holylovenia
commited on
Upload massive.py with huggingface_hub
Browse files- massive.py +580 -0
massive.py
ADDED
@@ -0,0 +1,580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
from seacrowd.utils import schemas
|
7 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
8 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@misc{fitzgerald2022massive,
|
12 |
+
title={MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages},
|
13 |
+
author={Jack FitzGerald and Christopher Hench and Charith Peris and Scott Mackie and Kay Rottmann and Ana Sanchez and Aaron
|
14 |
+
Nash and Liam Urbach and Vishesh Kakarala and Richa Singh and Swetha Ranganath and Laurie Crist and Misha Britan and Wouter
|
15 |
+
Leeuwis and Gokhan Tur and Prem Natarajan},
|
16 |
+
year={2022},
|
17 |
+
eprint={2204.08582},
|
18 |
+
archivePrefix={arXiv},
|
19 |
+
primaryClass={cs.CL}
|
20 |
+
}
|
21 |
+
@inproceedings{bastianelli-etal-2020-slurp,
|
22 |
+
title = "{SLURP}: A Spoken Language Understanding Resource Package",
|
23 |
+
author = "Bastianelli, Emanuele and
|
24 |
+
Vanzo, Andrea and
|
25 |
+
Swietojanski, Pawel and
|
26 |
+
Rieser, Verena",
|
27 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
28 |
+
month = nov,
|
29 |
+
year = "2020",
|
30 |
+
address = "Online",
|
31 |
+
publisher = "Association for Computational Linguistics",
|
32 |
+
url = "https://aclanthology.org/2020.emnlp-main.588",
|
33 |
+
doi = "10.18653/v1/2020.emnlp-main.588",
|
34 |
+
pages = "7252--7262",
|
35 |
+
abstract = "Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to
|
36 |
+
reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited.
|
37 |
+
In this paper, we release SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning
|
38 |
+
18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines
|
39 |
+
based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error
|
40 |
+
analysis for identifying potential areas of improvement. SLURP is available at https://github.com/pswietojanski/slurp."
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
_DATASETNAME = "massive"
|
44 |
+
_DESCRIPTION = """\
|
45 |
+
MASSIVE dataset—Multilingual Amazon Slu resource package (SLURP) for Slot-filling, Intent classification, and
|
46 |
+
Virtual assistant Evaluation. MASSIVE contains 1M realistic, parallel, labeled virtual assistant utterances
|
47 |
+
spanning 18 domains, 60 intents, and 55 slots. MASSIVE was created by tasking professional translators to
|
48 |
+
localize the English-only SLURP dataset into 50 typologically diverse languages, including 8 native languages
|
49 |
+
and 2 other languages mostly spoken in Southeast Asia.
|
50 |
+
"""
|
51 |
+
_HOMEPAGE = "https://github.com/alexa/massive"
|
52 |
+
_LICENSE = Licenses.CC_BY_4_0.value
|
53 |
+
_LOCAL = False
|
54 |
+
_LANGUAGES = ["ind", "jav", "khm", "zlm", "mya", "tha", "tgl", "vie"]
|
55 |
+
|
56 |
+
_URLS = {
|
57 |
+
_DATASETNAME: "https://amazon-massive-nlu-dataset.s3.amazonaws.com/amazon-massive-dataset-1.1.tar.gz",
|
58 |
+
}
|
59 |
+
_SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION, Tasks.SLOT_FILLING]
