indotacos / indotacos.py
holylovenia's picture
Upload indotacos.py with huggingface_hub
ef647c9 verified
raw
history blame
5.48 kB
from pathlib import Path
from typing import List
import datasets
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas
import pandas as pd
_CITATION = """\
@misc{wibisono2022indotacos,
title = {IndoTacos},
howpublished = {\\url{https://www.kaggle.com/datasets/christianwbsn/indonesia-tax-court-verdict}},
note = {Accessed: 2022-09-22}
}
"""
_LOCAL = False
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "indotacos"
_DESCRIPTION = """\
Predicting the outcome or the probability of winning a legal case has always been highly attractive in legal sciences and practice.
Hardly any dataset has been developed to analyze and accelerate the research of court verdict analysis.
Find out what factor affects the outcome of tax court verdict using Natural Language Processing.
"""
_HOMEPAGE = "https://www.kaggle.com/datasets/christianwbsn/indonesia-tax-court-verdict"
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"
# For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators.
# In most cases the URLs will be the same for the source and seacrowd config.
# However, if you need to access different files for each config you can have multiple entries in this dict.
# This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {_DATASETNAME: {"indotacos": "https://huggingface.co/datasets/christianwbsn/indotacos/resolve/main/indonesia_tax_court_verdict.csv"}}
_SUPPORTED_TASKS = [Tasks.TAX_COURT_VERDICT]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IndoTacos(datasets.GeneratorBasedBuilder):
"""IndoTacos, an Indonesian Tax Court verdict summary containing 12283 tax court cases provided by perpajakan.ddtc.co.id."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="indotacos_source",
version=SOURCE_VERSION,
description="indotacos source schema",
schema="source",
subset_id="indotacos",
),
SEACrowdConfig(
name="indotacos_seacrowd_text",
version=SEACROWD_VERSION,
description="IndoTacos Nusantara schema",
schema="seacrowd_text",
subset_id="indotacos",
),
]
DEFAULT_CONFIG_NAME = "indotacos_source"
labels = ["mengabulkan sebagian", "mengabulkan seluruhnya", "menolak", "lain-lain", "menambah pajak", "mengabulkan", "membetulkan"]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("int32"),
"text": datasets.Value("string"),
"nomor_putusan": datasets.Value("string"),
"tahun_pajak": datasets.Value("int32"),
"jenis_pajak": datasets.Value("string"),
"tahun_putusan": datasets.Value("int32"),
"pokok_sengketa": datasets.Value("string"),
"jenis_putusan": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(self.labels)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
url = _URLS["indotacos"]
path = dl_manager.download(url)["indotacos"]
data_files = {"train": path}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_files["train"],
},
)
]
def _generate_examples(self, filepath: Path):
df = pd.read_csv(filepath)
if self.config.schema == "source":
row_id = 1
for row in df.itertuples():
ex = {
"id": str(row_id),
"text": row.text,
"nomor_putusan": row.nomor_putusan,
"tahun_pajak": row.tahun_pajak,
"jenis_pajak": row.jenis_pajak,
"tahun_putusan": row.tahun_putusan,
"pokok_sengketa": row.pokok_sengketa,
"jenis_putusan": row.jenis_putusan,
}
yield row_id, ex
row_id += 1
elif self.config.schema == "seacrowd_text":
row_id = 1
for row in df.itertuples():
ex = {
"id": str(row_id),
"text": {"text": row.text, "nomor_putusan": row.nomor_putusan, "tahun_pajak": row.tahun_pajak, "jenis_pajak": row.jenis_pajak, "tahun_putusan": row.tahun_putusan, "pokok_sengketa": row.pokok_sengketa},
"label": row.jenis_putusan,
}
yield row_id, ex
row_id += 1
else:
raise ValueError(f"Invalid config: {self.config.name}")