holylovenia
commited on
Commit
•
f05cb89
1
Parent(s):
dc4a743
Upload id_clickbait.py with huggingface_hub
Browse files- id_clickbait.py +125 -0
id_clickbait.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from nusacrowd.utils import schemas
|
8 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
9 |
+
from nusacrowd.utils.constants import Tasks
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@article{WILLIAM2020106231,
|
13 |
+
title = "CLICK-ID: A novel dataset for Indonesian clickbait headlines",
|
14 |
+
journal = "Data in Brief",
|
15 |
+
volume = "32",
|
16 |
+
pages = "106231",
|
17 |
+
year = "2020",
|
18 |
+
issn = "2352-3409",
|
19 |
+
doi = "https://doi.org/10.1016/j.dib.2020.106231",
|
20 |
+
url = "http://www.sciencedirect.com/science/article/pii/S2352340920311252",
|
21 |
+
author = "Andika William and Yunita Sari",
|
22 |
+
keywords = "Indonesian, Natural Language Processing, News articles, Clickbait, Text-classification",
|
23 |
+
abstract = "News analysis is a popular task in Natural Language Processing (NLP). In particular, the problem of clickbait in news analysis has gained attention in recent years [1, 2]. However, the majority of the tasks has been focused on English news, in which there is already a rich representative resource. For other languages, such as Indonesian, there is still a lack of resource for clickbait tasks. Therefore, we introduce the CLICK-ID dataset of Indonesian news headlines extracted from 12 Indonesian online news publishers. It is comprised of 15,000 annotated headlines with clickbait and non-clickbait labels. Using the CLICK-ID dataset, we then developed an Indonesian clickbait classification model achieving favourable performance. We believe that this corpus will be useful for replicable experiments in clickbait detection or other experiments in NLP areas."
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
_LOCAL = False
|
28 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
29 |
+
_DATASETNAME = "id_clickbait"
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
The CLICK-ID dataset is a collection of Indonesian news headlines that was collected from 12 local online news
|
32 |
+
publishers; detikNews, Fimela, Kapanlagi, Kompas, Liputan6, Okezone, Posmetro-Medan, Republika, Sindonews, Tempo,
|
33 |
+
Tribunnews, and Wowkeren. This dataset is comprised of mainly two parts; (i) 46,119 raw article data, and (ii)
|
34 |
+
15,000 clickbait annotated sample headlines. Annotation was conducted with 3 annotator examining each headline.
|
35 |
+
Judgment were based only on the headline. The majority then is considered as the ground truth. In the annotated
|
36 |
+
sample, our annotation shows 6,290 clickbait and 8,710 non-clickbait.
|
37 |
+
"""
|
38 |
+
_HOMEPAGE = "https://www.sciencedirect.com/science/article/pii/S2352340920311252#!"
|
39 |
+
_LICENSE = "Creative Commons Attribution 4.0 International"
|
40 |
+
_URLS = {
|
41 |
+
_DATASETNAME: "https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/k42j7x2kpn-1.zip",
|
42 |
+
}
|
43 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
44 |
+
_SOURCE_VERSION = "1.0.0"
|
45 |
+
_NUSANTARA_VERSION = "1.0.0"
|
46 |
+
|
47 |
+
|
48 |
+
class IdClickbait(datasets.GeneratorBasedBuilder):
|
49 |
+
"""The CLICK-ID dataset is a collection of Indonesian news headlines that was collected from 12 local online news, annotated with a label whether each is a clickbait"""
|
50 |
+
|
51 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
52 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
53 |
+
|
54 |
+
BUILDER_CONFIGS = [
|
55 |
+
NusantaraConfig(
|
56 |
+
name="id_clickbait_source",
|
57 |
+
version=SOURCE_VERSION,
|
58 |
+
description="CLICK-ID source schema",
|
59 |
+
schema="source",
|
60 |
+
subset_id="id_clickbait",
|
61 |
+
),
|
62 |
+
NusantaraConfig(
|
63 |
+
name="id_clickbait_nusantara_text",
|
64 |
+
version=NUSANTARA_VERSION,
|
65 |
+
description="CLICK-ID Nusantara schema",
|
66 |
+
schema="nusantara_text",
|
67 |
+
subset_id="id_clickbait",
|
68 |
+
),
|
69 |
+
]
|
70 |
+
|
71 |
+
DEFAULT_CONFIG_NAME = "id_clickbait_source"
|
72 |
+
|
73 |
+
def _info(self) -> datasets.DatasetInfo:
|
74 |
+
if self.config.schema == "source":
|
75 |
+
features = datasets.Features({"title": datasets.Value("string"), "label": datasets.Value("string"), "label_score": datasets.Value("int8")})
|
76 |
+
elif self.config.schema == "nusantara_text":
|
77 |
+
features = schemas.text_features(["non-clickbait", "clickbait"])
|
78 |
+
|
79 |
+
return datasets.DatasetInfo(
|
80 |
+
description=_DESCRIPTION,
|
81 |
+
features=features,
|
82 |
+
homepage=_HOMEPAGE,
|
83 |
+
license=_LICENSE,
|
84 |
+
citation=_CITATION,
|
85 |
+
)
|
86 |
+
|
87 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
88 |
+
"""Returns SplitGenerators."""
|
89 |
+
# Dataset does not have predetermined split, putting all as TRAIN
|
90 |
+
urls = _URLS[_DATASETNAME]
|
91 |
+
base_dir = Path(dl_manager.download_and_extract(urls)) / "annotated" / "combined" / "json"
|
92 |
+
data_files = {"train": base_dir / "main.json"}
|
93 |
+
|
94 |
+
return [
|
95 |
+
datasets.SplitGenerator(
|
96 |
+
name=datasets.Split.TRAIN,
|
97 |
+
gen_kwargs={
|
98 |
+
"filepath": data_files["train"],
|
99 |
+
"split": "train",
|
100 |
+
},
|
101 |
+
),
|
102 |
+
]
|
103 |
+
|
104 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
105 |
+
"""Yields examples as (key, example) tuples."""
|
106 |
+
# Dataset does not have row id, using python enumeration.
|
107 |
+
data = json.load(open(filepath, "r"))
|
108 |
+
|
109 |
+
if self.config.schema == "source":
|
110 |
+
for row_index, row in enumerate(data):
|
111 |
+
ex = {
|
112 |
+
"title": row["title"],
|
113 |
+
"label": row["label"],
|
114 |
+
"label_score": row["label_score"],
|
115 |
+
}
|
116 |
+
yield row_index, ex
|
117 |
+
|
118 |
+
elif self.config.schema == "nusantara_text":
|
119 |
+
for row_index, row in enumerate(data):
|
120 |
+
ex = {
|
121 |
+
"id": str(row_index),
|
122 |
+
"text": row["title"],
|
123 |
+
"label": row["label"],
|
124 |
+
}
|
125 |
+
yield row_index, ex
|