Commit
·
7deeecb
1
Parent(s):
445be15
Upload minangnlp_mt.py with huggingface_hub
Browse files- minangnlp_mt.py +159 -0
minangnlp_mt.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
from nusacrowd.utils import schemas
|
7 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
8 |
+
from nusacrowd.utils.constants import Tasks
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@inproceedings{koto-koto-2020-towards,
|
12 |
+
title = "Towards Computational Linguistics in {M}inangkabau Language: Studies on Sentiment Analysis and Machine Translation",
|
13 |
+
author = "Koto, Fajri and
|
14 |
+
Koto, Ikhwan",
|
15 |
+
booktitle = "Proceedings of the 34th Pacific Asia Conference on Language, Information and Computation",
|
16 |
+
month = oct,
|
17 |
+
year = "2020",
|
18 |
+
address = "Hanoi, Vietnam",
|
19 |
+
publisher = "Association for Computational Linguistics",
|
20 |
+
url = "https://aclanthology.org/2020.paclic-1.17",
|
21 |
+
pages = "138--148",
|
22 |
+
}
|
23 |
+
"""
|
24 |
+
|
25 |
+
_LOCAL = False
|
26 |
+
_LANGUAGES = ["min", "ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
27 |
+
_DATASETNAME = "minangnlp_mt"
|
28 |
+
_DESCRIPTION = """\
|
29 |
+
In this work, we create Minangkabau–Indonesian (MIN-ID) parallel corpus by using Wikipedia. We obtain 224,180 Minangkabau and
|
30 |
+
510,258 Indonesian articles, and align documents through title matching, resulting in 111,430 MINID document pairs.
|
31 |
+
After that, we do sentence segmentation based on simple punctuation heuristics and obtain 4,323,315 Minangkabau sentences. We
|
32 |
+
then use the bilingual dictionary to translate Minangkabau article (MIN) into Indonesian language (ID'). Sentence alignment is conducted using
|
33 |
+
ROUGE-1 (F1) score (unigram overlap) (Lin, 2004) between ID’ and ID, and we pair each MIN sentencewith an ID sentence based on the highest ROUGE1.
|
34 |
+
We then discard sentence pairs with a score of less than 0.5 to result in 345,146 MIN-ID parallel sentences.
|
35 |
+
We observe that the sentence pattern in the collection is highly repetitive (e.g. 100k sentences are about biological term definition). Therefore,
|
36 |
+
we conduct final filtering based on top-1000 trigram by iteratively discarding sentences until the frequency of each trigram equals to 100. Finally, we
|
37 |
+
obtain 16,371 MIN-ID parallel sentences and conducted manual evaluation by asking two native Minangkabau speakers to assess the adequacy and
|
38 |
+
fluency (Koehn and Monz, 2006). The human judgement is based on scale 1–5 (1 means poor quality and 5 otherwise) and conducted against 100 random
|
39 |
+
samples. We average the weights of two annotators before computing the overall score, and we achieve 4.98 and 4.87 for adequacy and fluency respectively.
|
40 |
+
This indicates that the resulting corpus is high-quality for machine translation training.
|
41 |
+
"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "https://github.com/fajri91/minangNLP"
|
44 |
+
_LICENSE = "MIT"
|
45 |
+
_URLS = {
|
46 |
+
_DATASETNAME: "https://github.com/fajri91/minangNLP/archive/refs/heads/master.zip",
|
47 |
+
}
|
48 |
+
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
|
49 |
+
# Dataset does not have versioning
|
50 |
+
_SOURCE_VERSION = "1.0.0"
|
51 |
+
_NUSANTARA_VERSION = "1.0.0"
|
52 |
+
|
53 |
+
|
54 |
+
class MinangNLPmt(datasets.GeneratorBasedBuilder):
|
55 |
+
"""16,371-size parallel Minangkabau-Indonesian sentence pairs."""
