|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This test is for 15 years old Malaysia student, it is about reading comprehension and general knowledge for malay language. |
|
""" |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
import pandas as pd |
|
import re |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, Licenses, TASK_TO_SCHEMA |
|
|
|
_CITATION = None |
|
|
|
_DATASETNAME = "bm_pt3" |
|
|
|
_DESCRIPTION = """\ |
|
This test is for 15 years old Malaysia student, it is about reading comprehension and general knowledge for malay language. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/BM-pt3" |
|
|
|
_LANGUAGES = ["zlm"] |
|
|
|
_LICENSE = Licenses.UNLICENSE.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"A": "https://raw.githubusercontent.com/mesolitica/malaysian-dataset/master/llm-benchmark/BM-pt3/BM-A-pt3", |
|
"B": "https://raw.githubusercontent.com/mesolitica/malaysian-dataset/master/llm-benchmark/BM-pt3/BM-B-pt3" |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class BMPT3Dataset(datasets.GeneratorBasedBuilder): |
|
"""This test is for 15 years old Malaysia student, it is about reading comprehension and general knowledge for malay language.""" |
|
|
|
|
|
SUBSETS = ["A", "B"] |
|
SEACROWD_SCHEMA = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower() |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema for {subset} subset", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SUBSETS |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_seacrowd_qa", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema for {subset} subset", |
|
schema=f"seacrowd_qa", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SUBSETS |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"num": datasets.Value("string"), |
|
"objective": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"choices": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
"source": { |
|
"title": datasets.Value("string"), |
|
"num": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
features["meta"] = { |
|
"source": { |
|
"title": datasets.Value("string"), |
|
"num": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
} |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
if "A" in self.config.subset_id: |
|
subset_type = "A" |
|
data_dir = dl_manager.download_and_extract(_URLS["A"]) |
|
elif "B" in self.config.subset_id: |
|
subset_type = "B" |
|
data_dir = dl_manager.download_and_extract(_URLS["B"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"subset_type": subset_type |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath: Path, subset_type: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
data = self._extract_data(f.read(), subset_type) |
|
|
|
if self.config.schema == "source": |
|
for i, entry in enumerate(data): |
|
yield i, entry |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
for i, entry in enumerate(data): |
|
yield i, { |
|
"id": str(i), |
|
"question_id": entry["num"], |
|
"document_id": None, |
|
"question": entry["question"], |
|
"type": "multiple_choice" if entry["choices"] else "open_ended", |
|
"choices": entry["choices"], |
|
"context": entry["objective"], |
|
"answer": [entry["answer"]] if entry["answer"] else [], |
|
"meta": { |
|
"source": entry["source"] |
|
} |
|
} |
|
|
|
def _extract_data(self, doc: str, subset_type: str) -> List[Dict]: |
|
"""Extracts data from the source schema""" |
|
|
|
|
|
pattern_num = re.compile(r"(no:\s*\d+)") |
|
pattern_objective = re.compile(r"objektif:\s*(.*)") |
|
pattern_question = re.compile(r'soalan:\s*(.*?)(?=\njawapan:|asal soalan:)', re.DOTALL) |
|
pattern_choices = re.compile(r'([A-D]\.\s+.+?)(?=\n[A-D]\.|\Z)', re.DOTALL) |
|
if subset_type == "A": |
|
pattern_answer = re.compile(r'jawapan:\s*([A-D])[,\s]', re.DOTALL) |
|
elif subset_type == "B": |
|
pattern_answer = re.compile(r'jawapan:\s*(.*?)\s*asal soalan:', re.DOTALL) |
|
pattern_asal_soalan = re.compile(r'asal soalan:\s*(.*?),\s*no\s*(\d+),\s*(.*?)\n', re.DOTALL) |
|
|
|
res = [] |
|
doc_split = re.sub(pattern_num, "<NUMBER>", doc).split("<NUMBER>")[1:] |
|
|
|
for i, entry in enumerate(doc_split): |
|
|
|
objective = re.findall(pattern_objective, entry) |
|
objective = objective[0] if objective else None |
|
|
|
|
|
_question = re.findall(pattern_question, entry) |
|
question = re.sub(pattern_choices, '', _question[0]).strip("\n") if _question else None |
|
|
|
|
|
choices = {} |
|
if _question and subset_type == "A": |
|
_choices = re.findall(pattern_choices, _question[0]) |
|
for _c in _choices: |
|
alpha, txt = _c.split(". ")[0], ' '.join(_c.split(". ")[1:]) |
|
choices[alpha] = txt |
|
|
|
|
|
if subset_type == "A": |
|
_answer = re.findall(pattern_answer, entry) |
|
answer = choices[_answer[0]] if (_answer and choices) else None |
|
elif subset_type == "B": |
|
answer = re.findall(pattern_answer, entry) |
|
answer = answer[0] if answer else None |
|
|
|
|
|
source = re.findall(pattern_asal_soalan, entry) |
|
source = source[0] if source else [None,None,None] |
|
|
|
res.append({ |
|
"num": str(i+1), |
|
"objective": objective, |
|
"question": question, |
|
"choices": list(choices.values()) if choices else [], |
|
"answer": answer, |
|
"source": { |
|
"title": source[0], |
|
"num": source[1], |
|
"url": source[2] |
|
} |
|
}) |
|
|
|
return res |
|
|