holylovenia
commited on
Commit
•
a217749
1
Parent(s):
29f9b2c
Upload iapp_squad.py with huggingface_hub
Browse files- iapp_squad.py +128 -0
iapp_squad.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
import json
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
from seacrowd.utils import schemas
|
7 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
8 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
9 |
+
|
10 |
+
_DATASETNAME = "iapp_squad"
|
11 |
+
_CITATION = """\
|
12 |
+
@dataset
|
13 |
+
{
|
14 |
+
kobkrit_viriyayudhakorn_2021_4539916,
|
15 |
+
author = {Kobkrit Viriyayudhakorn and Charin Polpanumas},
|
16 |
+
title = {iapp_wiki_qa_squad},
|
17 |
+
month = feb,
|
18 |
+
year = 2021,
|
19 |
+
publisher = {Zenodo},
|
20 |
+
version = 1,
|
21 |
+
doi = {10.5281/zenodo.4539916},
|
22 |
+
url = {https://doi.org/10.5281/zenodo.4539916}
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
_DESCRIPTION = """
|
27 |
+
`iapp_wiki_qa_squad` is an extractive question answering dataset from Thai Wikipedia articles.
|
28 |
+
It is adapted from [the original iapp-wiki-qa-dataset](https://github.com/iapp-technology/iapp-wiki-qa-dataset)
|
29 |
+
to [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) format, resulting in
|
30 |
+
5761/742/739 questions from 1529/191/192 articles.
|
31 |
+
"""
|
32 |
+
|
33 |
+
_HOMEPAGE = "https://github.com/iapp-technology/iapp-wiki-qa-dataset"
|
34 |
+
_LICENSE = Licenses.MIT.value
|
35 |
+
_HF_URL = " https://huggingface.co/datasets/iapp_wiki_qa_squad"
|
36 |
+
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
|
37 |
+
_LOCAL = False
|
38 |
+
_LANGUAGES = ["tha"]
|
39 |
+
_SOURCE_VERSION = "1.0.0"
|
40 |
+
_SEACROWD_VERSION = "2024.06.20"
|
41 |
+
|
42 |
+
_URLS = {
|
43 |
+
"train": "https://raw.githubusercontent.com/iapp-technology/iapp-wiki-qa-dataset/main/squad_format/data/train.jsonl",
|
44 |
+
"validation": "https://raw.githubusercontent.com/iapp-technology/iapp-wiki-qa-dataset/main/squad_format/data/valid.jsonl",
|
45 |
+
"test": "https://raw.githubusercontent.com/iapp-technology/iapp-wiki-qa-dataset/main/squad_format/data/test.jsonl",
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
class IappWikiQASquadDataset(datasets.GeneratorBasedBuilder):
|
50 |
+
BUILDER_CONFIGS = [
|
51 |
+
SEACrowdConfig(name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=_DESCRIPTION, subset_id=f"{_DATASETNAME}", schema="source"),
|
52 |
+
SEACrowdConfig(name=f"{_DATASETNAME}_seacrowd_qa", version=datasets.Version(_SEACROWD_VERSION), description=_DESCRIPTION, subset_id=f"{_DATASETNAME}", schema="seacrowd_qa"),
|
53 |
+
]
|
54 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
55 |
+
|
56 |
+
def _info(self):
|
57 |
+
if self.config.schema == "source":
|
58 |
+
features = datasets.Features(
|
59 |
+
{
|
60 |
+
"question_id": datasets.Value("string"),
|
61 |
+
"article_id": datasets.Value("string"),
|
62 |
+
"title": datasets.Value("string"),
|
63 |
+
"context": datasets.Value("string"),
|
64 |
+
"question": datasets.Value("string"),
|
65 |
+
"answers": datasets.features.Sequence(
|
66 |
+
{
|
67 |
+
"text": datasets.Value("string"),
|
68 |
+
"answer_start": datasets.Value("int32"),
|
69 |
+
"answer_end": datasets.Value("int32"),
|
70 |
+
}
|
71 |
+
),
|
72 |
+
}
|
73 |
+
)
|
74 |
+
elif self.config.schema == "seacrowd_qa":
|
75 |
+
features = schemas.qa_features
|
76 |
+
features["meta"] = {
|
77 |
+
"answer_start": datasets.Value("int32"),
|
78 |
+
"answer_end": datasets.Value("int32"),
|
79 |
+
}
|
80 |
+
return datasets.DatasetInfo(description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE)
|
81 |
+
|
82 |
+
def _split_generators(self, dl_manager):
|
83 |
+
file_paths = dl_manager.download_and_extract(_URLS)
|
84 |
+
return [
|
85 |
+
datasets.SplitGenerator(
|
86 |
+
name=datasets.Split.TRAIN,
|
87 |
+
gen_kwargs={"filepath": file_paths["train"]},
|
88 |
+
),
|
89 |
+
datasets.SplitGenerator(
|
90 |
+
name=datasets.Split.VALIDATION,
|
91 |
+
gen_kwargs={"filepath": file_paths["validation"]},
|
92 |
+
),
|
93 |
+
datasets.SplitGenerator(
|
94 |
+
name=datasets.Split.TEST,
|
95 |
+
gen_kwargs={"filepath": file_paths["test"]},
|
96 |
+
),
|
97 |
+
]
|
98 |
+
|
99 |
+
def _generate_examples(self, filepath):
|
100 |
+
"""Yields examples."""
|
101 |
+
with open(filepath, encoding="utf-8") as f:
|
102 |
+
for id_, row in enumerate(f):
|
103 |
+
data = json.loads(row)
|
104 |
+
if self.config.schema == "source":
|
105 |
+
yield id_, {
|
106 |
+
"question_id": data["question_id"],
|
107 |
+
"article_id": data["article_id"],
|
108 |
+
"title": data["title"],
|
109 |
+
"context": data["context"],
|
110 |
+
"question": data["question"],
|
111 |
+
"answers": {
|
112 |
+
"text": data["answers"]["text"],
|
113 |
+
"answer_start": data["answers"]["answer_start"],
|
114 |
+
"answer_end": data["answers"]["answer_end"],
|
115 |
+
},
|
116 |
+
}
|
117 |
+
elif self.config.schema == "seacrowd_qa":
|
118 |
+
yield id_, {
|
119 |
+
"id": id_,
|
120 |
+
"question_id": data["question_id"],
|
121 |
+
"document_id": data["article_id"],
|
122 |
+
"question": data["question"],
|
123 |
+
"type": "abstractive",
|
124 |
+
"choices": [],
|
125 |
+
"context": data["context"],
|
126 |
+
"answer": data["answers"]["text"],
|
127 |
+
"meta": {"answer_start": data["answers"]["answer_start"][0], "answer_end": data["answers"]["answer_end"][0]},
|
128 |
+
}
|