|
60 |
+
_SOURCE_VERSION = "1.1.0"
|
61 |
+
_SEACROWD_VERSION = "2024.06.20"
|
62 |
+
|
63 |
+
# ind, jav, khm, zlm, mya, tha, tgl, vie, cmn, tam
|
64 |
+
_LANGS = [
|
65 |
+
"af-ZA",
|
66 |
+
"am-ET",
|
67 |
+
"ar-SA",
|
68 |
+
"az-AZ",
|
69 |
+
"bn-BD",
|
70 |
+
"cy-GB",
|
71 |
+
"da-DK",
|
72 |
+
"de-DE",
|
73 |
+
"el-GR",
|
74 |
+
"en-US",
|
75 |
+
"es-ES",
|
76 |
+
"fa-IR",
|
77 |
+
"fi-FI",
|
78 |
+
"fr-FR",
|
79 |
+
"he-IL",
|
80 |
+
"hi-IN",
|
81 |
+
"hu-HU",
|
82 |
+
"hy-AM",
|
83 |
+
"id-ID", # ind
|
84 |
+
"is-IS",
|
85 |
+
"it-IT",
|
86 |
+
"ja-JP",
|
87 |
+
"jv-ID", # jav
|
88 |
+
"ka-GE",
|
89 |
+
"km-KH", # khm
|
90 |
+
"kn-IN",
|
91 |
+
"ko-KR",
|
92 |
+
"lv-LV",
|
93 |
+
"ml-IN",
|
94 |
+
"mn-MN",
|
95 |
+
"ms-MY", # zlm
|
96 |
+
"my-MM", # mya
|
97 |
+
"nb-NO",
|
98 |
+
"nl-NL",
|
99 |
+
"pl-PL",
|
100 |
+
"pt-PT",
|
101 |
+
"ro-RO",
|
102 |
+
"ru-RU",
|
103 |
+
"sl-SL",
|
104 |
+
"sq-AL",
|
105 |
+
"sv-SE",
|
106 |
+
"sw-KE",
|
107 |
+
"ta-IN",
|
108 |
+
"te-IN",
|
109 |
+
"th-TH", # tha
|
110 |
+
"tl-PH", # tgl
|
111 |
+
"tr-TR",
|
112 |
+
"ur-PK",
|
113 |
+
"vi-VN", # vie
|
114 |
+
"zh-CN", # cmn
|
115 |
+
"zh-TW",
|
116 |
+
]
|
117 |
+
_SUBSETS = ["id-ID", "jv-ID", "km-KH", "ms-MY", "my-MM", "th-TH", "tl-PH", "vi-VN"]
|
118 |
+
|
119 |
+
_SCENARIOS = ["calendar", "recommendation", "social", "general", "news", "cooking", "iot", "email", "weather", "alarm", "transport", "lists", "takeaway", "play", "audio", "music", "qa", "datetime"]
|
120 |
+
|
121 |
+
_INTENTS = [
|
122 |
+
"audio_volume_other",
|
123 |
+
"play_music",
|
124 |
+
"iot_hue_lighton",
|
125 |
+
"general_greet",
|
126 |
+
"calendar_set",
|
127 |
+
"audio_volume_down",
|
128 |
+
"social_query",
|
129 |
+
"audio_volume_mute",
|
130 |
+
"iot_wemo_on",
|
131 |
+
"iot_hue_lightup",
|
132 |
+
"audio_volume_up",
|
133 |
+
"iot_coffee",
|
134 |
+
"takeaway_query",
|
135 |
+
"qa_maths",
|
136 |
+
"play_game",
|
137 |
+
"cooking_query",
|
138 |
+
"iot_hue_lightdim",
|
139 |
+
"iot_wemo_off",
|
140 |
+
"music_settings",
|
141 |
+
"weather_query",
|
142 |
+
"news_query",
|
143 |
+
"alarm_remove",
|
144 |
+
"social_post",
|
145 |
+
"recommendation_events",
|
146 |
+
"transport_taxi",
|
147 |
+
"takeaway_order",
|
148 |
+
"music_query",
|
149 |
+
"calendar_query",
|
150 |
+
"lists_query",
|
151 |
+
"qa_currency",
|
152 |
+
"recommendation_movies",
|
153 |
+
"general_joke",
|
154 |
+
"recommendation_locations",
|
155 |
+
"email_querycontact",
|
156 |
+
"lists_remove",
|
157 |
+
"play_audiobook",
|
158 |
+
"email_addcontact",
|
159 |
+
"lists_createoradd",
|
160 |
+
"play_radio",
|
161 |
+
"qa_stock",
|
162 |
+
"alarm_query",
|
163 |
+
"email_sendemail",
|
164 |
+
"general_quirky",
|
165 |
+
"music_likeness",
|
166 |
+
"cooking_recipe",
|
167 |
+
"email_query",
|
168 |
+
"datetime_query",
|
169 |
+
"transport_traffic",
|
170 |
+
"play_podcasts",
|
171 |
+
"iot_hue_lightchange",
|
172 |
+
"calendar_remove",
|
173 |
+
"transport_query",
|
174 |
+
"transport_ticket",
|
175 |
+
"qa_factoid",
|
176 |
+
"iot_cleaning",
|
177 |
+
"alarm_set",
|
178 |
+
"datetime_convert",
