holylovenia
commited on
Upload nusatranslation_emot.py with huggingface_hub
Browse files- nusatranslation_emot.py +17 -17
nusatranslation_emot.py
CHANGED
@@ -4,15 +4,15 @@ from typing import Dict, List, Tuple
|
|
4 |
import datasets
|
5 |
import pandas as pd
|
6 |
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
|
11 |
_LOCAL = False
|
12 |
|
13 |
_DATASETNAME = "nusatranslation_emot"
|
14 |
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
15 |
-
_UNIFIED_VIEW_NAME =
|
16 |
|
17 |
_LANGUAGES = ["abs", "btk", "bew", "bug", "jav", "mad", "mak", "min", "mui", "rej", "sun"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
18 |
|
@@ -40,7 +40,7 @@ _SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION]
|
|
40 |
|
41 |
_SOURCE_VERSION = "1.0.0"
|
42 |
|
43 |
-
|
44 |
|
45 |
_URLS = {
|
46 |
"train": "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_kalimat-emot-{lang}-train.csv",
|
@@ -49,13 +49,13 @@ _URLS = {
|
|
49 |
}
|
50 |
|
51 |
|
52 |
-
def
|
53 |
-
"""Construct
|
54 |
-
if schema != "source" and schema != "
|
55 |
raise ValueError(f"Invalid schema: {schema}")
|
56 |
|
57 |
if lang == "":
|
58 |
-
return
|
59 |
name="nusatranslation_emot_{schema}".format(schema=schema),
|
60 |
version=datasets.Version(version),
|
61 |
description="nusatranslation_emot with {schema} schema for all 12 languages".format(schema=schema),
|
@@ -63,7 +63,7 @@ def nusantara_config_constructor(lang, schema, version):
|
|
63 |
subset_id="nusatranslation_emot",
|
64 |
)
|
65 |
else:
|
66 |
-
return
|
67 |
name="nusatranslation_emot_{lang}_{schema}".format(lang=lang, schema=schema),
|
68 |
version=datasets.Version(version),
|
69 |
description="nusatranslation_emot with {schema} schema for {lang} language".format(lang=lang, schema=schema),
|
@@ -91,9 +91,9 @@ class NusaTranslationEmot(datasets.GeneratorBasedBuilder):
|
|
91 |
"""NusaTranslationEmot is a 5-labels (fear, sadness, happy, anger, love) emotion classification dataset for 11 Indonesian local languages + Indonesian and English."""
|
92 |
|
93 |
BUILDER_CONFIGS = (
|
94 |
-
[
|
95 |
-
+ [
|
96 |
-
+ [
|
97 |
)
|
98 |
|
99 |
DEFAULT_CONFIG_NAME = "nusatranslation_emot_source"
|
@@ -107,7 +107,7 @@ class NusaTranslationEmot(datasets.GeneratorBasedBuilder):
|
|
107 |
"label": datasets.Value("string"),
|
108 |
}
|
109 |
)
|
110 |
-
elif self.config.schema == "
|
111 |
features = schemas.text_features(["fear", "sadness", "happy", "anger", "love"])
|
112 |
|
113 |
return datasets.DatasetInfo(
|
@@ -120,7 +120,7 @@ class NusaTranslationEmot(datasets.GeneratorBasedBuilder):
|
|
120 |
|
121 |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
122 |
"""Returns SplitGenerators."""
