Datasets:

ArXiv:
File size: 5,961 Bytes
08325f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b7c2b1
 
 
08325f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b7c2b1
08325f6
 
 
 
 
 
 
2b7c2b1
08325f6
 
 
 
2b7c2b1
 
 
08325f6
 
 
 
 
2b7c2b1
08325f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b7c2b1
08325f6
 
 
 
 
 
 
 
 
 
 
 
2b7c2b1
08325f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b7c2b1
08325f6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""KoPI-NLLB corpus."""
import json

import datasets
import zstandard as zstd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
                                       DEFAULT_SOURCE_VIEW_NAME, Tasks)

logger = datasets.logging.get_logger(__name__)

_CITATION = """

Hefferman et al, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages. Arxiv https://arxiv.org/abs/2205.12654, 2022.
NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv https://arxiv.org/abs/2207.04672, 2022.

"""
_DESCRIPTION = """\

KopI(Korpus Perayapan Indonesia)-NLLB, is Indonesian family language(aceh,bali,banjar,indonesia,jawa,minang,sunda) only extracted from NLLB Dataset, allenai/nllb

each language set also filtered using some some deduplicate technique such as exact hash(md5) dedup technique and minhash LSH neardup

"""
_TYPE = ["raw", "dedup", "neardup"]


_CONF_LANG = ["ace_Latn", "ban_Latn", "bjn_Latn", "ind_Latn", "jav_Latn", "min_Latn", "sun_Latn"]

_CONFIGS = []
for j in _CONF_LANG:
    for m in _TYPE:
        _CONFIGS.append(j + "-" + m)

_ALL_CONFIG = ["all-raw", "all-dedup", "all-neardup"] + _CONFIGS

_HOMEPAGE = "https://huggingface.co/datasets/munggok/KoPI-NLLB"

_LICENSE = "ODC_C"

_BASE_URL = "https://huggingface.co/datasets/munggok/KoPI-NLLB/resolve/main/{tipe}/{lang}.json.zst"

_DATASETNAME = "kopi_nllb"

_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]

_LANGUAGES = ["ind", "jav", "ace", "ban", "bjn", "min", "sun"]

_SEACROWD_VERSION = "2024.06.20"

_SOURCE_VERSION = "2022.09.13"

_LOCAL = False

_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME

_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME

_URL = "https://huggingface.co/datasets/allenai/nllb"


def seacrowd_config_constructor(lang, schema, version):
    """Construct SEACrowdConfig"""
    if schema != "source" and schema != "seacrowd_ssp":
        raise ValueError(f"Invalid schema: {schema}")

    if lang == "":
        raise ValueError(f"Snapshot is required. Choose one of these Snapshot: {_ALL_CONFIG}.")
    elif lang in _ALL_CONFIG:
        return SEACrowdConfig(
            name=f"{_DATASETNAME}_{lang}_{schema}",
            version=datasets.Version(version),
            description=f"KoPI-NLLB with {schema} schema for {lang}",
            schema=schema,
            subset_id="kopi_nllb",
        )
    else:
        raise ValueError(f"Invalid language: {lang}. Choose one of these snapshots: {_ALL_CONFIG}.")


class KoPINLLBConfig(datasets.BuilderConfig):
    """BuilderConfig for the Clean KoPI corpus."""

    def __init__(self, **kwargs):
        """BuilderConfig for Clean KoPI corpus.
        Args:
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(**kwargs)


class KoPINLLB(datasets.GeneratorBasedBuilder):
    """KoPI NLLB corpus."""

    BUILDER_CONFIGS = [seacrowd_config_constructor(sn, "source", _SOURCE_VERSION) for sn in _ALL_CONFIG] + [seacrowd_config_constructor(sn, "seacrowd_ssp", _SEACROWD_VERSION) for sn in _ALL_CONFIG]

    def _info(self):

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "url": datasets.Value("string"),
                    "score": datasets.Value("float32"),
                    "source": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_ssp":
            features = schemas.self_supervised_pretraining.features
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        name = self.config.name.replace("_" + self.config.schema, "")
        name = name.replace(_DATASETNAME + "_", "")
        split_name = name.split("-")
        if split_name[0] == "all":
            train = [_BASE_URL.format(tipe=split_name[1], lang=m) for m in _CONF_LANG]
        else:
            train = [_BASE_URL.format(tipe=split_name[1], lang=split_name[0])]
        train_downloaded_files = dl_manager.download(train)
        return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files})]

    def _generate_examples(self, filepaths):
        """This function returns the examples in the raw (text) form by iterating on all the files."""
        id_ = 0
        for filepath in filepaths:
            logger.info(f"Generating examples from {filepath}")
            with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
                for line in f:
                    if line:
                        example = json.loads(line)
                        if self.config.schema == "seacrowd_ssp":
                            yield id_, {"id": str(id_), "text": example["text"]}
                            id_ += 1
                        else:
                            yield id_, {"text": example["text"], "url": example["url"], "source": example["source"], "score": float(example["score"])}
                            id_ += 1