|
from pathlib import Path |
|
from typing import Any, Dict, List, Tuple |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@misc{batsuren2022unimorph, |
|
title={UniMorph 4.0: Universal Morphology}, |
|
author={ |
|
Khuyagbaatar Batsuren and Omer Goldman and Salam Khalifa and Nizar |
|
Habash and Witold Kieraś and Gábor Bella and Brian Leonard and Garrett |
|
Nicolai and Kyle Gorman and Yustinus Ghanggo Ate and Maria Ryskina and |
|
Sabrina J. Mielke and Elena Budianskaya and Charbel El-Khaissi and Tiago |
|
Pimentel and Michael Gasser and William Lane and Mohit Raj and Matt |
|
Coler and Jaime Rafael Montoya Samame and Delio Siticonatzi Camaiteri |
|
and Benoît Sagot and Esaú Zumaeta Rojas and Didier López Francis and |
|
Arturo Oncevay and Juan López Bautista and Gema Celeste Silva Villegas |
|
and Lucas Torroba Hennigen and Adam Ek and David Guriel and Peter Dirix |
|
and Jean-Philippe Bernardy and Andrey Scherbakov and Aziyana Bayyr-ool |
|
and Antonios Anastasopoulos and Roberto Zariquiey and Karina Sheifer and |
|
Sofya Ganieva and Hilaria Cruz and Ritván Karahóǧa and Stella |
|
Markantonatou and George Pavlidis and Matvey Plugaryov and Elena |
|
Klyachko and Ali Salehi and Candy Angulo and Jatayu Baxi and Andrew |
|
Krizhanovsky and Natalia Krizhanovskaya and Elizabeth Salesky and Clara |
|
Vania and Sardana Ivanova and Jennifer White and Rowan Hall Maudslay and |
|
Josef Valvoda and Ran Zmigrod and Paula Czarnowska and Irene Nikkarinen |
|
and Aelita Salchak and Brijesh Bhatt and Christopher Straughn and Zoey |
|
Liu and Jonathan North Washington and Yuval Pinter and Duygu Ataman and |
|
Marcin Wolinski and Totok Suhardijanto and Anna Yablonskaya and Niklas |
|
Stoehr and Hossep Dolatian and Zahroh Nuriah and Shyam Ratan and Francis |
|
M. Tyers and Edoardo M. Ponti and Grant Aiton and Aryaman Arora and |
|
Richard J. Hatcher and Ritesh Kumar and Jeremiah Young and Daria |
|
Rodionova and Anastasia Yemelina and Taras Andrushko and Igor Marchenko |
|
and Polina Mashkovtseva and Alexandra Serova and Emily Prud'hommeaux and |
|
Maria Nepomniashchaya and Fausto Giunchiglia and Eleanor Chodroff and |
|
Mans Hulden and Miikka Silfverberg and Arya D. McCarthy and David |
|
Yarowsky and Ryan Cotterell and Reut Tsarfaty and Ekaterina Vylomova}, |
|
year={2022}, |
|
eprint={2205.03608}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind", "kod", "ceb", "hil", "tgl"] |
|
_DATASETNAME = "unimorph" |
|
_DESCRIPTION = """\ |
|
The Universal Morphology (UniMorph) project is a collaborative effort providing |
|
broad-coverage instantiated normalized morphological inflection tables for |
|
undreds of diverse world languages. The project comprises two major thrusts: a |
|
language-independent feature schema for rich morphological annotation, and a |