|
123 |
-
if self.config.name == "nusatranslation_emot_source" or self.config.name == "
|
124 |
# Load all 12 languages
|
125 |
train_csv_path = dl_manager.download_and_extract([_URLS["train"].format(lang=lang) for lang in LANGUAGES_MAP])
|
126 |
validation_csv_path = dl_manager.download_and_extract([_URLS["validation"].format(lang=lang) for lang in LANGUAGES_MAP])
|
@@ -147,10 +147,10 @@ class NusaTranslationEmot(datasets.GeneratorBasedBuilder):
|
|
147 |
]
|
148 |
|
149 |
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
150 |
-
if self.config.schema != "source" and self.config.schema != "
|
151 |
raise ValueError(f"Invalid config: {self.config.name}")
|
152 |
|
153 |
-
if self.config.name == "nusatranslation_emot_source" or self.config.name == "
|
154 |
ldf = []
|
155 |
for fp in filepath:
|
156 |
ldf.append(pd.read_csv(fp))
|
|
|
4 |
import datasets
|
5 |
import pandas as pd
|
6 |
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks
|
10 |
|
11 |
_LOCAL = False
|
12 |
|
13 |
_DATASETNAME = "nusatranslation_emot"
|
14 |
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
15 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
16 |
|
17 |
_LANGUAGES = ["abs", "btk", "bew", "bug", "jav", "mad", "mak", "min", "mui", "rej", "sun"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
18 |
|
|
|
40 |
|
41 |
_SOURCE_VERSION = "1.0.0"
|
42 |
|
43 |
+
_SEACROWD_VERSION = "2024.06.20"
|
44 |
|
45 |
_URLS = {
|
46 |
"train": "https://raw.githubusercontent.com/IndoNLP/nusa-writes/main/data/nusa_kalimat-emot-{lang}-train.csv",
|
|
|
49 |
}
|
50 |
|
51 |
|
52 |
+
def seacrowd_config_constructor(lang, schema, version):
|
53 |
+
"""Construct SEACrowdConfig with nusatranslation_emot_{lang}_{schema} as the name format"""
|
54 |
+
if schema != "source" and schema != "seacrowd_text":
|
55 |
raise ValueError(f"Invalid schema: {schema}")
|
56 |
|
57 |
if lang == "":
|
58 |
+
return SEACrowdConfig(
|
59 |
name="nusatranslation_emot_{schema}".format(schema=schema),
|
60 |
version=datasets.Version(version),
|
61 |
description="nusatranslation_emot with {schema} schema for all 12 languages".format(schema=schema),
|
|
|
63 |
subset_id="nusatranslation_emot",
|
64 |
)
|
65 |
else:
|
66 |
+
return SEACrowdConfig(
|
67 |
name="nusatranslation_emot_{lang}_{schema}".format(lang=lang, schema=schema),
|
68 |
version=datasets.Version(version),
|
69 |
description="nusatranslation_emot with {schema} schema for {lang} language".format(lang=lang, schema=schema),
|
|
|
91 |
"""NusaTranslationEmot is a 5-labels (fear, sadness, happy, anger, love) emotion classification dataset for 11 Indonesian local languages + Indonesian and English."""
|
92 |
|
93 |
BUILDER_CONFIGS = (
|
94 |
+
[seacrowd_config_constructor(lang, "source", _SOURCE_VERSION) for lang in LANGUAGES_MAP]
|
95 |
+
+ [seacrowd_config_constructor(lang, "seacrowd_text", _SEACROWD_VERSION) for lang in LANGUAGES_MAP]
|
96 |
+
+ [seacrowd_config_constructor("", "source", _SOURCE_VERSION), seacrowd_config_constructor("", "seacrowd_text", _SEACROWD_VERSION)]
|
97 |
)
|
98 |
|
99 |
DEFAULT_CONFIG_NAME = "nusatranslation_emot_source"
|
|
|
107 |
"label": datasets.Value("string"),
|
108 |
}
|
109 |
)
|
110 |
+
elif self.config.schema == "seacrowd_text":
|
111 |
features = schemas.text_features(["fear", "sadness", "happy", "anger", "love"])
|
112 |
|
113 |
return datasets.DatasetInfo(
|
|
|
120 |
|
121 |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
122 |
"""Returns SplitGenerators."""
|
123 |
+
if self.config.name == "nusatranslation_emot_source" or self.config.name == "nusatranslation_emot_seacrowd_text":
|
124 |
# Load all 12 languages
|
125 |
train_csv_path = dl_manager.download_and_extract([_URLS["train"].format(lang=lang) for lang in LANGUAGES_MAP])
|
126 |
validation_csv_path = dl_manager.download_and_extract([_URLS["validation"].format(lang=lang) for lang in LANGUAGES_MAP])
|
|
|
147 |
]
|
148 |
|
149 |
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
150 |
+
if self.config.schema != "source" and self.config.schema != "seacrowd_text":
|
151 |
raise ValueError(f"Invalid config: {self.config.name}")
|
152 |
|
153 |
+
if self.config.name == "nusatranslation_emot_source" or self.config.name == "nusatranslation_emot_seacrowd_text":
|
154 |
ldf = []
|
155 |
for fp in filepath:
|
156 |
ldf.append(pd.read_csv(fp))
|