Datasets:

Languages:
Vietnamese
ArXiv:
License:
phoatis / phoatis.py
holylovenia's picture
Upload phoatis.py with huggingface_hub
74d5856 verified
raw
history blame
10.3 kB
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks, Licenses
_CITATION = """\
@article{dao2021intent,
title={Intent Detection and Slot Filling for Vietnamese},
author={Mai Hoang Dao and Thinh Hung Truong and Dat Quoc Nguyen},
year={2021},
eprint={2104.02021},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DATASETNAME = "phoatis"
_DESCRIPTION = """\
This is first public intent detection and slot filling dataset for Vietnamese. The data contains 5871 English utterances from ATIS that are manually translated by professional translators into Vietnamese.
"""
_HOMEPAGE = "https://github.com/VinAIResearch/JointIDSF/"
_LICENSE = Licenses.UNKNOWN.value
_URLS = {
_DATASETNAME: {
"syllable": {
"syllable_train": [
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/train/seq.in",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/train/seq.out",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/train/label",
],
"syllable_dev": [
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/dev/seq.in",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/dev/seq.out",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/dev/label",
],
"syllable_test": [
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/test/seq.in",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/test/seq.out",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/syllable-level/test/label",
],
},
"word": {
"word_train": [
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/train/seq.in",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/train/seq.out",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/train/label",
],
"word_dev": [
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/dev/seq.in",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/dev/seq.out",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/dev/label",
],
"word_test": [
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/test/seq.in",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/test/seq.out",
"https://raw.githubusercontent.com/VinAIResearch/JointIDSF/main/PhoATIS/word-level/test/label",
],
},
}
}
_LOCAL = False
_LANGUAGES = ["vie"]
_SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION, Tasks.SLOT_FILLING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
def config_constructor_intent_cls(schema: str, version: str, phoatis_subset: str = "syllable") -> SEACrowdConfig:
assert phoatis_subset == "syllable" or phoatis_subset == "word"
return SEACrowdConfig(
name="phoatis_intent_cls_{phoatis_subset}_{schema}".format(phoatis_subset=phoatis_subset.lower(), schema=schema),
version=version,
description="PhoATIS Intent Classification: {subset} {schema} schema".format(subset=phoatis_subset, schema=schema),
schema=schema,
subset_id=phoatis_subset,
)
def config_constructor_slot_filling(schema: str, version: str, phoatis_subset: str = "syllable") -> SEACrowdConfig:
assert phoatis_subset == "syllable" or phoatis_subset == "word"
return SEACrowdConfig(
name="phoatis_slot_filling_{phoatis_subset}_{schema}".format(phoatis_subset=phoatis_subset.lower(), schema=schema),
version=version,
description="PhoATIS Slot Filling: {subset} {schema} schema".format(subset=phoatis_subset, schema=schema),
schema=schema,
subset_id=phoatis_subset,
)
class PhoATIS(datasets.GeneratorBasedBuilder):
"""This is first public intent detection and slot filling dataset for Vietnamese. The data contains 5871 English utterances from ATIS that are manually translated by professional translators into Vietnamese."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
# BUILDER_CONFIGS = [config_constructor_intent_cls("source", _SOURCE_VERSION, subset) for subset in ["syllable", "word"]]
BUILDER_CONFIGS = []
BUILDER_CONFIGS.extend([config_constructor_intent_cls("seacrowd_text", _SEACROWD_VERSION, subset) for subset in ["syllable", "word"]])
# BUILDER_CONFIGS.extend([config_constructor_slot_filling("source", _SOURCE_VERSION, subset) for subset in ["syllable", "word"]])
BUILDER_CONFIGS.extend([config_constructor_slot_filling("seacrowd_seq_label", _SEACROWD_VERSION, subset) for subset in ["syllable", "word"]])
BUILDER_CONFIGS.extend(
[ # Default config
SEACrowdConfig(
name="phoatis_source",
version=SOURCE_VERSION,
description="PhoATIS source schema (Syllable version)",
schema="source",
subset_id="syllable",
),
SEACrowdConfig(
name="phoatis_intent_cls_seacrowd_text",
version=SEACROWD_VERSION,
description="PhoATIS Intent Classification SEACrowd schema (Syllable version)",
schema="seacrowd_text",
subset_id="syllable",
),
SEACrowdConfig(
name="phoatis_slot_filling_seacrowd_seq_label",
version=SEACROWD_VERSION,
description="PhoATIS Slot Filling SEACrowd schema (Syllable version)",
schema="seacrowd_seq_label",
subset_id="syllable",
),
]
)
DEFAULT_CONFIG_NAME = "phoatis_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"intent_label": datasets.Value("string"),
"slot_label": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "seacrowd_text":
with open("./seacrowd/sea_datasets/phoatis/intent_label.txt", "r+", encoding="utf8") as fw:
intent_label = fw.read()
intent_label = intent_label.split("\n")
features = schemas.text_features(intent_label)
elif self.config.schema == "seacrowd_seq_label":
with open("./seacrowd/sea_datasets/phoatis/slot_label.txt", "r+", encoding="utf8") as fw:
slot_label = fw.read()
slot_label = slot_label.split("\n")
features = schemas.seq_label_features(slot_label)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
schema = self.config.subset_id
urls = _URLS[_DATASETNAME][schema]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir[f"{schema}_train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir[f"{schema}_test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir[f"{schema}_dev"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
with open(filepath[0], "r+", encoding="utf8") as fw:
data_input = fw.read()
data_input = data_input.split("\n")
with open(filepath[1], "r+", encoding="utf8") as fw:
data_slot = fw.read()
data_slot = data_slot.split("\n")
with open(filepath[2], "r+", encoding="utf8") as fw:
data_intent = fw.read()
data_intent = data_intent.split("\n")
if self.config.schema == "source":
for idx, text in enumerate(data_input):
example = {}
example["id"] = str(idx)
example["text"] = text
example["intent_label"] = data_intent[idx]
example["slot_label"] = data_slot[idx].split()
yield example["id"], example
elif self.config.schema == "seacrowd_text":
for idx, text in enumerate(data_input):
example = {}
example["id"] = str(idx)
example["text"] = text
example["label"] = data_intent[idx]
yield example["id"], example
elif self.config.schema == "seacrowd_seq_label":
for idx, text in enumerate(data_input):
example = {}
example["id"] = str(idx)
example["tokens"] = text.split()
example["labels"] = data_slot[idx].split()
yield example["id"], example