|
type-level resource of annotated data in diverse languages realizing that |
|
schema. 5 Austronesian languages spoken in Southeast Asia, consisting 2 |
|
Malayo-Polynesian languages and 3 Greater Central Philippine languages, become |
|
the part of UniMorph 4.0 release. |
|
""" |
|
|
|
_HOMEPAGE = "https://unimorph.github.io" |
|
_LICENSE = Licenses.CC_BY_SA_3_0.value |
|
_URL = "https://raw.githubusercontent.com/unimorph/" |
|
|
|
_SUPPORTED_TASKS = [Tasks.MORPHOLOGICAL_INFLECTION] |
|
_SOURCE_VERSION = "4.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UnimorphDataset(datasets.GeneratorBasedBuilder): |
|
"""Unimorh 4.0 dataset by Batsuren et al., (2022)""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "pairs_multi" |
|
|
|
dataset_names = sorted([f"{_DATASETNAME}_{lang}" for lang in _LANGUAGES]) |
|
BUILDER_CONFIGS = [] |
|
for name in dataset_names: |
|
source_config = SEACrowdConfig( |
|
name=f"{name}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=name, |
|
) |
|
BUILDER_CONFIGS.append(source_config) |
|
seacrowd_config = SEACrowdConfig( |
|
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=name, |
|
) |
|
BUILDER_CONFIGS.append(seacrowd_config) |
|
|
|
|
|
BUILDER_CONFIGS.extend( |
|
[ |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema (all)", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema (all)", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
CLASS_CATEGORIES = { |
|
"Aktionsart": ["STAT", "DYN", "TEL", "ATEL", "PCT", "DUR", "ACH", "ACCMP", "SEMEL", "ACTY"], |
|
"Animacy": ["ANIM", "INAN", "HUM", "NHUM"], |
|
"Argument_Marking": [ |
|
"ARGNO1S", |
|
"ARGNO2S", |
|
"ARGNO3S", |
|
"ARGNO1P", |
|
"ARGNO2P", |
|
"ARGNO3P", |
|
"ARGAC1S", |
|
"ARGAC2S", |
|
"ARGAC3S", |
|
"ARGAC1P", |
|
"ARGAC2P", |
|
"ARGAC3P", |
|
"ARGAB1S", |
|
"ARGAB2S", |
|
"ARGAB3S", |
|
"ARGAB1P", |
|
"ARGAB2P", |
|
"ARGAB3P", |
|
"ARGER1S", |
|
"ARGER2S", |
|
"ARGER3S", |
|
"ARGER1P", |
|
"ARGER2P", |
|
"ARGER3P", |
|
"ARGDA1S", |
|
"ARGDA2S", |
|
"ARGDA3S", |
|
"ARGDA1P", |
|
"ARGDA2P", |
|
"ARGDA3P", |
|
"ARGBE1S", |
|
"ARGBE2S", |
|
"ARGBE3S", |
|
"ARGBE1P", |
|
"ARGBE2P", |
|
"ARGBE3P", |
|
], |
|
"Aspect": ["IPFV", "PFV", "PRF", "PROG", "PROSP", "ITER", "HAB"], |
|
"Case": [ |
|
"NOM", |
|
"ACC", |
|
"ERG", |
|
"ABS", |
|
"NOMS", |
|
"DAT", |
|
"BEN", |
|
"PRP", |
|
"GEN", |
|
"REL", |
|
"PRT", |
|
"INS", |
|
"COM", |
|
"VOC", |
|
"COMPV", |
|
"EQTV", |
|
"PRIV", |
|
"PROPR", |
|
"AVR", |
|
"FRML", |
|
"TRANS", |
|
"BYWAY", |
|
"INTER", |
|
"AT", |
|
"POST", |
|
"IN", |
|
"CIRC", |
|
"ANTE", |
|
"APUD", |
|
"ON", |
|
"ONHR", |
|
"ONVR", |
|
"SUB", |
|
"REM", |
|
"PROXM", |
|
"ESS", |
|
"ALL", |
|
"ABL", |
|
"APPRX", |
|
"TERM", |
|
], |
|
"Comparison": ["CMPR", "SPRL", "AB", "RL", "EQT"], |
