|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from cgitb import text |
|
from itertools import chain |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{sakti-icslp-2004, |
|
title = "Indonesian Speech Recognition for Hearing and Speaking Impaired People", |
|
author = "Sakti, Sakriani and Hutagaol, Paulus and Arman, Arry Akhmad and Nakamura, Satoshi", |
|
booktitle = "Proc. International Conference on Spoken Language Processing (INTERSPEECH - ICSLP)", |
|
year = "2004", |
|
pages = "1037--1040" |
|
address = "Jeju Island, Korea" |
|
} |
|
""" |
|
_DATASETNAME = "indspeech_digit_cdsr" |
|
_LANGUAGES = ["ind"] |
|
_DESCRIPTION = """\ |
|
INDspeech_DIGIT_CDSR is the first Indonesian speech dataset for connected digit speech recognition (CDSR). The data was developed by TELKOMRisTI (R&D Division, PT Telekomunikasi Indonesia) in collaboration with Advanced Telecommunication Research Institute International (ATR) Japan and Bandung Institute of Technology (ITB) under the Asia-Pacific Telecommunity (APT) project in 2004 [Sakti et al., 2004]. Although it was originally developed for a telecommunication system for hearing and speaking impaired people, it can be used for other applications, i.e., automatic call centers that recognize telephone numbers. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/s-sakti/data_indsp_digit_cdsr" |
|
_LOCAL = False |
|
_LICENSE = "CC-BY-NC-SA-4.0" |
|
|
|
_TMP_URL = { |
|
"lst": "https://raw.githubusercontent.com/s-sakti/data_indsp_digit_cdsr/main/lst/", |
|
"text": "https://github.com/s-sakti/data_indsp_digit_cdsr/raw/main/text/", |
|
"speech": "https://github.com/s-sakti/data_indsp_digit_cdsr/raw/main/speech/", |
|
} |
|
|
|
_URLS = { |
|
"lst": { |
|
"train_spk": _TMP_URL["lst"] + "train_spk.lst", |
|
"train_fname": _TMP_URL["lst"] + "train_fname.lst", |
|
"test_spk": [_TMP_URL["lst"] + "test" + str(i) + "_spk.lst" for i in range(1, 5)], |
|
"test_fname": [_TMP_URL["lst"] + "test" + str(i) + "_fname.lst" for i in range(1, 5)], |
|
}, |
|
"train": {"speech": _TMP_URL["speech"] + "train/", "text": _TMP_URL["text"] + "train/"}, |
|
"test": {"speech": _TMP_URL["speech"] + "test", "text": _TMP_URL["text"] + "test"}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class INDspeechDIGITCDSR(datasets.GeneratorBasedBuilder): |
|
"""Indonesian speech dataset for connected digit speech recognition""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="indspeech_digit_cdsr_source", |
|
version=SOURCE_VERSION, |
|
description="indspeech_digit_cdsr source schema", |
|
schema="source", |
|
subset_id="indspeech_digit_cdsr", |
|
), |
|
SEACrowdConfig( |
|
name="indspeech_digit_cdsr_seacrowd_sptext", |
|
version=SEACROWD_VERSION, |
|
description="indspeech_digit_cdsr Nusantara schema", |
|
schema="seacrowd_sptext", |
|
subset_id="indspeech_digit_cdsr", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indspeech_digit_cdsr_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
lst_train_spk = Path(dl_manager.download_and_extract(_URLS["lst"]["train_spk"])) |
|
lst_train_fname = Path(dl_manager.download_and_extract(_URLS["lst"]["train_fname"])) |
|
lst_test_spk = [Path(dl_manager.download_and_extract(url)) for url in _URLS["lst"]["test_spk"]] |
|
lst_test_fname = [Path(dl_manager.download_and_extract(url)) for url in _URLS["lst"]["test_fname"]] |
|
|
|
fnames = {"test": []} |
|
speech = {"test": {}} |
|
text = {"test": {}} |
|
|
|
with open(lst_train_spk, "r") as f: |
|
speakers = [spk.replace("\n", "") for spk in f.readlines()] |
|
tmp_speech = [Path(dl_manager.download_and_extract(_URLS["train"]["speech"] + spk + ".zip")) for spk in speakers] |
|
tmp_text = [Path(dl_manager.download_and_extract(_URLS["train"]["text"] + spk + ".zip")) for spk in speakers] |
|
speech["train"] = {speech[:-4]: os.path.join(spk, speech) for spk in tmp_speech for speech in os.listdir(spk)} |
|
text["train"] = {text[:-4]: os.path.join(spk, text) for spk in tmp_text for text in os.listdir(spk)} |
|
f.close() |
|
|
|
with open(lst_train_fname, "r") as f: |
|
fnames["train"] = [fname.replace("\n", "") for fname in f.readlines()] |
|
f.close() |
|
|
|
for i in range(1, 5): |
|
with open(lst_test_fname[i - 1], "r") as f: |
|
fnames["test"].append([spk.replace("\n", "") for spk in f.readlines()]) |
|
f.close() |
|
|
|
with open(lst_test_spk[i - 1], "r") as f: |
|
speakers = [spk.replace("\n", "") for spk in f.readlines()] |
|
tmp_speech = [Path(dl_manager.download_and_extract(_URLS["test"]["speech"] + str(i) + "/" + spk + ".zip")) for spk in speakers] |
|
tmp_text = [Path(dl_manager.download_and_extract(_URLS["test"]["text"] + str(i) + "/" + spk + ".zip")) for spk in speakers] |
|
tmp_dict_speech = {speech[:-4]: os.path.join(spk, speech) for spk in tmp_speech for speech in os.listdir(spk)} |
|
tmp_dict_text = {text[:-4]: os.path.join(spk, text) for spk in tmp_text for text in os.listdir(spk)} |
|
f.close() |
|
|
|
for k, v in tmp_dict_speech.items(): |
|
if k in speech["test"]: |
|
continue |
|
else: |
|
speech["test"][k] = v |
|
|
|
for k, v in tmp_dict_text.items(): |
|
if k in text["test"]: |
|
continue |
|
else: |
|
text["test"][k] = v |
|
|
|
fnames["test"] = list(chain(*fnames["test"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": { |
|
"fnames": fnames["train"], |
|
"speech": speech["train"], |
|
"text": text["train"], |
|
}, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": { |
|
"fnames": fnames["test"], |
|
"speech": speech["test"], |
|
"text": text["test"], |
|
}, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def text_process(utterance_path): |
|
with open(utterance_path, "r") as f: |
|
w = [r.replace("\n", "") for r in f.readlines()] |
|
f.close() |
|
return " ".join(w[1:-1]) |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
had_used = [] |
|
for key, example in enumerate(filepath["fnames"]): |
|
if example not in had_used: |
|
had_used.append(example) |
|
spk_id, _ = example.split("_") |
|
if self.config.schema == "source": |
|
yield key, { |
|
"id": example, |
|
"speaker_id": spk_id, |
|
"gender": spk_id[0], |
|
"path": filepath["speech"][example], |
|
"audio": filepath["speech"][example], |
|
"text": self.text_process(filepath["text"][example]), |
|
} |
|
|
|
elif self.config.schema == "seacrowd_sptext": |
|
yield key, { |
|
"id": example, |
|
"speaker_id": spk_id, |
|
"text": self.text_process(filepath["text"][example]), |
|
"path": filepath["speech"][example], |
|
"audio": filepath["speech"][example], |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": spk_id[0], |
|
}, |
|
} |
|
else: |
|
continue |
|
|