holylovenia
commited on
Upload bioner_id.py with huggingface_hub
Browse files- bioner_id.py +166 -0
bioner_id.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import Dict, List, Tuple
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
from seacrowd.utils import schemas
|
22 |
+
from seacrowd.utils.common_parser import load_conll_data
|
23 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@article{abdillah2023pengenalan,
|
28 |
+
title={Pengenalan Entitas Biomedis dalam Teks Konsultasi Kesehatan Online Berbahasa Indonesia Berbasis Arsitektur Transformers},
|
29 |
+
author={Abdillah, Abid Famasya and Purwitasari, Diana and Juanita, Safitri and Purnomo, Mauridhi Hery},
|
30 |
+
year={2023},
|
31 |
+
month=feb,
|
32 |
+
journal={Jurnal Teknologi Informasi dan Ilmu Komputer},
|
33 |
+
volume={10},
|
34 |
+
number={1},
|
35 |
+
pages={131--140}
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
_DATASETNAME = "bioner_id"
|
40 |
+
|
41 |
+
_DESCRIPTION = """\
|
42 |
+
This dataset taken from online health consultation platform Alodokter.com which has been annotated by two medical doctors. Data were annotated using IOB in CoNLL format.
|
43 |
+
|
44 |
+
Dataset contains 2600 medical answers by doctors from 2017-2020. Two medical experts were assigned to annotate the data into two entity types: DISORDERS and ANATOMY.
|
45 |
+
The topics of answers are: diarrhea, HIV-AIDS, nephrolithiasis and TBC, which marked as high-risk dataset from WHO.
|
46 |
+
"""
|
47 |
+
|
48 |
+
_HOMEPAGE = "https://huggingface.co/datasets/abid/indonesia-bioner-dataset"
|
49 |
+
|
50 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
51 |
+
|
52 |
+
_LICENSE = Licenses.BSD_3_CLAUSE_CLEAR.value
|
53 |
+
|
54 |
+
_LOCAL = False
|
55 |
+
|
56 |
+
_URLS = {
|
57 |
+
_DATASETNAME: {k: f"https://huggingface.co/datasets/abid/indonesia-bioner-dataset/raw/main/{k}.conll" for k in ["train", "valid", "test"]},
|
58 |
+
}
|
59 |
+
|
60 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
61 |
+
|
62 |
+
_SOURCE_VERSION = "1.0.0"
|
63 |
+
|
64 |
+
_SEACROWD_VERSION = "2024.06.20"
|
65 |
+
|
66 |
+
|
67 |
+
class BioNERIdDataset(datasets.GeneratorBasedBuilder):
|
68 |
+
"""2600 conversations of patioent and medical doctors between 2017-2020.
|
69 |
+
Two medical annotated the data into two entity types: DISORDERS and ANATOMY"""
|
70 |
+
|
71 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
72 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
73 |
+
|
74 |
+
label_classes = ["B-ANAT", "B-DISO", "I-ANAT", "I-DISO", "O"]
|
75 |
+
|
76 |
+
BUILDER_CONFIGS = [
|
77 |
+
SEACrowdConfig(
|
78 |
+
name=f"{_DATASETNAME}_source",
|
79 |
+
version=SOURCE_VERSION,
|
80 |
+
description=f"{_DATASETNAME} source schema",
|
81 |
+
schema="source",
|
82 |
+
subset_id=f"{_DATASETNAME}",
|
83 |
+
),
|
84 |
+
SEACrowdConfig(
|
85 |
+
name=f"{_DATASETNAME}_seacrowd_seq_label",
|
86 |
+
version=SEACROWD_VERSION,
|
87 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
88 |
+
schema="seacrowd_seq_label",
|
89 |
+
subset_id=f"{_DATASETNAME}",
|
90 |
+
),
|
91 |
+
]
|
92 |
+
|
93 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
94 |
+
|
95 |
+
def _info(self) -> datasets.DatasetInfo:
|
96 |
+
|
97 |
+
if self.config.schema == "source":
|
98 |
+
features = datasets.Features(
|
99 |
+
{
|
100 |
+
"sentence": [datasets.Value("string")],
|
101 |
+
"label": [datasets.Value("string")],
|
102 |
+
}
|
103 |
+
)
|
104 |
+
|
105 |
+
elif self.config.schema == "seacrowd_seq_label":
|
106 |
+
features = schemas.seq_label_features(self.label_classes)
|
107 |
+
|
108 |
+
return datasets.DatasetInfo(
|
109 |
+
description=_DESCRIPTION,
|
110 |
+
features=features,
|
111 |
+
homepage=_HOMEPAGE,
|
112 |
+
license=_LICENSE,
|
113 |
+
citation=_CITATION,
|
114 |
+
)
|
115 |
+
|
116 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
117 |
+
"""Returns SplitGenerators."""
|
118 |
+
urls = _URLS[_DATASETNAME]
|
119 |
+
data_paths = dl_manager.download(urls)
|
120 |
+
|
121 |
+
# def _assert_data(msg):
|
122 |
+
# cur_data = list(map(
|
123 |
+
# lambda d: d.split(" "),
|
124 |
+
# open(fp, "r", encoding="utf8").readlines()
|
125 |
+
# ))
|
126 |
+
# assert {1, 4} == set(map(len, cur_data)), msg # length of 4 is due to uncommon delimiter of " _ _ "
|
127 |
+
# assert {('_', '_')} == set(map(lambda _: (_[1], _[2]), filter(lambda _: len(_) == 4, cur_data))), msg
|
128 |
+
|
129 |
+
# Convert to tab-seperated value
|
130 |
+
for subset in ["train", "valid", "test"]:
|
131 |
+
fp = data_paths[subset]
|
132 |
+
# _assert_data(f"Invalid file for subset '{subset}'")
|
133 |
+
data = open(fp, "r", encoding="utf8").read()
|
134 |
+
# data_paths[subset] = f"{fp}.tsv"
|
135 |
+
open(data_paths[subset], "w", encoding="utf8").write(data.replace(" _ _ ", "\t"))
|
136 |
+
|
137 |
+
return [
|
138 |
+
datasets.SplitGenerator(
|
139 |
+
name=datasets.Split.TRAIN,
|
140 |
+
gen_kwargs={"filepath": data_paths["train"]},
|
141 |
+
),
|
142 |
+
datasets.SplitGenerator(
|
143 |
+
name=datasets.Split.TEST,
|
144 |
+
gen_kwargs={"filepath": data_paths["test"]},
|
145 |
+
),
|
146 |
+
datasets.SplitGenerator(
|
147 |
+
name=datasets.Split.VALIDATION,
|
148 |
+
gen_kwargs={"filepath": data_paths["valid"]},
|
149 |
+
),
|
150 |
+
]
|
151 |
+
|
152 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
153 |
+
"""Yields examples as (key, example) tuples."""
|
154 |
+
data = load_conll_data(filepath)
|
155 |
+
|
156 |
+
if self.config.schema == "source":
|
157 |
+
for key, ex in enumerate(data):
|
158 |
+
yield key, ex
|
159 |
+
|
160 |
+
elif self.config.schema == "seacrowd_seq_label":
|
161 |
+
for key, ex in enumerate(data):
|
162 |
+
yield key, {
|
163 |
+
"id": str(key),
|
164 |
+
"tokens": ex["sentence"],
|
165 |
+
"labels": ex["label"],
|
166 |
+
}
|