|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@InProceedings{10.1007/978-3-031-21743-2_48, |
|
author="Van Dinh, Co |
|
and Luu, Son T. |
|
and Nguyen, Anh Gia-Tuan", |
|
editor="Nguyen, Ngoc Thanh |
|
and Tran, Tien Khoa |
|
and Tukayev, Ualsher |
|
and Hong, Tzung-Pei |
|
and Trawi{\'{n}}ski, Bogdan |
|
and Szczerbicki, Edward", |
|
title="Detecting Spam Reviews on Vietnamese E-Commerce Websites", |
|
booktitle="Intelligent Information and Database Systems", |
|
year="2022", |
|
publisher="Springer International Publishing", |
|
address="Cham", |
|
pages="595--607", |
|
abstract="The reviews of customers play an essential role in online shopping. |
|
People often refer to reviews or comments of previous customers to decide whether |
|
to buy a new product. Catching up with this behavior, some people create untruths and |
|
illegitimate reviews to hoax customers about the fake quality of products. These are called |
|
spam reviews, confusing consumers on online shopping platforms and negatively affecting online |
|
shopping behaviors. We propose the dataset called ViSpamReviews, which has a strict annotation |
|
procedure for detecting spam reviews on e-commerce platforms. Our dataset consists of two tasks: |
|
the binary classification task for detecting whether a review is spam or not and the multi-class |
|
classification task for identifying the type of spam. The PhoBERT obtained the highest results on |
|
both tasks, 86.89%, and 72.17%, respectively, by macro average F1 score.", |
|
isbn="978-3-031-21743-2" |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["vie"] |
|
_DATASETNAME = "vispamreviews" |
|
_DESCRIPTION = """ |
|
The dataset was collected from leading online shopping platforms in Vietnam. Some of the most recent |
|
selling products for each product category were selected and up to 15 reviews per product were collected. |
|
Each review was then labeled as either NO-SPAM, SPAM-1 (fake review), SPAM-2 (review on brand only), or |
|
SPAM-3 (irrelevant content). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/sonlam1102/vispamdetection/" |
|
_LICENSE = Licenses.CC_BY_NC_4_0.value |
|
_URL = "https://raw.githubusercontent.com/sonlam1102/vispamdetection/main/dataset/vispamdetection_dataset.zip" |
|
|
|
_Split_Path = { |
|
"train": "dataset/train.csv", |
|
"validation": "dataset/dev.csv", |
|
"test": "dataset/test.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ViSpamReviewsDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
The SeaCrowd dataloader for the review dataset shopping platforms in Vietnam (ViSpamReviews). |
|
""" |
|
|
|
CLASS_LABELS = [0, 1] |
|
SPAM_TYPE_LABELS = [0, 1, 2, 3] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_spam_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema ", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_spam_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema ", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}_spam", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.name.endswith("source"): |
|
features = (datasets.Features |
|
( |
|
{"id": datasets.Value("int32"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"spam_label": datasets.Value("string"), |
|
"rating": datasets.Value("int32") |
|
} |
|
)) |
|
|
|
elif self.config.name == "vispamreviews_seacrowd_text": |
|
features = schemas.text_features(label_names=self.CLASS_LABELS) |
|
elif self.config.name == "vispamreviews_spam_seacrowd_text": |
|
features = schemas.text_features(label_names=self.SPAM_TYPE_LABELS) |
|
else: |
|
raise ValueError(f"Invalid schema {self.config.name}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
file_paths = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["train"])}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["validation"])}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["test"])}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
data_lines = pandas.read_csv(filepath) |
|
for rid, row in enumerate(data_lines.itertuples()): |
|
if self.config.name.endswith("source"): |
|
example = {"id": str(rid), "text": row.Comment, "label": row.Label, "spam_label": row.SpamLabel, |
|
"rating": row.Rating} |
|
elif self.config.name == "vispamreviews_seacrowd_text": |
|
example = {"id": str(rid), "text": row.Comment, "label": row.Label} |
|
elif self.config.name == "vispamreviews_spam_seacrowd_text": |
|
example = {"id": str(rid), "text": row.Comment, "label": row.SpamLabel} |
|
else: |
|
raise ValueError(f"Invalid schema {self.config.schema}") |
|
yield rid, example |
|
|