|
56 |
+
|
57 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
58 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
59 |
+
|
60 |
+
BUILDER_CONFIGS = [
|
61 |
+
NusantaraConfig(
|
62 |
+
name="minangnlp_mt_source",
|
63 |
+
version=SOURCE_VERSION,
|
64 |
+
description="MinangNLP Machine Translation source schema",
|
65 |
+
schema="source",
|
66 |
+
subset_id="minangnlp_mt",
|
67 |
+
),
|
68 |
+
NusantaraConfig(
|
69 |
+
name="minangnlp_mt_nusantara_t2t",
|
70 |
+
version=NUSANTARA_VERSION,
|
71 |
+
description="MinangNLP Machine Translation Nusantara schema",
|
72 |
+
schema="nusantara_t2t",
|
73 |
+
subset_id="minangnlp_mt",
|
74 |
+
),
|
75 |
+
]
|
76 |
+
|
77 |
+
DEFAULT_CONFIG_NAME = "minangnlp_mt_source"
|
78 |
+
|
79 |
+
def _info(self) -> datasets.DatasetInfo:
|
80 |
+
if self.config.schema == "source":
|
81 |
+
features = datasets.Features(
|
82 |
+
{
|
83 |
+
"id": datasets.Value("string"),
|
84 |
+
"src": datasets.Value("string"),
|
85 |
+
"tgt": datasets.Value("string"),
|
86 |
+
}
|
87 |
+
)
|
88 |
+
elif self.config.schema == "nusantara_t2t":
|
89 |
+
features = schemas.text2text_features
|
90 |
+
|
91 |
+
return datasets.DatasetInfo(
|
92 |
+
description=_DESCRIPTION,
|
93 |
+
features=features,
|
94 |
+
homepage=_HOMEPAGE,
|
95 |
+
license=_LICENSE,
|
96 |
+
citation=_CITATION,
|
97 |
+
)
|
98 |
+
|
99 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
100 |
+
"""Returns SplitGenerators."""
|
101 |
+
urls = _URLS[_DATASETNAME]
|
102 |
+
data_dir = Path(dl_manager.download_and_extract(urls)) / "minangNLP-master" / "translation" / "wiki_data"
|
103 |
+
return [
|
104 |
+
datasets.SplitGenerator(
|
105 |
+
name=datasets.Split.TRAIN,
|
106 |
+
gen_kwargs={
|
107 |
+
"src_filepath": data_dir / "src_train.txt",
|
108 |
+
"tgt_filepath": data_dir / "tgt_train.txt",
|
109 |
+
"split": "train",
|
110 |
+
},
|
111 |
+
),
|
112 |
+
datasets.SplitGenerator(
|
113 |
+
name=datasets.Split.TEST,
|
114 |
+
gen_kwargs={
|
115 |
+
"src_filepath": data_dir / "src_test.txt",
|
116 |
+
"tgt_filepath": data_dir / "tgt_test.txt",
|
117 |
+
"split": "test",
|
118 |
+
},
|
119 |
+
),
|
120 |
+
# Dataset has a secondary test split
|
121 |
+
# datasets.SplitGenerator(
|
122 |
+
# name=datasets.Split.TEST,
|
123 |
+
# gen_kwargs={
|
124 |
+
# "src_filepath": data_dir / "src_test_sent.txt",
|
125 |
+
# "tgt_filepath": data_dir / "tgt_test_sent.txt",
|
126 |
+
# "split": "test_sent",
|
127 |
+
# },
|
128 |
+
# ),
|
129 |
+
datasets.SplitGenerator(
|
130 |
+
name=datasets.Split.VALIDATION,
|
131 |
+
gen_kwargs={
|
132 |
+
"src_filepath": data_dir / "src_dev.txt",
|
133 |
+
"tgt_filepath": data_dir / "tgt_dev.txt",
|
134 |
+
"split": "dev",
|
135 |
+
},
|
136 |
+
),
|
137 |
+
]
|
138 |
+
|
139 |
+
def _generate_examples(self, src_filepath: Path, tgt_filepath: Path, split: str) -> Tuple[int, Dict]:
|
140 |
+
with open(src_filepath, encoding="utf-8") as fsrc, open(tgt_filepath, encoding="utf-8") as ftgt:
|
141 |
+
for idx, pair in enumerate(zip(fsrc, ftgt)):
|
142 |
+
src, tgt = pair
|
143 |
+
if self.config.schema == "source":
|
144 |
+
row = {
|
145 |
+
"id": str(idx),
|
146 |
+
"src": src,
|
147 |
+
"tgt": tgt,
|
148 |
+
}
|
149 |
+
yield idx, row
|
150 |
+
|
151 |
+
elif self.config.schema == "nusantara_t2t":
|
152 |
+
row = {
|
153 |
+
"id": str(idx),
|
154 |
+
"text_1": src,
|
155 |
+
"text_2": tgt,
|
156 |
+
"text_1_name": "min",
|
157 |
+
"text_2_name": "id",
|
158 |
+
}
|
159 |
+
yield idx, row
|