holylovenia
commited on
Upload thai_ser.py with huggingface_hub
Browse files- thai_ser.py +233 -0
thai_ser.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import glob
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import Dict, List, Tuple, Union
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
25 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
26 |
+
|
27 |
+
# no paper citation
|
28 |
+
_CITATION = """\
|
29 |
+
"""
|
30 |
+
_DATASETNAME = "thai_ser"
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
THAI SER dataset consists of 5 main emotions assigned to actors: Neutral,
|
33 |
+
Anger, Happiness, Sadness, and Frustration. The recordings were 41 hours,
|
34 |
+
36 minutes long (27,854 utterances), and were performed by 200 professional
|
35 |
+
actors (112 female, 88 male) and directed by students, former alumni, and
|
36 |
+
professors from the Faculty of Arts, Chulalongkorn University. The THAI SER
|
37 |
+
contains 100 recordings and is separated into two main categories: Studio and
|
38 |
+
Zoom. Studio recordings also consist of two studio environments: Studio A, a
|
39 |
+
controlled studio room with soundproof walls, and Studio B, a normal room
|
40 |
+
without soundproof or noise control.
|
41 |
+
"""
|
42 |
+
_HOMEPAGE = "https://github.com/vistec-AI/dataset-releases/releases/tag/v1"
|
43 |
+
_LANGUAGES = ["tha"]
|
44 |
+
_LICENSE = Licenses.CC_BY_SA_4_0.value
|
45 |
+
_LOCAL = False
|
46 |
+
|
47 |
+
_URLS = {
|
48 |
+
"actor_demography": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/actor_demography.json",
|
49 |
+
"emotion_label": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/emotion_label.json",
|
50 |
+
"studio": {
|
51 |
+
"studio1-10": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio1-10.zip",
|
52 |
+
"studio11-20": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio11-20.zip",
|
53 |
+
"studio21-30": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio21-30.zip",
|
54 |
+
"studio31-40": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio31-40.zip",
|
55 |
+
"studio41-50": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio41-50.zip",
|
56 |
+
"studio51-60": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio51-60.zip",
|
57 |
+
"studio61-70": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio61-70.zip",
|
58 |
+
"studio71-80": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio71-80.zip",
|
59 |
+
},
|
60 |
+
"zoom": {"zoom1-10": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/zoom1-10.zip", "zoom11-20": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/zoom11-20.zip"},
|
61 |
+
}
|
62 |
+
_URLS["studio_zoom"] = {**_URLS["studio"], **_URLS["zoom"]}
|
63 |
+
|
64 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_EMOTION_RECOGNITION]
|
65 |
+
|
66 |
+
_SOURCE_VERSION = "1.0.0"
|
67 |
+
_SEACROWD_VERSION = "2024.06.20"
|
68 |
+
|
69 |
+
|
70 |
+
class ThaiSER(datasets.GeneratorBasedBuilder):
|
71 |
+
"""Thai speech emotion recognition dataset THAI SER contains 100 recordings (80 studios and 20 zooms)."""