|
"Definiteness": ["DEF", "INDF", "SPEC", "NSPEC"], |
|
"Deixis": ["PROX", "MED", "REMT", "REF1", "REF2", "NOREF", "PHOR", "VIS", "NVIS", "ABV", "EVEN", "BEL"], |
|
"Evidentiality": ["FH", "DRCT", "SEN", "VISU", "NVSEN", "AUD", "NFH", "QUOT", "RPRT", "HRSY", "INFER", "ASSUM"], |
|
"Finiteness": ["FIN", "NFIN"], |
|
"Gender": [ |
|
"MASC", |
|
"FEM", |
|
"NEUT", |
|
"NAKH1", |
|
"NAKH2", |
|
"NAKH3", |
|
"NAKH4", |
|
"NAKH5", |
|
"NAKH6", |
|
"NAKH7", |
|
"NAKH8", |
|
"BANTU1", |
|
"BANTU2", |
|
"BANTU3", |
|
"BANTU4", |
|
"BANTU5", |
|
"BANTU6", |
|
"BANTU7", |
|
"BANTU8", |
|
"BANTU9", |
|
"BANTU10", |
|
"BANTU11", |
|
"BANTU12", |
|
"BANTU13", |
|
"BANTU14", |
|
"BANTU15", |
|
"BANTU16", |
|
"BANTU17", |
|
"BANTU18", |
|
"BANTU19", |
|
"BANTU20", |
|
"BANTU21", |
|
"BANTU22", |
|
"BANTU23", |
|
], |
|
"Information_Structure": ["TOP", "FOC"], |
|
"Interrogativity": ["DECL", "INT"], |
|
"Language_Specific": [ |
|
"LGSPEC1", |
|
"LGSPEC2", |
|
"LGSPEC3", |
|
"LGSPEC4", |
|
"LGSPEC5", |
|
"LGSPEC6", |
|
"LGSPEC7", |
|
"LGSPEC8", |
|
"LGSPEC9", |
|
"LGSPEC10", |
|
], |
|
"Mood": [ |
|
"IND", |
|
"SBJV", |
|
"REAL", |
|
"IRR", |
|
"AUPRP", |
|
"AUNPRP", |
|
"IMP", |
|
"COND", |
|
"PURP", |
|
"INTEN", |
|
"POT", |
|
"LKLY", |
|
"ADM", |
|
"OBLIG", |
|
"DEB", |
|
"PERM", |
|
"DED", |
|
"SIM", |
|
"OPT", |
|
], |
|
"Number": ["SG", "PL", "GRPL", "DU", "TRI", "PAUC", "GRPAUC", "INVN"], |
|
"Part_Of_Speech": [ |
|
"N", |
|
"PROPN", |
|
"ADJ", |
|
"PRO", |
|
"CLF", |
|
"ART", |
|
"DET", |
|
"V", |
|
"ADV", |
|
"AUX", |
|
"V.PTCP", |
|
"V.MSDR", |
|
"V.CVB", |
|
"ADP", |
|
"COMP", |
|
"CONJ", |
|
"NUM", |
|
"PART", |
|
"INTJ", |
|
], |
|
"Person": ["0", "1", "2", "3", "4", "INCL", "EXCL", "PRX", "OBV"], |
|
"Polarity": ["POS", "NEG"], |
|
"Politeness": [ |
|
"INFM", |
|
"FORM", |
|
"ELEV", |
|
"HUMB", |
|
"POL", |
|
"AVOID", |
|
"LOW", |
|
"HIGH", |
|
"STELEV", |
|
"STSUPR", |
|
"LIT", |
|
"FOREG", |
|
"COL", |
|
], |
|
"Possession": [ |
|
"ALN", |
|
"NALN", |
|
"PSS1S", |
|
"PSS2S", |
|
"PSS2SF", |
|
"PSS2SM", |
|
"PSS2SINFM", |
|
"PSS2SFORM", |
|
"PSS3S", |
|
"PSS3SF", |
|
"PSS3SM", |
|
"PSS1D", |
|
"PSS1DI", |
|
"PSS1DE", |
|
"PSS2D", |
|
"PSS2DM", |
|
"PSS2DF", |
|
"PSS3D", |
|
"PSS3DF", |
|
"PSS3DM", |
|
"PSS1P", |
|
"PSS1PI", |
|
"PSS1PE", |
|
"PSS2P", |
|
"PSS2PF", |
|
"PSS2PM", |
|
"PSS3PF", |
|
"PSS3PM", |
|
], |
|
"Switch_Reference": ["SS", "SSADV", "DS", "DSADV", "OR", "SIMMA", "SEQMA", "LOG"], |
|
"Tense": ["PRS", "PST", "FUT", "IMMED", "HOD", "1DAY", "RCT", "RMT"], |
|
"Valency": ["IMPRS", "INTR", "TR", "DITR", "REFL", "RECP", "CAUS", "APPL"], |
|
"Voice": ["ACT", "MID", "PASS", "ANTIP", "DIR", "INV", "AGFOC", "PFOC", "LFOC", "BFOC", "ACFOC", "IFOC", "CFOC"], |
|
} |
|
|
|
