holylovenia commited on
Commit
6904d0a
·
verified ·
1 Parent(s): 191099c

Upload indolem_ner_ugm.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. indolem_ner_ugm.py +13 -13
indolem_ner_ugm.py CHANGED
@@ -2,11 +2,11 @@ from pathlib import Path
2
  from typing import Dict, List, Tuple
3
 
4
  import datasets
5
- from nusacrowd.utils import schemas
6
- from nusacrowd.utils.common_parser import load_conll_data
7
 
8
- from nusacrowd.utils.configs import NusantaraConfig
9
- from nusacrowd.utils.constants import Tasks
10
 
11
  _CITATION = """\
12
  @inproceedings{koto-etal-2020-indolem,
@@ -56,7 +56,7 @@ _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
56
 
57
  _SOURCE_VERSION = "1.0.0"
58
 
59
- _NUSANTARA_VERSION = "1.0.0"
60
 
61
  class IndolemNERUGM(datasets.GeneratorBasedBuilder):
62
  """NER UGM comprises 2,343 sentences from news articles, and was constructed at the University of Gajah Mada based on five named entity classes: person, organization, location, time, and quantity; and based on 5-fold cross validation"""
@@ -64,11 +64,11 @@ class IndolemNERUGM(datasets.GeneratorBasedBuilder):
64
  label_classes = ["B-PERSON", "B-LOCATION", "B-ORGANIZATION", "B-TIME", "B-QUANTITY", "I-PERSON", "I-LOCATION", "I-ORGANIZATION", "I-TIME", "I-QUANTITY", "O"]
65
 
66
  SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
67
- NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
68
 
69
  BUILDER_CONFIGS = (
70
  [
71
- NusantaraConfig(
72
  name="indolem_ner_ugm_fold{fold_number}_source".format(fold_number=i),
73
  version=_SOURCE_VERSION,
74
  description="indolem_ner_ugm source schema",
@@ -77,11 +77,11 @@ class IndolemNERUGM(datasets.GeneratorBasedBuilder):
77
  ) for i in range(5)
78
  ]
79
  + [
80
- NusantaraConfig(
81
- name="indolem_ner_ugm_fold{fold_number}_nusantara_seq_label".format(fold_number=i),
82
- version=_NUSANTARA_VERSION,
83
  description="indolem_ner_ugm Nusantara schema",
84
- schema="nusantara_seq_label",
85
  subset_id="indolem_ner_ugm_fold{fold_number}".format(fold_number=i),
86
  ) for i in range(5)
87
  ]
@@ -101,7 +101,7 @@ class IndolemNERUGM(datasets.GeneratorBasedBuilder):
101
  }
102
  )
103
 
104
- elif self.config.schema == "nusantara_seq_label":
105
  features = schemas.seq_label_features(self.label_classes)
106
 
107
  return datasets.DatasetInfo(
@@ -167,7 +167,7 @@ class IndolemNERUGM(datasets.GeneratorBasedBuilder):
167
  "tags": row["label"]
168
  }
169
  yield i, ex
170
- elif self.config.schema == "nusantara_seq_label":
171
  for i, row in enumerate(conll_dataset):
172
  ex = {
173
  "id": str(i),
 
2
  from typing import Dict, List, Tuple
3
 
4
  import datasets
5
+ from seacrowd.utils import schemas
6
+ from seacrowd.utils.common_parser import load_conll_data
7
 
8
+ from seacrowd.utils.configs import SEACrowdConfig
9
+ from seacrowd.utils.constants import Tasks
10
 
11
  _CITATION = """\
12
  @inproceedings{koto-etal-2020-indolem,
 
56
 
57
  _SOURCE_VERSION = "1.0.0"
58
 
59
+ _SEACROWD_VERSION = "2024.06.20"
60
 
61
  class IndolemNERUGM(datasets.GeneratorBasedBuilder):
62
  """NER UGM comprises 2,343 sentences from news articles, and was constructed at the University of Gajah Mada based on five named entity classes: person, organization, location, time, and quantity; and based on 5-fold cross validation"""
 
64
  label_classes = ["B-PERSON", "B-LOCATION", "B-ORGANIZATION", "B-TIME", "B-QUANTITY", "I-PERSON", "I-LOCATION", "I-ORGANIZATION", "I-TIME", "I-QUANTITY", "O"]
65
 
66
  SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
67
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
68
 
69
  BUILDER_CONFIGS = (
70
  [
71
+ SEACrowdConfig(
72
  name="indolem_ner_ugm_fold{fold_number}_source".format(fold_number=i),
73
  version=_SOURCE_VERSION,
74
  description="indolem_ner_ugm source schema",
 
77
  ) for i in range(5)
78
  ]
79
  + [
80
+ SEACrowdConfig(
81
+ name="indolem_ner_ugm_fold{fold_number}_seacrowd_seq_label".format(fold_number=i),
82
+ version=_SEACROWD_VERSION,
83
  description="indolem_ner_ugm Nusantara schema",
84
+ schema="seacrowd_seq_label",
85
  subset_id="indolem_ner_ugm_fold{fold_number}".format(fold_number=i),
86
  ) for i in range(5)
87
  ]
 
101
  }
102
  )
103
 
104
+ elif self.config.schema == "seacrowd_seq_label":
105
  features = schemas.seq_label_features(self.label_classes)
106
 
107
  return datasets.DatasetInfo(
 
167
  "tags": row["label"]
168
  }
169
  yield i, ex
170
+ elif self.config.schema == "seacrowd_seq_label":
171
  for i, row in enumerate(conll_dataset):
172
  ex = {
173
  "id": str(i),