holylovenia
commited on
Upload id_google_play_review.py with huggingface_hub
Browse files- id_google_play_review.py +154 -0
id_google_play_review.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Tasks
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@misc{
|
13 |
+
research,
|
14 |
+
title={Jakartaresearch/google-play-review 路 datasets at hugging face},
|
15 |
+
url={https://huggingface.co/datasets/jakartaresearch/google-play-review},
|
16 |
+
author={Research, Jakarta AI}
|
17 |
+
}
|
18 |
+
"""
|
19 |
+
|
20 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
21 |
+
_LOCAL = False
|
22 |
+
|
23 |
+
_DATASETNAME = "id_google_play_review"
|
24 |
+
_DESCRIPTION = """\
|
25 |
+
Indonesian Google Play Review, dataset scrapped from e-commerce app on Google Play for sentiment analysis.
|
26 |
+
Total number of data: 10041 (train: 7028, validation: 3012). Provided by Jakarta AI Research.
|
27 |
+
"""
|
28 |
+
|
29 |
+
_HOMEPAGE = "https://github.com/jakartaresearch/hf-datasets/tree/main/google-play-review/google-play-review"
|
30 |
+
_LICENSE = "CC-BY 4.0"
|
31 |
+
|
32 |
+
_URLS = {
|
33 |
+
_DATASETNAME: {
|
34 |
+
"train": "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/google-play-review/google-play-review/train.csv",
|
35 |
+
"valid": "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/google-play-review/google-play-review/validation.csv",
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
40 |
+
|
41 |
+
_SOURCE_VERSION = "1.0.0"
|
42 |
+
_SEACROWD_VERSION = "2024.06.20"
|
43 |
+
|
44 |
+
|
45 |
+
class IDGooglePlayReview(datasets.GeneratorBasedBuilder):
|
46 |
+
"""
|
47 |
+
Indonesian Google Play Review is a dataset containing reviews from Google Play Indonesia, used for sentiment
|
48 |
+
analysis.
|
49 |
+
The language content is mainly Indonesian, however beware of context-switching (some sentences are partly or
|
50 |
+
entirely in English).
|
51 |
+
The available labels:
|
52 |
+
label: ['pos', 'neg'] for source and seacrowd_text scheme
|
53 |
+
stars: [1, 2, 3, 4, 5] for source
|
54 |
+
"""
|
55 |
+
|
56 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
57 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
58 |
+
|
59 |
+
BUILDER_CONFIGS = [
|
60 |
+
SEACrowdConfig(
|
61 |
+
name="id_google_play_review_source",
|
62 |
+
version=SOURCE_VERSION,
|
63 |
+
description="id_google_play_review source schema",
|
64 |
+
schema="source",
|
65 |
+
subset_id="id_google_play_review",
|
66 |
+
),
|
67 |
+
SEACrowdConfig(
|
68 |
+
name="id_google_play_review_posneg_source",
|
69 |
+
version=SOURCE_VERSION,
|
70 |
+
description="id_google_play_review source schema",
|
71 |
+
schema="source",
|
72 |
+
subset_id="id_google_play_review_posneg",
|
73 |
+
),
|
74 |
+
SEACrowdConfig(
|
75 |
+
name="id_google_play_review_seacrowd_text",
|
76 |
+
version=SEACROWD_VERSION,
|
77 |
+
description="id_google_play_review Nusantara schema, 1-5 stars rating only (for pos/neg labels, please use the subset_id \"id_google_play_review_posneg\")",
|
78 |
+
schema="seacrowd_text",
|
79 |
+
subset_id="id_google_play_review",
|
80 |
+
),
|
81 |
+
SEACrowdConfig(
|
82 |
+
name="id_google_play_review_posneg_seacrowd_text",
|
83 |
+
version=SEACROWD_VERSION,
|
84 |
+
description="id_google_play_review Nusantara schema, pos/neg label only",
|
85 |
+
schema="seacrowd_text",
|
86 |
+
subset_id="id_google_play_review_posneg",
|
87 |
+
),
|
88 |
+
]
|
89 |
+
|
90 |
+
DEFAULT_CONFIG_NAME = "id_google_play_review_source"
|
91 |
+
|
92 |
+
def _info(self) -> datasets.DatasetInfo:
|
93 |
+
|
94 |
+
# Create the source schema; this schema will keep all keys/information/labels as close to the original dataset
|
95 |
+
# as possible.
|
96 |
+
|
97 |
+
# You can arbitrarily nest lists and dictionaries.
|
98 |
+
# For iterables, use lists over tuples or `datasets.Sequence`
|
99 |
+
|
100 |
+
if self.config.schema == "source":
|
101 |
+
features = datasets.Features({
|
102 |
+
"text": datasets.Value("string"),
|
103 |
+
"label": datasets.Value("string"),
|
104 |
+
"stars": datasets.Value("int8")
|
105 |
+
})
|
106 |
+
elif self.config.schema == "seacrowd_text":
|
107 |
+
if self.config.subset_id == "id_google_play_review_posneg":
|
108 |
+
features = schemas.text_features(["pos", "neg"])
|
109 |
+
elif self.config.subset_id == "id_google_play_review":
|
110 |
+
features = schemas.text_features(["1", "2", "3", "4", "5"])
|
111 |
+
else:
|
112 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
113 |
+
|
114 |
+
return datasets.DatasetInfo(
|
115 |
+
description=_DESCRIPTION,
|
116 |
+
features=features,
|
117 |
+
homepage=_HOMEPAGE,
|
118 |
+
license=_LICENSE,
|
119 |
+
citation=_CITATION,
|
120 |
+
)
|
121 |
+
|
122 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
123 |
+
"""Returns SplitGenerators."""
|
124 |
+
urls = _URLS[_DATASETNAME]
|
125 |
+
train_data_path = Path(dl_manager.download(urls["train"]))
|
126 |
+
valid_data_path = Path(dl_manager.download(urls["valid"]))
|
127 |
+
|
128 |
+
return [
|
129 |
+
datasets.SplitGenerator(
|
130 |
+
name=datasets.Split.TRAIN,
|
131 |
+
gen_kwargs={"filepath": train_data_path, "split": "train"},
|
132 |
+
),
|
133 |
+
datasets.SplitGenerator(
|
134 |
+
name=datasets.Split.VALIDATION,
|
135 |
+
gen_kwargs={"filepath": valid_data_path, "split": "valid"},
|
136 |
+
),
|
137 |
+
]
|
138 |
+
|
139 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
140 |
+
"""Yields examples as (key, example) tuples."""
|
141 |
+
|
142 |
+
df = pd.read_csv(filepath, sep=",").reset_index()
|
143 |
+
for row in df.itertuples(index=False):
|
144 |
+
if self.config.schema == "source":
|
145 |
+
example = {"text": row.text, "label": row.label, "stars": row.stars}
|
146 |
+
yield row.index, example
|
147 |
+
elif self.config.schema == "seacrowd_text":
|
148 |
+
if self.config.subset_id == "id_google_play_review_posneg":
|
149 |
+
example = {"id": row.index, "text": row.text, "label": row.label}
|
150 |
+
elif self.config.subset_id == "id_google_play_review":
|
151 |
+
example = {"id": row.index, "text": row.text, "label": str(row.stars)}
|
152 |
+
else:
|
153 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
154 |
+
yield row.index, example
|