|
179 |
+
"iot_hue_lightoff",
|
180 |
+
"qa_definition",
|
181 |
+
"music_dislikeness",
|
182 |
+
]
|
183 |
+
|
184 |
+
_TAGS = [
|
185 |
+
"O",
|
186 |
+
"B-food_type",
|
187 |
+
"B-movie_type",
|
188 |
+
"B-person",
|
189 |
+
"B-change_amount",
|
190 |
+
"I-relation",
|
191 |
+
"I-game_name",
|
192 |
+
"B-date",
|
193 |
+
"B-movie_name",
|
194 |
+
"I-person",
|
195 |
+
"I-place_name",
|
196 |
+
"I-podcast_descriptor",
|
197 |
+
"I-audiobook_name",
|
198 |
+
"B-email_folder",
|
199 |
+
"B-coffee_type",
|
200 |
+
"B-app_name",
|
201 |
+
"I-time",
|
202 |
+
"I-coffee_type",
|
203 |
+
"B-transport_agency",
|
204 |
+
"B-podcast_descriptor",
|
205 |
+
"I-playlist_name",
|
206 |
+
"B-media_type",
|
207 |
+
"B-song_name",
|
208 |
+
"I-music_descriptor",
|
209 |
+
"I-song_name",
|
210 |
+
"B-event_name",
|
211 |
+
"I-timeofday",
|
212 |
+
"B-alarm_type",
|
213 |
+
"B-cooking_type",
|
214 |
+
"I-business_name",
|
215 |
+
"I-color_type",
|
216 |
+
"B-podcast_name",
|
217 |
+
"I-personal_info",
|
218 |
+
"B-weather_descriptor",
|
219 |
+
"I-list_name",
|
220 |
+
"B-transport_descriptor",
|
221 |
+
"I-game_type",
|
222 |
+
"I-date",
|
223 |
+
"B-place_name",
|
224 |
+
"B-color_type",
|
225 |
+
"B-game_name",
|
226 |
+
"I-artist_name",
|
227 |
+
"I-drink_type",
|
228 |
+
"B-business_name",
|
229 |
+
"B-timeofday",
|
230 |
+
"B-sport_type",
|
231 |
+
"I-player_setting",
|
232 |
+
"I-transport_agency",
|
233 |
+
"B-game_type",
|
234 |
+
"B-player_setting",
|
235 |
+
"I-music_album",
|
236 |
+
"I-event_name",
|
237 |
+
"I-general_frequency",
|
238 |
+
"I-podcast_name",
|
239 |
+
"I-cooking_type",
|
240 |
+
"I-radio_name",
|
241 |
+
"I-joke_type",
|
242 |
+
"I-meal_type",
|
243 |
+
"I-transport_type",
|
244 |
+
"B-joke_type",
|
245 |
+
"B-time",
|
246 |
+
"B-order_type",
|
247 |
+
"B-business_type",
|
248 |
+
"B-general_frequency",
|
249 |
+
"I-food_type",
|
250 |
+
"I-time_zone",
|
251 |
+
"B-currency_name",
|
252 |
+
"B-time_zone",
|
253 |
+
"B-ingredient",
|
254 |
+
"B-house_place",
|
255 |
+
"B-audiobook_name",
|
256 |
+
"I-ingredient",
|
257 |
+
"I-media_type",
|
258 |
+
"I-news_topic",
|
259 |
+
"B-music_genre",
|
260 |
+
"I-definition_word",
|
261 |
+
"B-list_name",
|
262 |
+
"B-playlist_name",
|
263 |
+
"B-email_address",
|
264 |
+
"I-currency_name",
|
265 |
+
"I-movie_name",
|
266 |
+
"I-device_type",
|
267 |
+
"I-weather_descriptor",
|
268 |
+
"B-audiobook_author",
|
269 |
+
"I-audiobook_author",
|
270 |
+
"I-app_name",
|
271 |
+
"I-order_type",
|
272 |
+
"I-transport_name",
|
273 |
+
"B-radio_name",
|
274 |
+
"I-business_type",
|
275 |
+
"B-definition_word",
|
276 |
+
"B-artist_name",
|
277 |
+
"I-movie_type",
|
278 |
+
"B-transport_name",
|
279 |
+
"I-email_folder",
|
280 |
+
"B-music_album",
|
281 |
+
"I-house_place",
|
282 |
+
"I-music_genre",
|
283 |
+
"B-drink_type",
|
284 |
+
"I-alarm_type",
|
285 |
+
"B-music_descriptor",
|
286 |
+
"B-news_topic",
|
287 |
+
"B-meal_type",
|
288 |
+
"I-transport_descriptor",
|
289 |
+
"I-email_address",
|
290 |
+
"I-change_amount",
|
291 |
+
"B-device_type",
|
292 |
+
"B-transport_type",
|
293 |
+