|
72 |
+
|
73 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
74 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
75 |
+
|
76 |
+
SEACROWD_SCHEMA_NAME = "speech"
|
77 |
+
_LABELS = ["Neutral", "Angry", "Happy", "Sad", "Frustrated"]
|
78 |
+
|
79 |
+
BUILDER_CONFIGS = [
|
80 |
+
# studio
|
81 |
+
SEACrowdConfig(
|
82 |
+
name=f"{_DATASETNAME}_source",
|
83 |
+
version=SOURCE_VERSION,
|
84 |
+
description=f"{_DATASETNAME} source schema",
|
85 |
+
schema="source",
|
86 |
+
subset_id=f"{_DATASETNAME}",
|
87 |
+
),
|
88 |
+
SEACrowdConfig(
|
89 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
90 |
+
version=SEACROWD_VERSION,
|
91 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
92 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
93 |
+
subset_id=f"{_DATASETNAME}",
|
94 |
+
),
|
95 |
+
# studio and zoom
|
96 |
+
SEACrowdConfig(
|
97 |
+
name=f"{_DATASETNAME}_include_zoom_source",
|
98 |
+
version=SOURCE_VERSION,
|
99 |
+
description=f"{_DATASETNAME} source schema",
|
100 |
+
schema="source",
|
101 |
+
subset_id=f"{_DATASETNAME}_include_zoom",
|
102 |
+
),
|
103 |
+
SEACrowdConfig(
|
104 |
+
name=f"{_DATASETNAME}_include_zoom_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
105 |
+
version=SEACROWD_VERSION,
|
106 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
107 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
108 |
+
subset_id=f"{_DATASETNAME}_include_zoom",
|
109 |
+
),
|
110 |
+
]
|
111 |
+
|
112 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
113 |
+
|
114 |
+
def _info(self) -> datasets.DatasetInfo:
|
115 |
+
|
116 |
+
if self.config.schema == "source":
|
117 |
+
features = datasets.Features(
|
118 |
+
{
|
119 |
+
"id": datasets.Value("string"),
|
120 |
+
"path": datasets.Value("string"),
|
121 |
+
"audio": datasets.Audio(sampling_rate=44_100),
|
122 |
+
"speaker_id": datasets.Value("string"),
|
123 |
+
"labels": datasets.ClassLabel(names=self._LABELS),
|
124 |
+
"majority_emo": datasets.Value("string"), # 'None' when no single majority
|
125 |
+
"annotated": datasets.Value("string"),
|
126 |
+
"agreement": datasets.Value("float32"),
|
127 |
+
"metadata": {
|
128 |
+
"speaker_age": datasets.Value("int64"),
|
129 |
+
"speaker_gender": datasets.Value("string"),
|
130 |
+
},
|
131 |
+
}
|
132 |
+
)
|
133 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
134 |
+
# same as schemas.speech_features(self._LABELS) except for sampling_rate
|
135 |
+
features = datasets.Features(
|
136 |
+
{
|
137 |
+
"id": datasets.Value("string"),
|
138 |
+
"path": datasets.Value("string"),
|
139 |
+
"audio": datasets.Audio(sampling_rate=44_100),
|
140 |
+
"speaker_id": datasets.Value("string"),
|
141 |
+
"labels": datasets.ClassLabel(names=self._LABELS),
|
142 |
+
"metadata": {
|
143 |
+
"speaker_age": datasets.Value("int64"),
|
144 |
+
"speaker_gender": datasets.Value("string"),
|
145 |
+
},
|
146 |
+
}
|
147 |
+
)
|
148 |
+
|
149 |
+
return datasets.DatasetInfo(
|
150 |
+
description=_DESCRIPTION,
|
151 |
+
features=features,
|
152 |
+
homepage=_HOMEPAGE,
|
153 |
+
license=_LICENSE,
|
154 |
+
citation=_CITATION,
|
155 |
+
)
|
156 |
+
|
157 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
158 |
+
"""Returns SplitGenerators."""
|
159 |
+
|
160 |
+
setting = "studio_zoom" if "zoom" in self.config.name else "studio"
|
161 |
+
|
162 |
+
data_paths = {"actor_demography": Path(dl_manager.download_and_extract(_URLS["actor_demography"])), "emotion_label": Path(dl_manager.download_and_extract(_URLS["emotion_label"])), setting: {}}
|
163 |
+
for url_name, url_path in _URLS[setting].items():
|
164 |
+
data_paths[setting][url_name] = Path(dl_manager.download_and_extract(url_path))
|
165 |
+
|
166 |
+
return [
|
167 |
+
datasets.SplitGenerator(
|
168 |
+
name=datasets.Split.TRAIN,
|
169 |
+
gen_kwargs={
|
170 |
+
"actor_demography_filepath": data_paths["actor_demography"],
|
171 |
+
"emotion_label_filepath": data_paths["emotion_label"],
|
172 |
+
"data_filepath": data_paths[setting],
|
173 |
+
"split": "train",
|
174 |
+
},
|
175 |
+
)
|
176 |
+
]
|
177 |
+
|
178 |
+
def _generate_examples(self, actor_demography_filepath: Path, emotion_label_filepath: Path, data_filepath: Dict[str, Union[Path, Dict]], split: str) -> Tuple[int, Dict]:
|
179 |
+
"""Yields examples as (key, example) tuples."""
