holylovenia
commited on
Upload vicon.py with huggingface_hub
Browse files
vicon.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
ViCon, comprises pairs of synonyms and antonymys across \
|
18 |
+
noun, verb, and adjective classes, offerring data to \
|
19 |
+
distinguish between similarity and dissimilarity.
|
20 |
+
"""
|
21 |
+
|
22 |
+
import os
|
23 |
+
from pathlib import Path
|
24 |
+
from typing import Dict, List, Tuple
|
25 |
+
|
26 |
+
import datasets
|
27 |
+
import pandas as pd
|
28 |
+
|
29 |
+
from seacrowd.utils import schemas
|
30 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
31 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
32 |
+
|
33 |
+
_CITATION = """\
|
34 |
+
@inproceedings{nguyen-etal-2018-introducing,
|
35 |
+
title = "Introducing Two {V}ietnamese Datasets for Evaluating Semantic Models of (Dis-)Similarity and Relatedness",
|
36 |
+
author = "Nguyen, Kim Anh and
|
37 |
+
Schulte im Walde, Sabine and
|
38 |
+
Vu, Ngoc Thang",
|
39 |
+
editor = "Walker, Marilyn and
|
40 |
+
Ji, Heng and
|
41 |
+
Stent, Amanda",
|
42 |
+
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
|
43 |
+
month = jun,
|
44 |
+
year = "2018",
|
45 |
+
address = "New Orleans, Louisiana",
|
46 |
+
publisher = "Association for Computational Linguistics",
|
47 |
+
url = "https://aclanthology.org/N18-2032",
|
48 |
+
doi = "10.18653/v1/N18-2032",
|
49 |
+
pages = "199--205",
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
_DATASETNAME = "vicon"
|
54 |
+
|
55 |
+
_DESCRIPTION = """\
|
56 |
+
ViCon, comprises pairs of synonyms and antonymys across \
|
57 |
+
noun, verb, and adjective classes, offerring data to \
|
58 |
+
distinguish between similarity and dissimilarity.
|
59 |
+
"""
|
60 |
+
|
61 |
+
_HOMEPAGE = "https://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/vnese-sem-datasets/"
|
62 |
+
|
63 |
+
_LANGUAGES = ["vie"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
64 |
+
|
65 |
+
_LICENSE = Licenses.CC_BY_NC_SA_2_0.value # example: Licenses.MIT.value, Licenses.CC_BY_NC_SA_4_0.value, Licenses.UNLICENSE.value, Licenses.UNKNOWN.value
|
66 |
+
|
67 |
+
_LOCAL = False
|
68 |
+
|
69 |
+
_URLS = {
|
70 |
+
"noun": "https://www.ims.uni-stuttgart.de/documents/ressourcen/experiment-daten/ViData.zip",
|
71 |
+
"adj": "https://www.ims.uni-stuttgart.de/documents/ressourcen/experiment-daten/ViData.zip",
|
72 |
+
"verb": "https://www.ims.uni-stuttgart.de/documents/ressourcen/experiment-daten/ViData.zip",
|
73 |
+
}
|
74 |
+
|
75 |
+
# This task is more suitable for TEXTUAL_ENTAILMENT
|
76 |
+
# because the labels (antonym, synonym) roughly correlates to (contradiction, entailment)
|
77 |
+
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
|
78 |
+
|
79 |
+
_SOURCE_VERSION = "1.0.0"
|
80 |
+
|
81 |
+
_SEACROWD_VERSION = "2024.06.20"
|
82 |
+
|
83 |
+
|
84 |
+
class ViConDataset(datasets.GeneratorBasedBuilder):
|
85 |
+
"""
|
86 |
+
ViCon, comprises pairs of synonyms and antonymys across \
|
87 |
+
noun, verb, and adjective classes, offerring data to \
|
88 |
+
distinguish between similarity and dissimilarity.