TAG_TO_CAT = dict([(tag, cat) for cat, tags in CLASS_CATEGORIES.items() for tag in tags]) |
|
CLASS_LABELS = [feat for _, category in CLASS_CATEGORIES.items() for feat in category] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"lemma": datasets.Value("string"), |
|
"forms": datasets.Sequence( |
|
dict( |
|
[("word", datasets.Value("string"))] |
|
+ [(cat, datasets.Sequence(datasets.ClassLabel(names=tasks))) for cat, tasks in self.CLASS_CATEGORIES.items()] |
|
+ [("Other", datasets.Sequence(datasets.Value("string")))] |
|
) |
|
), |
|
} |
|
) |
|
|
|
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
all_features = [feat for _, category in self.CLASS_CATEGORIES.items() for feat in category] |
|
features = schemas.pairs_multi_features(label_names=self.CLASS_LABELS) |
|
|
|
return datasets.DatasetInfo(description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Return SplitGenerators.""" |
|
source_data = [] |
|
|
|
lang = self.config.name.split("_")[1] |
|
if lang in _LANGUAGES: |
|
|
|
source_data.append(dl_manager.download_and_extract(_URL + f"{lang}/main/{lang}")) |
|
else: |
|
|
|
for lang in _LANGUAGES: |
|
source_data.append(dl_manager.download_and_extract(_URL + f"{lang}/main/{lang}")) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": source_data, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepaths: List[Path]) -> Tuple[int, Dict]: |
|
"""Yield examples as (key, example) tuples""" |
|
|
|
all_forms: Dict[str, List[Dict[str, Any]]] = {} |
|
for source_file in filepaths: |
|
with open(source_file, encoding="utf-8") as file: |
|
for row in file: |
|
if row.strip() == "" or row.strip().startswith("#"): |
|
continue |
|
lemma, word, tags = row.strip().split("\t") |
|
all_forms[lemma] = all_forms.get(lemma, []) |
|
tag_list = tags.replace("NDEF", "INDF").split(";") |
|
form = dict([("word", word), ("Other", [])] + [(cat, []) for cat, tasks in self.CLASS_CATEGORIES.items()]) |
|
for tag_pre in tag_list: |
|
tag = tag_pre.split("+") |
|
if tag[0] in self.TAG_TO_CAT: |
|
form[self.TAG_TO_CAT[tag[0]]] = tag |
|
else: |
|
form["Other"] += tag |
|
all_forms[lemma] += [form] |
|
|
|
if self.config.schema == "source": |
|
for id_, (lemma, forms) in enumerate(all_forms.items()): |
|
res = {"lemma": lemma, "forms": {}} |
|
for k in ["word", "Other"] + list(self.CLASS_CATEGORIES.keys()): |
|
res["forms"][k] = [form[k] for form in forms] |
|
yield id_, res |
|
|
|
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
idx = 0 |
|
for lemma, forms in all_forms.items(): |
|
for form in forms: |
|
inflection = form.pop("word") |
|
feats = [feat[0] for feat in list(form.values()) if feat and feat[0] in self.CLASS_LABELS] |
|
example = { |
|
"id": idx, |
|
"text_1": lemma, |
|
"text_2": inflection, |
|
"label": feats, |
|
} |
|
idx += 1 |
|
yield idx, example |
|
|