|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, |
|
Licenses, Tasks) |
|
|
|
_CITATION = """ |
|
@ARTICLE{vimmrc, |
|
author={Nguyen, Kiet Van and Tran, Khiem Vinh and Luu, Son T. and Nguyen, Anh Gia-Tuan and Nguyen, Ngan Luu-Thuy}, |
|
journal={IEEE Access}, |
|
title={Enhancing Lexical-Based Approach With External Knowledge for Vietnamese Multiple-Choice Machine Reading Comprehension}, |
|
year={2020}, |
|
volume={8}, |
|
pages={201404-201417}, |
|
doi={10.1109/ACCESS.2020.3035701}} |
|
""" |
|
|
|
_DATASETNAME = "vimmrc" |
|
|
|
_DESCRIPTION = """ |
|
ViMMRC, a challenging machine comprehension corpus with multiple-choice questions, |
|
intended for research on the machine comprehension of Vietnamese text. This corpus |
|
includes 2,783 multiple-choice questions and answers based on a set of 417 Vietnamese |
|
texts used for teaching reading comprehension for 1st to 5th graders. |
|
""" |
|
|
|
_HOMEPAGE = "https://sites.google.com/uit.edu.vn/kietnv/datasets#h.1qeaynfs79d1" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = f"{Licenses.UNKNOWN.value} | The corpus is freely available at our website for research purposes." |
|
|
|
_LOCAL = False |
|
|
|
_URL = "https://drive.google.com/file/d/14Rq-YANUv8qyi4Ze8ReEAEu_uxgcV_Yk/view" |
|
|
|
_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING] |
|
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ViMMRCDataset(datasets.GeneratorBasedBuilder): |
|
"""A Vietnamese machine comprehension corpus with multiple-choice questions""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"file_path": datasets.Value("string"), |
|
"article": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"choices": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
try: |
|
import gdown |
|
except ImportError as err: |
|
raise ImportError("Please install `gdown` to enable reliable data download from google drive.") from err |
|
|
|
|
|
output_dir = Path.cwd() / "data" / "vimmrc" |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
output_file = output_dir / "vimmrc.zip" |
|
if not output_file.exists(): |
|
gdown.download(_URL, str(output_file), fuzzy=True) |
|
else: |
|
print(f"File already downloaded: {str(output_file)}") |
|
|
|
|
|
data_dir = Path(dl_manager.extract(output_file)) / "ViMMRC" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": data_dir / "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_dir": data_dir / "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_dir": data_dir / "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
json_files = sorted(list(data_dir.glob("*.json"))) |
|
|
|
key = 0 |
|
for json_file in json_files: |
|
with open(json_file, "r", encoding="utf-8") as file: |
|
|
|
data = json.load(file) |
|
assert len(data["questions"]) == len(data["options"]) == len(data["answers"]), f"Mismatched data length on {str(json_file)}" |
|
|
|
for idx, question in enumerate(data["questions"]): |
|
|
|
|
|
if data["answers"][idx] == "A": |
|
answer = data["options"][idx][0] |
|
elif data["answers"][idx] == "B": |
|
answer = data["options"][idx][1] |
|
elif data["answers"][idx] == "C": |
|
answer = data["options"][idx][2] |
|
elif data["answers"][idx] == "D": |
|
answer = data["options"][idx][3] |
|
|
|
if self.config.schema == "source": |
|
yield key, { |
|
"file_path": str(json_file), |
|
"article": data["article"], |
|
"question": question, |
|
"choices": data["options"][idx], |
|
"answer": answer, |
|
} |
|
key += 1 |
|
|
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
yield key, { |
|
"id": key, |
|
"question_id": None, |
|
"document_id": str(json_file), |
|
"question": question, |
|
"type": "multiple_choice", |
|
"choices": data["options"][idx], |
|
"context": data["article"], |
|
"answer": [answer], |
|
"meta": None, |
|
} |
|
key += 1 |
|
|