset consists of wikiHow goal-oriented scripts. For each goal or task, sections with steps to achieve this task are
|
49 |
+
generated. Both the sections and steps within them are classified as either ordered or unordered.
|
50 |
+
"""
|
51 |
+
|
52 |
+
_HOMEPAGE = "https://github.com/veronica320/wikihow-GOSC/tree/main?tab=readme-ov-file"
|
53 |
+
_LICENSE = Licenses.MIT.value
|
54 |
+
_URL = "https://drive.google.com/uc?id=1AqAocrNFEPhBAfa5ATCj-3xMWbq659ME"
|
55 |
+
|
56 |
+
_SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING]
|
57 |
+
_SOURCE_VERSION = "1.0.0"
|
58 |
+
_SEACROWD_VERSION = "2024.06.20"
|
59 |
+
|
60 |
+
|
61 |
+
class WikiHowGOSCDataset(datasets.GeneratorBasedBuilder):
|
62 |
+
"""Dataset of WikiHow tasks/goals with generated steps to perform them."""
|
63 |
+
|
64 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
65 |
+
|
66 |
+
BUILDER_CONFIGS = [
|
67 |
+
SEACrowdConfig(
|
68 |
+
name=f"{_DATASETNAME}_{lang}_source",
|
69 |
+
version=_SOURCE_VERSION,
|
70 |
+
description=f"{_DATASETNAME} source schema for {lang} language",
|
71 |
+
schema="source",
|
72 |
+
subset_id=f"{_DATASETNAME}_{lang}",
|
73 |
+
)
|
74 |
+
for lang in _LANGUAGES
|
75 |
+
]
|
76 |
+
|
77 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_ind_source"
|
78 |
+
|
79 |
+
def _info(self) -> datasets.DatasetInfo:
|
80 |
+
|
81 |
+
features = datasets.Features(
|
82 |
+
{
|
83 |
+
"title": datasets.Value("string"),
|
84 |
+
"category": datasets.Value("string"),
|
85 |
+
"sections": datasets.Sequence({"section": datasets.Value("string"), "steps": datasets.Sequence(datasets.Value("string")), "ordered": datasets.Value("int32")}),
|
86 |
+
"ordered": datasets.Value("int32"),
|
87 |
+
}
|
88 |
+
)
|
89 |
+
|
90 |
+
return datasets.DatasetInfo(
|
91 |
+
description=_DESCRIPTION,
|
92 |
+
features=features,
|
93 |
+
homepage=_HOMEPAGE,
|
94 |
+
license=_LICENSE,
|
95 |
+
citation=_CITATION,
|
96 |
+
)
|
97 |
+
|
98 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
99 |
+
"""Returns SplitGenerators."""
|
100 |
+
try:
|
101 |
+
import gdown
|
102 |
+
except ImportError:
|
103 |
+
raise ImportError("Please install `gdown` to enable downloading data from google drive.")
|
104 |
+
|
105 |
+
# Download from Google drive
|
106 |
+
output_dir = Path.cwd() / "data" / "wikihow_gosc"
|
107 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
108 |
+
output_file = output_dir / "wikihow_multilingual_scripts.zip"
|
109 |
+
if not output_file.exists():
|
110 |
+
gdown.download(_URL, str(output_file), fuzzy=True)
|
111 |
+
else:
|
112 |
+
print(f"File already downloaded: {str(output_file)}")
|
113 |
+
|
114 |
+
data_dir = Path(dl_manager.extract(output_file))
|
115 |
+
lang = _LANGUAGES[self.config.subset_id.split("_")[-1]]
|
116 |
+
|
117 |
+
return [ # Train and test are in same file
|
118 |
+
datasets.SplitGenerator(
|
119 |
+
name=datasets.Split.TRAIN,
|
120 |
+
gen_kwargs={
|
121 |
+
"filepath": os.path.join(data_dir, f"script_{lang}.json"),
|
122 |
+
"split": "train",
|
123 |
+
},
|
124 |
+
),
|
125 |
+
datasets.SplitGenerator(
|
126 |
+
name=datasets.Split.TEST,
|
127 |
+
gen_kwargs={
|
128 |
+
"filepath": os.path.join(data_dir, f"script_{lang}.json"),
|
129 |
+
"split": "test",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
]
|
133 |
+
|
134 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
135 |
+
"""Yields examples as (key, example) tuples."""
|
136 |
+
with open(filepath, "r", encoding="utf-8") as file:
|
137 |
+
data = json.load(file)
|
138 |
+
for key, example in enumerate(data[split]):
|
139 |
+
if "sections" not in example: # Single-section example
|
140 |
+
yield key, {
|
141 |
+
"title": example["title"],
|
142 |
+
"category": example["category"],
|
143 |
+
"sections": [{
|
144 |
+
"section": "",
|
145 |
+
"steps": example["steps"],
|
146 |
+
"ordered": example["ordered"],
|
147 |
+
}],
|
148 |
+
"ordered": 1
|
149 |
+
}
|
150 |
+
else:
|
151 |
+
yield key, example
|