|
180 |
+
# read actor_demography file
|
181 |
+
with open(actor_demography_filepath, "r", encoding="utf-8") as actor_demography_file:
|
182 |
+
actor_demography = json.load(actor_demography_file)
|
183 |
+
actor_demography_dict = {actor["Actor's ID"]: {"speaker_age": actor["Age"], "speaker_gender": actor["Sex"].lower()} for actor in actor_demography["data"]}
|
184 |
+
|
185 |
+
# read emotion_label file
|
186 |
+
with open(emotion_label_filepath, "r", encoding="utf-8") as emotion_label_file:
|
187 |
+
emotion_label = json.load(emotion_label_file)
|
188 |
+
|
189 |
+
# iterate through data folders
|
190 |
+
for folder_path in data_filepath.values():
|
191 |
+
flac_files = glob.glob(os.path.join(folder_path, "**/*.flac"), recursive=True)
|
192 |
+
# iterate through recordings
|
193 |
+
for audio_path in flac_files:
|
194 |
+
id = audio_path.split("/")[-1]
|
195 |
+
speaker_id = id.split("_")[2].strip("actor")
|
196 |
+
# labels in emotion_label are incomplete, labels only provided for microphone types: mic, con
|
197 |
+
# otherwise, obtain label from id for scripted utterances and skip sample for the improvised utterances
|
198 |
+
if id in emotion_label.keys():
|
199 |
+
assigned_emo = emotion_label[id][0]["assigned_emo"]
|
200 |
+
majority_emo = emotion_label[id][0]["majority_emo"]
|
201 |
+
agreement = emotion_label[id][0]["agreement"]
|
202 |
+
annotated = emotion_label[id][0]["annotated"]
|
203 |
+
else:
|
204 |
+
if "script" in id:
|
205 |
+
label = id.split("_")[-1][0] # Emotion (1 = Neutral, 2 = Angry, 3 = Happy, 4 = Sad, 5 = Frustrated)
|
206 |
+
assigned_emo = self._LABELS[int(label) - 1]
|
207 |
+
majority_emo = agreement = annotated = None
|
208 |
+
else:
|
209 |
+
continue
|
210 |
+
|
211 |
+
if self.config.schema == "source":
|
212 |
+
example = {
|
213 |
+
"id": id.strip(".flac"),
|
214 |
+
"path": audio_path,
|
215 |
+
"audio": audio_path,
|
216 |
+
"speaker_id": speaker_id,
|
217 |
+
"labels": assigned_emo,
|
218 |
+
"majority_emo": majority_emo,
|
219 |
+
"agreement": agreement,
|
220 |
+
"annotated": annotated,
|
221 |
+
"metadata": {"speaker_age": actor_demography_dict[speaker_id]["speaker_age"], "speaker_gender": actor_demography_dict[speaker_id]["speaker_gender"]},
|
222 |
+
}
|
223 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
224 |
+
example = {
|
225 |
+
"id": id.strip(".flac"),
|
226 |
+
"path": audio_path,
|
227 |
+
"audio": audio_path,
|
228 |
+
"speaker_id": speaker_id,
|
229 |
+
"labels": assigned_emo,
|
230 |
+
"metadata": {"speaker_age": actor_demography_dict[speaker_id]["speaker_age"], "speaker_gender": actor_demography_dict[speaker_id]["speaker_gender"]},
|
231 |
+
}
|
232 |
+
|
233 |
+
yield id.strip(".flac"), example
|