"B-relation",
|
294 |
+
"I-sport_type",
|
295 |
+
"B-personal_info",
|
296 |
+
]
|
297 |
+
|
298 |
+
|
299 |
+
class MASSIVEDataset(datasets.GeneratorBasedBuilder):
|
300 |
+
"""MASSIVE datasets contains datasets to detect the intent from the text and fill the dialogue slots"""
|
301 |
+
|
302 |
+
BUILDER_CONFIGS = (
|
303 |
+
[
|
304 |
+
SEACrowdConfig(
|
305 |
+
name=f"massive_{subset}_source",
|
306 |
+
version=datasets.Version(_SOURCE_VERSION),
|
307 |
+
description=f"MASSIVE source schema for {subset}",
|
308 |
+
schema="source",
|
309 |
+
subset_id="massive_" + subset,
|
310 |
+
)
|
311 |
+
for subset in _SUBSETS
|
312 |
+
]
|
313 |
+
+ [
|
314 |
+
SEACrowdConfig(
|
315 |
+
name=f"massive_{subset}_seacrowd_text",
|
316 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
317 |
+
description=f"MASSIVE Nusantara intent classification schema for {subset}",
|
318 |
+
schema="seacrowd_text",
|
319 |
+
subset_id="massive_intent_" + subset,
|
320 |
+
)
|
321 |
+
for subset in _SUBSETS
|
322 |
+
]
|
323 |
+
+ [
|
324 |
+
SEACrowdConfig(
|
325 |
+
name=f"massive_{subset}_seacrowd_seq_label",
|
326 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
327 |
+
description=f"MASSIVE Nusantara slot filling schema for {subset}",
|
328 |
+
schema="seacrowd_seq_label",
|
329 |
+
subset_id="massive_slot_filling_" + subset,
|
330 |
+
)
|
331 |
+
for subset in _SUBSETS
|
332 |
+
]
|
333 |
+
+ [
|
334 |
+
SEACrowdConfig(
|
335 |
+
name="massive_source",
|
336 |
+
version=datasets.Version(_SOURCE_VERSION),
|
337 |
+
description="MASSIVE source schema",
|
338 |
+
schema="source",
|
339 |
+
subset_id="massive",
|
340 |
+
),
|
341 |
+
SEACrowdConfig(
|
342 |
+
name="massive_seacrowd_text",
|
343 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
344 |
+
description="MASSIVE Nusantara intent classification schema",
|
345 |
+
schema="seacrowd_text",
|
346 |
+
subset_id="massive_intent",
|
347 |
+
),
|
348 |
+
SEACrowdConfig(
|
349 |
+
name="massive_seacrowd_seq_label",
|
350 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
351 |
+
description="MASSIVE Nusantara slot filling schema",
|
352 |
+
schema="seacrowd_seq_label",
|
353 |
+
subset_id="massive_slot_filling",
|
354 |
+
),
|
355 |
+
]
|
356 |
+
)
|
357 |
+
|
358 |
+
DEFAULT_CONFIG_NAME = "massive_id-ID_source"
|
359 |
+
|
360 |
+
def _info(self) -> datasets.DatasetInfo:
|
361 |
+
if self.config.schema == "source":
|
362 |
+
features = datasets.Features(
|
363 |
+
{
|
364 |
+
"id": datasets.Value("string"),
|
365 |
+
"locale": datasets.Value("string"),
|
366 |
+
"partition": datasets.Value("string"),
|
367 |
+
"scenario": datasets.features.ClassLabel(names=_SCENARIOS),
|
368 |
+
"intent": datasets.features.ClassLabel(names=_INTENTS),
|
369 |
+
"utt": datasets.Value("string"),
|
370 |
+
"annot_utt": datasets.Value("string"),
|
371 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
372 |
+
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=_TAGS)),
|
373 |
+
"worker_id": datasets.Value("string"),
|
374 |
+
"slot_method": datasets.Sequence(
|
375 |
+
{
|
376 |
+
"slot": datasets.Value("string"),
