|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""KoPI-NLLB corpus.""" |
|
import json |
|
|
|
import datasets |
|
import zstandard as zstd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, Tasks) |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """ |
|
|
|
Hefferman et al, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages. Arxiv https://arxiv.org/abs/2205.12654, 2022. |
|
NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv https://arxiv.org/abs/2207.04672, 2022. |
|
|
|
""" |
|
_DESCRIPTION = """\ |
|
|
|
KopI(Korpus Perayapan Indonesia)-NLLB, is Indonesian family language(aceh,bali,banjar,indonesia,jawa,minang,sunda) only extracted from NLLB Dataset, allenai/nllb |
|
|
|
each language set also filtered using some some deduplicate technique such as exact hash(md5) dedup technique and minhash LSH neardup |
|
|
|
""" |
|
_TYPE = ["raw", "dedup", "neardup"] |
|
|
|
|
|
_CONF_LANG = ["ace_Latn", "ban_Latn", "bjn_Latn", "ind_Latn", "jav_Latn", "min_Latn", "sun_Latn"] |
|
|
|
_CONFIGS = [] |
|
for j in _CONF_LANG: |
|
for m in _TYPE: |
|
_CONFIGS.append(j + "-" + m) |
|
|
|
_ALL_CONFIG = ["all-raw", "all-dedup", "all-neardup"] + _CONFIGS |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/munggok/KoPI-NLLB" |
|
|
|
_LICENSE = "ODC_C" |
|
|
|
_BASE_URL = "https://huggingface.co/datasets/munggok/KoPI-NLLB/resolve/main/{tipe}/{lang}.json.zst" |
|
|
|
_DATASETNAME = "kopi_nllb" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
|
|
_LANGUAGES = ["ind", "jav", "ace", "ban", "bjn", "min", "sun"] |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_SOURCE_VERSION = "2022.09.13" |
|
|
|
_LOCAL = False |
|
|
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
|
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_URL = "https://huggingface.co/datasets/allenai/nllb" |
|
|
|
|
|
def seacrowd_config_constructor(lang, schema, version): |
|
"""Construct SEACrowdConfig""" |
|
if schema != "source" and schema != "seacrowd_ssp": |
|
raise ValueError(f"Invalid schema: {schema}") |
|
|
|
if lang == "": |
|
raise ValueError(f"Snapshot is required. Choose one of these Snapshot: {_ALL_CONFIG}.") |
|
elif lang in _ALL_CONFIG: |
|
return SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{lang}_{schema}", |
|
version=datasets.Version(version), |
|
description=f"KoPI-NLLB with {schema} schema for {lang}", |
|
schema=schema, |
|
subset_id="kopi_nllb", |
|
) |
|
else: |
|
raise ValueError(f"Invalid language: {lang}. Choose one of these snapshots: {_ALL_CONFIG}.") |
|
|
|
|
|
class KoPINLLBConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for the Clean KoPI corpus.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Clean KoPI corpus. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
|
|
|
|
class KoPINLLB(datasets.GeneratorBasedBuilder): |
|
"""KoPI NLLB corpus.""" |
|
|
|
BUILDER_CONFIGS = [seacrowd_config_constructor(sn, "source", _SOURCE_VERSION) for sn in _ALL_CONFIG] + [seacrowd_config_constructor(sn, "seacrowd_ssp", _SEACROWD_VERSION) for sn in _ALL_CONFIG] |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"score": datasets.Value("float32"), |
|
"source": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_ssp": |
|
features = schemas.self_supervised_pretraining.features |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
name = self.config.name.replace("_" + self.config.schema, "") |
|
name = name.replace(_DATASETNAME + "_", "") |
|
split_name = name.split("-") |
|
if split_name[0] == "all": |
|
train = [_BASE_URL.format(tipe=split_name[1], lang=m) for m in _CONF_LANG] |
|
else: |
|
train = [_BASE_URL.format(tipe=split_name[1], lang=split_name[0])] |
|
train_downloaded_files = dl_manager.download(train) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files})] |
|
|
|
def _generate_examples(self, filepaths): |
|
"""This function returns the examples in the raw (text) form by iterating on all the files.""" |
|
id_ = 0 |
|
for filepath in filepaths: |
|
logger.info(f"Generating examples from {filepath}") |
|
with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
if self.config.schema == "seacrowd_ssp": |
|
yield id_, {"id": str(id_), "text": example["text"]} |
|
id_ += 1 |
|
else: |
|
yield id_, {"text": example["text"], "url": example["url"], "source": example["source"], "score": float(example["score"])} |
|
id_ += 1 |
|
|