|
89 |
+
"""
|
90 |
+
|
91 |
+
POS_TAGS = ["noun", "adj", "verb"]
|
92 |
+
|
93 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
94 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
95 |
+
|
96 |
+
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{POS_TAG}_source", version=_SOURCE_VERSION, description=f"{_DATASETNAME}_{POS_TAG} source schema", schema="source", subset_id=f"{_DATASETNAME}_{POS_TAG}",) for POS_TAG in POS_TAGS] + [
|
97 |
+
SEACrowdConfig(
|
98 |
+
name=f"{_DATASETNAME}_{POS_TAG}_seacrowd_pairs",
|
99 |
+
version=_SEACROWD_VERSION,
|
100 |
+
description=f"{_DATASETNAME}_{POS_TAG} SEACrowd schema",
|
101 |
+
schema="seacrowd_pairs",
|
102 |
+
subset_id=f"{_DATASETNAME}_{POS_TAG}",
|
103 |
+
)
|
104 |
+
for POS_TAG in POS_TAGS
|
105 |
+
]
|
106 |
+
|
107 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_noun_source"
|
108 |
+
|
109 |
+
def _info(self) -> datasets.DatasetInfo:
|
110 |
+
|
111 |
+
if self.config.schema == "source":
|
112 |
+
|
113 |
+
features = datasets.Features(
|
114 |
+
{
|
115 |
+
"Word1": datasets.Value("string"),
|
116 |
+
"Word2": datasets.Value("string"),
|
117 |
+
"Relation": datasets.Value("string"),
|
118 |
+
}
|
119 |
+
)
|
120 |
+
|
121 |
+
elif self.config.schema == "seacrowd_pairs":
|
122 |
+
features = schemas.pairs_features(["ANT", "SYN"])
|
123 |
+
|
124 |
+
return datasets.DatasetInfo(
|
125 |
+
description=_DESCRIPTION,
|
126 |
+
features=features,
|
127 |
+
homepage=_HOMEPAGE,
|
128 |
+
license=_LICENSE,
|
129 |
+
citation=_CITATION,
|
130 |
+
)
|
131 |
+
|
132 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
133 |
+
"""Returns SplitGenerators."""
|
134 |
+
|
135 |
+
POS_TAG = self.config.name.split("_")[1]
|
136 |
+
if POS_TAG == "noun" or POS_TAG == "verb":
|
137 |
+
number = 400
|
138 |
+
elif POS_TAG == "adj":
|
139 |
+
number = 600
|
140 |
+
|
141 |
+
if POS_TAG in self.POS_TAGS:
|
142 |
+
data_dir = dl_manager.download_and_extract(_URLS[POS_TAG])
|
143 |
+
|
144 |
+
else:
|
145 |
+
data_dir = [dl_manager.download_and_extract(_URLS[POS_TAG]) for POS_TAG in self.POS_TAGS]
|
146 |
+
|
147 |
+
return [
|
148 |
+
datasets.SplitGenerator(
|
149 |
+
name=datasets.Split.TRAIN,
|
150 |
+
gen_kwargs={
|
151 |
+
"filepath": os.path.join(data_dir, f"ViData/ViCon/{number}_{POS_TAG}_pairs.txt"),
|
152 |
+
"split": "train",
|
153 |
+
},
|
154 |
+
)
|
155 |
+
]
|
156 |
+
|
157 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
158 |
+
"""Yields examples as (key, example) tuples."""
|
159 |
+
|
160 |
+
with open(filepath, "r", encoding="utf-8") as file:
|
161 |
+
lines = file.readlines()
|
162 |
+
|
163 |
+
data = []
|
164 |
+
for line in lines:
|
165 |
+
columns = line.strip().split("\t")
|
166 |
+
data.append(columns)
|
167 |
+
|
168 |
+
df = pd.DataFrame(data[1:], columns=data[0])
|
169 |
+
|
170 |
+
for index, row in df.iterrows():
|
171 |
+
|
172 |
+
if self.config.schema == "source":
|
173 |
+
example = row.to_dict()
|
174 |
+
|
175 |
+
elif self.config.schema == "seacrowd_pairs":
|
176 |
+
|
177 |
+
example = {
|
178 |
+
"id": str(index),
|
179 |
+
"text_1": str(row["Word1"]),
|
180 |
+
"text_2": str(row["Word2"]),
|
181 |
+
"label": str(row["Relation"]),
|
182 |
+
}
|
183 |
+
|
184 |
+
yield index, example
|