File size: 8,344 Bytes
02987a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{Astuti2023,
title = {Code-Mixed Sentiment Analysis using Transformer for Twitter Social Media Data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141053},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141053},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {10},
author = {Laksmita Widya Astuti and Yunita Sari and Suprapto}
}
"""
_DATASETNAME = "indonglish"
_DESCRIPTION = """\
Indonglish-dataset was constructed based on keywords derived from the
sociolinguistic phenomenon observed among teenagers in South Jakarta. The
dataset was designed to tackle the semantic task of sentiment analysis,
incorporating three distinct label categories: positive, negative, and
neutral. The annotation of the dataset was carried out by a panel of five
annotators, each possessing expertise language and data science.
"""
_HOMEPAGE = "https://github.com/laksmitawidya/indonglish-dataset"
_LANGUAGES = ["ind"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_URLS = {
"skenario-orig": {
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/train.csv",
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/validation.csv",
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/test.csv",
},
"skenario1": {
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/training.csv",
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/validation.csv",
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/test.csv",
},
"skenario2": {
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/training.csv",
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/validation.csv",
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/test.csv",
},
"skenario3": {
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/training.csv",
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/validation.csv",
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/test.csv",
},
}
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class Indonglish(datasets.GeneratorBasedBuilder):
"""Indonglish dataset for sentiment analysis from https://github.com/laksmitawidya/indonglish-dataset."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "text"
_LABELS = ["Positif", "Negatif", "Netral"]
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=_DATASETNAME,
),
]
for i in range(1, 4):
BUILDER_CONFIGS += [
SEACrowdConfig(
name=f"{_DATASETNAME}_skenario{i}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_skenario{i}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_skenario{i}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=f"{_DATASETNAME}_skenario{i}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"tweet": datasets.Value("string"),
"label": datasets.ClassLabel(names=self._LABELS),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text_features(self._LABELS)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if "skenario" in self.config.name:
setting = self.config.name.split("_")[1]
else:
setting = "skenario-orig"
data_paths = {
setting: {
"train": Path(dl_manager.download_and_extract(_URLS[setting]["train"])),
"validation": Path(dl_manager.download_and_extract(_URLS[setting]["validation"])),
"test": Path(dl_manager.download_and_extract(_URLS[setting]["test"])),
}
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_paths[setting]["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_paths[setting]["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_paths[setting]["validation"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# read csv file
with open(filepath, "r", encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file)
csv_data = [row for row in csv_reader]
csv_data = csv_data[1:] # remove header
num_sample = len(csv_data)
for i in range(num_sample):
if self.config.schema == "source":
example = {
"id": str(i),
"tweet": csv_data[i][0],
"label": csv_data[i][1],
}
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
example = {
"id": str(i),
"text": csv_data[i][0],
"label": csv_data[i][1],
}
yield i, example
|