|
377 |
+
"method": datasets.Value("string"),
|
378 |
+
}
|
379 |
+
),
|
380 |
+
"judgments": datasets.Sequence(
|
381 |
+
{
|
382 |
+
"worker_id": datasets.Value("string"),
|
383 |
+
"intent_score": datasets.Value("int8"), # [0, 1, 2]
|
384 |
+
"slots_score": datasets.Value("int8"), # [0, 1, 2]
|
385 |
+
"grammar_score": datasets.Value("int8"), # [0, 1, 2, 3, 4]
|
386 |
+
"spelling_score": datasets.Value("int8"), # [0, 1, 2]
|
387 |
+
"language_identification": datasets.Value("string"),
|
388 |
+
}
|
389 |
+
),
|
390 |
+
}
|
391 |
+
)
|
392 |
+
elif self.config.schema == "seacrowd_text":
|
393 |
+
features = schemas.text_features(label_names=_INTENTS)
|
394 |
+
elif self.config.schema == "seacrowd_seq_label":
|
395 |
+
features = schemas.seq_label_features(label_names=_TAGS)
|
396 |
+
else:
|
397 |
+
raise ValueError(f"Invalid config schema: {self.config.schema}")
|
398 |
+
|
399 |
+
return datasets.DatasetInfo(
|
400 |
+
description=_DESCRIPTION,
|
401 |
+
features=features,
|
402 |
+
homepage=_HOMEPAGE,
|
403 |
+
license=_LICENSE,
|
404 |
+
citation=_CITATION,
|
405 |
+
)
|
406 |
+
|
407 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
408 |
+
archive = dl_manager.download(_URLS[_DATASETNAME])
|
409 |
+
|
410 |
+
return [
|
411 |
+
datasets.SplitGenerator(
|
412 |
+
name=datasets.Split.TRAIN,
|
413 |
+
gen_kwargs={
|
414 |
+
"files": dl_manager.iter_archive(archive),
|
415 |
+
"split": "train",
|
416 |
+
"lang": self.config.name,
|
417 |
+
},
|
418 |
+
),
|
419 |
+
datasets.SplitGenerator(
|
420 |
+
name=datasets.Split.VALIDATION,
|
421 |
+
gen_kwargs={
|
422 |
+
"files": dl_manager.iter_archive(archive),
|
423 |
+
"split": "dev",
|
424 |
+
"lang": self.config.name,
|
425 |
+
},
|
426 |
+
),
|
427 |
+
datasets.SplitGenerator(
|
428 |
+
name=datasets.Split.TEST,
|
429 |
+
gen_kwargs={
|
430 |
+
"files": dl_manager.iter_archive(archive),
|
431 |
+
"split": "test",
|
432 |
+
"lang": self.config.name,
|
433 |
+
},
|
434 |
+
),
|
435 |
+
]
|
436 |
+
|
437 |
+
def _get_bio_format(self, text):
|
438 |
+
"""This function is modified from https://huggingface.co/datasets/qanastek/MASSIVE/blob/main/MASSIVE.py"""
|
439 |
+
tags, tokens = [], []
|
440 |
+
|
441 |
+
bio_mode = False
|
442 |
+
cpt_bio = 0
|
443 |
+
current_tag = None
|
444 |
+
|
445 |
+
split_iter = iter(text.split(" "))
|
446 |
+
|
447 |
+
for s in split_iter:
|
448 |
+
if s.startswith("["):
|
449 |
+
current_tag = s.strip("[")
|
450 |
+
bio_mode = True
|
451 |
+
cpt_bio += 1
|
452 |
+
next(split_iter)
|
453 |
+
continue
|
454 |
+
|
455 |
+
elif s.endswith("]"):
|
456 |
+
bio_mode = False
|
457 |
+
if cpt_bio == 1:
|
458 |
+
prefix = "B-"
|
459 |
+
else:
|
460 |
+
prefix = "I-"
|
461 |
+
token = prefix + current_tag
|
462 |
+
word = s.strip("]")
|
463 |
+
current_tag = None
|
464 |
+
cpt_bio = 0
|
465 |
+
|
466 |
+
else:
|
467 |
+
if bio_mode:
|
468 |
+
if cpt_bio == 1:
|
469 |
+
prefix = "B-"
|
470 |
+
else:
|
471 |
+
prefix = "I-"
|
472 |
+
token = prefix + current_tag
|
473 |
+
word = s
|
474 |
+
cpt_bio += 1
|
475 |
+
else:
|
476 |
+
token = "O"
|
477 |
+
word = s
|
478 |
