|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, |
|
Licenses, Tasks) |
|
|
|
_CITATION = "" |
|
|
|
_DATASETNAME = "thai_elderly_speech" |
|
|
|
_DESCRIPTION = """\ |
|
The Thai Elderly Speech dataset by Data Wow and VISAI Version 1 dataset aims at |
|
advancing Automatic Speech Recognition (ASR) technology specifically for the |
|
elderly population. Researchers can use this dataset to advance ASR technology |
|
for healthcare and smart home applications. The dataset consists of 19,200 audio |
|
files, totaling 17 hours and 11 minutes of recorded speech. The files are |
|
divided into 2 categories: Healthcare (relating to medical issues and services |
|
in 30 medical categories) and Smart Home (relating to smart home devices in 7 |
|
household contexts). The dataset contains 5,156 unique sentences spoken by 32 |
|
seniors (10 males and 22 females), aged 57-60 years old (average age of 63 |
|
years). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/VISAI-DATAWOW/Thai-Elderly-Speech-dataset/releases/tag/v1.0.0" |
|
|
|
_LANGUAGES = ["tha"] |
|
_SUBSETS = ["healthcare", "smarthome"] |
|
|
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = [ |
|
"https://github.com/VISAI-DATAWOW/Thai-Elderly-Speech-dataset/releases/download/v1.0.0/Dataset.zip.001", |
|
"https://github.com/VISAI-DATAWOW/Thai-Elderly-Speech-dataset/releases/download/v1.0.0/Dataset.zip.002", |
|
"https://github.com/VISAI-DATAWOW/Thai-Elderly-Speech-dataset/releases/download/v1.0.0/Dataset.zip.003", |
|
] |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_TO_TEXT_TRANSLATION] |
|
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ThaiElderlySpeechDataset(datasets.GeneratorBasedBuilder): |
|
"""A speech dataset from elderly Thai speakers.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [] |
|
for subset in _SUBSETS: |
|
BUILDER_CONFIGS += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} {subset} source schema", |
|
schema="source", |
|
subset_id=subset, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} {subset} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id=subset, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_healthcare_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"filename": datasets.Value("string"), |
|
"transcription": datasets.Value("string"), |
|
"speaker": { |
|
"id": datasets.Value("string"), |
|
"age": datasets.Value("int32"), |
|
"gender": datasets.Value("string"), |
|
}, |
|
} |
|
) |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
zip_files = list(map(Path, dl_manager.download(_URLS))) |
|
zip_combined = zip_files[0].parent / "thai_elderly_speech.zip" |
|
|
|
with open(str(zip_combined), "wb") as out_file: |
|
for zip_file in zip_files: |
|
with open(str(zip_file), "rb") as in_file: |
|
out_file.write(in_file.read()) |
|
|
|
data_file = Path(dl_manager.extract(zip_combined)) / "Dataset" |
|
subset_id = self.config.subset_id |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"speaker_file": data_file / "speaker_demography.json", |
|
"audio_dir": data_file / subset_id.title() / "Record", |
|
"transcript_file": data_file / subset_id.title() / "transcription.json", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, speaker_file: Path, audio_dir: Path, transcript_file: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(speaker_file, "r", encoding="utf-8") as f: |
|
speaker_info = json.load(f) |
|
speaker_dict = {speaker["speaker_id"]: {"age": speaker["age"], "gender": speaker["gender"]} for speaker in speaker_info} |
|
|
|
|
|
with open(transcript_file, "r", encoding="utf-8") as f: |
|
annotations = json.load(f) |
|
|
|
for idx, instance in enumerate(annotations): |
|
transcript = instance["transcript"] |
|
|
|
speaker_id = instance["speaker_id"] |
|
speaker_info = speaker_dict[int(speaker_id)] |
|
|
|
filename = instance["filename"] |
|
audio_file = str(audio_dir / (filename + ".wav")) |
|
|
|
if self.config.schema == "source": |
|
yield idx, { |
|
"audio": audio_file, |
|
"filename": filename, |
|
"transcription": transcript, |
|
"speaker": { |
|
"id": speaker_id, |
|
"age": speaker_info["age"], |
|
"gender": speaker_info["gender"], |
|
}, |
|
} |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
yield idx, { |
|
"id": idx, |
|
"path": audio_file, |
|
"audio": audio_file, |
|
"text": transcript, |
|
"speaker_id": speaker_id, |
|
"metadata": { |
|
"speaker_age": speaker_info["age"], |
|
"speaker_gender": speaker_info["gender"], |
|
}, |
|
} |
|
|