File size: 9,125 Bytes
83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 c1b6d9b 83637d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from conllu import TokenList
from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_ud_data, load_ud_data_as_seacrowd_kb
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@article {10.3844/jcssp.2020.1585.1597,
author = {Alfina, Ika and Budi, Indra and Suhartanto, Heru},
title = {Tree Rotations for Dependency Trees: Converting the Head-Directionality of Noun Phrases},
article_type = {journal},
volume = {16},
number = {11},
year = {2020},
month = {Nov},
pages = {1585-1597},
doi = {10.3844/jcssp.2020.1585.1597},
url = {https://thescipub.com/abstract/jcssp.2020.1585.1597},
journal = {Journal of Computer Science},
publisher = {Science Publications}
}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "ud_id_csui"
_DESCRIPTION = """\
UD Indonesian-CSUI is a conversion from an Indonesian constituency treebank in the Penn Treebank format named Kethu that was also a conversion from a constituency treebank built by Dinakaramani et al. (2015).
This treebank is named after the place where treebanks were built: Faculty of Computer Science (CS), Universitas Indonesia (UI).
About this treebank:
- Genre is news in formal Indonesian (the majority is economic news)
- 1030 sentences (28K words) divided into testing and training dataset of around 10K words and around 18K words respectively.
- Average of 27.4 words per-sentence.
"""
_HOMEPAGE = "https://github.com/UniversalDependencies/UD_Indonesian-CSUI"
_LICENSE = "CC BY-SA 4.0"
_URLS = {
_DATASETNAME: {
"train": "https://raw.githubusercontent.com/UniversalDependencies/UD_Indonesian-CSUI/master/id_csui-ud-train.conllu",
"test": "https://raw.githubusercontent.com/UniversalDependencies/UD_Indonesian-CSUI/master/id_csui-ud-test.conllu",
},
}
_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING, Tasks.MACHINE_TRANSLATION, Tasks.POS_TAGGING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class UdIdCsuiDataset(datasets.GeneratorBasedBuilder):
"""Treebank of formal Indonesian news which consists of 1030 sentences (28K words)"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
# source: https://universaldependencies.org/u/pos/
UPOS_TAGS = ["ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X"]
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_kb",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} Nusantara KB schema",
schema="seacrowd_kb",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_t2t",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} Nusantara Text to Text schema",
schema="seacrowd_t2t",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_seq_label",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} Nusantara Seq Label schema",
schema="seacrowd_seq_label",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
# metadata
"sent_id": datasets.Value("string"),
"text": datasets.Value("string"),
"text_en": datasets.Value("string"),
# tokens
"id": [datasets.Value("string")],
"form": [datasets.Value("string")],
"lemma": [datasets.Value("string")],
"upos": [datasets.Value("string")],
"xpos": [datasets.Value("string")],
"feats": [datasets.Value("string")],
"head": [datasets.Value("string")],
"deprel": [datasets.Value("string")],
"deps": [datasets.Value("string")],
"misc": [datasets.Value("string")],
}
)
elif self.config.schema == "seacrowd_kb":
features = schemas.kb_features
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(self.UPOS_TAGS)
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_path = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_path["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_path["test"],
},
),
]
@staticmethod
def _assert_multispan_range_is_one(token_list: TokenList):
"""
Asserting that all tokens with multiple span can only have 2 span, and \
no field other than form has important information
"""
for token in token_list.filter(id=lambda i: not isinstance(i, int)):
_id = token["id"]
assert len(_id) == 3, f"Unexpected length of non-int CONLLU Token's id. Expected 3, found {len(_id)};"
assert all(isinstance(a, b) for a, b in zip(_id, [int, str, int])), f"Non-int ID should be in format of '\\d+-\\d+'. Found {_id};"
assert _id[2] - _id[0] == 1, f"Token has more than 2 spans. Found {_id[2] - _id[0] + 1} spans;"
for key in ["lemma", "upos", "xpos", "feats", "head", "deprel", "deps"]:
assert token[key] in {"_", None}, f"Field other than 'form' should not contain extra information. Found: '{key}' = '{token[key]}'"
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
dataset = list(load_ud_data(filepath, filter_kwargs={"id": lambda i: isinstance(i, int)}, assert_fn=self._assert_multispan_range_is_one))
if self.config.schema == "source":
pass
elif self.config.schema == "seacrowd_kb":
dataset = load_ud_data_as_seacrowd_kb(filepath, dataset)
elif self.config.schema == "seacrowd_t2t":
dataset = list(
map(
lambda d: {
"id": d["sent_id"],
"text_1": d["text"],
"text_2": d["text_en"],
"text_1_name": "ind",
"text_2_name": "eng",
},
dataset,
)
)
elif self.config.schema == "seacrowd_seq_label":
dataset = list(
map(
lambda d: {
"id": d["sent_id"],
"tokens": d["form"],
"labels": d["upos"],
},
dataset,
)
)
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
for key, example in enumerate(dataset):
yield key, example
|