|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
|
|
_CITATION = "" |
|
|
|
_DATASETNAME = "kheng_info" |
|
|
|
_DESCRIPTION = """\ |
|
The Kheng.info Speech dataset was derived from recordings of Khmer words on the Khmer dictionary website kheng.info. |
|
The recordings were recorded by a native Khmer speaker. |
|
The recordings are short, generally ranging between 1 to 2 seconds only. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/seanghay/khmer_kheng_info_speech" |
|
|
|
_LANGUAGES = ["khm"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://huggingface.co/datasets/seanghay/khmer_kheng_info_speech/resolve/main/data/train-00000-of-00001-4e7ad082a34164d1.parquet", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class KhengInfoDataset(datasets.GeneratorBasedBuilder): |
|
"""This is the Kheng.info Speech dataset, which wasderived from recordings on the Khmer dictionary website kheng.info""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_sptext", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_sptext", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({"word": datasets.Value("string"), "duration_ms": datasets.Value("int64"), "audio": datasets.Audio(sampling_rate=16_000)}) |
|
|
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
df = pd.read_parquet(filepath, engine="pyarrow") |
|
if self.config.schema == "source": |
|
for _id, row in df.iterrows(): |
|
yield _id, {"word": row["word"], "duration_ms": row["duration_ms"], "audio": row["audio"]} |
|
elif self.config.schema == "seacrowd_sptext": |
|
for _id, row in df.iterrows(): |
|
yield _id, { |
|
"id": _id, |
|
"path": row["audio"], |
|
"audio": row["audio"], |
|
"text": row["word"], |
|
"speaker_id": None, |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": None, |
|
}, |
|
} |
|
|