Datasets:

ArXiv:
kopi_nllb / kopi_nllb.py
holylovenia's picture
Upload kopi_nllb.py with huggingface_hub
2b7c2b1 verified
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""KoPI-NLLB corpus."""
import json
import datasets
import zstandard as zstd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
logger = datasets.logging.get_logger(__name__)
_CITATION = """
Hefferman et al, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages. Arxiv https://arxiv.org/abs/2205.12654, 2022.
NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv https://arxiv.org/abs/2207.04672, 2022.
"""
_DESCRIPTION = """\
KopI(Korpus Perayapan Indonesia)-NLLB, is Indonesian family language(aceh,bali,banjar,indonesia,jawa,minang,sunda) only extracted from NLLB Dataset, allenai/nllb
each language set also filtered using some some deduplicate technique such as exact hash(md5) dedup technique and minhash LSH neardup
"""
_TYPE = ["raw", "dedup", "neardup"]
_CONF_LANG = ["ace_Latn", "ban_Latn", "bjn_Latn", "ind_Latn", "jav_Latn", "min_Latn", "sun_Latn"]
_CONFIGS = []
for j in _CONF_LANG:
for m in _TYPE:
_CONFIGS.append(j + "-" + m)
_ALL_CONFIG = ["all-raw", "all-dedup", "all-neardup"] + _CONFIGS
_HOMEPAGE = "https://huggingface.co/datasets/munggok/KoPI-NLLB"
_LICENSE = "ODC_C"
_BASE_URL = "https://huggingface.co/datasets/munggok/KoPI-NLLB/resolve/main/{tipe}/{lang}.json.zst"
_DATASETNAME = "kopi_nllb"
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_LANGUAGES = ["ind", "jav", "ace", "ban", "bjn", "min", "sun"]
_SEACROWD_VERSION = "2024.06.20"
_SOURCE_VERSION = "2022.09.13"
_LOCAL = False
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_URL = "https://huggingface.co/datasets/allenai/nllb"
def seacrowd_config_constructor(lang, schema, version):
"""Construct SEACrowdConfig"""
if schema != "source" and schema != "seacrowd_ssp":
raise ValueError(f"Invalid schema: {schema}")
if lang == "":
raise ValueError(f"Snapshot is required. Choose one of these Snapshot: {_ALL_CONFIG}.")
elif lang in _ALL_CONFIG:
return SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}_{schema}",
version=datasets.Version(version),
description=f"KoPI-NLLB with {schema} schema for {lang}",
schema=schema,
subset_id="kopi_nllb",
)
else:
raise ValueError(f"Invalid language: {lang}. Choose one of these snapshots: {_ALL_CONFIG}.")
class KoPINLLBConfig(datasets.BuilderConfig):
"""BuilderConfig for the Clean KoPI corpus."""
def __init__(self, **kwargs):
"""BuilderConfig for Clean KoPI corpus.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(**kwargs)
class KoPINLLB(datasets.GeneratorBasedBuilder):
"""KoPI NLLB corpus."""
BUILDER_CONFIGS = [seacrowd_config_constructor(sn, "source", _SOURCE_VERSION) for sn in _ALL_CONFIG] + [seacrowd_config_constructor(sn, "seacrowd_ssp", _SEACROWD_VERSION) for sn in _ALL_CONFIG]
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"text": datasets.Value("string"),
"url": datasets.Value("string"),
"score": datasets.Value("float32"),
"source": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_ssp":
features = schemas.self_supervised_pretraining.features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
name = self.config.name.replace("_" + self.config.schema, "")
name = name.replace(_DATASETNAME + "_", "")
split_name = name.split("-")
if split_name[0] == "all":
train = [_BASE_URL.format(tipe=split_name[1], lang=m) for m in _CONF_LANG]
else:
train = [_BASE_URL.format(tipe=split_name[1], lang=split_name[0])]
train_downloaded_files = dl_manager.download(train)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files})]
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
logger.info(f"Generating examples from {filepath}")
with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
if self.config.schema == "seacrowd_ssp":
yield id_, {"id": str(id_), "text": example["text"]}
id_ += 1
else:
yield id_, {"text": example["text"], "url": example["url"], "source": example["source"], "score": float(example["score"])}
id_ += 1