Datasets:

Languages:
Indonesian
ArXiv:
License:
File size: 8,344 Bytes
02987a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import csv
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@article{Astuti2023,
title = {Code-Mixed Sentiment Analysis using Transformer for Twitter Social Media Data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141053},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141053},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {10},
author = {Laksmita Widya Astuti and Yunita Sari and Suprapto}
}
"""

_DATASETNAME = "indonglish"
_DESCRIPTION = """\
Indonglish-dataset was constructed based on keywords derived from the
sociolinguistic phenomenon observed among teenagers in South Jakarta. The
dataset was designed to tackle the semantic task of sentiment analysis,
incorporating three distinct label categories: positive, negative, and
neutral. The annotation of the dataset was carried out by a panel of five
annotators, each possessing expertise language and data science.
"""

_HOMEPAGE = "https://github.com/laksmitawidya/indonglish-dataset"
_LANGUAGES = ["ind"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False

_URLS = {
    "skenario-orig": {
        "train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/train.csv",
        "validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/validation.csv",
        "test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/test.csv",
    },
    "skenario1": {
        "train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/training.csv",
        "validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/validation.csv",
        "test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/test.csv",
    },
    "skenario2": {
        "train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/training.csv",
        "validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/validation.csv",
        "test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/test.csv",
    },
    "skenario3": {
        "train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/training.csv",
        "validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/validation.csv",
        "test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/test.csv",
    },
}

_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class Indonglish(datasets.GeneratorBasedBuilder):
    """Indonglish dataset for sentiment analysis from https://github.com/laksmitawidya/indonglish-dataset."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    SEACROWD_SCHEMA_NAME = "text"
    _LABELS = ["Positif", "Negatif", "Netral"]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=_DATASETNAME,
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=_DATASETNAME,
        ),
    ]
    for i in range(1, 4):
        BUILDER_CONFIGS += [
            SEACrowdConfig(
                name=f"{_DATASETNAME}_skenario{i}_source",
                version=SOURCE_VERSION,
                description=f"{_DATASETNAME} source schema",
                schema="source",
                subset_id=f"{_DATASETNAME}_skenario{i}",
            ),
            SEACrowdConfig(
                name=f"{_DATASETNAME}_skenario{i}_seacrowd_{SEACROWD_SCHEMA_NAME}",
                version=SEACROWD_VERSION,
                description=f"{_DATASETNAME} SEACrowd schema",
                schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
                subset_id=f"{_DATASETNAME}_skenario{i}",
            ),
        ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tweet": datasets.Value("string"),
                    "label": datasets.ClassLabel(names=self._LABELS),
                }
            )

        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            features = schemas.text_features(self._LABELS)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        if "skenario" in self.config.name:
            setting = self.config.name.split("_")[1]
        else:
            setting = "skenario-orig"

        data_paths = {
            setting: {
                "train": Path(dl_manager.download_and_extract(_URLS[setting]["train"])),
                "validation": Path(dl_manager.download_and_extract(_URLS[setting]["validation"])),
                "test": Path(dl_manager.download_and_extract(_URLS[setting]["test"])),
            }
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_paths[setting]["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_paths[setting]["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_paths[setting]["validation"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        # read csv file
        with open(filepath, "r", encoding="utf-8") as csv_file:
            csv_reader = csv.reader(csv_file)
            csv_data = [row for row in csv_reader]
        csv_data = csv_data[1:]  # remove header

        num_sample = len(csv_data)

        for i in range(num_sample):
            if self.config.schema == "source":
                example = {
                    "id": str(i),
                    "tweet": csv_data[i][0],
                    "label": csv_data[i][1],
                }
            elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
                example = {
                    "id": str(i),
                    "text": csv_data[i][0],
                    "label": csv_data[i][1],
                }

            yield i, example