|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from conllu import TokenList |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_ud_data, load_ud_data_as_seacrowd_kb |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@article {10.3844/jcssp.2020.1585.1597, |
|
author = {Alfina, Ika and Budi, Indra and Suhartanto, Heru}, |
|
title = {Tree Rotations for Dependency Trees: Converting the Head-Directionality of Noun Phrases}, |
|
article_type = {journal}, |
|
volume = {16}, |
|
number = {11}, |
|
year = {2020}, |
|
month = {Nov}, |
|
pages = {1585-1597}, |
|
doi = {10.3844/jcssp.2020.1585.1597}, |
|
url = {https://thescipub.com/abstract/jcssp.2020.1585.1597}, |
|
journal = {Journal of Computer Science}, |
|
publisher = {Science Publications} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "ud_id_csui" |
|
|
|
_DESCRIPTION = """\ |
|
UD Indonesian-CSUI is a conversion from an Indonesian constituency treebank in the Penn Treebank format named Kethu that was also a conversion from a constituency treebank built by Dinakaramani et al. (2015). |
|
This treebank is named after the place where treebanks were built: Faculty of Computer Science (CS), Universitas Indonesia (UI). |
|
|
|
About this treebank: |
|
- Genre is news in formal Indonesian (the majority is economic news) |
|
- 1030 sentences (28K words) divided into testing and training dataset of around 10K words and around 18K words respectively. |
|
- Average of 27.4 words per-sentence. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/UniversalDependencies/UD_Indonesian-CSUI" |
|
|
|
_LICENSE = "CC BY-SA 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://raw.githubusercontent.com/UniversalDependencies/UD_Indonesian-CSUI/master/id_csui-ud-train.conllu", |
|
"test": "https://raw.githubusercontent.com/UniversalDependencies/UD_Indonesian-CSUI/master/id_csui-ud-test.conllu", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING, Tasks.MACHINE_TRANSLATION, Tasks.POS_TAGGING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UdIdCsuiDataset(datasets.GeneratorBasedBuilder): |
|
"""Treebank of formal Indonesian news which consists of 1030 sentences (28K words)""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
|
|
UPOS_TAGS = ["ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_kb", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} Nusantara KB schema", |
|
schema="seacrowd_kb", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} Nusantara Text to Text schema", |
|
schema="seacrowd_t2t", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_seq_label", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} Nusantara Seq Label schema", |
|
schema="seacrowd_seq_label", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
|
|
"sent_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_en": datasets.Value("string"), |
|
|
|
"id": [datasets.Value("string")], |
|
"form": [datasets.Value("string")], |
|
"lemma": [datasets.Value("string")], |
|
"upos": [datasets.Value("string")], |
|
"xpos": [datasets.Value("string")], |
|
"feats": [datasets.Value("string")], |
|
"head": [datasets.Value("string")], |
|
"deprel": [datasets.Value("string")], |
|
"deps": [datasets.Value("string")], |
|
"misc": [datasets.Value("string")], |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_kb": |
|
features = schemas.kb_features |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.UPOS_TAGS) |
|
|
|
else: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_path = dl_manager.download(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_path["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_path["test"], |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def _assert_multispan_range_is_one(token_list: TokenList): |
|
""" |
|
Asserting that all tokens with multiple span can only have 2 span, and \ |
|
no field other than form has important information |
|
""" |
|
for token in token_list.filter(id=lambda i: not isinstance(i, int)): |
|
_id = token["id"] |
|
assert len(_id) == 3, f"Unexpected length of non-int CONLLU Token's id. Expected 3, found {len(_id)};" |
|
assert all(isinstance(a, b) for a, b in zip(_id, [int, str, int])), f"Non-int ID should be in format of '\\d+-\\d+'. Found {_id};" |
|
assert _id[2] - _id[0] == 1, f"Token has more than 2 spans. Found {_id[2] - _id[0] + 1} spans;" |
|
for key in ["lemma", "upos", "xpos", "feats", "head", "deprel", "deps"]: |
|
assert token[key] in {"_", None}, f"Field other than 'form' should not contain extra information. Found: '{key}' = '{token[key]}'" |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
dataset = list(load_ud_data(filepath, filter_kwargs={"id": lambda i: isinstance(i, int)}, assert_fn=self._assert_multispan_range_is_one)) |
|
|
|
if self.config.schema == "source": |
|
pass |
|
|
|
elif self.config.schema == "seacrowd_kb": |
|
dataset = load_ud_data_as_seacrowd_kb(filepath, dataset) |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
dataset = list( |
|
map( |
|
lambda d: { |
|
"id": d["sent_id"], |
|
"text_1": d["text"], |
|
"text_2": d["text_en"], |
|
"text_1_name": "ind", |
|
"text_2_name": "eng", |
|
}, |
|
dataset, |
|
) |
|
) |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
dataset = list( |
|
map( |
|
lambda d: { |
|
"id": d["sent_id"], |
|
"tokens": d["form"], |
|
"labels": d["upos"], |
|
}, |
|
dataset, |
|
) |
|
) |
|
|
|
else: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
for key, example in enumerate(dataset): |
|
yield key, example |
|
|