+
|
479 |
+
tags.append(token)
|
480 |
+
tokens.append(word)
|
481 |
+
|
482 |
+
return tokens, tags
|
483 |
+
|
484 |
+
def _generate_examples(self, files: list, split: str, lang: str):
|
485 |
+
_id = 0
|
486 |
+
|
487 |
+
lang = lang.replace("massive_", "").replace("source", "").replace("seacrowd_text", "").replace("seacrowd_seq_label", "")
|
488 |
+
|
489 |
+
if not lang:
|
490 |
+
lang = _LANGS.copy()
|
491 |
+
else:
|
492 |
+
lang = [lang[:-1]]
|
493 |
+
|
494 |
+
# logger.info("Generating examples from = %s", ", ".join(lang))
|
495 |
+
|
496 |
+
for path, f in files:
|
497 |
+
curr_lang = path.split(f"{_SOURCE_VERSION[:-2]}/data/")[-1].split(".jsonl")[0]
|
498 |
+
|
499 |
+
if not lang:
|
500 |
+
break
|
501 |
+
elif curr_lang in lang:
|
502 |
+
lang.remove(curr_lang)
|
503 |
+
else:
|
504 |
+
continue
|
505 |
+
|
506 |
+
# Read the file
|
507 |
+
lines = f.read().decode(encoding="utf-8").split("\n")
|
508 |
+
|
509 |
+
for line in lines:
|
510 |
+
data = json.loads(line)
|
511 |
+
|
512 |
+
if data["partition"] != split:
|
513 |
+
continue
|
514 |
+
|
515 |
+
# Slot method
|
516 |
+
if "slot_method" in data:
|
517 |
+
slot_method = [
|
518 |
+
{
|
519 |
+
"slot": s["slot"],
|
520 |
+
"method": s["method"],
|
521 |
+
}
|
522 |
+
for s in data["slot_method"]
|
523 |
+
]
|
524 |
+
else:
|
525 |
+
slot_method = []
|
526 |
+
|
527 |
+
# Judgments
|
528 |
+
if "judgments" in data:
|
529 |
+
judgments = [
|
530 |
+
{
|
531 |
+
"worker_id": j["worker_id"],
|
532 |
+
"intent_score": j["intent_score"],
|
533 |
+
"slots_score": j["slots_score"],
|
534 |
+
"grammar_score": j["grammar_score"],
|
535 |
+
"spelling_score": j["spelling_score"],
|
536 |
+
"language_identification": j["language_identification"] if "language_identification" in j else "target",
|
537 |
+
}
|
538 |
+
for j in data["judgments"]
|
539 |
+
]
|
540 |
+
else:
|
541 |
+
judgments = []
|
542 |
+
|
543 |
+
if self.config.schema == "source":
|
544 |
+
tokens, tags = self._get_bio_format(data["annot_utt"])
|
545 |
+
|
546 |
+
yield _id, {
|
547 |
+
"id": str(_id) + "_" + data["id"],
|
548 |
+
"locale": data["locale"],
|
549 |
+
"partition": data["partition"],
|
550 |
+
"scenario": data["scenario"],
|
551 |
+
"intent": data["intent"],
|
552 |
+
"utt": data["utt"],
|
553 |
+
"annot_utt": data["annot_utt"],
|
554 |
+
"tokens": tokens,
|
555 |
+
"ner_tags": tags,
|
556 |
+
"worker_id": data["worker_id"],
|
557 |
+
"slot_method": slot_method,
|
558 |
+
"judgments": judgments,
|
559 |
+
}
|
560 |
+
|
561 |
+
elif self.config.schema == "seacrowd_seq_label":
|
562 |
+
tokens, tags = self._get_bio_format(data["annot_utt"])
|
563 |
+
|
564 |
+
yield _id, {
|
565 |
+
"id": str(_id) + "_" + data["id"],
|
566 |
+
"tokens": tokens,
|
567 |
+
"labels": tags,
|
568 |
+
}
|
569 |
+
|
570 |
+
elif self.config.schema == "seacrowd_text":
|
571 |
+
yield _id, {
|
572 |
+
"id": str(_id) + "_" + data["id"],
|
573 |
+
"text": data["utt"],
|
574 |
+
"label": data["intent"],
|
575 |
+
}
|
576 |
+
|
577 |
+
else:
|
578 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
579 |
+
|
580 |
+
_id += 1
|